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Abstract

We consider a multi-task contextual bandit setting, where the learner is given a graph
encoding relations between the bandit tasks. The tasks’ preference vectors are assumed
to be piecewise constant over the graph, forming clusters. At every round, we estimate
the preference vectors by solving an online network lasso problem with a suitably chosen,
time-dependent regularization parameter. We establish a novel oracle inequality relying
on a convenient restricted eigenvalue assumption. Our theoretical findings highlight the
importance of dense intra-cluster connections and sparse inter-cluster ones. That results in
a sublinear regret bound significantly lower than its counterpart in the independent task
learning setting. Finally, we support our theoretical findings by experimental evaluation
against graph bandit multi-task learning and online clustering of bandits algorithms.

1 Introduction

Online commercial websites aim to recommend their products to their customers properly, and the per-
formance of these recommendations depends on the knowledge of users’ preferences. Unlike traditional
collaborative-filtering-based methods (Su & Khoshgoftaar, 2009)), such knowledge is initially unavailable.
Therefore, the online recommender systems need to recommend various items to the users and observe their
ratings to explore their preferences. At the same time, the recommender system should be able to rec-
ommend items that attract users’ attention and receive high ratings by exploiting the learned knowledge.
The contextual bandit frameworks (Li et al., [2010) have been popularly used to formalize and address this
exploration-exploitation trade-off.

However, the classical form of contextual bandits (Li et all |2010; |Chu et al., |2011; |Abbasi-Yadkori et al.|
2011)) ignores the availability of social networks amongst users and solves the problem for each user separately.
Consequently, such algorithms have some drawbacks when applied to problems with a large number of users.
First, such a large number hinders their computational efficiency. Second, the partial feedback of the bandit
settings exposes the algorithms to having weak estimations and impairing their decision-making ability (Yang
et al.,|2020)). Consequently, to improve bandit algorithms’ performance for large-scale applications, structural
assumptions that link the different users are usually integrated within bandit algorithms (Cesa-Bianchi et al.)
2013} |Gentile et al.l |2014; |Li et al 2019; Herbster et al., 2021)).

Cesa-Bianchi et al.| (2013) and [Yang et al.| (2020) use the prior knowledge of social networks into their
contextual bandit algorithms. Both papers propose UCB-style algorithms and exhibit the importance of using
the social network graph to achieve lower regrets using Laplacian regularization. The latter regularization
promotes smoothness among the preference vectors of users, allowing the transfer of the collected information
between them. However, the Laplacian regularization does not account for the smoothness heterogeneity
introduced by a piecewise constant behavior over the graph (Wang et all [2016). On the other hand,
algorithms of online clustering of bandits (Gentile et al., 2014} |Li et al) |2019) tackle such a piecewise
constant behavior by explicitly estimating user clusters.

In this paper, we assume access to a graph encoding relations between bandit tasks, and that the task
parameter vectors are piecewise constant over the graph. We propose an algorithm that integrates the prior
knowledge of the piecewise constant structure to update tasks rather than finding the clusters explicitly.
That way, we mitigate the limitations mentioned above: the piecewise constant smoothness is naturally
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integrated into our regularizer, and we do not estimate the clusters so our algorithm does not suffer from
overconfidence drawbacks.

More precisely, we provide the following contributions

o We analyze an instance of the Network Lasso problem (Hallac et al. |2015]), estimating every vertex’s
preference vector using data generated during the interaction between users and the bandit. We
provide the first oracle inequality in this setting and link it to fundamental quantities characterizing
the relation between the graph and the true preference vectors of the users. Our result relies on
our novel restricted eigenvalue (RE) condition, which we assume for our setting. This result is of
independent interest and can be applied to i.i.d. data as a special case.

e We prove that the empirical multi-task Gram matrix of the data inherits the RE condition from
its true counterpart. Both this result and the previous one depend on the sparsity of inter-cluster
connections and the density of intra-cluster ones.

e We provide a regret upper bound for our setting. Our bound highlights the advantage of our
algorithm in high dimensional settings, and for large graphs.

o We support our theoretical findings by extensive numerical experiments on simulated data that prove
the advantage of our algorithm over other related approaches.

The rest of the paper is organized as follows. Section[2]discusses the relation of our work to the literature. We
formulate our problem and state some of our assumptions in Section [3] then present our bandit algorithm
in Section [l We analyze the problem theoretically in Section [f] and demonstrate its practical interest
experimentally in Section [6]

2 Related work

Lasso contextual bandits. To address the high dimensional setting for linear bandits, several multi-
armed bandit papers solve a LASSO (Tibshirani, {1996]) problem under different assumptions (Bastani &
Bayatil [2019; |Kim & Paik, |2019; |Oh et al., 2021 |Ariu et al. [2022). They all rely on a previously established
compatibility or RE condition (Bithlmann & van de Geer, 2011), that they adapt to the non-i.i.d case
resulting from the context selection procedure across rounds. Such assumptions were also used in the multi-
task setting by [Cella & Pontil| (2021]) with a Group Lasso regularization (Yuan & Lin) |2006)), and to impose
a low-rank structure on the task preference vectors in [Cella et al.| (2023). In our case, we establish a novel
oracle inequality, rather than only generalize an existing one to the non-i.i.d setting, with a newly introduced
RE assumption, which can be of independent interest.

Clustering of bandits. |Gentile et al.| (2014]) introduced sequential clustering of bandits with the CLUB
algorithm. The latter starts with a fully connected graph, and then an iterative graph learning process is
performed, where edges between users are deleted if their preference vectors are significantly different. As a
result, any connected component is seen as a cluster and only one recommendation per cluster is developed.
The SCLUB algorithm of [Li et al.| (2019)) generalizes CLUB via including merging operations in addition to
splitting. In contrast to these approaches, Nguyen & Lauw| (2014]) groups users via K-means clustering, and
Cheng et al.| (2023) rely on hedonic games for online clustering of bandits. Furthermore, Yang & Toni| (2018])
make use of community detection techniques on graphs to find user clusters. |Gentile et al. (2017) study
the clustering of the contextual bandit problem where their proposed algorithm, named CAB, adaptively
matches user preferences in the face of constantly evolving items. Our work fundamentally differs from the
previous ones on two aspects. First, we assume access to a graph encoding relations between users, which
is more informative than a complete graph. Second, we do not keep track of a model for each cluster, but
rather we integrate a prior over the graph via a graph total variation regularizer that enforces a piecewise
constant behavior for the estimated preference vectors.
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Multi-task learning. Several contributions assume that the bandit tasks share some underlying structure.
In|Cella & Pontil (2021])), task preference vectors are assumed to be sparse and to share their sparsity support,
implying that they lie in a low-dimensional subspace with dimensions aligning with the canonical basis
vectors. This idea is further generalized in (Cella et al| (2023), where the tasks are assumed to be confined to
an arbitrary unknown low-dimensional subspace. That work improves upon [Hu et al.| (2021) by not requiring
the knowledge of the small dimension of the task space. It can be considered to solve our problem if the
number of clusters is smaller than the dimension, resulting in a low-rank structure. However, our work does
not rely on any assumption between the number of clusters and the dimension. The underlying structure
linking tasks can also be a graph encoding relations between them (Cesa-Bianchi et al.l |2013; [Yang & Toni,
2018)), which is our case. However, while they assume smoothness as a prior, we assume piecewise constant
behavior.

Homophily and modularity in social networks Given the large number of users on social networks,
one may be able to learn their preferences more quickly by leveraging the similarities between them. This idea
relies on the notion of homophily in social networks (McPherson et all2001; Easley et al.,|2010). In modelling
social networks, users’ preferences relationships are encoded in a graph, where neighboring nodes are users
with similar preferences. This graph can be known a priori or it can be inferred from previously collected
feedback (Dong et al., |2019)). Exploiting this information and integrating them into bandit algorithms can
lead to a significant increase in performance Yang et al.| (2020]). Indeed, the knowledge of user relations allows
the algorithm to tackle the data sparsity issue that is inherent to bandit settings. Another fundamental
point that can be used to integrate information from social networks is that, social networks show large
modularity measures (Newman!, [2006; Borge-Holthoefer et al.l [2011). This implies that we have high density
of edges within clusters and low density of edges between clusters. As a result, users can be clustered based
on the graph topology and a preference vector can be learned for each cluster, substantially reducing the
dimensionality of the problem. In other words, discovering the clustering structure of users can reduce the
computational burden of large social networks. Consequently, there have been attempts in exploiting the
clustered structures of social networks in bandit algorithms (Gentile et al., |2014; Nguyen & Lauw, [2014;
Yang & Toni, [2018; [Li et al.l |2019; Nourani-Koliji et al., 2023} |Cheng et al.| [2023)).

Bandit meta-learning In contrast to the multi-task setting, meta learning deals with sequentially arriving
tasks that have to be learnt and generalizing the gained information to improve performance for future tasks.
Here, as in the multi-task setting, it is assumed that the tasks share some common structure that is ought to
be learnt and exploited. |Bilaj et al.| (2024) assume that the tasks are sampled from a common distribution and
concentrated around an affine subspace learned through PCA algorithm. The resulting projection matrices
could then be exploited to improve learning for new tasks in an adapted UCB and Thompson sampling
approach.

Other lines of work are [Cella et al.| (2020)); |[Kveton et al.| (2021)); Basu et al.[(2021)), which learns the mean of
the distribution under the assumption that the covariance of the prior is known or Peleg et al.| (2022) which
generalizes this assumption and attempts to learn the covariance as well.

3 Problem setting

We consider a linear bandit setting, with a finite number of tasks representing users in a recommendation
system for example. For each task the agent has to choose among K arms, each associated to a d-dimensional
context vector. All interactions over a horizon of T time steps. We further assume that we have access to
an undirected graph G = (V, &), with vertex set V representing the tasks and edge set £ encoding the
relationships between them. We identify the vertex set V with the set of vertex indices [|V|]. Thus, we
consider £ to be a subset of V2, where every edge (m,n) € £ has weight w,,, > 0, with m < n. The tasks’
preference vectors are denoted by {6,,}mey C R? verifying [|0,,] < 1 ¥Vm € V, which we concatenate as
row vectors into matrix ® € RIVIX4 The latter represents a graph vector signal, assumed to be piecewise
constant over G.

At around t € N*, a user m(t) € V is selected uniformly at random and served an arm with context vector x(t)
from a finite action set A(f) C R? with size K, depending on their estimated preference vector 8, (t) € R%.
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We assume the expected reward to be linear, with an additive o-sub-Gaussian noise conditionally on the
past. Formally, denoting by JFy the trivial sigma-algebra, and for all ¢ > 1, by F; the sigma-algebra
generated by history set {m(1),x(1),y(1),--- ,m(t),z(t),y(t),m(t + 1)}, the received reward y(t) is given
by y(t) = (Ot (t), 2(t)) + n(t), where n(t) is Fy—measurable and V¢ > 1,Vs € R,

E [n(t)|Fi-1] =0,

1
E [exp(sn(t))|Fi—1] < exp<20252>. (1)
The performance of our policy is assessed by the expected regret over the T interaction rounds for all tasks:

T
R(T)=E |)  max <0m(t),5:><0m(t),:c(t)>]. (2)

The Optimization problem in Equation is an instance of the Network Lasso (Hallac et al.l [2015]). Several
instances of the same type were studied by [Jung et al.| (2018); [Jung & Vesselinova, (2019); |Jung (2020));
He et al.| (2019)). The objective is characterized by its second term which, while being just the Laplacian
regularization without squaring the norms, promotes a piecewise constant behavior rather than smoothness.
For real-valued signals (d = 1), this regularization has been extensively studied for image and graph signal
denoising, for the problem of trend filtering on graphs (Wang et al.,|2016). According to Wang et al.| (2016),
that regularization better adapts to the heterogeneity of smoothness of the signal and induces a cluster
structure in the data: similar users will not only have similar models but the same model, which offers a
compression of the overall model over the graph. Note that our setting is cluster agnostic; our algorithm
does not aim to learn the cluster structure explicitly but to exploit it implicitly using the total variation
semi-norm as regularization. The strength of the latter is controlled via a time-dependent regularization
coefficient «/(t), which we will express later in the analysis.

