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Summary
This paper provides the first expert sample complexity characterization for learning a Nash

equilibrium from expert data in Markov Games. We show that a new quantity named the
single policy deviation concentrability coefficient is unavoidable in the non-interactive imitation
learning setting, and we provide an upper bound for behavioral cloning (BC) featuring such
coefficient. BC exhibits substantial regret in games with high concentrability coefficient, leading
us to utilize expert queries to develop and introduce two novel solution algorithms: MAIL-BRO
and MURMAIL. The former employs a best response oracle and learns an ε-Nash equilibrium
with O(ε−4) expert and oracle queries. The latter bypasses completely the best response oracle
at the cost of a worse expert query complexity of order O(ε−8). Finally, we provide numerical
evidence, confirming our theoretical findings.

Contribution(s)
1. We provide a sample complexity analysis for BC, revealing the emergence of a single

deviation concentrability coefficient (Theorem 3.1).
Context: Prior work assumed a coverage assumption of the expert.

2. We formally separate MAIL from SAIL, proving in Theorem 3.2 that even with fully known
transitions, for any non-interactive imitation learning algorithm (like BC) there exists a
Markov Game with infinite single deviation concentrability coefficient where the Nash Gap
remains constant even with infinite expert data.
Context: Prior work showed that the Nash Gap remains constant with unknown transitions.

3. On the positive side, we show that the dependence on the concentrability coefficient can be
avoided if an interactive expert is available. In particular, assuming access to a Best Response
Oracle, we propose an algorithm that achieves an ϵ-NE with O(ϵ−4) expert queries and
oracle calls (Algorithm 2).
Context: None

4. Additionally, we develop an algorithm that avoids the Best Response oracle and the concentra-
bility coefficient simultaneously, achieving an ϵ-NE with O(ϵ−8) expert queries. Moreover,
the algorithm is computationally efficient. Its design is based on the novel principle of
maximum uncertainty response.
Context: None
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Abstract
This paper provides the first expert sample complexity characterization for learning a1
Nash equilibrium from expert data in Markov Games. We show that a new quantity2
named the single policy deviation concentrability coefficient is unavoidable in the non-3
interactive imitation learning setting, and we provide an upper bound for behavioral4
cloning (BC) featuring such coefficient. BC exhibits substantial regret in games with high5
concentrability coefficient, leading us to utilize expert queries to develop and introduce6
two novel solution algorithms: MAIL-BRO and MURMAIL. The former employs a best7
response oracle and learns an ε-Nash equilibrium with O(ε−4) expert and oracle queries.8
The latter bypasses completely the best response oracle at the cost of a worse expert9
query complexity of order O(ε−8). Finally, we provide numerical evidence, confirming10
our theoretical findings.11

1 Introduction12

Learning in systems with multiple agents is common in real-world applications, such as autonomous13
driving (Shalev-Shwartz et al., 2016), traffic light control (Bakker et al., 2010), and games (Samvelyan14
et al., 2019). Designing reward functions in these applications is challenging, as it requires defining15
multiple, potentially opposing, objectives. However, expert data are often available, making Multi-16
Agent Imitation Learning (MAIL) an important approach for learning policies that perform well in17
underlying Markov Games (MGs) with unknown reward functions. MAIL has the potential to ensure18
the alignment of agents with the original experts’ goals and to avoid potentially exploitable policies19
that can lead to socially undesirable behavior (Hammond et al., 2025).20

A key distinction between Multi-Agent Imitation Learning and Single-Agent Imitation Learning21
(SAIL) is that the performance of a strategy in MAIL depends on the strategies of other agents. This22
means that an expert need not maximize reward directly; instead, the goal is to reach a state where no23
agent benefits from unilaterally deviating from its strategy, typically referred to as an equilibrium.24
The most common equilibrium concept is the Nash equilibrium (NE). To evaluate how close a given25
strategy is to an NE, the objective must consider strategic deviations of one agent while holding the26
others fixed.27

In this work, we consider 2-player Zero-Sum Markov Games1 where the agents’ rewards are perfectly28
opposing, i.e., r1(s, a, b) = −r2(s, a, b). In this setting, denoting the state value function of a strategy29
pair µ, ν as V µ,ν : S → R, we measure the gap of a strategy pair to an NE by the following metric30

Nash-Gap(µ, ν) := V µ⋆,ν(s0)− V µ,ν⋆

(s0),

where s0 is the starting state of the game2 and ν⋆ denotes one of the strategies from the set of31
best responding strategies to µ. That is, µ⋆ ∈ br(ν) := argmaxµ V

µ,ν(s0) and ν⋆ ∈ br(µ) :=32

1For the sake of simplicity, the main text will focus on this case. The appendix outlines the extension to n players’ general
sum games.

2We will relax this to a stochastic starting state in the next sections.
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Table 1: For simplicity, we report results for the two players zero sum with discount factor γ, finite
state space |S|, finite action spaces A, B. Let |Amax| = max |A| , |B|. Being consistent with Tang
et al. (2024), we denote β = mins∈S d

µE,νE

(s), by u the recoverability coefficient and with H the
finite horizon of the considered game. Moreover, we refer to Tang et al. (2024) for the definition of the
convex functions ℓMALICE and ℓBLADES. Additionally, for the behavioral cloning (BC) output pair

µ̂, ν̂ with an input dataset D we define C(µ̂, ν̂) = maxµ∈br(ν̂)

∥∥∥ dµ,νE

dµE,νE

∥∥∥
∞
+maxν∈br(µ̂)

∥∥∥ dµE,ν

dµE,νE

∥∥∥
∞

.
For this comparison, notice that the main text by Tang et al. (2024) focuses on learning correlated
equilibria, but as specified in their appendix, the same proofs can be performed for the problem of
learning Nash equilibria. For the algorithms presented by Tang et al. (2024), we can not specify the
bound on the number of expert queries since their analysis as an error propagation only flavor. As a
final minor difference, we apply our analysis to the infinite horizon discounted setting, which is more
relevant for practical settings. Finally, we abbreviated Queriable Expert by QE.

Algorithm MG assum. Computational Cost Nash−Gap Expert Data Required Computational Oracles QE

BC Tang et al. (2024) β > 0 0 ( analytical solution is available) O
(
uHεβ−1

)
Not specified ϵ-accurate TV minimizer ✗

MALICE Tang et al. (2024) β > 0 exp (|S|) O (uHε) Not specified ε-accurate ℓMALICE minimizer ✗

BLADES Tang et al. (2024) None exp (|S|) O (uHε) Not specified ε-accurate ℓBLADES minimizer ✓

BC (Our analysis) C(µ̂, ν̂) <∞ 0 ( analytical solution is available) O (ε) Õ
(

|S||Amax|C(µ̂,ν̂)
(1−γ)4ε2

)
None ✗

MAIL-BRO (Ours) None poly(|S| , |Amax| , (1− γ)−1, ε−1) O (ε) Õ
(

|S||Amax|2
(1−γ)4ε4

)
Best response oracle ✓

MURMAIL (Ours) None poly(|S| , |Amax| , (1− γ)−1, ε−1) O (ε) Õ
(

|S|4|Amax|5
(1−γ)12ε8

)
None ✓

argminν V
µ,ν(s0). This objective has been widely adopted in Multi-Agent Reinforcement Learning33

(see, e.g., (Cui & Du, 2022a;b)) and it is easily motivated by the fact that any strategy profile output34
by an algorithm under study (µout, νout) such that Nash-Gap(µout, νout) ≤ ε is an ϵ-approximate35
Nash equilibrium, often shortened as ε-NE. However, it remained largely unexplored in the MAIL36
setting until the seminal work of Tang et al. (2024), who showed that minimizing the Nash Gap is37
fundamentally hard in MAIL since deviations in out-of-distribution states can incur linear regret.38

A limitation of Tang et al. (2024) is that they provide an error propagation analysis only. While their39
analysis has the advantage of suggesting meaningful losses that can be minimized to ensure small40
Nash-Gap, it falls short in characterizing the amount of expert samples needed to learn a ε-NE from41
expert data. Moreover, their BLADES and MALICE algorithms have computational complexity that42
scales exponentially with the number of states in the game due to their for loops over the set of all43
possible deviations. This set has cardinality exponential in |S|.44

This work presents the first theoretical analysis of sample complexity in MAIL, and notably, it45
achieves this without exponential dependencies. Specifically, our contributions are as follows:46

1. We provide a sample complexity analysis for BC, revealing the emergence of a single deviation47
concentrability coefficient (Theorem 3.1).48

2. We formally separate MAIL from SAIL, proving in Theorem 3.2 that even with fully known49
transitions, for any non-interactive imitation learning algorithm (like BC) there exists a Markov50
Game with infinite single deviation concentrability coefficient where the Nash Gap remains51
constant even with infinite expert data.52

3. On the positive side, we show that the dependence on the concentrability coefficient can be53
avoided if an interactive expert is available. In particular, assuming access to a Best Response54
Oracle, we propose an algorithm that achieves an ϵ-NE with O(ϵ−4) expert queries and oracle55
calls (Algorithm 2).56
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4. Additionally, we develop an algorithm that avoids the Best Response oracle and the concentra-57
bility coefficient simultaneously, achieving an ϵ-NE with O(ϵ−8) expert queries. Moreover, the58
algorithm is computationally efficient. Its design is based on the novel principle of maximum59
uncertainty response.60

