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ABSTRACT

Recent advances in language models have enabled framing molecule genera-
tion as sequence modeling. However, existing approaches often rely on single-
objective reinforcement learning, limiting their applicability to real-world drug
design, where multiple competing properties must be optimized. Traditional
multi-objective reinforcement learning (MORL) methods require costly retrain-
ing for each new objective combination, making rapid exploration of trade-offs
impractical. To overcome these limitations, we introduce MOL-MOE, a mixture-
of-experts (MoE) architecture that enables efficient test-time steering of molecule
generation without retraining. Central to our approach is a preference-based router
training objective that incentivizes the router to combine experts in a way that
aligns with user-specified trade-offs. This provides improved flexibility in ex-
ploring the chemical property space at test time, facilitating rapid trade-off explo-
ration. Benchmarking against state-of-the-art methods, we show that MOL-MOE
achieves superior sample quality and steerability.

1 INTRODUCTION

De-novo drug design is inherently a multi-objective optimization problem (Kerns & Di, 2008).
While drug discovery often focuses on pharmacological efficacy, successful therapeutics must si-
multaneously optimize across multiple axes: selectivity, clinical safety, and toxicity profiles. These
compounds must exist within a highly constrained subset of chemical space that satisfies all these
criteria, making the search for viable drug candidates particularly challenging and computationally
intensive.

Recent advances in large language models have enabled powerful generative capabilities for
molecule design through text-based representations. We reformulate this sequence generation task
as a multi-objective reinforcement learning (MORL) problem, following the blueprint of Reinforce-
ment Learning from Human Feedback (RLHF, Ouyang et al. (2022)) but extending it to handle
multiple competing objectives simultaneously. While there exists a rich literature in MORL (Hayes
et al., 2022), traditional scalarization techniques require complete retraining to explore different
trade-offs, making them computationally impractical for rapid iteration in drug discovery work-
flows. To address this limitation, we follow the design choices adopted for rewarded soups (Ramé
et al., 2023) and more generally, model merging. Precisely, rewarded soups are obtained by linearly
interpolating different fine-tuned versions of the same model, a simple form of task arithmetics Ya-
dav et al. (2023). While rewarded soups show advantages over direct prompting Wang et al. (2024),
their linear interpolation of rewards proves restrictive for exploring the complex trade-off landscape
of drug design.

We therefore introduce Molecule-MoE (MOL-MOE), a mixture-of-experts approach that enables
dynamic steering of molecular generation across multiple objectives while maintaining computa-
tional efficiency through activation-space manipulation rather than full model retraining.

2 BACKGROUND

While a generative model trained on molecules reproduces the underlying distribution of compounds
in the dataset, our goal extends beyond this: we aim to sample more compounds from promising
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regions of the chemical space by targeting specific areas of the learned molecular space that align
with desired properties. Although the features describing molecules in this target region can be
learned from wet lab discoveries, extracting high-quality labels is costly Huang et al. (2021). This
is why machine learning classifiers trained on this data are often used to provide approximate tar-
gets for downstream tasks Ghugare et al. (2023); Tripp et al. (2022) rather than relying on human
annotators. This enables the alignment of language models in the molecular space with desired
molecule properties through RLHF techniques, such as Direct Preference Optimization (DPO) Ca-
vanagh et al. (2024), Proximal Policy Optimization (PPO) Schulman et al. (2017), or REINFORCE
Leave-One-Out (RLOO) Ahmadian et al. (2024).

The need to balance multiple criteria in real-world applications has motivated two primary ap-
proaches to multi-objective alignment in large language models. The first approach uses supervised
fine-tuning (SFT) Yang et al. (2024), which has been applied to drug discovery tasks. The second
approach employs model merging techniques and multi-objective RLHF (MORLHF) Ramé et al.
(2023), though its application to drug discovery remained unexplored prior to our work. Our experi-
ments reveal fundamental limitations in both approaches: linear weight interpolation (model soups)
fails to capture complex nonlinear relationships between objectives, while pareto-conditioning SFT
methods Yang et al. (2024) struggle with extrapolation beyond their training datasets.

Desiderata In the context of drug design, we aim to assess these approaches against two main
criteria: quality of the generated samples and precision in following target preferences (steerability).
Our analysis reveals that while model merging approaches show promise in combining multiple
objectives, they suffer from two key limitations: (1) the inability to capture complex non-linear
relationships between different molecular properties and (2) sub-optimal performance when precise
control over individual properties is required. These limitations stem from the inherent constraints
of linear interpolation in model merging, where the influence of each expert model is determined by
fixed weights rather than as a by-product of a dynamic and input-dependent routing decision.