We formalize our assumption on the context generation as follows.

Assumption 1 (i.i.d action sets). Context sets {A(t)}L_, are generated i.i.d. from a distribution p over
REX4 sych that ||z| < 1V = € A(t) Vt > 1.

In addition to the i.i.d assumption, we assume more regularity as follows.

Assumption 2 (Relaxed symmetry and balanced covariance). There exists a constant v > 1 such that for all
X € REXd p(—X) < vp(X). Furthermore, there exists w > 0, such that for any permutation (ai,--- ,ax)
of [K], for any i€ {2,--- ,K — 1}, w € R, we have

E ["Baim;rz]]-[w—rmal << wTa:aK]] < wE [(a:ala;;rl + a:aKac;rK)]l[meal << wT:caKH ,

where M < IN means that N — M is a PSD matriz.

This assumption was introduced in |Oh et al| (2021), and has already been used in a multi-task setting by
Cella et al.| (2023). Parameter v controls the skewness, as v = 1 corresponds to a symmetric distribution. w
decreases with increasing positive correlation between arms. It verifies w = O(1) for multi-variate Gaussians
and uniform distributions over the unit sphere (Oh et al., [2021)). The piecewise constant behavior of the
graph signal © is formalized in the next assumption.

Assumption 3 (Piecewise constant signal). There exists a partition P of V, such that for any cluster C € P,
signal © is constant on C, that is, 0, = 0, for all m,n € C. The graph obtained by taking the vertices in C
and the edges linking them is connected.

Assumption [3| basically states that the true preference vectors are clustered and that the given graph induces
the cluster structure. It is required for our approach to be beneficial, as we will detail in the analysis section.
For the sake of clarity, we defer the statement of other technical assumptions to Section [5}
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4 Algorithm

Our policy in Algorithm[I]follows a greedy arm selection rule in a multi-task setting, in the same vein as those
presented in |Oh et al| (2021); |Cella et al.| (2023). Indeed, as pointed out in |Oh et al.| (2021]), exploration is
implicitly incorporated into regularization parameter «(t)’s time dependence. It has the following expression

a(t) = Vi ) + ax (), (3)
\/mzevn' )| log —— (t)

1
az(t) = 2max [ Tmn(t)| log 50

where ag > 0. The set of time steps a task m has been selected up to time ¢ is denoted by Ty, (t). At the end
of a round ¢, all preference vectors are updated into a new estimation ©(¢) while leveraging the structure of
graph G, formally by solving the following network lasso optimization problem:

t

A ~

O(t) = argmin — Z (<0m(7),w(7)> — y(7’))2 + a(t) Z wmnHém -0,

2t
OcRIVIxd T=1 (m,n)€E

, (4)

where ||-|| denotes the Euclidean norm for vectors. At each time step the network Lasso problem is solved
via the primal-dual algorithm (Jung, [2020)).

Algorithm 1: Network Lasso Policy
Input: T, ag > 0,G, 0

Initialization: ©(0) = 0 € R/VI*d

forte {1,..,T} do

Draw a user m(t) € V uniformly at random
Observe context set A(t)

Select x(t) € arg maxze 44 <ém(t71)7 55>

Receive payoff y(t)
Update a(t) via equation
Update O(t) via equation

5 Analysis

This section provides the main steps of the analysis. One of the paper’s contribution lies in finding an oracle
inequality of the network lasso problem given a restricted eigenvalue condition holding for the true multi-
task Gram matrix. In this regard, the next major challenge and contribution is to show that the empirical
multi-task Gram matrix, estimated in the algorithm, satisfies the restricted eigenvalue condition. We start
by proving an oracle inequality for the estimation error of ®. Then, we prove that the latter assumption
holds with high probability given that the true multi-task Gram matrix satisfies it. We end this section by
establishing a regret bound for our algorithm.

5.1 Notation and technical assumptions

We provide additional notations required for the analysis. We denote by OP the set of all edges in £
connecting vertices from different clusters from partition P (Assumption [3]), and we call it the boundary of
P. Thus, 9P°, the complementary set of P, is formed by edges connecting vertices of the same cluster.
The total weight of the boundary, i.e.the sum of its edges’ weights, is referred to as w(9P). Given a
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signal Z € RIVI*? we denote by Zp the signal obtained by setting row vectors of Z to their mean-
per-cluster value w.r.t. P. For any edge subset I C &, we denote the following norms: ||| as the
Frobenius norm and [©|[; == 3=, ,)er Wnn|[@m — x| as the total variation semi-norm of © € RIVIXd gyer
I. Thus, the regularization term of Problem Equation is equal to [|®||z. Also, we define the incidence
matrix By C RIEXVIrestricted to I C £ to be null except at rows with index i € I corresponding to edge
(m,n), where it equals wy,,(e, — €,), where e,, is the m'™ canonical basis vector of RV, We define
Ay (t) = diag (X1(t) " X1(t), ..., Xjv ()T Xy (t)) € RUIVIXAVI and subsequently the empirical multi-task
Gram matrix up to time step t is given by %AV (t). The following definition introduces quantities related to
the clusters defined by partition P, with crucial roles that we will elucidate throughout the analysis.

Definition 1 (Cluster content constants). Let C € P be a cluster.

o We denote by 0,C the vertices of C that are connected to its complementary. We define the inner isoperi-

metric ratio of C as 1g(C) = l?&fl'

e By abuse of notation, we denote as B¢ the incidence matrix restricted to edges linking vertices of C, its
associated Laplacian matriz by Lc == B} Be, and its pseudo-inverse by LE. The topological centrality

index of node m € C w.r.t C is equal to (LE);le We define the topological centrality index of C by

Cg (C) = minnLEC (LE)’;;TL .

The inner isoperimetric ratio of a cluster measures how many “interior” nodes a cluster contains, in the
sense that they are not connected to its complementary. It is at most equal to the isoperimetric ratio for
weightless graphs as the size of the inner boundary is at most equal to that of the edge boundary, the latter
being connected to the algebraic connectivity via the Cheeger inequality (Cheeger} [1970)).

The topological centrality index measures the overall connectedness of a vertex in a network and indicates
how robust a node is to edge failures (Ranjan & Zhang, 2013). Also, it can be tied to electricity spreading
in a network according to [Van Mieghem et al. (2017). We refer the interested reader to the two previously
mentioned works for a detailed account of the properties of the topological centrality index. In the appendix,
we show that for binary weights graphs the minimum topological centrality index is at least equal to the
algebraic connectivity theoretically and experimentally, where we showcase that the difference between the
two can be significant.

Remark 1. Both the topological centrality index and inner isoperimetric ratio are key parameters of the
cluster structure and the graph. They determine the ’‘quality’ of the given graph. An optimal graph and
cluster structure yield many intra-cluster connections and few inter cluster connections i.e. a high topological
centrality index and low inner isoperimetric ratio for any cluster. This will later be highlighted in the oracle
inequality and the regret bound.

To proceed, we will need the following definition that introduces several notations to reduce the clutter.

Definition 2 (Restricted Eigenvalue (RE) condition and norm). A PSD matriz M € RUVIX4VI yerifies the
RE condition with constants k > 1, ¢ > 0 and ¢ > 0 if

¢>2||ZH§{E <vec(Z") Mvec(Z") VZ €S, (5)

where S is the cone defined by:

X 1 1 Z
S = {Z € RIVIxd; g <g,@, W) 1Z][5p: < a2 <g7®v W) ||ZP||F}’

0%0 + 2kw(9P)
Eréig Veg(C)

and the RE semi-norm is defined by || Z| gy = ||77>||F.

1
a1(G,0,ap) =1— ,  a2(G,0,a0) = ” + \/5/{10(879) rcrlea%( tg(C),
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For the rest of the paper, when we use a; and ay without arguments, we set oy = m in order to reduce
clutter. For our main results, we cover the case of Kk > 1 but treat the more general case k > 0 in the proofs
in the supplementary material. For such a simplification to be valid, we need to assume that the graph
satisfies g1617r>1 cg(C) > 2w(0P), such that we can always find constants £ > 1 and ¢ > 0 that guarantee

ar >0

To explain the RE condition, if we had S = RVI*? and |||z = |||, then M would be invertible with
minimum eigenvalue at least ¢2. In comparison, our requirement is weaker since it only needs to hold for
signals Z € § and for the ||-||gp semi-norm. It has the same form as the compatibility assumption for
the Lasso problem in (Bithlmann & van de Geer} [2011; Oh et al., 2021)) or the restricted strong convexity
assumption (Cella et al., [2023)).

We further make the following assumption on the true multi-task Gram matrix:

Assumption 4 (RE condition for the true multi-task Gram matrix). For k € [K], let £y = E [zyz) | be
the Gram matriz of the k** context vector’s marginal distribution, let Xy, be the true multi-task Gram matriz
of the context vector generating distribution, given by

— = 1
Yy =1y ®X%, where X = 7 ZE’C‘ (6)

We assume that Xy wverifies RE condition (Definition @) with some problem dependent constants k €

1, 2w(87)) mm Veg(C )) (RS < , w(a”P) mln cg(C) — 2) and ¢ > 0.

This assumption is common to several Lasso-like bandit problems (Oh et al., |2021; |Ariu et al.| 2022} |Cella
et al., 2023).
We will later show that it can be transferred to the empirical multi-task Gram matrix.

Remark 2. The previous assumption implies the invertibility of the true mean gram matrix of any cluster.
For the special case that all clusters are known, i.e. the graph has no inter cluster connections, we can fully
exploit this with o — 0o, which amounts to the task learning of |P| instead of |V| independent OLS problems,
since all users within a cluster share observed context vectors and can be viewed as a singular user. In order
for the individual OLS problems to be solvable the true mean gram matriz per cluster needs to be invertible.

We provide further intuition on the constant ¢ within the RE condition. We can show that ¢ has an upper
bound:

Proposition 1 (On the RE constant ¢). Let M; € R be the true multi-task gram matriz of user i.
Assume k > 1. Then the constant ¢ of the RE condition can be upper bounded as:

ZiEC MZ)
)\min - A |
0= \/ ( ]

where Amin(+) yields the minimum eigenvalue of a given matriz.

Since the true multi-task gram matrix per cluster is always invertible, we always have a non-null minimal
eigenvalue.

Remark 3. The minimal eigenvalue in Proposition 1| could be further bounded using the trace of the co-
variances i.e. the sum of all the eigenvalues over the dimension. This would result into an upper bound of
¢ < 5.

5.2 Oracle inequality

This section is dedicated to provide a bound on the estimation error of the Network Lasso problem given
in Equation at a particular step ¢t of Algorithm We assume fixed design, meaning that the context
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vectors are given and fixed, and we are not concerned by their randomness (due to the context generating
distribution), nor by the randomness of their number for each user (due to random selection at each time
step).

For a time step ¢, we deliver the oracle inequality controlling the deviation between the estimated preference
vectors O (t) and the true ones ©.

Theorem 1 (Oracle inequality). Assume that the RE assumption holds for the empirical multi-task Gram

1
matriz ;Av(t) with constants k € [1,211}(1673)%% \/Cg(C)), P € (0, ﬁlcnei% cg(C) — 2) and ¢ > 0.