For clarity, we report a comparison of our results with existing MAIL algorithms in Table 1.61

2 Preliminaries62

We start by formalizing the concept of Two-Player Zero-Sum Markov Games. Then, we define the63
imitation learning settings considered in this work dubbed interactive and non-interactive respectively.64

Two-Player Zero-sum Markov Game. An infinite-horizon two-player zero-sum Markov game is65
defined by the tuple G = (S,A,B, P, r, γ, d0), where S is the finite (joint-)state space, A is the finite66
action space of the first player, B is the finite action space of the second player, P ∈ R|S||A||B|×|A| is67
the (unknown) transition function, r ∈ [−1, 1]|S||A||B| the reward vector, a discount factor γ ∈ [0, 1)68
and d0 a distribution over the state space from which the starting state is sampled. In a zero-sum69
Markov Game there is one player trying to maximize the rewards and one player aims to minimize70
the rewards. We assume that the first player is maximizing the reward and the second player aims71
to minimize it. It holds that r1(s, a, b) = −r2(s, a, b) ∀(s, a, b) ∈ S × A × B. Therefore, we72
can omit the superscript in the reward and simply refer to the reward as r. We define a policy of73
player 1 as µ : S → ∆A and the policy of player 2 as ν : S → ∆B, where ∆ is the probability74
simplex over the finite action spaces A and B, respectively. Next, we define the value function for75
a given state s ∈ S and the state-action value function for a given state s ∈ S and joint actions76
(a, b) ∈ A × B for a given policy pair (µ, ν). To this end, let us denote by {St, At, Bt}∞t=0 the77
stochastic process generated by the interaction of the policy pair (µ, ν) in the Markov Game, then78
we can define the value functions as follows V µ,ν(s) := Eµ,ν [

∑∞
t=0 r(St, At, Bt) | S0 = s] and79

Qµ,ν(s, a, b) := Eµ,ν [
∑∞

t=0 r(St, At, Bt) | S0 = s,A0 = a,B0 = b] .80

Additionally, we define the state visitation probability induced by a policy pair (µ, ν) as dµ,ν(s′) :=81
(1 − γ)Eµ,ν

[∑∞
t=0 γ

t1{St=s′} | s0 ∼ d0
]

. If one player’s policy is fixed, then the Markov Game82
induces a Markov decision process (MDP). Assuming that player 2 fixes their strategy, the induced83
transition function for a given state-action pair (s, a) ∈ S × A to new state s′ ∈ S is given by84
Pν(s

′ | s, a) :=
∑

b∈B ν(b | s)P (s′ | s, a, b). It is analogously defined if the policy of player 185
is fixed. Additionally, for a fixed strategy of the opponent player, we define the best response set86
as br(ν) = argmaxµ∈Π ⟨d0, V µ,ν⟩ and br(µ) = argminν∈Π ⟨d0, V µ,ν⟩ , respectively, where Π87
denotes the set of all possible policies and µ⋆, ν⋆ as elements of these sets. It is important to note that88
the best response may not be unique, but the value is. A pair of policies is called a Nash equilibrium89
if both policies are best responses to each other. Last, we introduce the Nash gap, which measures90
how close a given policy pair (µ, ν) is to a NE:91

Nash-Gap(µ, ν) :=
〈
d0, V

µ⋆,ν − V µ,ν⋆
〉
. (1)

The Nash-Gap has the desirable property, that Nash-Gap(µ, ν) = 0, if (µ, ν) is a NE and otherwise92
Nash-Gap(µ, ν) > 0.93

Non-interactive Multi-Agent Imitation Learning. In non-interactive MAIL, the learner observes94
a dataset D := {τk}Nk=1 containing N trajectories collected in the two-player zero-sum Markov95
Game, where the actions are sampled from the NE expert policy pair (µE, νE). For each trajectory96
τk, a random length H ∼ Geo(1− γ) is sampled and then the sequence of states and (joint-)actions97
up to time H are saved, i.e. τk := {(st, at, bt)}Ht=1. After such dataset is collected, the learner98
can no longer collect new expert data. For this reason, we refer to the setting as non-interactive.99
Moreover, the learner might know the transition function of the Markov Game. The learner’s goal100
is to adopt an algorithm Alg that takes as input D, and outputs a pair of policies (µ̂, ν̂) such that101
EAlg [Nash-Gap(µ̂, ν̂)] < ε.102
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Interactive Multi-Agent Imitation learning. In interactive MAIL, there is no initial dataset D.103
The learner interacts with the environment for a certain number of rounds. At each round, the learner104
can collect a trajectory with a chosen policy pair and decide to query the expert at the visited states.105
The learner’s goal is to adopt an algorithm Alg that after poly(ε−1) main expert queries outputs a106
pair of policies (µ̂, ν̂) such that EAlg [Nash-Gap(µ̂, ν̂)] < ε. Compared to the non-interactive setting,107
the expert can be queried during learning.108

In the following, we present the theoretical results concerning the two above settings. In the next109
section, we study the non-interactive setting.110

3 On the sample complexity of Multi-Agent Behavior Cloning111

In this section, we give our first result, which concerns the sample complexity of Behavior Cloning.112

Interestingly, our upper bound depends on a novel quantity C : Π × Π → R dubbed single policy113
deviation concentrability coefficient, which is an infinite norm ratio between the occupancy distribu-114
tions related to the notion of data coverage assumptions needed in Offline Zero-Sum Markov Games115
(Cui & Du, 2022a; Zhong et al., 2022) and concentrability coefficients in approximate dynamic116
programming (Scherrer et al., 2012; Geist et al., 2019; Vieillard et al., 2020). Contrary to the analysis117
of Tang et al. (2024), we do not require that the occupancy measure of the equilibrium policy pair118
used to collect D is lower bounded by β. Therefore, our analysis also applies to the realistic setting119
where some states have zero probability to appear in D.120

We conclude this section with a lower bound inspired by the construction of Tang et al. (2024),121
which separates Multi-Agent Imitation Learning from Single-Agent Imitation Learning, showing122
the necessity of the concentrability coefficient in the multi-agent non-interactive setting even with123
a known transition model.124

Behavioural cloning in Markov Games. In the context of Markov games, BC aims to recover a pair125
of policies (µ̂, ν̂) from expert demonstrations D based on maximum likelihood estimation. Formally,126
we have that (µ̂, ν̂) = argmax(µ,ν)

∑
τ∈D log (P(τ ;µ, ν)) , where P(τ ;µ, ν) = d0(s0)

∏H
h=1 µ(a |127

s)ν(b | s)P (s′ | s, a, b) is the probability of generating trajectory τ under policies (µ, ν), where128
H ∼ Geo(1 − γ). In the tabular set-up, we can obtain the closed-form solution of the above129
optimization problem µ̂(a | s) = N(s,a)

N(s) , if N(s) > 0 and µ̂(a | s) = 1
|A| otherwise. Similarly, this130

holds for ν̂(b | s) by replacing N(s, a) with N(s, b). Here N(s, a), N(s, b) and N(s) denote the131
number of times that state-action pair (s, a), (s, b) and state s appear in D.132

Now, we can state our result for the upper bound of Behavior Cloning when minimizing the Nash133
Gap (1). We give a proof sketch below the theorem and the full proof can be found in Appendix D.134

Theorem 3.1. Let (µE , νE) denote a Nash equilibrium policy pair in a two-player zero-sum Markov135
game, and let D contain trajectories from this expert policy pair. Let (µ̂, ν̂) be the policies obtained136
via Behavior Cloning from D of size N . Then, with probability at least 1− δ, it holds:137

Nash-Gap(µ̂, ν̂) ≤ C(µ̂, ν̂) 8

(1− γ)2

√
|S| |Amax| log2(2 |S| /δ)

N
,

where C(µ̂, ν̂) := maxµ∈br(ν̂)

∥∥∥ dµ,νE

dµE,νE

∥∥∥
∞

+maxν∈br(µ̂)

∥∥∥ dµE,ν

dµE,νE

∥∥∥
∞
.138

Proof Sketch. In the first step of the proof, we add and subtract the value function of the Nash139
equilibrium expert. Additionally, we use the definition of the Nash equilibrium, in particular that the140
policies are best responses to each other, to upper bound it by replacing it with the best responding141
policies to µ̂ and ν̂ respectively.142

V µ⋆,ν̂(s0)− V µ̂,ν⋆

(s0) ≤ V µ⋆,ν̂(s0)− V µ⋆,νE

(s0)︸ ︷︷ ︸
:=Error(ν̂)

+V µE,ν⋆

(s0)− V µ̂,ν⋆︸ ︷︷ ︸
:=Error(µ̂)

,
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where µ⋆ ∈ br(ν̂), ν⋆ ∈ br(µ̂). Next, we can upper bound the two error terms separately. Note that143
the error terms each share one fixed policy, therefore, we can apply a version of the performance144
difference lemma, the triangle inequality, and fix one best response for each player to obtain145

Error(ν̂) ≤ 2

1− γ
max

µ∈br(ν̂)
Eµ,νE

[ ∞∑
t=0

γtTV
(
νE(· | s), ν̂(· | s)

)]
. (2)

Last, we do a change of measure to get the expectation with respect to the expert policy pair. Then,146
we bound the ratio of the state visitation distribution and bound the expectation with concentration147
inequalities to obtain with probability of at least 1− δ148

V µ⋆,ν̂(s0)− V µ⋆,νE

(s0) ≤
8

(1− γ)2
max

µ∈br(ν̂)

∥∥∥∥∥ dµ,ν
E

dµE,νE

∥∥∥∥∥
∞

√
|S| |B| log2(2 |S| /δ)

N
.