To address these challenges, we draw inspiration from Mixture of Experts (MoE) Jiang et al. (2024)
architectures, which have demonstrated success in handling complex, multi-modal tasks by dynam-
ically routing inputs to specialized expert networks Komatsuzaki et al. (2023). We further introduce
MOL-MOE, a novel architecture built upon model merging that leverages the strengths of both ap-
proaches: we combine multiple expert MLP layers in a mixture of experts blocks Zhou et al. (2022)
and devise a routing training task to improve steerability. This architecture introduces dynamic,
input-dependent weighting of various molecular property objectives, enhancing steerability while
preserving the test-time advantages of model merging, rather than relying solely on training-time
optimizations.

To summarize, we list our contributions:

• We extend recent advancements in multi-objective RL—such as supervised fine-tuning
(SFT) and model merging—to the domain of molecule design for drug discovery. We eval-
uate their performance in terms of both quality and controllability, as detailed in Sections
5.2 and 5.3.

• We propose a novel approach based on model merging and mixture of experts: MOL-
MOE, combining property-specific molecule LMs with a tuning task aimed at improving
steerability (Section 4).

• We conduct a series of analyses to investigate several key factors: out-of-distribution per-
formance, the relationship between merging hyperparameters and performance, the impact
of the RLHF algorithm and model size, and the choice of merging technique (Section 5 and
Appendix E).

3 PROBLEM SETUP

Drug design requires optimizing multiple molecular properties across diverse categories: ADME
(absorption, distribution, metabolism, excretion) properties Huang et al. (2021), drug-likeness
scores, and binding affinities. For high-quality drug candidates, the number of relevant properties
typically reaches around 10 Fang et al. (2023), varying based on the stage of drug development, de-
sired property granularity, and available domain knowledge. Additionally, as clinical trials progress,
new data from diverse patient cohorts necessitates efficient updates to multiple property estimators
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Fang et al. (2023). However, for the purpose of our experiments, we consider a stationary multi-
objective MDP where these properties remain fixed.

Under this formulation, a variety of techniques is applicable:

1. Multi-objective RL: a single policy optimizes the combination of multiple objectives and
a provided tradeoff, Appendix C.1.

2. Expert policy interpolation: the combination of single-task expert policies in the weight
space, Appendix C.2.

3. Supervised fine-tuning: a single policy is trained on a causal language modeling task to
predict the molecule from the provided desired properties, Appendix C.3.

We discuss in Appendix C the limitations of these methodologies, further motivating the introduction
of MOL-MOE.

4 MOL-MOE: MOLECULE-MIXTURE OF EXPERTS

Linear interpolation methods in model soups and reward scalarization share surface-level similari-
ties, but their underlying mechanisms differ in important ways. The relationship between preference
vectors wij for policy parameters θi and model soup coefficients is neither equivalent in magnitude
nor necessarily linear.

Our correlation analysis (Appendix E.4) reveals that simply assigning equal weights to policies
that maximize individual tasks does not guarantee optimal multi-task performance. This limitation
has led researchers to explore more sophisticated approaches, such as iterative and gradient-based
optimization methods, to find optimal parameter combinations Huang et al. (2024); Prabhakar et al.
(2024).

Furthermore, the challenge becomes more complex with increasing network depth, as the semantic
meaning of representations evolves across layers. Recent work has proposed systematic approaches
to address this issue. Model Breadcrumbs Davari & Belilovsky (2024) computes update masks based
on the distribution of task-specific parameters to mitigate interference patterns. TIES Yadav et al.
(2023) extends this by introducing element-wise merging rules based on the relative magnitudes
and signs of corresponding parameters - when parameters from different tasks have opposing signs
above a threshold, it preserves the dominant direction rather than averaging them.

While these approaches introduce data-driven methods to improve parameter merging through sim-
ilarity analysis and interference detection, they ultimately rely on predetermined merging rules. To
move beyond fixed combination strategies, we propose leveraging the Mixture of Experts Jiang
et al. (2024) architecture, which learns to route inputs to specialized components dynamically. In
Appendix B we describe in detail the implementation of MOL-MOE and the training procedure.

5 EXPERIMENTS

In this section, we evaluate MOL-MOE against scalarized multi-objective RLHF (MORLHF) vari-
ants under a fixed scalarization with uniform weights, Rewarded Soups (RS), and Rewards in Con-
text (RiC). Our evaluation is based on two main criteria: maximization, that is sample quality over
the considered tasks (Section 5.2); steerability, how effectively each method tunes the model to
follow conditioning preferences wj ∈ W at test-time (Section 5.3).

We report further details concerning the implementation details in Appendix D and supplementary
analyses supporting our design choices in Appendix E. In Appendix E.4 we further investigate the
relationship between conditioning preferences wj and property scores ri(x).