Suppose that max,ecy |Tm(t)| < bt for some b > 0 and ay > m Then, with a probability at least

1 —06(t), we have
H@ - é)(t)H <27% £(G.©, a0),| 14 2b, | [V|log —— + 2blog ——
NG 5(t) 5(t)

a2(G, 0, ag)
a1(G, ©, ag) min /cg(C)

where

f(ga®7a0) = G/Q(Qa@aao) +1

The proof relies on decomposing the estimation error signal into a sum of two terms. The first term amounts
to taking its mean per cluster, that is, every node within the same cluster is mapped to the mean estimation
error of its cluster. The second term is proven to be related to the incidence matrices of each cluster.
The probabilistic statement comes from a high probability bound on the Euclidean norm of an empirical
vector process associated with our problem, using a generalization of the Hanson-Wright inequality to the
subgaussian case (Hsu et all 2012, Theorem 2.1). Compared to the bound of [Jung| (2020, Theorem 1),
we bound a norm of the estimation error rather than just the total variation semi-norm. Besides, due
to the expressions of a1(0,G,ap) and a2(0®,G, ap), the bound significantly decreases with the products
w(dP) mineep /1(C) and w(dP) maxcep ¢g(C)~ 2, which are small enough for dense intra-cluster edge links
and sparse inter-cluster ones. The bound on the oracle inequality clearly grows with x and ), thus it is most
beneficial if x is close to 1 and 1 close to zero.

5.3 RE condition for the empirical multi-task Gram matrix

To establish the oracle inequality, we assumed that the RE condition holds for the empirical multi-task Gram
matrix. In this section, we prove that this holds with high probability. To this end, we use the same strategy
as in |Oh et al.| (2021)); |Cella et al.| (2023). We prove that on the one hand, the empirical multi-task Gram
matrix inherits the RE condition from its adapted counterpart since it concentrates around it. On the other
hand, we show that the adapted Gram matrix verifies the RE condition due to Assumption [T} 2] and [

Theorem 2 (RE condition holding for the empirical multi-task Gram matrix). Under assumptz'ons@ and
lett > 1, and let k, ¢ be the constants from Assumption[]} Assume that max,,cy [T (t)| < bt. Then, for any

_9 1
v E (0, (1 + Z—f) ), the empirical multi-task Gram matriz ;Av(t) verifies the RE condition with constants

ézé\/l—v(HZj)z, (7)

— 324" (mincep (Eg(C) A Eg(C)Q)t> -0
, where ¢ =

K, ¥ and é, where

and

with a probability at least equal to 1 —6d|V|ex -
P Y 1 Id p( 6b + 2v/2v¢2 V2w

&(C) = cg(C) AlC| VCeP.

The proof follows a similar approach as in|Oh et al.|(2021)); |Cella et al.[(2023); we prove that the RE condition
transfers from the true multi-task Gram matrix to its adapted counterpart V4,(t), defined as follows:

VV(t) = diag (‘/i(t)’ T 7‘/|V|(t)) ’ (8)
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where

1
Vin(t) = £ > E[z(m)a(r)|Fa]. (9)
TETm (1)

This transfer relies on the work of |Oh et al.| (2021 lemma 10). The other step of the proof is showing that
the empirical multi-task Gram matrix and Vj,(¢) become close to each other with high probability after
sufficiently many time steps, in the sense of a matrix norm induced by the RE semi-norm and the restriction
to set S (Definition [2)). The bound showcases a dependence on mincep c¢g(C) A |C|, which is of the same
order as |C| for a fully connected cluster with vertices C. It is also clear that the probability of satisfying the
RE condition increases with a higher minimum centrality of a cluster.

5.4 Regret bound

To bound the regret, we bound the expected instantaneous regret for each round ¢ > 1. This bound relies
on the oracle inequality holding and the RE condition being satisfied for the empirical Gram matrix, both
with high probability. Thanks to Theorem [I] and Theorem [2] these two conditions are ensured.

Theorem 3. Let the mean horizon per node be T = % Under assumptions to |4}, the expected regret of
the Network Lasso Bandit algorithm is upper bounded as follows:

R(T) < O(aouwf(g;s?,ao)ﬁ ( V] + \/log(T|V|) + f/\V| 10g(T|V|)> + %log(d\VD + |V|>7
with .
3y’ mineep(é6(C) A G(C)) 1 as
A= 610g(w|) —|—\/§’y s 'Y*i lJra .

Vv

Our regret is mainly formed of two parts. The first one is the sublinear time-dependent term and represents
the bulk of horizon dependence. Interestingly, it decreases as the topological centrality index grows with the
graph size, which proves the importance of intra-cluster high connectivity.

The second significant term comes from ensuring the RE condition for the empirical multi-task Gram matrix,
and can be interpreted as the number of time steps necessary for it to hold, as pointed out by |[Oh et al.
(2021). It has a logarithmic dependence in the graph size and in the dimension, which is a characteristic of
regret bound of the "lasso type". Also noteworthy is that the regret grows explicitly with log(d) only in the
time-independent term, making our policy useful in high-dimensional settings. Though from Proposition
we can expect an implicit dependency on the dimension in the RE constant ¢. Specifically, the lower bound
on ¢ is an open problem that appears unsolved in other lasso based works such as |Oh et al.| (2021); |Cella,
et al.| (2023]).

Both the regret bound and the oracle inequality presented in Theorem [I] hold only for the set of graphs
that at least satisfy the condition Icnig cg(C) > 2w(9P) and even though our results hold for a large set
€

of graphs, the individual role of graph-related constants, encapsulated in f(G,®,ag), is not obvious. By
further restricting the set of graphs, we are able to provide a simplified bound

Corollary 1. Assume wOP)(Y+2r) < Q, with some positive constant () < 1, then under assumptions to

Bip Vol

the expected regret of the Network Lasso Bandit algorithm is upper bounded as follows:

- 1 w(OP) maxcep tg(C) /= ou(T 4 ox (T
RT) = O gy P ST (YT lon(TIV) + /o (V)
w(0P)? max ig ©)

(1~ OF mincer (6(©) A B(0)

+ log(d|V]) + V|)
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The simplified bound in Corollary |1| exhibits the typical multi-task learning dependency 4/T|V| rather

than the independent task learning case \V|ﬁ and highlights the role of graph related properties such
as the total weight of the boundary, the maximal inner isoperimetric ratio and the minimal topological
centrality index. Furthermore with © we can see the influence on the regret bound, when w(9P) changes
relative to IcIl€17I)1 v ¢g(C). Compared to the GraphUCB algorithm (Yang & Tonil 2018), that yields a regret

bound of O (d|V|\/Z?) and the trace norm bandit algorithm (Cella et al., [2023) with a regret bound of

o (y/r0d|V|T+ VIV ToT), with 79 < d as true rank of the multi task structure, our result shows an
improvement with respect to the number of nodes and horizon. The bound of the SCLUB algorithm given
in|Li et al.| (2019) yields an improved regret bound of O (d\/ |79||VT) that depends on the total number of

clusters |P|. While our algorithm exhibits a similar result, it does not explicitly depend on the number of
clusters but with the properties of the graph and the compatibility with the underlying cluster structure. We
present two additional specific instances: a graph with no boundary (i.e., w(9P) = 0), and a graph where
full connectivity is achieved within each individual cluster.

Corollary 2. Assume w(9P) = 0, then under assumptions|l| to|4, the expected regret of the Network Lasso
Bandit algorithm is upper bounded as follows:

_ 1 = = . =
R(T) = O(wﬁ< V] + \Jlog(TIV]) + {/[V]10g (T|v)) + mecr G @ A @) EAVD + |V|)

Corollary 3. Assume w < Q, with some positive constant @ < 1 and assume any two nodes
min v/¢g(C)

within the same cluster are connected through an edge in the given graph, then under assumptions [1] to 4,

the expected regret of the Network Lasso Bandit algorithm is upper bounded as follows:

= 1 w(OP) maxcep tg(C) /= (T . o (T
R(T) = 0 =gy R SELT (W floa(TIV) + §/ Vo (V) )
w(0P)? max 1g(C)

2
ceP
log(d
T A= mineen ] BV + 'V')

6 Experiments

We compare our algorithm with ay = 1 to several baselines of the literature. On the one hand, we consider
baselines relying on a given graph, GOBLin (Cesa-Bianchi et al., |2013)) and GraphUCB (Yang et al.| [2020)
that use the Laplacian to smooth the preference vectors. On the other hand, we compare to clustering of
bandits baselines, namely CLUB (Gentile et al., [2014), SCLUB (Li et al.l |2019), OLS-ITL (Bastani et al.,
2021) and LOCB (Ban & He, 2021). We provided CLUB with graph G rather than a fully connected graph
for a fair comparison. We also include the trace norm bandit algorithm (Cella et al., 2023)), which is relevant
when the number of clusters is smaller than d. Indeed, the cluster structure of ® can be mathematically
written as © = Zcep 1005, where 1¢ is the indicator vector of cluster C' (coordinates equal to 1 on the
nodes belonging to C' and zeros elsewhere) and 8¢ is the true vector of every node in C. The range of © is
equal to the span of 1¢;C' € P, implying that its rank is at most equal to min(d, |P|). It will then satisfy the
low-rank assumption for |P| < d. As a sanity check, we compare to the independent task learning case with
LinUCB (LinUcbITL) where each task is solved independently. The graph used is weightless and generated
using a stochastic block model to ensure a cluster structure, where an edge is constructed with probability
p within clusters and ¢ between clusters.

Experimentally, we found that normalizing the weights as wy,,, = (deg(m) deg(n))~2, where deg(m) denotes

the degree of node m, yields significantly better results. Indeed, such a normalization makes the algorithm

10
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focus more on edges between low-degree nodes, which improves the propagation of the collected information
within the graph.

20001 — CLUB 01— cLus
—— GOBLin —— GOBLin
17501 | — GraphUCB a00d | GraphUCB
15004 | LOCB — LOCB
500 1
- —— LinUcbITL - —— LinUcbITL
%c 12501 — NetLasso ;;)n 3004 — NetLasso
; OLS-ITL ; OLS-ITL
£1000{ — Trace-Norm Z —— SCLUB /
< <
= Er 2004 Trace-Norm /
£ 7501 E
g 5
5004
1001
2501
01 04
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000
time steps time steps
(a) V| = 200, |P| = 25,d = 10,p = 0.5,q = 0.05 (b) [V| = 50, |P| = 5,d = 80,p = 0.8,q = 0.2
— cLuB 10009 crup
4004 —— GOBLin —— GOBLin
—— GraphUCB s00d T GraphUCB
— LOCB —— LOCB
—— LinUcbITL —— LinUcbITL
% 3001 N 3
go —— NetLasso Eﬂ 6004 — NetLasso
: OLS-ITL : OLS-ITL
& —— SCLUB & —— SCLUB
= 2004 m = "
El Irace-Norm 2400 4 Irace-Norm
g :
g 5
1001 2001 /
01 01
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000
time steps time steps
(c) V| =100, |P| = 8,d = 10,p = 0.5,q = 0.1 (d) [V| =100, |P| = 8,d = 20,p = 0.4,q = 0.1

Figure 1: Synthetic data experiments showing the cumulative regret of Network Lasso Policy as a function
of time-steps compared to other baselines, for different choices of |V|,|P],d,p and q.

Our results clearly demonstrate an improvement compared to the other baselines. Our policy performs
significantly better than the rest beyond the error margins, covering one standard deviation at ten repetitions.
We provide results for up to [V| = 200 nodes showing the effective transfer of knowledge between nodes.