Analogous calculations for the second player complete the proof. The full proof is given in Ap-149
pendix D.150

We now discuss several important implications of the derived theorem, particularly focusing on the151
quantity C(µ̂, ν̂), referred to as the single policy deviation concentrability coefficient (see, e.g., (Cui152
& Du, 2022a; Zhong et al., 2022)). Intuitively, the theorem indicates that if the best response of the153
recovered policy shifts the support of the state visitation distribution away from the one induced by154
the observed Nash equilibrium, the corresponding objective becomes unbounded.155

Remark 3.1. While restricting, this requirement is weaker than a uniform lower bound on the156
equilibrium state occupancy measure assumed by Tang et al. (2024), that is dµE ,νE ≥ β. In157
particular, it always holds that C(µE, νE) ≤ β−1.158

On the positive side, we can notice that C(µ̂, ν̂) equals C(µE, νE) := maxµ∈br(νE)

∥∥∥ dµ,νE

dµE,νE

∥∥∥
∞

+159

maxν∈br(µE)

∥∥∥ dµE,ν

dµE,νE

∥∥∥
∞

in the limit of infinite data in the dataset D. Moreover, C(µE, νE) = 1 if160

µE is the unique best response to νE and vice versa. It follows that BC is expected to work well161
under this condition which, for example, can be achieved in entropy regularized games.162

On the negative side, we show that there exists a zero-sum Markov game in which C(µE, νE) is163
unbounded, and we show that in such a game, no non-interactive algorithm can recover a Nash profile164
even under an infinite amount of data. We present this result in the next section.165

The observations are similar in spirit to those obtained in the offline setting (Cui & Du, 2022a; Zhong166
et al., 2022). In these works, the authors derive a lower bound that shows the necessity of a unilateral167
concentration assumption to minimize the Nash gap. However, their construction does not apply to168
the Imitation Learning setting.169

3.1 Necessity of C(µ, ν) in non-interactive MAIL170

In this section, we provide the negative result, that a Markov Game exists, such that the single171
deviation concentrability coefficient of Theorem 3.1 is unbounded.172

The first hardness results to minimize the Nash Gap in Multi-Agent Imitation Learning were derived173
by Tang et al. (2024, Thm. 4.3). Next, we will give a stronger result, showing that even in the case of174
full knowledge of the transition model and perfect recovery of the state visitation distribution of the175
expert, the Nash gap is of the order (1− γ)−1. A detailed discussion on the difference between the176
following result and the one obtained by Tang et al. (2024, Thm. 4.3) can be found in Appendix J. An177
illustration of the Zero-Sum Markov game can be found in Fig. 1 and the full proof in Appendix E.178
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Theorem 3.2 (Construction of MG). For any learning algorithm Alg in the non-interactive imitation179
learning setting, there exists a zero-sum Markov game with C(µE, νE) = ∞ such that the output180
policies µ̂, ν̂ satisfy EAlg

[〈
d0, V

µ⋆,ν̂ − V µ̂,ν⋆〉] ≥ (1− γ)−1. The result continues to hold even if181
Alg is aware of the transition dynamics of the game.182

This theorem illustrates a fundamental limitation of BC in zero-sum Markov games. Specifically,183
it reveals that even perfect recovery of the Nash expert’s state visitation distribution, along with184
complete knowledge of the transition model, is insufficient for minimizing the Nash gap. The key185
insight is that a Nash equilibrium only guarantees robustness against unilateral deviations. As a result,186
regions of the Markov game that require joint deviations to be visited may remain underexplored by187
the expert, leaving the learner vulnerable in those regions. This can be seen in Fig. 1, if the learner188
has a (jointly) inaccurate policy in state s1, the best response of the agents can change the expert189
path to exploit the opponent in the red path of the Markov Game and the the green one respectively.190
Notably, this phenomenon persists even when the transition model is known. This can be seen as191
Sxplt1, Sxplt2 and Scopy are sets of states, and each action combination leads to a different unique192
state, i.e. |Sxplt1 ∪ Sxplt2 ∪ Scopy| = |A| |B|. This highlights the necessity of interactive Imitation193
Learning to explore strategically important but unobserved regions of the state space.194

This issue marks a critical distinction between multi-agent and single-agent imitation learning. In195
single-agent settings, BC suffices to achieve a good performance (Rajaraman et al., 2020; 2021a;196
Foster et al., 2024).197

Moreover, it is important to notice that in the construction used by Tang et al. (2024, Thm. 4.3),198
knowledge of the transition model enables learners to steer toward expert-visited trajectories. In199
contrast, our result establishes a hardness construction in the zero-sum setting showing that the200
guidance provided by transition knowledge is insufficient.201

s0

s1

s2

Sxplt1

Sxplt2

Scopy

s3

else

a3b3

a1b1, a2b2

a2b1, a1b2

else

all
all

all

all

all

Figure 1: 2 Player Zero-Sum Game with Linear Regret in case of full knowledge of transition.

Possible ways to learn under unbounded C(µE, νE). The above theorem makes clear that no202
algorithm can learn in the non-interactive setting if C(µE, νE) = ∞. We can think of several remedies203
to this fact. First, we could require to observe data from the possible strategies in the set of Nash204
equilibria. In this case, we would encounter a smaller concentrability coefficient which features the205
average of the equilibria occupancy measures in the denominator. A second remedy is to move to the206
interactive MAIL setting which allows the learner to collect reward free trajectories in the Markov207
Game and query the expert policy pair along the visited states.208

Since the former assumption is rarely realistic, we later propose an interactive algorithm (Algorithm 2)209
that actively queries expert demonstrations to reduce the Nash gap of the resulting policy.210
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4 Avoiding the single deviation concentrability in interactive MAIL211

In this section, we introduce two algorithms (MAIL-BRO and MURMAIL) designed to avoid212
dependence on C(µE, νE) at the cost of moving to the interactive imitation learning setting.213

Both of our algorithms address key limitations of the approaches proposed in BLADES and MALICE214
by Tang et al. (2024), as their methods require exponential compute and focus solely on error215
propagation analysis without providing convergence guarantees for the resulting policies. In contrast,216
our algorithms are accompanied by both convergence guarantees and polynomial computational cost.217
To motivate these algorithms, let us briefly revisit the structure of the original proof. In offline BC,218
we lack data corresponding to the best responses against the estimated expert policies. As a result, it219
is not feasible to directly estimate the expectation in Eq. (2). To circumvent this, we apply a change220
of measure at the cost of introducing the single deviation concentrability term.221

Our first approach to overcome this limitation is to introduce a Best Response oracle, which enables222
sampling from the distributions (µ, νE) and (µE, ν), where µ ∈ br(ν̂) and ν ∈ br(µ̂), thereby allow-223
ing us to estimate the relevant expectations without incurring the concentrability coefficient. Formally,224
we have the following definition, also used in previous works (see e.g. Hellerstein et al. (2019)).225

Definition 4.1 (Best Response Oracle). Let (µ̂, ν̂) be a pair of policies for a Markov Game G. Then,226
a Best Response Oracle generates policies µ ∈ br(ν̂) and ν ∈ br(µ̂).227

However, it is not straightforward to use the policies given by the Best Response Oracle. Starting228
from (2), we derive the following optimization problem229

min
µ̂∈Π

max
ν∈br(µ̂)

EµE,ν

[ ∞∑
t=0

γtTV
(
µE(· | s), µ̂(· | s)

)]
. (3)

Even under the assumption of being able to generate samples from µE, ν, where ν ∈ br(µ̂), two230
problems remain. First of all, the optimization problem Eq. (3) is non-convex in µ̂. Secondly, in order231
to estimate the minimizer µ̂, we need to collect data from the occupancy measure of the policy pair232
µE, ν for ν ∈ br (µ̂), which depends on the minimizer itself.233

To overcome this issue, we make use of the following bound, here only obtained for fixing µk:234

1
K

∑K
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉
≤
√

|Amax|
K(1−γ)2

∑K
k=1 Es∼dµk,ν∗

k

[
∥µE(· | s)− µk(· | s)∥2

]
,

(4)
where ν⋆k ∈ br(µk). This expression can be derived via the performance difference Lemma, Cauchy-235
Schwarz, and eventually Jensen’s inequality, and it analogously holds for νk fixed. The above236
inequality is crucial for the design of our algorithms in the interactive setting, as shown next.237