5.1 EXPERIMENTAL SETTING

Molecule pre-training We assemble a training set of approximately 3.65 million molecule se-
quences by merging datasets from CHEMBL Gaulton et al. (2012), ZINC 250k Sterling & Irwin
(2015), and MOSES Polykovskiy et al. (2020). Using the Llama 3.2 tokenizer Aaron Grattafiori
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Figure 1: Average best task scores achieved by models trained on the full dataset (left) or with held-
out high-quality samples (right), by varying tuning method. MOL-MOE outperforms the baselines
particularly out of distribution, where RiC fails to improve beyond on the training examples. Addi-
tionally, MORLHF fails to learn more than three tasks.

(2024), this dataset translates to approximately 151 million training tokens, with an average of 41.44
tokens per molecule. We represent molecule sequences in the SMILES format Weininger (1988),
allowing us to work in text space and ensuring compatibility with existing foundational models.

To create the base molecule language model, MOL-LLAMA we fine-tune the Llama 3.2 1B model
on the 3.65M dataset for causal language modeling, where the model learns to predict each token
based on all previous tokens in the sequence. The scaling analysis detailed in Section E.3 informs
the model size choice.

Property RLHF fine-tuning We derive MOL-MOE from the pipeline shown in Figure 2, im-
plementing our approach using MergeKit Goddard et al. (2025). First, we obtain five experts by
fine-tuning five copies (see appendix D.2) of the base model on five molecule properties separately,
using the scoring functions provided by Huang et al. (2021), i.e. receptor binding scores.

To combine these experts effectively, we create MoE blocks where property-specific patterns guide
the routing. Specifically, we initialize the router weights using activation patterns obtained by pass-
ing each property name (e.g., JNK3, DRD2) through the model. This initialization ensures the
routers begin with a strong bias toward directing inputs to their corresponding expert models. After
initialization, we train only the router networks using RLOO Ahmadian et al. (2024), keeping all
other layers frozen. Training details are reported in Appendix D.3.

We report in Appendix A a visualization of the pipeline implemented to train MOL-MOE.

5.2 MAXIMIZING MOLECULE PROPERTIES

We evaluate different model tuning approaches across seven metrics. Five are target molecule prop-
erties from the Therapeutics Data Commons (TDC) Huang et al. (2021): JNK3, DRD2, GSK3β,
CYP2D6 and CYP2C19. We additionally evaluate on diversity – which we define as the average
pairwise Tanimoto distance between generated molecules Ghugare et al. (2023) – and uniqueness,
which is the fraction of unrepeated samples.

To evaluate each method’s peak performance capability, we generate 2, 048 molecules across 20
different random seeds with each tuned model. We identify the molecule with the highest average
score across all properties for each set, then average these peak scores across all seeds to obtain our
final performance metric. For fair comparison across methods, we configure MORLHF and RS with
uniform weights (wij = 1

m = 0.2 for each of the 5 properties). RiC uses maximum target values
(r̂i = 1.0) in its prompt format: <JNK3=1.00><DRD2=1.00>...<s>. MOL-MOE uses the
same prompt format but with normalized preference weights (ŵij =

wij∑m
k=1 wkj

).

Figure 3 shows that single-task RLHF achieves suboptimal performance across objectives, though
it demonstrates positive transfer effects, particularly from CYP2D6 and CYP2C19 to DRD2 and
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GSK3β. MORLHF performs comparably to single-task tuning, but notably optimizes only a subset
of the considered tasks rather than the full objective set. The base model fine-tuned with RiC excels
in-distribution, performing comparably or better than RS and MOL-MOE for DRD2 and CYP2C19.
However, its performance degrades substantially when evaluating on out-of-distribution high-quality
molecules. In contrast, the Rewarded Soups (RS) approach maintains robust performance even out
of distribution, leveraging experts explicitly trained to maximize individual objectives. MOL-MOE
emerges as the strongest performer, achieving superior results in both scenarios and significantly
outperforming RiC and MORLHF, particularly in out-of-distribution cases.

We further observe that with temperature t = 1.0, all the models do not repeat sequences from
the training set, leading to a maximum novelty score with the metric implemented by Huang et al.
(2021). Tabular results are reported in Table 2.

5.3 MEASURING STEERABILITY

To evaluate steerability, we generate a test set by sampling 20 preference vectors from a 5-
dimensional Dirichlet distribution, yielding W ∈ R20×5. For each preference vector, we sample
2,048 molecules. We then compute steerability error for each molecular property. For RiC, which
directly predicts absolute reward values, the error is measured against the prompted rewards:

MAE(x) =
1

m

m∑
i=1

(ri(x)− r̂i)

For RS and MOL-MOE, we instead measure how well the generated molecules’ properties match
the requested preference proportions. This is done by comparing the requested preference weights
against the normalized property scores:

MAE(x) =
1

m

m∑
i

(
wij −

ri(x)∑m
k=1 rk(x)

)
, wj ∈ W

where wij represents the requested preference weight for property i, and the fraction ri(x)∑m
l rl(x)

represents the actual proportion of property i in the generated molecule relative to all properties.