7 Conclusion and future perspectives

In this work, we proposed a multi-task bandit framework that solves the case where the task preference
vectors are piecewise constant over a graph. To this end, we used the Network Lasso policy to estimate
the task parameters, which bypasses explicit clustering procedures. We established a sublinear regret bound
and proved a novel oracle inequality that relies on the small size of the boundary and the high value of
the topological centrality index of each node within its cluster. Our experimental evaluations highlight the
advantage of our method, especially when either the number of dimensions or nodes increases.

Due to the technical similarity of our problem with the Lasso, a natural extension would be to extend it to
a thresholded approach, in the same vein as (Ariu et all, [2022)). Another possible extension would be to use

11
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regularization with higher order total variation terms that impose a piecewise polynomial signal on a graph,
as explained for scalar signals in [Wang et al.| (2016); |Ortelli & van de Geer| (2019).

References

Yasin Abbasi-Yadkori, David P4l, and Csaba Szepesvari. Improved algorithms for linear stochastic bandits.
In Advances in Neural Information Processing Systems, 2011.

Kaito Ariu, Kenshi Abe, and Alexandre Proutiere. Thresholded Lasso Bandit. In Proceedings of the 39th
International Conference on Machine Learning, 2022.

Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings of the Web
Conference 2021, 2021.

Hamsa Bastani and Mohsen Bayati. Online Decision Making with High-Dimensional Covariates. Operations
Research, 2019.

Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly exploration-free algorithms for contextual
bandits. Manage. Sci., 2021.

Soumya Basu, Branislav Kveton, Manzil Zaheer, and Csaba Szepesvari. No Regrets for Learning the Prior
in Bandits. In Advances in Neural Information Processing Systems, 2021.

Steven Bilaj, Sofien Dhouib, and Setareh Maghsudi. Meta learning in bandits within shared affine subspaces.
In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, 2024.

Javier Borge-Holthoefer, Alejandro Rivero, Iiiigo Garcia, Elisa Cauhé, Alfredo Ferrer, Dario Ferrer, David
Francos, David Iniguez, Maria Pilar Pérez, Gonzalo Ruiz, et al. Structural and dynamical patterns on
online social networks: the spanish may 15th movement as a case study. PloS one, 2011.

Peter Bithlmann and Sara van de Geer. Statistics for high-dimensional data. Springer Series in Statistics.
Springer, Heidelberg, 2011.

Leonardo Cella and Massimiliano Pontil. Multi-task and meta-learning with sparse linear bandits. In
Uncertainty in Artificial Intelligence, 2021.

Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic linear bandits.
In International Conference on Machine Learning, 2020.

Leonardo Cella, Karim Lounici, Grégoire Pacreau, and Massimiliano Pontil. Multi-task representation learn-
ing with stochastic linear bandits. In International Conference on Artificial Intelligence and Statistics,
2023.

Nicolo Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits. Advances in neural
information processing systems, 2013.

Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis, 1970.

Xiaotong Cheng, Cheng Pan, and Setareh Maghsudi. Parallel online clustering of bandits via hedonic game.
In International Conference on Machine Learning, 2023.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011.

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning graphs from data: A signal
representation perspective. IEFE Signal Processing Magazine, 2019.

David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly connected
world. Cambridge university press Cambridge, 2010.

12



Under review as submission to TMLR

Angela Fontan and Claudio Altafini. On the properties of laplacian pseudoinverses. In 2021 60th IEEE
Conference on Decision and Control (CDC), 2021.

Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In International Conference
on Machine Learning, 2014.

Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, and Evans Etrue.
On context-dependent clustering of bandits. In International Conference on machine learning, 2017.

David Hallac, Jure Leskovec, and Stephen Boyd. Network lasso: Clustering and optimization in large
graphs. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, 2015.

Xiao He, Francesco Alesiani, and Ammar Shaker. Efficient and scalable multi-task regression on massive
number of tasks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Mark Herbster, Stephen Pasteris, Fabio Vitale, and Massimiliano Pontil. A gang of adversarial bandits.
Advances in Neural Information Processing Systems, 2021.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms of subgaussian random
vectors. FElectronic Communications in Probability, 2012.

Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation learning for
linear bandits and linear rl. In International Conference on Machine Learning, 2021.

Alexander Jung. Networked Exponential Families for Big Data Over Networks. IEEE Access, 2020.

Alexander Jung and Natalia Vesselinova. Analysis of network lasso for semi-supervised regression. In The
22nd International Conference on Artificial Intelligence and Statistics, 2019.

Alexander Jung, Nguyen Tran, and Alexandru Mara. When Is Network Lasso Accurate? Frontiers in Applied
Mathematics and Statistics, 2018.

Gi-Soo Kim and Myunghee Cho Paik. Doubly-robust lasso bandit. Advances in Neural Information Pro-
cessing Systems, 2019.

Branislav Kveton, Mikhail Konobeev, Manzil Zaheer, Chih-wei Hsu, Martin Mladenov, Craig Boutilier, and
Csaba Szepesvari. Meta-thompson sampling. In International Conference on Machine Learning, 2021.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web,
2010.

Shuai Li, Wei Chen, and Kwong-Sak Leung. Improved algorithm on online clustering of bandits. arXiv
preprint arXiv:1902.09162, 2019.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social networks.
Annual review of sociology, 2001.

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national academy
of sciences, 2006.

Trong T Nguyen and Hady W Lauw. Dynamic clustering of contextual multi-armed bandits. In Proceedings
of the 23rd ACM international conference on conference on information and knowledge management, 2014.

Behzad Nourani-Koliji, Steven Bilaj, Amir Rezaei Balef, and Setareh Maghsudi. Piecewise-stationary com-
binatorial semi-bandit with causally related rewards. In ECAI 2023. I0S Press, 2023.

Min-Hwan Oh, Garud Iyengar, and Assaf Zeevi. Sparsity-Agnostic Lasso Bandit. In Proceedings of the 38th
International Conference on Machine Learning, 2021.

13



Under review as submission to TMLR

Francesco Ortelli and Sara van de Geer. Synthesis and analysis in total variation regularization. arXiv
preprint arXiv:1901.06418, 2019.

Amit Peleg, Naama Pearl, and Ron Meir. Metalearning linear bandits by prior update. In Proceedings of
The 25th International Conference on Artificial Intelligence and Statistics, 2022.

Gyan Ranjan and Zhi-Li Zhang. Geometry of complex networks and topological centrality. Physica A:
Statistical Mechanics and its Applications, 2013.

Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial
intelligence, 2009.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 1996.

Joel Tropp. Freedman’s inequality for matrix martingales. FElectronic Communications in Probability, 2011.

Piet Van Mieghem, Karel Devriendt, and H Cetinay. Pseudoinverse of the laplacian and best spreader node
in a network. Physical Review F, 2017.

Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, and Ryan J. Tibshirani. Trend filtering on graphs.
Journal of Machine Learning Research, 2016.

Kaige Yang and Laura Toni. Graph-based recommendation system. In 2018 IEEE Global Conference on
Signal and Information Processing (GlobalSIP), 2018.

Kaige Yang, Laura Toni, and Xiaowen Dong. Laplacian-regularized graph bandits: Algorithms and theoret-
ical analysis. In International Conference on Artificial Intelligence and Statistics, 2020.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 2006.

A Some helper results

Proposition 2 (Bounds on norms of matrix products). Let M € R™*™ and N € R"*P. Then

MN[0 < Mo 1IN0 ¥a & [1;00]
IMN||p < [MI[[|N]

IMN| g <\/IMTM||, N5,

IMN|lyy < [M]l, [N
Proof.

First inequality For any ¢ € [1, 00|, we have:

n n
lef MN|, = lle/M D e;elN| < max [e] Me;| > [le] NI|, = max [(M)y][[N]],,
J=1 T j=1 ==

Second inequality We have

D p
IMN|7 =3 |MNej||* < | M]||Ne,|* = |M]|N]7

j=1 j=1
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Third inequality We have
2 TasT T T
IMNf = T(MNN'MT) < [MTM|, [INNT],
Elements of (i,) entry of matrix NN T is the inner product (e N, ejTN>. Hence, we have

INNT, =D (el N ef N) < > [lel Nllle/ N[ = NI
4,3

4,3

Fourth inequality We have

IMN|,, =Y leMN| < lle:M|[|N] = M|, | N|
i=1 1=1

Proposition 3 (Decomposition of a signal over a graph). For any C € P

o Let Z € RIVIX4 be o graph signal. Let us denote by Z¢ the signal obtained from Z by setting rows
of vertices outside of C to zeros, and let Z)c € RICIX be the signal obtained from Zc by removing
the rows of vertices outside of C. Also, let B¢ € RI€eIXICl be the matriz obtained by taking Be, and
removing rows of edges that link C to its outside, and the resulting null columns. It is clear that

BcZ = BcZc = BicZc (10)
o Let Q¢ = B};Bc. Then
I|V\ = ZJc—‘ch (11)
ceP
Qope == B ,. Bope = Z Qc (12)
cep

where Je = 3¢, Qe = BiBe W€ € P and Qope = Blp. Bop-.

While Y ocp Je projects each entry of a graph signal onto the mean vector value of its respective
cluster, its residual Qop- can be interpreted as the projection onto the respective entries deviation
from its cluster mean value.

Proof. Since the proof of the first point is trivial, we directly treat the second point. Denoting BFC the

pseudo-inverse of B¢ it is a well-known linear algebra result that the matrix Q¢ = BRLCB\C is the projector

onto the null space of B|¢. Since C is connected, the null space of B¢ is unidimensional, and is generated by

vector 1¢| € RI€! having only ones as coordinates. Since the projector into that null space is Jic| = %,

we deduce that

Zic =JiejZjc + QieZic
= Zc=JcZc+QcZc
=JecZ 4+ QcZ
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where in the last line, Q¢ = BEBC. Consequently, we have

zZ=> Z
ceP
= Z JeZ +QcZ

ceP

To prove the second point, we recall that Bgpe is the incidence matrix obtained by setting rows corresponding
to edges in P to zero. In other words, Bgpe is the incidence matrix of the graph after removing the
boundary edges, and having exactly |P| connected components. Hence, Bgpe has a null space spanned by
the set {1c}cep, and the orthogonal projector onto this null space is ) -5 Je. Combining this fact with
the fact that Qgp- is the projector onto the orthogonal of the null space of Bspe, we arrive at the second
point. O

Proposition 4 (On the minimum topological centrality index of a graph vertex). Let G be a connected
graph with incidence matriz B and verter set size N, and let L := BT B. Let ¢(G) denote the minimum
value of inverses of diagonal element of L, called its minimum topological centrality index. Also let a(G) be
its algebraic connectivity, defined as the minimum non null eigenvalue of L. Then

o c(G) = L] -
o ¢(G) > a(9).

o If G is weightless, then c(G) < ]\],le

Proof. Since L is PSD, L' is PSD and hence HLTHoo -, Is equal to the maximum diagonal entry of Lt
Taking the inverse proves the first point. Also, this implies that

-1

e(@) = LT > IEY " = a(g), (13)

00,00 —

where we used the fact that ||-|] < ||| for matrices. This proves the second point of the proposition.

00,00 —
For the last point, assume G is weightless, let Lcomp be the Laplacian of complete graph built on the vertices

of G. Then we have Leomp = N(In — Ju), where J is the square matrix of dimension N having 1/N as
entries. From [Fontan & Altafini| (2021, Lemma 4), we have

1 I 1
L:rzomp = (Lcomp + NJN)il - NJN - WN - NJN (14)
which has diagonal elements % — ﬁ

On the other hand, L < Loomp Hence, by [Fontan & Altafini| (2021} lemma 4) we have for any u # 0
L' =(L+aJn)"' —JIn/a = (Leomp +ady) ™t — Iy/a = L]

comp

This implies that the maximum diagonal entry of LT is at least equal to that of Llomp, i.e.to  — 7z. Taking
the inverse of that entry finishes the proof.