4.1 Efficient algorithm with a best response oracle238

In this section, we present our statistically and computationally efficient algorithm with a best239
response oracle defined as follows.240

With the best response oracle and the bound in Eq. (4) in place, we can aim at applying a no-regret241

algorithm to the loss sequence
{
E
s∼dµk,ν⋆

k

[
∥µE(· | s)− µk(· | s)∥2

]}K

k=1
. Since these losses are242

not directly observable, MAIL-BRO (see Algorithm 1) at each iteration performs a step of exponential243
weights updates with a stochastic unbiased gradient denoted by gµk and gνk for the two players244
respectively. These gradient estimates can be shown to have almost surely bounded noise too.245

Exploiting these facts in the analysis of MAIL-BRO, we can attain the following formal result.246

Theorem 4.1. Let us run Algorithm 1 for K = O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4

)
iterations with247

learning rate η = 2|S| log|Amax|
K . Then, the sequence of policies {µk, νk}Kk=1 satisfies with probability248
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Algorithm 1: Multi-Agent Imitation Learning with Best Response Oracle (MAIL-BRO)
Input: number of iterations K, learning rates η, BR oracle, initial policies (µ1, ν1)
Output: ϵ-Nash equilibrium (µ̂, ν̂)
for k = 1 to K do

Update policies:;
Query BR oracle to obtain µ∗

k ∈ br(ν̂k), ν
∗
k ∈ br(µ̂k) ;

Sample Sµ
k ∼ dµk,ν

∗
k , Aµ

k ∼ µE(· | Sµ
k ), S

ν
k ∼ dµ

∗
k,νk , Aν

k ∼ νE(· | Sν
k ) ;

gµk (s, a) = µk(a | Sµ
k )1Sµ

k=s − 1Aµ
k=a ;

gνk(s, a) = νk(a | Sν
k )1Sν

k=s − 1Aν
k=a ;

µk+1(a | s) ∝ µk(a | s) exp (−ηgµk (s, a)) ;
νk+1(b | s) ∝ νk(b | s) exp (−ηgνk(s, a))

end
return µk̂, νk̂ for k̂ ∼ Unif([K])

at least 1−5δ that 1
K

∑K
k=1 maxµ∈Π ⟨d0, V µ,νk⟩−minν∈Π ⟨d0, V µk,ν⟩ ≤ O(ε). Therefore, setting249

δ = O(ϵ) ensures that for a certain k̂ ∼ Unif([K]) it holds that E
[
Nash-Gap(µk̂, νk̂)

]
≤ ϵ. That250

is, µk̂, νk̂ is an ε-Nash equilibrium in expectation.251

The proof can be found in Appendix F. We observe that, compared to standard BC, the sample252
complexity now is of the order O(ϵ−4), which is worse by a factor of ϵ−2. However, this trade-off253
allows us to completely avoid dependence on the single policy deviation concentrability coefficient254
in the MAIL-BRO upper bound. That is, MAIL-BRO is able to effectively recover an approximate255
equilibrium from expert data in a larger class of games.256

Unfortunately, assuming a best response oracle might be limiting in some cases. For those cases, we257
can replace the call to the oracle with the maximum uncertainty responding policy as we explain in258
the next section.259

4.2 Avoiding the best response oracle thanks to the maximum uncertainty response260

Here, we introduce our algorithm MURMAIL (Algorithm 2) which can be applied in the most general261
setting where C(µE, νE) = ∞ and the best response oracle is not available. The idea is again to start262
from (4), but instead of querying the Best Response Oracle, the objective is upper bounded by the263
maximum uncertainty policy. It is important to note that the exploration follows in a decentralized way,264
avoiding the curse of multi-agents by exploring induced MDPs instead of the original Markov Game.265

If the best response ν⋆k ∈ br(µk) cannot be computed, we can majorize the above quantity by the266

policy yk such that yk ∈ argmaxν∈Π
|Amax|

K(1−γ)2Es∼dµk,ν

[
∥µE(· | s)− µk(· | s)∥2

]
. In words, yk is267

the policy that solves a single-agent MDP with reward ∥µE(· | s)− µk(· | s)∥2 where the opponent268
keeps the strategy µk fixed and the player with strategy ν seeks to maximize the probability of269
visiting uncertain states where the uncertainty is captured by ∥µE(· | s)− µk(· | s)∥2. This intuition270
motivates the name maximum uncertainty response.271

At this point, since both the policies µk and yk are known, it is possible to roll out such policy pair272
in the environment and collect data to control ∥µE(· | s)− µk(· | s)∥2 for states s in the support of273
dµk,yk . Of course, exact computation of yk is not possible because we know neither the transition274
dynamics nor µE (which enters the reward function) exactly. However, an approximate solution can275
be computed, for example, via UCBVI3 adapted to handle the stochastic nature of the reward and the276
discounted setting considered in this work.277

The following result states the theoretical guarantees for Algorithm 2. A proof can be found in278
Appendix F.279

3or any other algorithm for solving a single agent discounted tabular Markov decision process.
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Algorithm 2: Maximum Uncertainty Response Multi-Agent Imitation Learning (MURMAIL)
Input: number of iterations K, learning rates η, inner iteration budget T , initial (µ1, ν1)
Output: ϵ-Nash equilibrium (µ̂, ν̂)
for k = 1 to K do

Inner Single-Agent RL Updates:
% Maximum uncertainty response to µ-player update
Define single agent transition Pµk

(s′ | s, b) =∑a∈A µk(a | s)P (s′ | s, a, b);
Define single agent stochastic reward Rµk

(s) → 1{AE=A′
E} − 2µk(AE | s) + ∥µk(·|s)∥2

where AE , A
′
E ∼ µE(· | s);

yk = UCBVI(T, Pµk
, Rµk

);
% Maximum uncertainty response to ν-player update
Pνk

(s′|s, a) =∑b∈B νk(b|s)P (s′ | s, a, b);
Rνk

(s) → 1{AE=A′
E} − 2νk(AE | s) + ∥νk(· | s)∥2 where AE , A

′
E ∼ νE(· | s);

zk = UCBVI(T, Pνk
, Rνk

)
Update policies:
Sample Sµ

k ∼ dµk,yk , Aµ
k ∼ µE(· | Sµ

k ), S
ν
k ∼ dzk,νk , Aν

k ∼ νE(· | Sν
k ).

gµk (s, a) = µk(a | Sµ
k )1Sµ

k=s − 1Aµ
k=a

gνk(s, a) = νk(a | Sν
k )1Sν

k=s − 1Aν
k=a

µk+1(a | s) ∝ µk(a | s) exp (−ηgµk (s, a)) ;
νk+1(b | s) ∝ νk(b | s) exp (−ηgνk(s, a))

end
return µk̂, νk̂ for k̂ ∼ Unif([K])

Theorem 4.2. Let us run Algorithm 2 for K = O
(

|S||Amax|2 log|Amax| log(1/ε)
(1−γ)4ε4

)
outer iterations280

and T = O
(

|S|3|Amax|3 log(1/ε)
(1−γ)8ε4

)
inner iterations with learning rate η = 2|S| log|Amax|

K . Then, for a281

certain k̂ ∼ Unif([K]) it holds that E
[
Nash-Gap(µk̂, νk̂)

]
≤ ϵ.282

It is easy to see that since the total number of expert queries is of order O(K · T ), the total number of283

expert queries to achieve an ε-approximate Nash equilibrium in expectation is Õ
(

|S|4|Amax|5
(1−γ)12ε8

)
.284

Again, notice that there is no concentrability requirement in the upper bound and that the result is285
achieved without the need to call a best response oracle. This comes at the cost of a worse sample286
complexity bound but is applicable to a larger class of games, even in those where a best response287
oracle is not available.288

Remark 4.1. Note that our algorithms scale with poly(|Amax|). While this may appear suboptimal289
in the two-player zero-sum setting, it is important to emphasize that the underlying algorithms support290
decentralized execution. In particular, in Algorithm 1, the dependence on A2

max does not stem from291
the two-player structure, but rather from the reformulation of the objective necessary to obtain292
an unbiased estimator for the gradient update. Similarly, the |Amax|5 dependence in Algorithm 2293
arises from the squared objective and the RL inner loop. Crucially, in this inner loop, each agent294
solves a single-agent MDP, ensuring that the algorithm remains fully decentralized. Altogether, these295
observations indicate that our algorithms scale linearly with |Amax| and do not suffer from the296
curse of multi-agents in the n-player setting. A sketched version for n-player general-sum games297
can be found in Appendix I.298

5 Numerical Validation299

In this section, we provide a numerical evaluation of our proposed algorithms in the Markov Game300
considered in the lower bound construction (Fig. 1) as this environment allows us to control C(µE, νE)301
by considering different convex combinations of the two pure Nash equilibria profiles (i.e., the black302
and the blue path in Figure 1). This environment serves as a proof of concept to demonstrate the303
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practical feasibility of our methods. In particular, we aim to highlight that the performance of BC304
depends on the concentrability coefficient C(µE, νE) even when it is bounded, and completely fails305
when C(µE, νE) = ∞.306

We evaluate Multi-Agent BC and MURMAIL (Algorithm 2) in the considered environment and307
measure the exploitability of the resulting policies with respect to the number of expert queries (for308
MURMAIL) and dataset size (for BC). The results are presented in Fig. 2.309
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·104
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(a) C(µE, νE) ≤ 2

MURMAIL

BC
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·104

(b) C(µE, νE) ≤ 1000

1 2 3 4 5 6 7 8 9 10

·104

(c) C(µE, νE) ≤ 10000

1 2 3 4 5 6 7 8 9 10

·104

(d) C(µE, νE) = ∞

Figure 2: Empirical evaluation for environments with different C(µE, νE).