Figure 1 and Figure 10 report the performance of different methods in terms of maximization and
steerability metrics, showing that MOL-MOE improves over baselines in both evaluation criteria.

We observe that JNK3 is a hard task in both maximization (Figure 1) and steerability (Figure 10), as
all three methods achieve comparable scores. In GSK3β, CYP2D6, CYP2C19, MOL-MOE achieves
the lowest error across properties, suggesting that the routing networks successfully learned to ag-
gregate the contribution from different property experts as instructed.

6 CONCLUSION

This work approaches molecule generation as a multi-objective optimization problem using lan-
guage modeling. We evaluated three existing approaches: Rewards in Context (RiC), multi-objective
reinforcement learning (MORLHF), and Rewarded Soups (RS), each with distinct limitations. To
address these, we introduced MOL-MOE, a mixture-of-experts architecture with preference-guided
routing. This novel approach enables better calibration between preference weights and model
outputs, resulting in more precise steerability and finer-grained control over molecular properties.
While RiC and RS showed strong in-distribution performance, MOL-MOE maintains this for novel
compounds while offering superior control over property trade-offs. However, our approach as-
sumes independent optimization of molecular properties, which may not hold in real-world drug
design due to non-monotonic interactions. Future work should explore graph-based routing archi-
tectures or geometric deep learning approaches to model these interactions explicitly. Additionally,
scaling MOL-MOE to billion-scale molecular datasets could enhance its potential in molecular de-
sign, enabling discovery of novel trade-offs and efficient adaptation to new optimization objectives.
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APPENDIX

A PIPELINE
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Figure 2: Pipeline illustration of MOL-MOE: a reference model is pre-trained on a large set of
molecules; expert models are derived with RLHF-tuning on each desired molecule property; in
the fine-tuned model, MoE blocks are added to combine the tuned expert layers, only the router
networks are further tuned with the routing task.

B MOL-MOE: TRAINING PREFERENCE-GUIDED ROUTERS FOR MOLECULE
GENERATION

We propose leveraging the Mixture of Experts Jiang et al. (2024) architecture, which learns to route
inputs to specialized components dynamically.

In each Transformer layer ℓ, the feed-forward layers after attention are replaced with a MoE-block
consisting of m expert networks Ei : Rd → Rd, where each Ei(x), i ∈ {1, . . . ,m} is implemented
as a multi-layer perceptron (MLP). The routing mechanism is controlled by a router network fθg

:

Rd → Rm with parameters θg , which computes routing weights for each expert. For each input
token x ∈ Rd, the router outputs a probability distribution G(x) ∈ Rm over experts:

G(x) := softmax(topk(fθg
(x))) ,

where topk selects the K largest logits and sets the rest to −∞, ensuring that each token is pro-
cessed by at most K experts. Here, K represents the number of experts assigned to each token. In
our setup, we set K = m, as the number of specialists is known a priori and corresponds directly to
the properties we aim to optimize. This ensures that all specialist layers contribute to constructing
the target molecule, each addressing a specific property. Additionally, we include the initializa-
tion model—trained on a large dataset of molecules—as an extra expert to provide regularization
Royer et al. (2023). The final output for each token combines the expert outputs weighted by their
corresponding routing probabilities:

x̂ =

m∑
i=1

Gi(x) · Ei(x) ,

where Gi(x) denotes the i-th component of the routing vector G(x).

B.1 PREFERENCE-GUIDED ROUTER TRAINING

Our method employs a data-driven strategy for dynamic model merging via learned routing. Given
a set of expert policies {Ei}mi=1 and a preference vector wj ∈ ∆m−1, where ∆m−1 represents
the probability simplex (i.e.,

∑m
i=1 wj,i = 1 and wj,i ≥ 0 for all i), we encode preferences into
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the input prompt using a structured format such as “<JNK3=w1><DRD2=w2>...<s>”. This
prompted input is then processed through our routing architecture to learn an input-dependent rout-
ing function G(x;θg), which determines how to combine the outputs of the experts. Similar to the
preference weights, the routing weights also form a probability distribution over the experts, i.e.,∑m

i=1 Gi(x) = 1 and Gi(x) ≥ 0 for all i.

The router parameters θg are trained using reinforcement learning across a distribution of preference
vectors. For each training episode, we sample wj from a set of possible preferences {wj}Nj=1 ⊂
∆m−1, encode it into the prompt, and use this to define the episode’s scalarized reward. By training
over the distribution of preference vectors, we optimize the expected reward across all possible
preference configurations:

Ewj∼P (∆m−1) [Rj(x)] = Ewj∼P (∆m−1)

[
m∑
i=1

wj,i · ri(x)

]
.