O

B Proofs of the different claims

B.1 Additional notation

The regularization term can be written more compactly using the incidence matrix of the graph B € RI€I*IVI
corresponding to an arbitrary orientation under the following form
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Z Winp||Om — On || = HB8H2,1 = 1O (15)

1<m<n<|V|

where the ||-[|, ; norm denotes the sum of the Ly norms o the rows of a matriXH We provide notations that

we use in the proofs of the different statements, in order to reduce the clutter. We define E := © -0 as

the error signal and its rows by {em}‘r)j‘:1

While ch=1 Je projects each entry of a graph signal onto the mean vector value of its respective cluster,
its residual Qspe can be interpreted as the projection onto the respective entries deviation from its cluster
mean value.

Let n,, be a vector, vertically concatenated by noise terms of rewards received by node m, then we define
K € RVIX? a5 the matrix of vertically concatenated row vectors n,), X,,.

N.B. Except for the results concerning the regret bound, we consider the case k > 0 rather than x > 1 in
our proofs.

B.2 Oracle inequality

In this section, we present all intermediary theoretical results leading to Theorem [5| stating the oracle
inequality. To reduce clutter, we omit the dependence on ¢ of several quantities. For instance, we write «
and O instead of a(t) and O(t).

Definition 3 (Restricted Eigenvalue (RE) condition and norm, generalization of Definition [2)). Let

{Ml-}gl1 C R4 pe a set of positive semi-definite matrices. We say that the matriz M, =
diag(My,--- , M|y)) verifies the restricted eigenvalue condition with constants k > 0 and ¢ > 0 if

S Zl5e <D lzillar, Y2 € S with rows {zi}iev,
icV
where S is the cone defined by:

y 1 1 —
=2 €8 (0.0 G ) 121 <0 (0.0 ) ol 007121

1
= + 2kw(OP) 1
a1(G,0,ap) =1—2 — 2 4,(G,0,qp) = — + V2kw(P) max /1g(C),
1( 0) i Voo ©) 2( 0) = o (0P) max Vig(C)
CeP
and the RE semi-norm is defined by | Z|pg = ||Z7||, v (1 — H)+HB(];7;Ba7DZH We have the structure

dependent unknown constants ¢ and k, for which we assume they guarantee aq (g, O, Wm))) > 0.

Proof of Proposition[l. Let Z = 1cv! be a constant per cluster signal, with 1o € RVl as indicator vector
with the ith entry equal to 1 if ¢« € C and 0 otherwise. Then Z is contained in any cone S defined in the RE
condition and we have:

1Ze|[; = 127 = [[1ev 01|
=1/ 1c|v|?

= [Cl[lv]f*

1t is possible that the notation |||, ; denotes the sum of 2—norms of columns in the literature.
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Table 1: Notation table.

Notation Meaning

Independent of time ¢
1% set of graph vertices
& set of graph edges
B; e RIEXIVI T C £  Graph incidence Matrix obtained by setting rows of edges outside I to zeros
B¢ € RIEXIVI cf. Deﬁnition
L e RVIXIVI B'B
0,, € R4 true preference vector of user/bandit m
© c RIVIxd matrix of true vertically concatenated row preferences vectors
oPCé& Boundary of P: set of edges connecting nodes from different clusters
cg(C) Minimum topological centrality index of a node in C restricted to the graph in C
w(OP) Total weight of 9P, i.e. sum of weights of edges in P
1l Euclidean norm for vectors, largest singular value for matrices
-1l & Semi-norm defined by PSD matrix A: ||a:||?4 =z Ax
Il matrix Frobenius norm
1M1, g-norm of the vector with coordinates equal to the p—norm of rows
I-ll;,I €& Total variation norm of signal over edges of [
Af Moore-Penrose pseudo-inverse of matrix A
vec vectorization operator consisting in concatenating the columns vertically
® Kronecker product
1c € RVI Vector with entries corresponding to vertices in C equal to 1 and 0 elsewhere
Je € RIVIXVI equal to 1‘%1'5
Qc € RIVIXIVI equal to B} Be
Q; e RVIXVI T C &  equal to B}Bl
e elementary vectors of dimension depending on the context
o Subgaussianity constant / variance proxy

Dependent on time ¢
T (t) set of time steps user m has been encountered before time ¢
6,, € R? estimated preference vector of user/bandit m
€m € R? estimation error for user/bandit m : ém -0,
E c RIVIxd vertical concatenation of row vectors €,,
Nm € RI7m®) vector of subgaussian noise of user m
x(t) € R? context vector received at time ¢
m(t) €N user at time ¢
X,, € RITm(®)[xd data matrix of user m
X c Rtxd data matrix of context vectors of all users
A, € R¥xd X,! X, (potentially associated to time t)
Ay € RAVIXdV] diag(Ay,---,Ap)
K c RIVIxd matrix of vertically concatenated row vectors n;Xm

For the right hand side of the RE condition we have:
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> lzillag, = vec(ZT) M vec(ZT)
i€V
=vec(lev ') M vec(lev')

= (1lc ®wv) <Zele ®M>(lc®v)

i€y

=1 oo’ (Zele ®M>(lc®'v)

i€V

= Z 1geieiT1C ® 'vTMifu
i€V

=> v"My=v' (Z Mi> v

icC 1eC

Plugging the results into the RE condition, we get:

— Q] <oT <Z Mz) v

i€C
v’ (Ziec Ml) v
lv]*|c|

Ziec M;
g ¢ S \/)\min (|C|)

¢* <

O
Lemma 1 (A first deterministic inequality). Let t be a time step. We have
Z 1Xmeml® + [ Ellppe < L (K.B)+ 1Elop (16)
2ta ta
mey
Proof. By optimality of ©, we have
1 . 2 1 2
% Z HXmgm —Ynm + O‘”®”5‘ — % Z ||Xm0m - ym” + a||®||£ (17)
mey meV

where the second line holds by definition of the observed rewards.
On the one hand, given a user index m € V), and since by definition of the observed rewards we have we have
for the least squared terms

N 2 ~ 2
HXmgm - ymH = HXmem - Xmgm — M

= ”Xmem - 77m||2
= ||Xm€m||2 + | Xm0, ymH - WTXmem

where we used the fact that y,, = X,,,0,, + 7m, which holds by definition of the observed rewards. Summing
over the users, and using the definition of K, we have

1 A 2 1 1 1
5i O [ X = || = 55 30 1K =yl = 5 D [ Xomew |~ (KB (18)
mey mey

mey
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On the other hand, we have for the estimated preference vectors

1©l = Z Wmn

(m,n)e€

N ~

6, -6,

= Z Wmn ém - én + Z Wi ||Om — én
(m,n)edP (m,n)edPe
= @], ],
op ope

For the true ones, and for any C € P, let & denote the edges linking the nodes of set of nodes C. It is clear
that 9P = Jeep Ec as a disjoint union, hence

1©]l¢ = Z Winp|[Om — On |

(m,n)eE
= Z Winn|[Om — Ol + Z Wrnn ||Om — On||
(m,n)eoP (m,n)€aPe

= ”('-)”673'+ Z Z wmnuemfen”

CEP (m,n)eE€e
= ||®||87>
where the last equality holds due to the cluster assumption.
Hence, we have
ol 101 191 [6],
1©lls ~ @l = I©l,»— [©],_~]e],,.

< 1Blor - ||©] . (19)

where the first inequality holds due to the triangle inequality, and the last one since ||@||5p. = 0. Combining
Equations to , we obtain the result of the statement. O

In the proof for the oracle inequality, we utilize projection operators on the graph signal, which we define as
follows:

While chzl Je projects each entry of a graph signal onto the mean vector value of its respective cluster,
its residual Qspe can be interpreted as the projection onto the respective entries deviation from its cluster
mean value.

Lemma 2 (Bounding the error restricted to the boundary). The total variation of E restricted to the
boundary verifies

1E|yp < w(dP) \fmaxx/ ©)||Er HF+2 liZEC) (20)
e1>

Proof. The proof relies on a decomposition of the || E||,, term from Proposition 3} We have

IElgp =|>_ JcE+QcE

ceP

oP
e

<|Ex|,,+ HB},PCBachHaP (21)

where Ep is obtained by setting the error signal on every cluster to its mean.
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For the first term on the right-hand side, let us denote by €c the value of any row of Ep belonging to cluster
C, which is equal to the mean of errors E over that cluster. Also, we denote by (Ep)op the signal obtained
from Ep by setting its rows corresponding to nodes that are not adjacent to any edge in the boundary 0P
to zeros. Also, let 9,C denote the inner boundary of set of nodes C,i.e. nodes of C that connect it to its
complementary. Then it holds that:
Bl = |Bor B,

= HBGP(FP){?PHQJ

<|[|Baplly 1 ||(Er)or| (by Proposition 2

< |Boplly, [|(EP)or||

= Baplloy |3 100Cllecl”
CceP
0,C
- ||Ba7>||2,1\/ > Lelicleel?
ceP
< 1Boplly,1 max /1(C), | > [Cllecll”

ceP

= V2w(0P) max /15 (C)| Ep |, (22)

For the second term, we have

Hngch’?PCEHap BDPBJ’;PCBMDCEHz )

IN

1E|5pe
oco,1

IN

E| 5pe
Bl

(Blp) Byp| IElop:

IN

IN

||B,9T7;H271\/ ‘BgPC(BgPC)THoc OO||E||3PC (by Proposition [2)

1Bspl,..

min v/ cg ©)
w(OP)

min v/cg(C
cepr g(

1B
=2 1 Ellgp. (23)

The result is obtained by combining Equations to . O

Theorem 4 (Theorem 2.1 of [Hsu et al.| (2012)). At time step t, let A € R where b € N*, and let v € R*
be a random vector such that for some o > 0, we have

E [exp((u, v))] < exp<||u||202> Vu € R

Then for any 6 € (0,1), we have with a probability at least 1 —§:

1 1
|Av|® < o2 <||A||§ +2|ATA| ,/log 5+ 2| A||* log 5) .
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Lemma 3 (Empirical process bound). Let X, € RI7m%d denotes the matriz of collected conteat vectors for
task m €V, then, given collected context matrices {Xm tmey, for any 6 € (0,1) we have with probability of
at least 1 —§:

as(t)
K|, < t
1K < %252
where
L (e7s1e 2 1 1
as(t) = —~ t+2 mgev |Tm (t)]” log 5t 21%125 [T, ()] log 5 (24)

Proof. We recall that K € R**? is the matrix obtained by stacking the row vectors n, X,,, vertically. On
the one hand, we have

K2 = S |X 5l = | X007 (25)
mey

where Xy, = diag(Xl’ e ’X|V|> e RtxdVI|

On the other hand, for any w = (uq, -+ ,u;) € R?, denoting P(t) := exp (23:1 uTnT), we have

E [P(t)] =E [E [exp{usm: } P(t — 1)|Fi—1]]  (by the law of total expectation)
=R [P(t — 1)E [exp(um:)|Fi_1]] (because {n,}._} are F;_; measurable.)

< exp 02u?> E[P(t—1)] (by the conditional subgaussianity assumption)
: L 5o . :
< H eXp(20' us> (by induction)
- exp(202||u|2>. (26)

From Equations and , we can apply Theorem [4] to matrix Xy, and random vector 7, which implies
that with a probability at least 1 — §, we have

1 1
| Xvn| <o Tr<2 Am> +2, [ D Al log < + 2 max || Ay log =,
meV meV
where we used the equalities [ Xy|p = >, oy Tr(Am), 1Xv]? = ma§||Am|| and ||XVXJ||i =
me

||XJXVH37 =D mev HAm”?, To arrive the statement of the theorem, we use the fact that the context
vectors have Euclidean norms of at most 1.