As predicted by our theoretical analysis, Multi-Agent BC fails in settings with C(µE, νE) = ∞,310
whereas MURMAIL still succeeds in minimizing the Nash gap. However, in environments where311
C(µE, νE) <∞, BC can outperform MURMAIL in terms of efficiency ϵ−2 compared to ϵ−8. Never-312
theless, one should also consider that the performance of MURMAIL is independent of C(µE, νE)313
and therefore MURMAIL can outperform BC in cases where C(µE, νE) is bounded but large. This314
highlights the importance of algorithm selection based on the underlying environment. Additional315
details, experiments in another environment, and practical insights for improving MURMAIL’s316
performance are discussed in Appendix K.317

6 Conclusion and Future Directions318

This paper provides the first sample complexity analysis of behavioural cloning in the multi-agent319
setting. The provided upper bound depends on the single policy deviation concentrability coefficient,320
which is shown to be unavoidable in general. Unfortunately, it is quite easy to come up with MGs321
where the concentrability coefficient is unbounded. In this situation, we resort to expert queries and322
we introduce novel algorithms dubbed MAIL-BRO and MURMAIL, which achieve an ε-approximate323
Nash equilibrium with a polynomial number of expert queries and computational cost polynomial in324
all problem parameters. Several directions remain open. We outline a few of them in Appendix C.325
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with an overview of all the relevant notations used throughout the work, followed by a review of508
related work and an expanded discussion of our conclusions and potential avenues for future research.509
We then present the complete proofs for key results (Appendix D to Appendix H), which were omitted510
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games. Further details on our experimental setup, results, and practical application considerations are512
provided in Appendix K; this section also features a comparison with the lower bound from Tang513
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L Useful Results 42535

A Notation536

Notation Description
G Two-Player Zero-Sum Markov Game
S Finite (joint-)state space
A Player 1’s finite action space
B Player 2’s finite action space
Amax Max action space size, max(|A|, |B|) or maxi(|Ai|)
P Transition function
r Reward vector
γ Discount factor
d0 Initial state distribution
∆A,∆B Probability simplex over action spaces A,B
µ S → ∆A, Policy of player 1
ν S → ∆B, Policy of player 2
V µ,ν(s) State value function for policy pair (µ, ν) at state s
Qµ,ν(s, a, b) State-action value for (µ, ν) at (s, a, b)
dµ,ν(s′) State visitation probability for policy pair (µ, ν)
Nash−Gap(µ, ν) Gap to Nash Equilibrium (NE) for strategy pair (µ, ν)
br(·) Best response set
µ∗ ∈ br(ν) Best response strategy for player 1 to ν
ν∗ ∈ br(µ) Best response strategy for player 2 to µ
ϵ-NE ϵ-approximate Nash Equilibrium
Pν(s

′|s, a) Induced transition to s′ from (s, a) with fixed ν
Π Set of all possible policies
D Dataset of N trajectories
N Number of trajectories in dataset
τk k-th trajectory in dataset
H Trajectory length, H ∼ Geo(1− γ)
Alg Algorithm outputting a policy pair
(µ̂, ν̂) Output/Behavior Cloning policy pair
C(µ, ν) Single policy deviation concentrability of (µ, ν)
P(τ ;µ, ν) Probability of trajectory τ given policies (µ, ν)
N(s, a), N(s, b), N(s) Counts of (s, a), (s, b), s in D
δ Probability threshold (confidence bounds)
Error(ν̂) Error term for player 2’s estimated policy
Error(µ̂) Error term for player 1’s estimated policy
Sxplt1, Sxplt2, Scopy State sets in constructed Markov Game
gµk , g

ν
k Stochastic unbiased gradient estimates

η Learning rate
yk, zk Policies from UCBVI in MURMAIL
Rµk

(s), Rνk
(s) Single agent stochastic reward in MURMAIL

ϵopt Optimality gap for RL inner loop
πi, π−i Policy of player i and others in n-player games
TV (·, ·) Total Variation distance
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B Related Work537

Here, we present the most related work to our results.538

Single-Agent Imitation Learning. There has been significant progress in the theoretical analysis539
of single-agent imitation learning. In the fully offline setting, Behavior Cloning (BC) (Pomerleau,540
1991) has recently been revisited by Foster et al. (2024) using the log loss as a supervised learning541
notion to be minimized between the imitator and the expert policy. Foster et al. (2024) shows an542
expert sample complexity bound independent of the horizon parameter under deterministic stationary543
policies and sparse reward function. Therefore, a dependence on the horizon appears only if the544
reward function is dense or if the class containing the expert policy is non stationary. Moreover, they545
prove that, without further assumptions, interactive imitation learning cannot outperform BC in a546
worst case sense.547

This last finding is surprising given the seminal results showing that interactive imitation learning548
algorithms such as Dagger (Ross et al., 2011), Logger (Li & Zhang, 2022) and On-Q or reward549
moments matching (Swamy et al., 2021) outperform BC with the 0/1 or total variation loss in terms of550
error propagation analysis. Alternatively, better error propagation analysis properties can be derived if551
resetting to states sampled from the expert state occupancy measure is allowed (Swamy et al., 2023).552

Some benefits over BC in the single-agent setting can be instead obtained with known transitions553
and initial distributions. Along this line Mimic-MD (Rajaraman et al., 2020) shows that the expert554
sample complexity can be improved by a factor

√
H where H is the finite horizon of the problem.555

Moreover, this is the best possible improvement without further assumptions given the lower bound556
of Rajaraman et al. (2021b) for N ≥ 6H . Swamy et al. (2022) improve further the upper bound557
in the small data regime N ≤ H . Later, MB-TAIL (Xu et al., 2023) achieves the optimal sample558
complexity for the large sample regime just under trajectory access to the environment (without559
requiring perfect knowledge of dynamics and initial state distribution).560

Moreover, given trajectory access to the MDP, imitation learning in the single-agent setting is possible561
without observing the expert actions. For example, it is possible to imitate observing only the states562
visited by the expert (Sun et al., 2019; Kidambi et al., 2021; Viel et al., 2025) or from reward features563
in Linear MDPs (Moulin et al., 2025; Viano et al., 2024; 2022). To summarize, we have seen that564
in the single agent setting, interactive expert does not give an advantage while knowledge of the565
transition or sampling access to the environment comes with two main advantages (improved horizon566
dependence in the tabular setting and possibility of imitation without seeing expert actions).567

Strikingly, the scenario is completely swapped in the multi-agent setting. Our negative result568
Theorem 3.2 shows that given knowledge of the transition no significant improvements over BC can569
be expected. On the other side, our positive result Theorem 4.2 shows that in the interactive setting a570
consistent improvement is expected over BC if C(µE, νE) is large.571

Multi-Agent Imitation Learning. Theoretical work in multi-agent imitation learning is limited.572
Existing studies mainly focus on empirical results in cooperative (Bui et al., 2024; Le et al., 2017)573
and adversarial (Yu et al., 2019; Song et al., 2018) settings, typically optimizing a value-gap objective,574
which does not capture the strategic component of multi-agent interactions. This is in contrast with575
the usual objective in most forward multi-agent methods which instead minimize Nash or regret gaps576
to measure deviations. To cite few examples, Bai & Jin (2020) learn Nash equilibria in zero-sum577
games with online access, Xie et al. (2020) extends the result to linear turn-based Markov Games,578
Liu et al. (2021); Jin et al. (2021) learn ε-CE, ε-CCE and ε-NE with or without suffering the curse of579
multi-agent respectively, Cui & Du (2022a) learn Nash equilibria in an offline manner and, finally,580
Bai et al. (2021) with bandit feedback and online interactions with the environment.581