This formulation ensures that the router learns to interpret preferences from the prompt and dy-
namically adjusts the contributions of each expert to align with these preferences, without requiring
post-hoc calibration. In contrast, static merging approaches like Model Breadcrumbs or TIES must
solve an additional optimization problem to match their fixed merging rules with desired preference
weights, often resulting in suboptimal trade-offs due to their predetermined combination strategies.

Our approach shares the high-level goal of preference-conditioned generation with Conditional Lan-
guage Policy (CLP) Wang et al. (2024), but differs significantly in implementation. While CLP fine-
tunes the entire model to condition its policy on user preferences directly, our method leaves the
underlying expert policies unchanged. Instead, we introduce a routing mechanism that dynamically
combines the outputs of pre-trained experts based on preferences encoded in the input prompt. By
embedding preferences directly into the prompt using a structured format, our architecture provides
a flexible and robust way to condition model behavior using natural language while minimizing
sensitivity to prompt variations.

Unlike traditional Mixture of Experts (MoE) architectures Jiang et al. (2024), which train experts
jointly from scratch, our method leverages pre-trained task-specific policies through activation-level
routing—a process referred to as “upcycling” Komatsuzaki et al. (2023). This approach eliminates
the need for explicit expert specialization, as each expert is already optimized for a specific molec-
ular property, while the router learns to blend their outputs based on input preferences adaptively.

We choose RLOO Ahmadian et al. (2024) as training algorithm, after an empirical evaluation across
alternatives (Section E.1). The objective functions ri(x) consist of MLP property classifiers trained
on clinical data Huang et al. (2021): the models estimate the likelihood of an input molecule to
satisfy the target property, similarly to examples observed in the past; the assumption is that the
training set is sufficiently large for these models to well extrapolate for similar structures.

C BASELINE METHODOLOGIES

C.1 MULTI-OBJECTIVE RL

We formulate drug design as a multi-objective Markov decision problem (MOMDP), where we
aim to optimize a set of competing molecular properties represented by the reward vector r(x) =
[r1(x), ..., rm(x)] ∈ Rm. Each objective is weighted by a preference vector wj ∈ W ⊆ Rm, where
W is the space of valid preference vectors, and can be either learned (using preference modelling
methods) or pre-specified. Let fθ : X → A be a policy function mapping states to actions, param-
eterized by θ. Multi-objective RL (MORL) approaches can be categorized into two main design
paradigms: single-policy or multi-policy methods. Single-policy methods train a unique policy pa-
rameterized by θ∗ that either generalizes across all possible preferences W or maximizes a specific
preference vector wj . However, these approaches often yield suboptimal performance or fail to
scale to complex tasks as the burden falls primarily on the network’s generalization capacity and
quality of the training distribution Yang et al. (2019).

Conversely, multi-policy methods instead maintain a set of policies, each parameterized by θ∗
j ∈ Θ,

and optimized for a specific preference vector wj = [wj,1, ..., wj,m]. In the most straightforward
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implementation, objectives are combined through scalarization:

Rj(x) =

m∑
i=1

wj,iri(x) , wj ∈ W

θ∗
j = argmaxθ∈Θ Rj(fθ(x))

The scalarized reward function Rj : X → R then reduces the multi-objective problem to a standard
single-objective RL optimization for the given preference vector wj . In our context, we refer to
multi-policy MORL methods as Multi Objective RLHF (MORLHF) since traditional approaches
in this field tend to elicit the reward vector r from human feedback. Despite not requiring human
annotation in our work, we maintain this terminology for consistency. In the molecular sequence
modeling context, a policy parameterized by θ and fine-tuned on a large molecular space can be
optimized for a preference vector wj ∈ W using any alignment algorithm (e.g., RLOO, DPO,
PPO), yielding θ∗

j .

The multi-policy (MORLHF) setup faces two practical challenges: first, each preference vector
wj ∈ W requires training a separate policy, making preference space exploration costly; second, the
varying scales of rewards ri(x) necessitate careful scaling of preferences to ensure stable training,
often requiring techniques like reward centering Naik et al. (2024). We analyze these challenges in
Section E.6.