O
Proposition 5 (Probabilistic inequality). With a probability at least 1 — §, we have
1 9 _
%o D I Xmemll” +a1(G, ©,00)|E |l gpe < a2(G, ©,00) || Ep|| . + (1 = 5) | Ell o, (27)
mey
min v/¢g(C)

where 0 < kK < B TG
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Proof. The proof is a combination of the results of Lemmas [I] to [3] We have
i Z 1 X l> + 1Bl e
< E (K,E)+ ||E|5p (by Lemma 1]
§

1
< OTOHE”F + 6l Elop + (1= r)[[Ellgp  (by Lemma (3)

E e — e
< H 73HF+ ”E”dP +f<cw(873) \/imax /LQ(C)HEPHF"'2w +(1_H)||E||a7>7

(o 7)) i C cep i C
ao min v/¢g(C) min v/¢g(C)

where the last line is an application of Lemma [2] Grouping the terms by the type of norm applied to E
finishes the proof. O

Theorem 5 (Oracle inequality, generalization of Theorem . Assume that the RE assumption

holds for the empirical multi-task Gram matriz with constants k € |:1’2w(673) m17r)1 \/Cg(C)), P €

(0, w(873) mm cg(C) — 2) and ¢ > 0. Suppose that max,ey |Tm (t)| < bt for some b > 0 and ag >

d)w(aP)
Then, wzth a probabz'lz'ty at least 1 — 6(t), we have
H@ (i)(t)H <2 7% (G, ©,a0),| 1+ 2b Vilog = L oplog ——
- s oy (0
POV 5(t) a(t)’
where
,0) + /21 op
16.0) (az(g, ®)+\/§1§1(ﬁ)w(873)) a2(G,©) + v21 <1 (k)w(9P) 41
a1(G,©®) min v/cg(C)
cep
Proof. Using the previously established results, we obtain
1 2
5 S Xl + al Bl .
mey
<a5a2(0,G)||Ep||p + as(1 — k)T ||E|5p (by Proposition [f)
=a5a2(0,G)||Ep|| + as(1 — HB(’)'pBapB(’)'pEH (by properties of the pseudo-inverse)
<asa2(0,9)|| Epl r + asl|Boplly 1 1<1(k)(1 — k) HB{,PBapEH (by Proposition [2))
<as(a2(0©,G) + 1<1(k)V2w(OP))|| E|zg (by definition of the |||z norm)
C] 1 0
<a 12(0,9) + 11 (k) V2w(IP) Z I mHA (using the RE assumption)
QS\/ mey
Bag(ax(©,9) + 1<1 (k)| Bopll,,,)?
< - - Xm€m 2
< - b5 3 Xenl® (29)
mey
2 4 42
where the last inequality holds for any S > 0, and is a consequence of the property that uv < for

any u,v € R. In the second to last inequality we used the RE assumption, here it is important to mention
that the assumption does not hold for any choice of ag. In the definition of S i.e. the set matrices for which
the RE condition holds, we have ay = W. We can also observe that this set is non increasing for the

inclusion operator i.e. the RE condition would become weaker, for increasing . Thus for any o > W
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the respective set of the RE assumption is contained in & and any matrix contained in the smaller set is
automatically contained in S, allowing us to use the RE condition in the proof due to our lower bound on
1

20 = Ju(ep)-

As a result, we can bound the norm of QgpcFE as follows:

|Qor-Ell = | Bl Bor-B|

IN

T
[

1o
(o)

oo,

_ 205(a2(©,G, ag) + L<1 (k)| Barlly,)?
¢2a1(®,g>ao)lggg cg(C)

(Equation with 8 =1). (29)

We can also bound the norm of Ep as follows:

— 1
HEpH? < el Z | Xmemll®  (by RE assumption on empirical multi-task Gram matrix)
mey
402(a2(®, G, ap) + 1<1(k)|| B 2
< 2 (a2( ) <1(®)[[Borll,,) (by Equation with 8 = 2). (30)

< o

The result is then obtained by combining Equations and along with using the fact that E =
Ep + Qyp-E and the expressions of a1 (0, G, ap) and a2(0, G, ap), and bounding «as(t) as follows:

Ckg(t)Q 0'2 2 2 ]. 2 ].
= | D Xl +2, ) D X X | log < + 2max || X | log
g t ) mey 1)
mey mey
<% [t 42 [ T log L + 2max 7o, (5)]log .
— m og = max | T, og =
- 2 & ) mey & )
mey
o? 1 1
St—Q t+ 2t log5+2tlog5
2
o? 1
<2—[1 log =
O
B.3 Inheriting the RE condition from the true to the empirical data Gram matrix
B.3.1 From the adapted to the empirical multi-task Gram matrix
Lemma 4 (Bounding a quadratic form using projections). Let My, --- , M, € R¥*4 be symmetric matrices,

and let J = %11—'—, and Q = I — J. Then, for any Z € RP*< with rows {z;},_,, we have:

P

S

=1

P
1
>z Mizi| < - 1Z]% +2

i=1

I, o,
p M

i=1

2
1Zllql1Z1; + max M1 21
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Proof. We have

P P P P
ZziTMlzl = ZETMiZ +2 Z(zl Z —2) M;(z; — 2)
i=1 i=1 i=1 i=
P P P
<127 Miz|+2> e/ QZM;z Z e/ QZM,Z Qe; (31)
i=1 i=1 i=1
where we used the fact that z; —z2=Z"e; — Z"Je; = Z' Qe;.
Let us now examine every term on the right-hand side of Equation . For the first term, we have
P P
2Ty Mz <|[Y M 1215 (32)
i=1 i=1
For the second term, we have
P P
delQzMz| < Y M Z"Qei|| 2|
i=1 i=1
P
=|[D_(e] ® Mi)vec(ZTQ)l|z]
i=1
P
< |I> (el @ My)|||lvec(Z2TQ)| |12l
i=1
-3 e an
P P
=IO (el @ Mi)TD (e] @ My)|[IIQZ] 1|12
i=1 i=1
PP
= |22 (] @ Mi)(e; © My)|1QZ] |||
=1 5=1
PP
= 122D (el ej© MM;)|1QZ| | 2
i=1 j=1
P
=\ |[>= M2 1QZ] 12 (33)
i=1
Finally, for the last term, we have
P P )
ZeZQZMiZTQei < Z IM;]|]|Z7 Qe
i=1 i=1
o 2
< TQe;
< max || M; HZ;HZ Qe
— max [ MQZ]- (34)
Combining Equations to yields the result. 0O
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We also define an operator norm that is induced by the |||z introduced in Definition

Definition 4 ((RE,S)-induced operator norm). Let {M,,}mey € R be symmetric matrices associated to
the graph nodes V, and let M, = diag (Ml7 e vMIVI) e RIVIXAVI - For any cluster C € P, let the cluster
mean and mean of squares associated to those matrices be given by

Me = g7 3 Ma ¢ g 2 M

meC meC
The RE-induced operator norm of My, is defined as
— AT : —1 . —1
M ||gg,s = IgggHMcH v\/glelgCQ(C) rgggHM%H Vmineg (€)™ max || M| (35)

B.3.2 Linking the adapted to the empirical Gram

We first start by establishing that given the closeness of two PSD matrices in a certain sense, the RE
condition can be transferred between them. For the sake of readability we remove the arguments of the

constants: a; = a3 (g o, ¢w(ap)) Gz = Gz (g e, 1/;117(67’))

Proposition 6 (Restricted spectral norm). Let Z € RVIX? yerifying
al| Z||ppe < a2||Zp|, + (1= K)T1Z]p

Let {M}mey € R be symmetric matrices associated to the graph nodes V, and let My =

diag(My, -+, My|) € RIVI¥IVI Then we have:

T
g 2 M 2,
meY

2
as+ (1 —r)*|B
2+ (1-m)*) avv||2,1> 122 (36)

ai

2
< M ||gg,s (1 +

Proof. For any cluster C, we denote by B¢ the incidence matrix obtained by setting the rows of B outside the
edges linking nodes in C to null vectors. The latter’s null space is the span of the vector 1¢ having coordinates
1 at nodes in C and zeros elsewhere. Hence, the projector onto the orthogonal of 1¢ is Q¢ = BEBC.

On the one hand, for any signal Z € RIVI*4 we have

1Zllgpe = D I1BeZlly,

cepP
|tE.z]
> n - IF
HLEH
> min Z 1Z] g,
cepr

Hence, by the proposition’s assumptions, Z verifies

min /eg(C)ar Y |1 Zllq, < (az|[Zp]|, + (1 = 5| Zllp)
CeP

< as|Zp|,+ (1~ /@)+||Bap||2’1HBg7,BapZH
< (a2 + (1 =r)TIBlly ) Z g
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From Lemma [4] we have

Z z;Mmzm

mey

< Z Z z:,;Mmzm
ceP ImeC

< Y IMefIZ15, +2 3 ) [3e |1 Zlg 121 5, + Y max|Inlli 215, (37)
CeP ceP cep

where we used Equation .

This allows us to bound every term in Equation . For the second term on the right-hand side, we have

>/ |1zl 0121,

CeP
cepr
min0g(C)_% —
<P /[ 3% (2 + (1 = 0B )1 2 e (39)

aq ceP

As for the third term, we have

2
2
<
> max [[Mum||[|Z]lg, < max || Ml (E ||Z||QC>

cep ceP
Enig cg(C)!
€ 2
< max | M, | ———=——(az + (1 — H)+HB||2,1)2||ZHRE (39)
mey ay
. a2—|—(1—/<;)+||B||271 .. . .
Consequently, denoting v = , and combining Equations (37)) to (39)), we obtain
ai
Z z;Mmzm
mey

M| +2 322 + v max ] ) 11211
<rcnea7g<|| el + 2vmax c|| + v max |[Mi] | |Z]|re

< M, i = HW H i -1 M| ) (1 +0)2) 2|
< (s I3l v i eo(©) o |37 | v min (€)M ) 14 0221
which finishes the proof. O

Proposition 7 (Inheritance of a RE condition from a close matrix). Assume that the matriz Vy

verifies the RE condition with constant ¢ > 0, and that < y¢? for some v €
op,RE

-2 A
(0, (1 + a2+(lfm)+\@w(873)) > Then TV verifies the RE condition with constant

2
gg:(ﬁ\/l_v(Hag+(1—Fu)ﬂ/iw(ap)) @)

Ay
W

ay
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Proof. From Proposition [5] we know that

1
gegAVEV |V|€VVV6V + EVAVEV
T
> |V|€vVV€V ’€VAV€V|
2
az + (1 — k)| Bop|
2 2,1 2
> ¢ - 1722§||AV||01’),RE (1 + @ I Ellgg
5 9 a2+(1—H)+||Ba79H211 ’ 2
>|o" =" [ 1+ (2218
a
where the third inequality is an applicaiton of Proposition [6] O

Theorem 6 (Matrix Freedman Inequality, Tropp| (2011)). Consider a matriz martingale { M (t)}1>1 with
dimension di X do. Let {IN(t)}4>1 be the associated difference sequence. Assume that for some A > 0, we
have |[N(t)|| < A ¥t > 1 almost surely. Define for any t > 1:

col ZE T|]:T 1}
row ZE )|‘FT 1}

Then, for any u,v > 0,

3u?
PEt > 1;|M(t)|| > d ||[Weorll (2 Weow@®)]| <v] < (dy +d —_
512 LM 2 0 and [Weal OV W] < ] < (a1 + ) (25 )

Corollary 4. Let {N(7)}._, by a sequence of matrices of dimension dy x d2, adapted to filtration {F,}:_
Let {t;}.| an increasing sequence with elements in [t] for some N < t. Consider the sequence {M (n)}Y_;
of random matrices defined by

n) = Z N(t;) —E[N )| F, 1] (41)

Then {M (n)}N_, is a martingale adapted to the filtration {F, }_,.