In imitation learning, the first to adopt the Nash gap in Normal Form Games are Waugh et al. (2011).582
Recently, the Nash gap has also been considered in Imitation Learning for mean-field games (Ramponi583
et al., 2023). The authors provide an upper bound for BC and adversarial Imitation Learning that is584
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exponential in the horizon in case the dynamics and the rewards depend on the population distribution.585
To overcome this exponential dependency, the authors introduce a proxy to the Nash imitation gap,586
based on a mean field control formulation, that allows to construct an upper bound that is quadratic in587
the horizon. Overall, they focus on finding metrics that, if minimized they imply a small Nash gap in588
virtue of the above error propagation analysis. However, their work left open how the Nash Gap can589
be minimized algorithmically. In this work, we take an alternative approach that works directly on590
upper-bounding the Nash Gap and focuses on developing an algorithmic rather than a general error591
propagation analysis. The closest to our work is Tang et al. (2024), extending this to finite-horizon592
Markov games where the observed expert data are sampled from a correlated equilibrium profile.593
They show that when the transition dynamics are unknown, the regret scales linearly with the horizon,594
even if behavior cloning successfully recovers the expert policy within the support of the expert’s state595
distribution. To address this issue, they propose two algorithms: BLADES, which explicitly queries596
all single-policy deviations from the current strategy, incurring an exponential dependence on the597
size of the state space, and MALICE, which assumes full state coverage in the offline dataset and still598
incurs in a computational cost exponential in the number of states. While Tang et al. (2024) present599
an error propagation analysis, neither MALICE or BLADES are accompanied by a formal sample600
complexity analysis, leaving open questions about their statistical efficiency in practical settings.601

Our work proposes an algorithm MURMAIL which is provably statistically and computationally602
efficient, marking a significant step forward with respect to the current literature on the topic.603
Moreover, on the lower bound side, we extend the construction by Tang et al. (2024) to hold even if604
the learner knows the transition dynamics of the game.605

Offline Zero-Sum Games. In offline zero-sum Markov games, Cui & Du (2022a) and Zhong606
et al. (2022) show that learning is impossible if the dataset only covers Nash equilibrium strategies.607
Instead they show that a unilateral concentration is required to recover Nash equilibrium strategies.608
This result highlights a fundamental gap between offline learning in multi-agent versus single-agent609
settings. Their lower bound is constructed by considering two distinct Normal Form Games that610
differ only in the reward of a single joint action, resulting in different Nash equilibria. The dataset611
includes actions from the equilibrium and suboptimal strategies but omits data corresponding to612
deviations from the observed equilibrium. As a result, the two games become indistinguishable under613
the available data, as the missing deviations preclude disambiguation. However, this argument does614
not extend to the imitation learning setting, where the dataset is restricted to the (deterministic) expert615
policy, resulting in a perfect recoverability for their considered Normal Form Game. In this case,616
establishing hardness requires a more nuanced analysis that leverages the multiplicity of equilibria.617
Furthermore, it is important to note that their deviation coefficient is defined with respect to the618
maximum over all possible policies, whereas in imitation learning, it is defined only relative to the619
estimated Nash equilibrium strategy.620

C Future directions621

We outline here few interesting future directions and research questions left open by our work.622

Extension to deep imitation learning. The current analysis is limited to tabular Markov Games.623
However, the main conceptual ideas easily carry on to deep imitation learning experiments. The624
largest theory-practice gap would be in the inner loop where UCBVI would need to be replaced by625
a Deep RL algorithm such as DQN Mnih et al. (2015) or Soft Actor Critic Haarnoja et al. (2018),626
just to name a few.627

Improving the theoretical bounds in ε and problem dependent parameters. The focus of this628
work was to show the first sample complexity bound for a computationally efficient algorithm in the629
queriable expert setting. For the sake of simplicity, we did not try to optimize the dependence of the630
upper bound in the accuracy parameters ε, effective horizon (1− γ)−1, states and actions cardinality631
|S| and |A|. A possible direction of improvement is to derive a tighter analysis of the outer loop632
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using faster rates for the regret of the squared loss ( see for example (Cesa-Bianchi & Lugosi, 2006,633
Chapter 3)).634

Moreover, the upper bound could be improved by removing the need of the RL inner loop in635
MURMAIL. In general, replacing it with a no regret learner that minimizes the regret in an MDP636
with changing reward function and transitions is not possible because of the negative result by637
Abbasi-Yadkori et al. (2013). On the positive side, it is known from the game theoretic literature that638
no regret learning would be possible under these conditions if the state space is tree structured as639
in an extensive form game (Osborne & Rubinstein, 1994). We leave the study of this improvement,640
which can be relevant for several games such as Poker, for future works.641

Characterizing low concentrability games. We showed that having access to a queriable expert642
allows to avoid the concentrability coefficient C(µE , νE). However, expert queries are not always643
necessary because in some Markov games C(µE , νE) can be upper bounded by a small coefficient.644
For example, we know from the BC upper bound that the concentrability coefficient equals 1 when645
there always exist a unique best response. It is an interesting future direction to study under which646
setting C(µE , νE) is bounded by a small enough coefficient and therefore we can expect BC to work647
well.648

D Proofs on BC Upper bound649

In this section, we give the omitted proofs for Theorem 3.1. In the first step we state the error650
decomposition of the Nash Gap651

V µ⋆,ν̂(s0)− V µ̂,ν⋆

= V µ⋆,ν̂(s0)− V µE,νE

(s0) + V µE,νE

(s0)− V µ̂,ν⋆

≤ V µ⋆,ν̂(s0)− V µ⋆,νE

(s0)︸ ︷︷ ︸
:=Error(ν̂)

+V µE,ν⋆

(s0)− V µ̂,ν⋆︸ ︷︷ ︸
:=Error(µ̂)

,

where µ⋆ ∈ br(ν̂) and ν⋆ ∈ br(µ̂). We can see that we can split the error into an error for the policy652
recovered for player 1 depending on the estimation of player 2’s policy (Error(ν̂)) and for player653
1’s policy respectively (Error(µ̂)). In the following, we will only give the proofs for player 1, as the654
proofs for player 2 follow analogously. Next, we give a useful lemma that upper-bound the value655
difference in a two-player game, when one player’s policy is fixed in both value functions, by the656
total variation. We give the general result and then apply it to our case.657

Lemma D.1. For any policy µ of the max-player, we have that658 ∣∣∣V µ,ν(s0)− V µ,ν′
(s0)

∣∣∣ ≤ 2

1− γ
Eµ,ν

[ ∞∑
t=0

γtTV (ν(· | s), ν′(· | s))
]
.

Similarly, for any policy ν of the min-player, we have that659 ∣∣∣V µ,ν(s0)− V µ′,ν(s0)
∣∣∣ ≤ 2

1− γ
Eµ,ν

[ ∞∑
t=0

γtTV (µ(· | s), µ′(· | s))
]
.

Proof. Here, we only prove the first statement. The second statement can be proved by the same idea.660
By L.1, we have that661

V µ,ν(s0)− V µ,ν′
(s0) = Eµ,ν

[ ∞∑
t=0

γt
(
E(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
])]

.

Applying the triangle inequality leads to662 ∣∣∣V µ,ν(s0)− V µ,ν′
(s0)

∣∣∣ ≤ Eµ,ν

[ ∞∑
t=0

γt
∣∣∣E(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
]∣∣∣] .
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For the term
∣∣∣E(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
]∣∣∣, we have that663 ∣∣∣E(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
]∣∣∣

=

∣∣∣∣∣∑
a∈A

∑
b∈B

µ(a | s) (ν(b | s)− ν′(b | s))Qµ,ν′
(s, a, b)

∣∣∣∣∣
≤ 2

1− γ

∑
a∈A

µ(a | s)
∑
b∈B

|ν(b | s)− ν′(b | s)|

=
2

1− γ
TV (ν(· | s), ν′(· | s)) ,

where we again applied the triangle inequality and the fact that the rewards are bounded by 1.664
Additionally, in the last equality we used the definition of the total variation and the fact that µ(· | s)665
is a probability distribution.666

Combining the obtained results we get667 ∣∣∣V µ,ν(s0)− V µ,ν′
(s0)

∣∣∣ ≤ 2

1− γ
Eµ,ν

[ ∞∑
t=0

γtTV (ν(· | s), ν′(· | s))
]
,

which completes the proof of the first statement.668

Applying the result to the BC setting and noting that by definition of the best response we have669
V µ⋆,ν̂(s0)− V µ⋆,νE

(s0) ≥ 0 for µ⋆ ∈ br(ν̂) and that the result needs to hold true ∀µ ∈ br(ν), we670
obtain671

Error(ν̂) = V µ⋆,ν̂(s0)− V µ⋆,νE

(s0) ≤
2

1− γ
max

µ∈br(ν̂)
Eµ,νE

[ ∞∑
t=0

γtTV
(
νE(· | s), ν̂(· | s)

)]
.

Similarly, for any policy ν of the min-player, we have that672

Error(µ̂) = V µE,ν⋆

(s0)− V µ̂,ν⋆

(s0) ≤
2

1− γ
max

ν∈br(µ̂)
EµE,ν

[ ∞∑
t=0

γtTV
(
µE(· | s), µ̂(· | s)

)]
.

The reason for the additional max (and min) is that the best response map for a given policy is673
generally not unique, so we need to pick a distribution from that set. To make the bound apply to all674
possible best responses, we pick the maximum (or minimum) from the best response set.675

Using the definition of the expectation and doing a change of measure, we get676

V µ⋆,ν̂(s0)− V µ⋆,νE

(s0) ≤
2

1− γ
max

µ∈br(ν̂)
Eµ,νE

[ ∞∑
t=0

γtTV
(
νE(· | s), ν̂(· | s)

)]

=
2

1− γ
max

µ∈br(ν̂)

∞∑
t=0

γt
∑
s∈S

dµ,ν
E

(s)

dµE,νE(s)
dµ

E,νE

(s)TV
(
νE(· | s), ν̂(· | s)

)
.