C.2 EXPERT POLICY INTERPOLATION

Alternatively, Ramé et al. (2023) leverages Linear Mode Connectivity (LMC) Frankle et al. (2020) in
Transformers to derive multi-task policies through linear interpolation of task-specialized policies.
For a set of m tasks, we first obtain specialized policies parameterized by θi through single-task
optimization. For each task (property), we compute:

θi = argmaxθ∈Θ ri(fθ(x)) for i ∈ {1, . . . ,m}

These task-specific policies form a model soup (referred to as a rewarded soup, RS, in this context).
The key property of this collection is that the policy parameters {θi}mi=1 can be linearly combined
using preference weights to yield a merged policy whose parameters θ∗

j are obtained as:

θ∗
j =

m∑
i=1

wj,iθi where wj ∈ W

This merged policy aims to reflect the relative importance of each property as specified by the pref-
erence vector wj ∈ W . This method features good steerability Wang et al. (2024) while benefiting
from the rich advances in model merging Yadav et al. (2023); Davari & Belilovsky (2024) meant to
mitigate task interference. Remarkably, generating policies for new preference vectors requires only
parameter interpolation, without additional training, as the multi-task policies are computed offline.

This feature is particularly relevant in the context of molecule design, where numerous properties
must be incorporated over time. The relative importance of these properties is often difficult to
predict in advance, especially as clinical data becomes available and may introduce distributional
shifts. This necessitates using flexible methods that can efficiently adapt to evolving preferences
without requiring costly retraining.

One of the main drawbacks of this approach, which we aim to address in this work, is that the
relationship between the defined preference set wj ∈ W and the corresponding task performance
is not always linear. As a result, predicting how a preference vector should be translated into an
interpolation weight for the rewarded soup mode is challenging. To address this, we experiment with
learning a mapping function, such as w′

ij = z(wij) (Yang et al., 2024), to ensure that models derived
from rewarded soups are steerable—i.e., capable of responding to the given preference vector as
intended. However, we demonstrate that a more effective approach is to learn an input-dependent
weighting function through a dedicated routing task, as implemented in our proposed MOL-MOE
architecture.
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C.3 SUPERVISED LEARNING

Yang et al. (2024) propose a fully supervised approach inspired by imitation learning Zare et al.
(2023) and aligned with Pareto-conditioning techniques Reymond et al. (2022); Chen et al. (2021).
This framework provides the desired property scores as a prefix when conditioning the model on
a target molecule. The underlying assumption is that causal language modeling enables the Trans-
former to learn the relationship between input rewards (interpreted as a state) and the target molecule
sequence (interpreted as an action). This mirrors the way decision transformers Chen et al. (2021)
learn to associate trajectory returns with optimal actions. The model is initially tuned on a large set
of known molecules; then a filtering process defines a subset of Pareto-optimal samples augmented
by the model generations, and finally, the network undergoes a second fine-tuning step on the high-
quality dataset. This approach is identified as Rewards in Context (RiC, Yang et al. (2024)), it
achieves comparable or superior sample quality wrt. MORLHF and RS. However, as this method
heavily relies on the quality of the training dataset, it can be prone to overfitting. With an ablation
analysis in Section E.5, we show that models trained with RiC fail to generate molecules better than
the training examples, and the fraction of repeated generations is high. In the context of drug de-
sign, our goal is not only to replicate the statistical patterns of the training data but also to surpass
the quality of the imitation data—generating novel, high-quality compounds that were not present
in the training set. While RiC offers test-time steerability similar to RS approaches, its inability to
generalize (or ”maximize”) beyond the training data motivates our development of the MOL-MOE
approach to combine the strengths of both methodologies while avoiding their pitfalls.

D IMPLEMENTATION DETAILS

D.1 MOLECULE FINE-TUNING

We fine-tune the base model “Mol-Llama 1B” for causal language modeling on ∼3.65M molecules,
no conditioning information are provided: we add segmentation tokens to structure the model out-
puts, <s> C1=CC=C(C=C1)C(=O)O </s>. We consider a standard learning rate η = 2e − 5
(with cosine scheduling), batch size 1024 with gradient accumulation; the model is trained for 1
epoch.

D.2 EXPERTS FINE-TUNING

We employ RLOO Ahmadian et al. (2024) to fine-tune the different experts, rewarding each model
on 100, 000 generations prompted with the start of sequence token <s>; batch size of 512 samples;
a constant learning rate of η = 1e − 7; a KL coefficient of β = 0.2 to prevent policy collapse. We
automatically assign a zero reward score to invalid SMILES string.

D.3 PREFERENCE-GUIDED ROUTER TRAINING

We employ RLOO Ahmadian et al. (2024) to train the router networks in MOL-MOE while
keeping the rest of the model layers frozen. The model is rewarded on 100, 000 generations
prompted with a conditioning prompt encoding the preferences wij ∈ wj ,wj ∈ W in the form
“<JNK3=w1><DRD2=w2>...<s>”. We choose a fixed batch size of 128 samples; learning rate
η = 1e− 3; KL coefficient β = 5e− 2.