Moreover,if |IN(7)|| <b V7 € [t] for some b > 0, then we have

U2
PIMM)| 2 ] < (@ + ey (- o). (12

Proof. We denote E [-|F;] as E; [-] for any s € N. Also, let C(s) := E;_; [IN(s)], which is F,_1-measurable
by construction. We have for any n € [N],

Er, , [C(tn)] = Er,., [Erp—1 [N(t2)] = Er, , [N(t) (43)
= B, , [N(tn) = C(tn)] =0 (44)
where the first equality is due to the tower rule since F;, , C F¢, 1. Also, we have for any 7 > 1
IN(r) = COIP = |(N () - C(o) (45)
< Tr(( —-C(1)?) (46)
= Tf((N - C(1))%) (47)
= [N(MIF = 2Tx(C(7)N (1)) + Tr(C(r)?) (48)
<IN+ T (C(7)°) < 26° (49)
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Hence N(7) — C(7) is integrable for any 7 > 1. This shows that M (n) is a sequence of partial sums of
matrix martingale differences, hence it is a matrix martingale.

The second part of the corollary statement is a consequence of Theorem[6] The boundedness of the sequence
of martingale differences has already been established above. To verify the second requirement of the theorem,
let us compute bounds on the norms of W, and W, from Theorem @ Notice that the two matrices are
equal since the difference sequence matrices IN (¢5) are symmetric. Hence, for any n € [N], we have

[Weat(N) [V [[Wrow (N[ < Te(Weor (V) V Tr(Wiow (V) (50)
N
=T <Z Ey, 1 [(N(tn) = C(tn>)2]> (51)
N - .
=Y B [IN()I5 | = Eror RT(C ()N ()] + Tr(C(t)?) - (52)
N - .
= B [[IN()5| = Te(C(tn)?) (53)
n;[ _ _
<D B [ING)F| < NP (54)

By Theorem [, we have for any u > 0

2d exp (_GNbQi—uZ\@bu) >P[3n>1; || M(n)| > uand [|[Wea(n)| < Nb?| (55)
> P[|M(N)|| = uand [Wea(N)|| < Nb?] (56)
=P[IM(N)| = u] (57)

where the last line holds because we showed that the inequality ||[Weo1 (V)| < Nb? holds almost surely. [J

Proposition 8 (Concentration of the empirical multi-task Gram matrix around the adapted one). Lett > 1,
b > 0. Then we have:

P

-W > max [T (¢)] < bt | < d2[Ple™ " + (|V] + [P)e™ " +2[V|e~ "),

op,RE

t

| Ay(t)

where

3~% min [C|t
7vgggl\

Al =

6b + 2v/2
2 .
3y ICn€17I)1(:g(C)t
Ag =
3 2 2
e y rcn€171310g(C) t
7 6b+ 2v/2y min ¢g(C)
ceP ¢
Proof. For v > 0, let us define
A 1
Ay, = Tv -W and GGram,'y = {t”AV”RE,S < 7} )
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where Ay, is block diagonal matrix formed by {A,, };mey. We also define A and A2; in the same pattern
of Definition [} We can express the complementary of this event as the disjunction of a finite number of
events as follows:

céramﬁ (58)
_ {Igea% Be| v \/ggg o(€) " mas [ A% | v min g (€) " max | A > m} (59)

- U {1 Ac|| >m}u {HA2 | > ¢ mch(C)}UmLeJV{HAmH >mgggcQ(C)} (60)

The first and third event can be bounded by considering the sequence zx ' () adapted to the filtration {F,},
verifying ||:c:c || <

Bounding the probability of the first event Let C € P be a cluster. By definition, we have

IC|Ac(t) = Z Z zx(r) — E [zx(7)| Fr_1]

meC 7€T,,(t)

= Z zx(7) — E [z (7)| Fr_1]

rel e Tol0

We will apply Corollaryfor the sequence of time indices in C, i.e. |J,,,cy, Tm(t). Hence |C |Ac is a martingale
sequence, and we have

P {HAc(t)H > yt| max [T, (t)] < bt < 2dexp el
mev Smee [ Tm (@] +2v27(Ct
_ 2
< 2dexp 37" |C| !
6|C|bt + 2v/27|C|t
_ ( —37*(C]t >
- oaep 6b—|—2\[7
—32 mm\C|t
<2d 61
b 6b+2fv (61

Bounding the probability of the third event Let m € V be a task index. We apply Corollary {| for
the sequence of time steps in Ty, (t). We have

An(t)= > za(r) - E@x(r)|Fr]

TETm (t)
is a martingale sequence, hence
—3+2min cg(C)*?
7 nin cg(C)
6|Tm (1) + 2v/27 Icnelg cg(C)t

P || AL(t min cg(C)t| max | T (t)| < bt| < 2d
| ()||>76617DCQ()| 2§| (t)] ] €xp
2 2,2
t
3y ICnEng(C)
+ 2v/2ymi
6bt + 21/2 Enelan(C)t

< 2dexp

—3y2 min g (C)*t
7" mincg(C)

. (62)
6b + 21/2 min cg ()

= 2d exp
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Bounding the probability of the second event Let C € P be a cluster, and let us denote e,, the m*™
canonical vector of RI°l. We have

[Fe] = | | X wotr)-ElarF )

¢ meC \r€Tm (t)

2

_ L Z el ® Z xx(7) — E [z (7)| Fr_1]

|C‘ meC TETm (1)
2

1

=1 > enmir) @ (@x(r) — E [wa(7)| F, 1))
€U, ce Tm(®)
2

1

= ] Z e;;(T) ® xx (1) — E [enr) @ za(T)| Froa]|| |

TeUmEC Tm (1)

where the last equality holds since m(7) is measurable w r.t. Fr—1. We will apply the Corollary 4| I to the set
of time steps [J,,cc Tm (t) and the adapted sequence e, m(r) @ @x(T) of matrices in R4*4ICl, Hence we have

P l, / HFC( H > 'ytmm \/7| max|7' )| < bt]

—37°|C| min cg (C)¢*

d(1+|C|) exp -
63 mec [ Tm(t)] +2v2y, /IClmin g (C)t
—3~2 i
3y ‘C|ICIéI7IDICg(C)t
d(1+[C|) exp :
6|C|b 4+ 2v/27, /|C| min cg(C)
cep
—3y2min cg(C)t
= d(1+|C|) exp cep
min ¢g(C)

6b+2\[ %

-3~ min cg(C)t
< d(141C|) exp ce (63)
6b + 2v/2y
Union bound We conclude the result of the statement via a union bound using Equation . O

Proposition 9 (Concentration of the empirical multi-task Gram matrix around the adapted one, simplified).
Lett > 1, b> 0. Assume that max,ey |Tm(t)| < bt. Then we have:

—3y*(mingep(¢g(C) A 59(0)2)15)

>y §6d|V|eXp< 6b 1 2V

op,RE

where ¢g(C) =cg(C) N|C| VC € P.
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Proof. The proof will rely on simple calculus inequalities. Hence, let « = mingep ¢g(C),v = mineep |C|, f =
372, g = 6b, h = 21/2~, which are all positive. Then, we have

 fu (unv)f (IAuAv)f
Al_J“rg2 f+y 2(U/\U)J“rg(lmwv)
_fv (wAu)f _ (wAu)f (IAuAv)f
= T P e 2 Ty 2N @Ay
fo? (v Au)? (LAuAv)f

Ay = >

Frow > Trwaug = UMY

f+AAunv)g

where we used the fact that functions of the form x — m for positive 31, B2 are increasing on R .

(IAx)f A1

>
fHAxz)g ~ f+g
function and we use the result of Proposition [§] we deduce the result. O

As a final step, we use the inequality

taken for x = u A v, we apply the exp(— - t)

B.3.3 From the true to the adapted Gram matrix

For all of the proofs in this subsection, we follow an approach similar to that of|Oh et al.| (2021). In particular,
we use their Lemma 10.

Theorem 7 (Lemma 10 of |Oh et al.| (2021)). Under Assumption|q on the context generating distribution,
let t > 1. We have for any 6 € R?:

> E

e A(t)

xx' {m € arg max (9,53)}] = L2] (64)

EEA(L) 2vw

Proposition 10 (RE condition from the true to the adapted Gram matrix). Under Assumption@ for any

t > 1, the adapted Gram matriz Vy,(t) verifies the compatibility condition with constants k and

¢
Vorw'

Proof. For t > 1, we have

E[zt)zt) [Foa] =E | Y z®)z(t) [Fia (65)

e A(t)

Let m € V. We have

1
Vo (t) = n Z E [w(T)sc(T)T|fT_1]
TETm (1)
1
= Z E [E V2(7) "0 (T — 1), Fr_1] |Fr-1]  (law of total expectation)
TETm(t
= Z E [z () |0 (T — )] ((r) is fully determined by 6,,(r — 1))
TETm(t)

:% Z E Z Tx ]l{:nEargmaX(B w)}|0m(7'—1)

T (1) @EA(T) zEA(L)
1 _
= %E (by Theorem 7). (66)
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Now, let Z € S, where S is defined with constant k of Assumption 4] Then

1 .
Z Iz V() 2 o lzmls by Equation
mey mey

2
2 .
20 |Z||ze (by Assumption 7

Y

which finishes the proof. O

Theorem 8 (RE condition holding for the empirical multi-task Gram matrix, generalization of Theorem .
Under assumptions [§ and [J} let t > 1, and let k,¢ be the constants from Assumption [} Assume that

-2
maxmey [Tm(t)| < bt. Then, for any v € (O, (1 + a2+(1—/~£)+\/§w(87?)) ), the empirical multi-task Gram

ai

matriz verifies the RE condition with constants k and (ﬁ, with

2
gZ)Q~S\/17<1+112+(1n)+\/§w(a7>)) | )

ay

— 37294 (mincep (Gg(C) A ég(C)?)t
6b + 21/27?

with a probability at least equal to 1 —6d|V)| exp( ) , where ¢ ==

&o(C) = cg(C)A|C| VCeP.