≤ 2

1− γ
max

µ∈br(ν̂)

∥∥∥∥∥ dµ,ν
E

dµE,νE

∥∥∥∥∥
∞

EµE,νE

[ ∞∑
t=0

γtTV
(
νE(· | s), ν̂(· | s)

)]
.

Note that the expectation is now over the expert policy, therefore we can use the dataset to677
get an estimate. Therefore, we apply the standard concentration argument to upper-bound term678
EµE,νE

[∑∞
t=0 γ

tTV
(
νE(· | s), ν̂(· | s)

)]
. By L.2 and union bound, with probability at least 1−δ/2,679

∀s ∈ S680

TV
(
νE(·|s), ν̂(·|s)

)
≤
√

2|B| log(2|S|/δ)
max{N(s), 1} .
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Then we can have that681

EµE,νE

[ ∞∑
t=0

γtTV
(
νE(·|s), ν̂(·|s)

)]
≤ 1

(1− γ)

∑
s∈S

dµ
E,νE

(s)

√
2|B| log(2|S|/δ)
max{N(s), 1}

=
1

(1− γ)

∑
s∈S

√
dµE,νE(s)

√
2|B|dµE,νE(s) log(2|S|/δ)

max{N(s), 1}

(i)

≤ 1

(1− γ)

√√√√∑
s∈S

2|B|dµE,νE(s) log(2|S|/δ)
max{N(s), 1}

(ii)

≤ 1

(1− γ)

√√√√∑
s∈S

16|B| log2(2|S|/δ)
N

=
4

(1− γ)

√
|S||B| log2(2|S|/δ)

N
,

where in (i) we applied Cauchy Schwarz and in (ii) we applied Lemma L.3 and we denoted N as the682
size of the dataset.683

Finally, we obtain the policy value bound.684

V µ⋆,ν̂(s0)− V µ⋆,νE

(s0) ≤
8

(1− γ)2
max

µ∈br(ν̂)

∥∥∥∥∥ dµ,ν
E

dµE,νE

∥∥∥∥∥
∞

√
|S| |B| log2(2 |S| /δ)

N

and doing the same analysis for player 2 we get685

V µE,ν⋆

(s0)− V µ̂,ν⋆

(s0) ≤
8

(1− γ)2
max

ν∈br(µ̂)

∥∥∥∥∥ dµ
E,ν

dµE,νE

∥∥∥∥∥
∞

√
|S| |A| log2(2 |S| /δ)

N
.

Finally, by using the error decomposition derived in the first step, and defining the concentrability686

coefficient C(µ̂, ν̂) := maxµ∈br(ν̂)

∥∥∥ dµ,νE

dµE,νE

∥∥∥
∞

+ maxν∈br(µ̂)

∥∥∥ dµE,ν

dµE,νE

∥∥∥
∞

and use that |Amax| =687

max{|A| , |B|} we obtain with probability of at least 1− δ688

V µ⋆,ν̂(s0)− V µ̂,ν⋆

(s0) ≤ C(µ̂, ν̂) 8

(1− γ)2

√
|S| |Amax| log2(2 |S| /δ)

N

completing the proof of Theorem 3.1.689

E Proof for necessity of C(µE, νE)690

In this section we give the proof of Theorem 3.2, showing the necessity of a bounded C(µE, νE) for691
non-interactive imitation learning even if the learner is fully-aware of the transition model. For a692
better understanding of the following proof it is essential to remind ourselves of a (simplified) Markov693
Game hardness construction introduced in Section 3.1 and illustrated in Fig. 1.694

Proof of Theorem 3.2. Let us consider the following family of Zero-Sum695
Markov Games G∞ = {Gi}|A|

i=1 with action spaces of the same cardinal-696
ity |A| ≥ 3 given by A = {a1, a2 . . . , ai−1, aE , ai+1, . . . , a|A|}, B =697
{b1, b2 . . . , bi−1, bE , bi+1, . . . , b|A|} and a shared state space for both agents, given by698
S = {s0, s1, s2, s3, s′31 , . . . , s′32|A|−1

, sxplt11 , . . . , sxplt1(|A|−1)2/2
, sxplt21 , . . . , sxplt2(|A|−1)2/2

}.699
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From now on we can divide the state space into 5 parts. We have Sexpert := {s0, s2, s3} the states700
visited by the expert, s1 the gating state, Sxplt1 := {sxplt11 , . . . , sxplt1(|A|−1)2/2

} the states where701
player 1 can be exploited, Sxplt2 := {sxplt21 , . . . , sxplt2(|A|−1)2/2

} the states where player 2 can be702
exploited and Scopy := {s′31 , . . . , s′32|A|−1

} that are copies of the final states visited by the expert in703
the sense that they are sharing the same reward. Additionally, consider a dirac on state s0 as an initial704
state distribution, i.e. d0(s) = δs0 . The transition model is deterministic and in all states except s0705
and s1, simply a transition to one neighboring state. Therefore, we only give a detailed description706
for these two states. And for the gating state s1, we only consider the next potential set of states, as707
states inside these sets share the same reward function and each action pair leads to a unique state708
inside these sets, i.e. every action combination leads to a different state. In particular, we have709

PGi(· | s0, a, b) =
{
s2 if (a, b) = aibi,
s1 otherwise.

PGi(· | s1, a, b) =


Scopy, if (a, b) ∈ {(ai, bi)} ∪ {(ai, bj), (aj , bi) | ∀j ̸= i},

Sxplt1, if (a, b) ∈ Ep,q
Sxplt2, otherwise,

where Ep,q :=
{
(aj , bj) | ∀j ̸= i

}
∪
{
(ajp , bjq ) | 1 ≤ p < q ≤ n − 1,

}
and jp, jq ∈710

{1, . . . , |A|} \ {i}. The state-only reward, which equals across all games inside the sets Gi ∈ GE
conc711

is given by712

R1(s) =


1 if s ∈ Sexplt2,
−1 if s ∈ Sexplt1,
0 otherwise.

As the considered Markov Game is a Zero-Sum Game, it holds that R2(s) = −R1(s). While the713
transition dynamic looks complicated, the two important things to keep in mind that, once an agent714
differs from action ai and bi respectively, an action can be chosen in such a way, that the following715
state is inside Sxplt1 or Sxplt2 respectively and all action combinations has a unique follow up state,716
i.e. |Scopy| ∪ |Sxplt1| ∪ |Sxplt2| = |A| |B| .717

It follows that the actions taken by the agents only matter in the states s0 and s1. For these states718
we consider the following Nash equilibrium expert policy µE(ai | s0) = νE(bi | s0) = 1 and719
µE(ai | s1) = νE(bi | s1) = 1. It follows immediately, that the given policy is indeed a Nash720
equilibrium as no single agent benefits by deviating. Additionally, note that for all actions aj∀ j ̸= i,721
each player is exploitable in s1.722

An illustration of the described Markov Game for |A| = |B| = 3 can be found in Fig. 1, where723
ai = a3 and bi = b3.724

Next, note that for all Gi ∈ G∞ it indeed holds that C(µE, νE) = ∞ as fixing for example policy725
νE another best response for player, i.e. µE

2 ∈ br(νE) is given by µE
2 (aj | s0) = 1, for j ̸= i and726

µE
2 (ai | s1) = µE(ai | s1) = 1, meaning that the only states visited by the policy pair (µE

2 , ν
E) are727

s0, s1, s
′
4.728

Now we show that for the family of Markov Games G∞ where for each Gi ∈ G∞ it holds that729
C(µE, νE) = ∞, any learning algorithm Alg has a Nash Gap of the order (1 − γ)−1. For that let730
(µ̂, ν̂) be the output of any non-interactive imitation learning algorithm Alg with data from (µE, νE).731
It is important to observe that since all games in G∞ are identical in s0 and they differs only in732
transition dynamics from s1. However, no information about s1 is available in D. Therefore, the733
learner has no mean to distinguish which game she is facing. For this reason µ̂, ν̂ do not depend on734
the game index i. Then denoting by AAlg and BAlg the action played by the learner in the state s1, it735
holds true that736
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max
Gi∈G∞

V µ⋆,ν̂
Gi

(s0)− V µ̂,ν⋆

Gi
(s0)

≥
∑A

i=1 V
µ⋆,ν̂
Gi

(s0)− V µ̂,ν⋆

Gi
(s0)

|A|
(i)
=

1

(1− γ)

(∑|A|
i=1 P(BAlg ̸= bi)

|A| +

∑|A|
i=1 P(AAlg ̸= ai)

|A|

)

=
1

(1− γ)

(∑|A|
i=1(1− ν̂(bi | s1))

|A| +

∑|A|
i=1(1− µ̂(ai | s1))

|A|

)

=
1

(1− γ)

( |A| − 1

|A| +
|A| − 1

|A|

)
≥ 1

1− γ
,

where (i) follows from the construction of Gi ∈ C(µE, νE), as all actions, but actions ai, bi are737
exploitable by the opponent in the game Gi.738