D.4 SAMPLING PARAMETERS

We keep the sampling parameters constant across the experiments: temperature t = 1.0; nucleus
sampling as default strategy with top p = 0.9; max output length of 64 tokens.
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Figure 3: Out of distribution average property score by fine-tuning method. MOL-MOE outper-
forms multi-task models (MORLHF, RiC, RS) and by a significant margin also task experts (RLHF
t1 =JNK3, t2 =DRD2, t3 =GSK3β, t4 =CYP2D6, t5 =CYP2C19). Higher scores for experts
trained on t4, t5 indicate positive transfer.

E SUPPLEMENTARY ANALYSES

E.1 CHOICE OF THE RLHF ALGORITHM
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Figure 4: Task performance at sampling size by RL tuning method. Overall, RLOO surpasses
alternative methods by a significant margin, while PPO and Online-DPO achieve comparable per-
formance.

We compare three algorithms widely applied in RLHF: PPO Schulman et al. (2017), RLOO Ahma-
dian et al. (2024) and Online-DPO Guo et al. (2024). Each method is applied to fine-tune the base
molecule sequence model on the non-trivial JNK3 property. For each variant, we sample a growing
set of N molecules from the model and take the best-of-N property scores. We consider a moderate
coefficient β = 0.2 for the KL divergence.

In Figure 4 we observe the model generates qualitatively the best molecules with RLOO, which is
in line with comparisons reported by Ahmadian et al. (2024). Overall, we observe RL fine-tuning
significantly improves the output distribution of molecules wrt. the base model, as it is possible to
generate equivalently good compounds with ∼ 10x less samples.

E.2 CHOICE OF THE MERGING TECHNIQUE

A major motivation underlying this work is to explore the efficacy of weight interpolation in MORL.
Combining linearly expert policies, as in Rewarded Soups, is the simplest form of merging, yet
successful applications spawned a research line on “task arithmetics” Yadav et al. (2023); Davari &
Belilovsky (2024); Yu et al. (2024); Goddard et al. (2025). We test different merging techniques in
our experimental setup: from the base molecule model, we derived 2 experts fine-tuned with RLOO
on JNK3 and DRD2 respectively; for each merging method, we performed a hyperparameter search
for the optimal weight combination [w1, w2] ∈ [0, 1] × [0, 1] by average task score over 2, 048
generated samples. In Table 1 we observe our policies merged with Model Breadcrumbs Davari
& Belilovsky (2024) achieve the highest scores average; we notice that for this solution, a lower
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Method Avg. score w1 w2

breadcrumbs 0.91 0.4 0.6
dare linear 0.91 0.4 0.6
ties 0.90 0.5 0.5
della 0.90 0.4 0.6
linear 0.89 0.7 0.3
task arithmetic 0.89 0.7 0.3

Table 1: Merging methods by average task score at optimal interpolation weights for JNK3, DRD2.
Whiel Model breadcrumbs and DARE achieve the highest average property score, we do not observe
a significant difference from the alternative methods.

weight is assigned to JNK3, which is considered as a hard task. Overall, no significant improvement
is observed by varying the merging method, which aligns with the experiments conducted by Yadav
et al. (2024).

E.3 CHOICE OF THE MODEL SIZE
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Figure 5: Average task score at increasing N generated samples for different model sizes. We
observe diminishing returns past 1B.

We analyze how scaling the model size with fixed compute and data affects sample quality. We
choose the Pythia scaling suite Biderman et al. (2023), which offers an exhaustive set of model sizes,
and we pre-train all the variants up to 2.8B with our dataset. At test time, we measure the average
task score for growing sets of molecules to observe quality over number of generations N . Figure 5
reports comparable performance for all models above 160M of parameters, with diminishing returns
past 1B. We choose to fix the default model size to 1B as a tradeoff between model capability and
dataset size, in line with Cavanagh et al. (2024); Zholus et al. (2024).

E.4 ANALYZING THE PREFERENCE-TASK CORRELATION

The effectiveness of task arithmetics Ramé et al. (2023); Yadav et al. (2023) is based on the intuition
that the merging coefficients wj ∈ W control the “magnitude” of task directions wrt. a base model,
∆θ = θi − θbase, that is the distribution shift towards a specific objective. In interpolating task
directions, we question how directly we can modulate them with defined coefficients. We thus
analyze the correlation between preferences wj ∈ W and measured property scores {r}i∈Rm in
merging pairs of policies. We consider 10 task magnitudes per molecule property i, so that wij ∈
[0.1, 1.0] , wj = [wij , 1 − wij ] for the expert and the base model respectively. A visualization
of measured property scores by task magnitude is displayed in Figure 6. We report an average
Pearson correlation coefficient of 0.97, indicating a direct relationship between wij and ri. We
notice “saturation points” varying by property, e.g. JNK3, CYP2C19, approaching values observed
at training time. The range of observed rewards not necessarily matches with the provided task
magnitudes, e.g. wCYP2C19 ∈ [0, 1] while rCYP2C19 ∈ [0.4, 0.8] . We infer that input-output mappings
could be derived to better adapt conditioning preferences to each property range, as proposed by
Yang et al. (2024)
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Figure 6: The correlation between task magnitude wij and ri is overall positive, with varying value
ranges e.g. for JNK3 and GSK3β.