Proof. For the sake of readability, let ¢ = \/;Lj the compatibility constant of the adapted Gram matrix,
according to Proposition Then:

L =V 22 i G5 (0) 2501 .
6b + 2/272
AV 792 oy
<P - Vo < ¢ (by Proposition [9)) (69)
op,RE
Ay o 2 .
<P - satisfies the RE condition with constant x and ¢|  (by Proposition [7)), (70)
Y7 as+(1—r) 2w (0P) 2

Where¢—¢\/l—7<l+ 2 o ) O

B.4 Regret bound

Lemma 5 (Concentration of the fraction of observations per task). Assume that [V| > 2. Then for § € (0,1),
we have with a probability at least 1 — J:

|‘7 (t)| 1 1 |V\ 4 |V|
m < — 4 _— LA T 1
mey ¢ = [V] 2 |V log 5 3t log 5 (1)

Proof. We have |Tp,(t)| :== Zizl[m(T) = m), where Vt,Ym € V,P[m(t) = m] = ﬁ, meaning that the binary

variable [m(t) = m] follows a Bernoulli distribution B(<;). Then, the random variable X; = [m(t) = m)]

1
I
has mean 0, variance ﬁ(l - \Tll)’ and verifies | X;| <1 — ﬁ since |V| > 2. As a result, via the Bernstein
inequality, we have for any m € V), and for any w > 0,

[T (t)] i w exp | — tw? ex —L
P2 e < p( 2<1—|$,><1+ts:>>S p( 2<%;|+?:>>
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For the right-hand side to hold with a probability at most 6 € (0, 1), it is sufficient to have

g L
1 Z 08¢
27+ %)
2 21 logd 2 9wloe L
<:w72 VI 6andw—2 wlog s
2 t 2 3t
1
w1 log 4log L
: w =2 VI g g§

Hence, and via a union bound, we get

[T ()] - 1 1 1 4. 1
P > — +2,/—log=+—log=| <
l TR TR R TR I
1 1 1
[Tm(®)] _ 1 prlogs  4logg
=P > — 424 <V
B R Tt | =V

The result is obtained by adjusting the value of §. O

Theorem 9 (Regret bound, generalization of Theorem [3). Let the mean horizon per node be T = % Under
assumptiondd] to[] and k > 0, the expected regret of the Network Lasso Bandit algorithm is upper bounded as
follows:

aof(ga ®a Oéo)ﬁ
éz

R(T) = O < ( VI +/log(TIV]) + ‘\*/|V|1og(T|V|)> + %log(d|V|) + V|> ,

37 mingep (ég(C) A &G (C))

610g(\V|)+2 2
il V2y

Proof. For any time step t, we will define a list of good events under which the Oracle inequality and the
RE condition for the empirical multi-task Gram matrix both hold with high probability. Then, we will use
those bounds to sum up over time steps until horizon 7'

with A =

Good events We formalize these requirements as three families of time-depending "good" events.

o Gpro(t) is the event that the mean of the empirical process bounded by a(t) up to a constant ¢, which is
equivalent to saying that it converges:

Gona(®) = { 1K1 < 20} ()

o Gga(t) is the event that the number of selections of all tasks is bounded by its expected value up to a

small constant p(t)
Tl L o0} )

Gsal(t) = {max
 Grg(t) is the event that the empirical multi-task Gram matrix 1 Ay (t) satisfies the RE condition.

1 N
Grg(t) = {tAV (t) verifies the RE condition with constants &, qb} (74)

Event Gpyo(t) is the most straightforward to cover since our bound on the empirical process given in Lemma
holds with a probability of at least 1 — d(¢), thus:
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PGpro(1)°|Gsar ()] < 6(2), (75)

where we included the time dependency on §(¢) in contrast to the previous section. This way we emphasize
to adjust 0(t) after each round, to guarantee a sub linear regret bound. The probability of event Gge(t) can
be determined using Bernstein’s inequality:

From Lemma |5 we can select p(t) = 2 ﬁ log 65‘:1)(‘15) + 3 log 552}(‘0 as well as P [Gge1()€] < dsal(2).

B.4.1 Instantaneous regret decomposition

Now, given the event probabilities, we condition the instantaneous regret r(t) on the good events at a time
t > ty. We have for its expectation:

E [r(t)|Gse1(t)] + 2P [Gser(t)°]
E [r(t)|Gpro(t) N Gre(t) N Gsal(t)]
2 (P [Gpro(t)|Gsal(t)] + P [GrE(1)|Gser(t)] + P [Gsear (£)7]) 4 (76)

where we used the worst case bound r(t) < 2 if any one of the good events does not hold.

Bounding the regret Inserting our results of the event probabilities, the oracle inequality and the de-
composition of the expected instantaneous regret in Equation and bounding the sum over rounds, yields
the final result. Thus, we start by bounding the sum over the first term i.e. the expected regret in case all
good events hold:

i E [r(t)|Gpro(t) N Grp(t) N Gealt i H H

Taking the result of our oracle inequality in Theorem 5} we point out that only «(t) is time dependent such
that the rest of the terms can be pulled outside the sum:

T T
N ago / 1 1

2090 r 1 26 4b

IN
=
“
)
o
[=)

T 2b
)/0 i 7( 2\V|1og(T)+2log(T))dt

2000 ./32log(IV|T)T 16
< = =2 7(G,0 a0)<2ﬁ+< v +4¢ Vi 310g(|V|T)log(T)>

(/2VTIox(T) + v/2oa(T)) )

o <aof<g, ;awﬁ ( VI +/log(TIV]) + 3/ |v|10g(TV|))> !
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where
a2(G,0,ap) + V21 <1 (k)w(OP
1(6,0,a0) = (2(9,©, ) + V211 (R)w(0P) 2 o) \f. 1(rJul0P)
a1(G, ©, ap) min \/cg(C)
ceP
We upper bounded the sum with an integral i.e. Zle g(t) < fo t)dt for monotonically decreasing functions

g(t) in the last inequality. Also b is the bound on the concentratlon of the fraction of observation per task
provided by Lemma |5l For tg = \/m we find by inserting the result to Lemma |5| for all ¢ > ¢y:

R IR S R 2log(IVIVIVT) _ 81og([V1v/IV)
w2 31 Vi VIV 3V

1,2 log(|V)) +21og<V|>]

3
‘Wml Nz

Finally we bound the sum over the instantaneous regret term for the bad events:

T
> 2(P [Gpro(t)|Gser(D)] + P [Gri ()| Gser(t)] + P [Guer(£)°])

t=1
By construction, we have max (P [Gpro()¢|Gsel(t)] , P [Gser (1)€]) < §(t) = . Hence,

T

T T
S P Gpro (1)7]Ger (1)] + B [Giar(1)°] < 2 Zigg <1+ / f;f)g (77)

t=1

3y mingep (ég(C) A G(C))

As for the RE condition event, letting A =
6b + 2v/2y

, we have for any tg > 1

T
Z P[Gre(t)°|Gsea(t)] < 6d|V] Z exp(—At) (by Theorem [g)

t=to t=to
1
< 6d[V]em M (14 —
< 6d|V]e < +A>

e—Ato

< 6|V T——

< 6d[V]e Mo (14 1
= A

where in the last line, we used the inequality exp(A4) > A + 1. Hence, for any u > 0, choosing
1 6dV|(1+ %)
= V] (22

implies that ZtT:t(, P[GrE(t)¢|Gsel(t)] < u. Now, we simply have to insert all our results into the sum of
instantaneous regrets:
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R(T) < to+2ut8+0 (“0f @, g’; 20) VT ( Vi + Jlog@VI) + ¢/ 1og(TV|))>
<[V + Blo%Wﬂ +2u+8

Lo <a0f(g,§),ao>ﬁ ( IVl + \/bgmw) + §/V|log(T|V|)>)

7
< [V + B log(12dV|(1 + A))W 4 % +8

o <aof(g,§2, ao)VT ( V| + \/1og(T|V|) + Q/V|1og(T|V|)>>

< {m} + B log(12d|V|(1 + A))-‘ + % +8

o (aof(g,; ao)VT ( VI + \/log (TIVI) + §/V|1og(T|V|)>>

0 ( V] + %log(d|V|) + O‘Of(g’; 20)VT ( VI -+ /log(TIV]) + {/1V] log(T|V|)>>
_0 ( V] + %log(d|V|) + “(’Wf(g;f’o“))ﬁ ( VI -+ log(TIV]) + 3/ 1V log(T|V|))> :

where we set u = ﬁ in the third inequality.

w(OP)($+2r)
Icnelp cg(C)
m then the term f(G,®, ag) can be bounded as:

Proof of Corollary[ll Assuming < Q, with some positive constant 2 < 1 and setting gy =

f(g’@’“°‘ww<a7>>) " (almin cg<0>+1)

cep
:( (0 )(¢+\[/€max g (C )) m?:\)/(w;\f:j:(wi(j:? +1

cepP
w(OP)? max tg(C)
= O .
(1 = Q)min+/cg(C)

ceP

Q acts as a threshold for the quality of any graph the satisfy this bound. Similarly we can find a bound on
the term %:
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-2
log(VD | 1 (1, %2
6=25 +ﬁ< +

3 (1 + aj) mincep (Gg(C) A EG(C))
w(OP 2k max /tg(C -
610g(‘w) N o - ( ) <'¢ + f CeP m)
V| V2 1-Q
< 2
w(@P)(¥ + V2r) max v/1(C)
% 1+ -0 mincep(ég(C) A 55(0))
w(9P) (¢ + V2r max M)
1+ 1-0
=0 mincep (7g(C) A 33 (C))
Y w(OP)? max 1g(C)
7\ (1= Q)2 mineep(ég(C) AEE(C))

Inserting the terms into the regret bound yields the final result.

Proof of Corollary[d With ag = m we have for oo f (G, ©, ap) first:

w(OP) (w + V2rmax m)

1
aof (G, 0, ap) = W <w(873) (1/1 +V2k max m)) ]énel% c(C) — w(dP) (Y + 2k) *

B <w +V2k max M) w(OP) (¢ +V2k max \W>

(G min v/cg (C) — w(9P)(¢) + 2r)
2k max v/1g(C)
1 cep —1
i v

Where we used rcna%( tg(C) = 0 in the last equality for the zero boundary case. For % we have:
€
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-
g (1 + aQ) mincep (Gg(C) A G(C))

mincep(¢g(C) A EG(C))

Inserting the terms into the regret bound yields the final result.

O

Proof of Corollary[3 In the case of fully connected clusters, we know from Proposition [d]that the topologival
centrality index of any cluster is given by:

CQ
c5(C) = i > €

This allows us to lower bound the following term:

min(ég(C) A &5(C)) > [C]

Inserting both lower bounds into our result of Corollary [1] yields the final result.

C Additional experimental details

C.1 About experiments of the main paper

The experiments have been conducted with an intel i7 CPU with 12 2.6 GHz cores and 32 GB of RAM. The
two experiments with the highest number of tasks (200) and dimension (80) take about 8 hours, parallelized
over the 12 cores.

To generate clusters, we generate |P| variables v;;cp from the uniform distribution, then we use them to
construct a categorical distribution with probabilities proportional to €. These probabilities defines the
cluster proportions.

C.2 Solving the Network Lasso problem

We implement the Primal-Dual algorithm proposed in [Jung (2020)) to solve the Network Lasso problem but
we do not vectorize the matrices (in the sense of stacking their columns into a vector), which speeds up
computation.

C.3 Algebraic connectivity vs topological centrality index

Given two fully connected graphs weightless G; and G with size 100 each, we progressively link them by edges
and construct the Laplacian L of the resulting graph G. We measure the minimum topological centrality
index minlgiEQOO(Lz’)_l and the algebraic connectivity, i.e. the minimum non-null eigenvalue of L.

i )
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algebraic connectivity

1409 minimum topological centrality index

120

100 ~
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60
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0.0 0.2 0.4 0.6 0.8 1.0
fraction of all edges linking the two complete graphs

Figure 2: Minimum Topological centrality index vs Algebraic Connectivity, for a graph formed by connecting
two fully connected initial graphs G, Gs with size 100 each.

C.4 Fusion rate of clusters

We can plot the fusion rate of clusters, i.e. the fraction of edges linking nodes with identical feature vector
estimations and the respective regret as a function of time steps:

—— Fusion rate
1.0 —— True fusion rate
200 -
0.8 4
o
£ 150
2 @
© 0.6 °
c 2
o =
- ©
3 S 100
= 0.4 £
3
S
0.24 501
0-01 0 —— Network Lasso
T v v v v v v T v v v v v v
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
time steps time steps
(a) Fusion rate (b) Regret

Figure 3: Fusion rate and regret for the case of non-zero noise within clusters. number of users : 100,
dimension: 10, number of clusters: 8, imbalance: 1.0, p: 0.5, q: 0.1,
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—— Fusion rate
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(a) Fusion rate

Figure 4: Fusion rate and regret for the case of non-zero noise within clusters.
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number of users

dimension: 10, number of clusters: 8, imbalance: 1.0, p: 0.9, q: 0.05,
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