E.5 OUT OF DISTRIBUTION BEHAVIOR

To rigorously test whether our models can discover novel high-quality molecules rather than imi-
tate known ones, we create a challenging evaluation setup: we remove all high-scoring molecules
(ri(x) ≥ 0.6 for any property i) from the pretraining dataset, leaving only ∼ 2.12M molecules
(58%). In Figure 1 and Table 3, we observe a significant decline in performance for RiC, based
on SFT, for which the model does not generate molecules better than the training distribution.
Conversely, policies trained with MOL-MOE and RS maintain performances comparable to the
in-distribution setup, while with MORLHF, the network optimizes for only a subset of the objec-
tives. We thus infer that RiC, based solely on increasing the likelihood of high-quality training
samples, poorly improves out of distribution. Conversely, RS and MOL-MOE successfully discover
molecules with scores above 0.6, demonstrating their ability to explore and optimize in regions of
chemical space beyond their training distribution.

E.6 SCALING BY NUMBER OF PROPERTIES

We investigate how model performance scales with the number of target properties. Using identi-
cal configurations, we train each method (MORLHF, RS, RIC, MOL-MOE) on progressively larger
subsets of properties: m ∈ [2, 3, 4, 5]. For each subset, we evaluate performance by averaging
task scores across 2, 048 generated molecules. Additional properties should improve generation
quality by providing more guidance to the models. Figure 7 shows that MOL-MOE, RiC and RS
successfully leverage additional properties, with MOL-MOE achieving the highest quality. How-
ever, MORLHF’s performance degrades when optimizing more than three properties (m > 3).
This indicates that directly optimizing a scalarized reward becomes intractable as the number of
properties increases, likely due to compounding complexity and interference between objectives.
In contrast, MOL-MOE’s architecture separates concerns: experts can stably optimize individual
properties while the router manages interference between them.
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Figure 7: Average score on all mocule properties by number of training objectives by tuning method.
MOL-MOE benefits the most from increasing reward signals, particularly wrt. RS. Conversely,
MORLHF fails beyond three tasks, coherently to what observed in Figure 1.
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F ADDITIONAL EXPERIMENTAL RESULTS

Method JNK3 DRD2 GSK3β CYP2D6 CYP2C19 Uniqueness Diversity Average

MORLHF 0.13 0.76 0.23 0.89 0.81 0.94 0.87 0.66
Rewards in Context 0.55 0.85 0.70 0.87 0.92 0.49 0.82 0.74

Rewarded Soups 0.60 0.80 0.73 0.71 0.79 0.95 0.84 0.77
MOL-MOE 0.63 0.78 0.75 0.81 0.73 0.94 0.86 0.78

Table 2: Average in-distribution task scores by training method, visualized in Figure 1. Overall,
MOL-MOE achieves the highest average score, comparably to RS and RiC. RiC generates a signifi-
cant fraction of repeated samples.

Method JNK3 DRD2 GSK3β CYP2D6 CYP2C19 Uniqueness Diversity Average

MORLHF 0.22 0.73 0.36 0.79 0.90 0.95 0.87 0.69
Rewards in Context 0.36 0.69 0.42 0.53 0.57 0.92 0.86 0.62

Rewarded Soups 0.54 0.78 0.69 0.72 0.79 0.96 0.86 0.76
MOL-MOE 0.60 0.85 0.71 0.82 0.72 0.94 0.86 0.79

Table 3: Average out-distribution task scores by training method, visualized in Figure 1. Overall,
MOL-MOE achieves the highest average score, comparably to RS. RiC considerably underperforms
the alternative methods, indicating failure in extrapolating to molecules beyond the training distri-
butions.
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Figure 8: Quality distributions by task score of 2, 048 generated molecules from models trained on
the complete dataset (left) or the ablation, held-out best samples (right). The distribution from
MOL-MOE is centered on higher scores than most of the alternatives, with a higher density in
the right tail especially out of distribution. Rewards in Context significantly worsens when high
quality molecules are removed at training time.
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superior in sample quality wrt. alternative methods. The gap in quality between RiC and RS,
MOL-MOE is evident in this setup.
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Figure 10: Steerability error measured as Mean Absolute Error (MAE) between the conditioning the
measured molecule properties. MOL-MOE is overall more precise than RiC and RS, particularly on
GSK3β, CYP2D6, CYP2C19.
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