Additionally, note that even if the learner has access to the transition dynamics, the learner can not739
differentiate the actions from s1 as all actions lead to different states. Therefore, she cannot use this740
knowledge to recover an action that would lead to s ∈ Scopy, which would avoid a regret of the741
order(1− γ)−1. This completes the proof.742

743

F Analysis of BR Oracle Algorithm744

This section presents the analysis of Algorithm 1 which provides a sample complexity guarantee745
without requiring single deviation concentrability under the assumption of a Best Response Oracle746
(Definition 4.1). The difference to the later presented algorithm MURMAIL Algorithm 2 is that here747
we can query the best response oracle to sample from the expectation that contains the best response748
of the current policy µk and νk respectively. In particular, we sample a state from the induced749
discounted state distributions. However, as noted in our discussion around Eq. (3) we first have to750
transform the optimization problem into a convex one as the original objective of our optimization751
problem is non-convex. This results in Eq. (4), from where we can obtain a Martingale difference752
sequence and a regret term, which then can be minimized as we now can construct an unbiased753
gradient estimator and use a version of online mirror descent to construct an update of our policies.754

Now, we restate the theorem and give the complete proof.755

Theorem 4.1. Let us run Algorithm 1 for K = O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4

)
iterations with756

learning rate η = 2|S| log|Amax|
K . Then, the sequence of policies {µk, νk}Kk=1 satisfies with probability757

at least 1−5δ that 1
K

∑K
k=1 maxµ∈Π ⟨d0, V µ,νk⟩−minν∈Π ⟨d0, V µk,ν⟩ ≤ O(ε). Therefore, setting758

δ = O(ϵ) ensures that for a certain k̂ ∼ Unif([K]) it holds that E
[
Nash-Gap(µk̂, νk̂)

]
≤ ϵ. That759

is, µk̂, νk̂ is an ε-Nash equilibrium in expectation.760
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Proof. In the first step, we square the optimization problem and decompose into a part that considers761
policy µk for player 1 and νk for player 2.762 (

1

K

K∑
k=1

max
µ∈Π

⟨d0, V µ,νk⟩ −min
ν∈Π

⟨d0, V µk,ν⟩
)2

=

(
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µk,ν

⋆
k

〉)2

=

(
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µE ,νE + V µE ,νE − V µk,ν

⋆
k

〉)2

≤
(

1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE + V µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ 2

(
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE

〉)2

+ 2

(
1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

, (5)

where µ⋆
k ∈ br(νk) and ν⋆k ∈ br(µk). At this point, dividing by K squaring and applying the763

performance difference Lemma L.1 that allows to decompose the global regret into a weighted some764
of regrets at each state, we obtain765 (

1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

=

(
1

K

K∑
k=1

E
s∼dµk,ν⋆

k

[〈
Eb∼ν⋆

k(·|s)Q
µE ,ν⋆

k (s, ·, b), µE(·|s)− µk(·|s)
〉])2

≤
(

1

K

K∑
k=1

E
s∼dµk,ν⋆

k

[
∥µE(·|s)− µk(·|s)∥

√
|Amax|(1− γ)−1

])2

≤ |Amax|
K(1− γ)2

K∑
k=1

E
s∼dµk,ν⋆

k

[
∥µE(·|s)− µk(·|s)∥2

]
(6)

where the second last step used the Cauchy-Schwartz inequality and the last step used the Jensen’s766
inequality and the concavity of the square root. Analogous steps give767 (

1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE

〉)2

≤ |Amax|
K(1− γ)2

K∑
k=1

E
s∼dµ⋆

k
,νk

[
∥νE(·|s)− νk(·|s)∥2

]
. (7)

At this point, we see that the expectation is over the best response and the current policies of iteration768
k. Therefore, we now make use of the Best Response Oracle to sample Sµ

k ∼ dµk,ν
⋆
k and Sν

k ∼ dµ
⋆
k,νk .769

Next, we can add and subtract the terms ∥µE(·|Sµ
k )− µk(·|Sµ

k )∥
2 in (6) and ∥νE(·|Sν

k )− νk(·|Sν
k )∥

2770
in (7), and we obtain that771 (

1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ |Amax|
K(1− γ)2

K∑
k=1

(
Es∼dµk,yk

[
∥µE(·|s)− µk(·|s)∥2

]
− ∥µE(·|Sµ

k )− µk(·|Sµ
k )∥

2
)

(Martingale)

+
|Amax|

K(1− γ)2

K∑
k=1

∥µE(·|Sµ
k )− µk(·|Sµ

k )∥
2
. (Regret)

We have that (Martingale) can be bounded as follows via Azuma-Hoeffding inequality772
(see e.g. Theorem 7.2.1 in (Alon & Spencer, 2004)). In particular, define Xk =773
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Es∼dµk,yk

[
∥µE(·|s)− µk(·|s)∥2

]
− ∥µE(·|Sµ

k )− µk(·|Sµ
k )∥

2, notice that {Xk}Kk=1 is a martin-774

gale difference sequence almost surely bounded by 2. Therefore, it holds with probability at least775
1− δ that776

K∑
k=1

(
Es∼dµk,yk

[
∥µE(·|s)− µk(·|s)∥2

]
− ∥µE(·|Sµ

k )− µk(·|Sµ
k )∥

2
)
≤
√
K log(1/δ)

Finally, for (Regret) let us define the loss ℓk(µ) = ∥µE(·|Sµ
k )− µ(·|Sµ

k )∥
2 and notice that ℓk(µE) =777

0. Therefore, by convexity of ℓk,778

(Regret) =
K∑

k=1

ℓk(µk)− ℓk(µE) ≤
K∑

k=1

⟨∇µℓk(µk), µk − µE⟩

where we have that ∇µℓk(µk) =
[
∇µ(·|s1)ℓk(µk)

T , . . . ,∇µ(·|s|S|)ℓk(µk)
T
]T

and the gradients with779

respect to a policy evaluated at a particular state are given as780

∇µ(·|s)ℓk(µk) =

{
µk(·|s)− µE(·|s) if s = Sµ

k

0 otherwise
.

Since we do not have complete knowledge of the expert policy but only sampling access to it, we need781
to introduce the stochastic gradient estimator gµk . To this end, we sample an action Aµ

k ∼ µE(·|Sµ
k )782

and we define the following gradient estimator783

gµk =

{
µk(·|s)− eAµ

k
if s = Sµ

k

0 otherwise
.

Notice that gµk is unbiased and we have that
∥∥gµk −∇µ(·|s)ℓk(µk)

∥∥ ≤
∥∥∥eAµ

k
− µE(·|Sµ

k )
∥∥∥ ≤

√
2.784

Therefore, the sequence {Yk}Kk=1 where Yk = ⟨∇µℓk(µk)− gµk , µk − µE⟩ is a martingale difference785
sequence adapted to the filtration Ft which includes all the algorithmic randomness up to the786
generation of µk. Indeed we have that E [Yt|Ft] = 0 and787

E
[
Y 2
t |Ft

]
≤ E

[∥∥∥eAµ
k
− µE(·|Sµ

k )
∥∥∥2 ∥µk − µE∥2 |Ft

]
≤ 4 |S| .

Therefore, thanks to an application of the Azuma-Hoeffding inequality it holds that with probability788
1− δ789

K∑
k=1

⟨∇µℓk(µk)− gµk , µk − µE⟩ ≤
√

2K |S| log(1/δ).

Therefore, we can bound the regret as follows790

K∑
k=1

⟨∇µℓk(µk), µk − µE⟩ =
K∑

k=1

⟨gµk , µk − µE⟩+
K∑

k=1

⟨∇µℓk(µk)− gµk , µk − µE⟩

≤ |S| logA
η

+
η

2

K∑
k=1

∥∥∥µ(·|Sµ
k )− eAµ

k

∥∥∥
∞

+
√
2K |S| log(1/δ)

≤ |S| log |Amax|
η

+
ηK

2
+
√
2K |S| log(1/δ)

≤
√
K |S| log |Amax|

2
+
√
2K |S| log(1/δ),

where for the first term, we recognized that the policies updates in Algorithm 1 can be seen as791
mirror descent updates (see Lemma F.1) and we used the standard regret bound for online mirror792
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descent (see for example Orabona (2023)) instantiated with the following Bregman divergence793 ∑
s∈S DKL(µ(·|s), µ′(·|s)) and with learning rate η = 2|S| log|Amax|

K as done in Algorithm 1. All in794
all, we obtain via a union bound that with probability at least 1− 4δ795 (

1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K

)
.

Moreover, analogous calculations give796 (
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE

〉)2

≤ |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K

)
.

Then, plugging into (5), using a union bound and taking square root on both sides, we obtain via797
another union bound that with probability at least 1− 5δ798

1

K

K∑
k=1

max
µ∈Π

⟨d0, V µ,νk⟩ −min
ν∈Π

⟨d0, V µk,ν⟩

≤

√√√√4 |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K

)
.

At this point, setting K = O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4

)
ensures that with probability at least799

1− 5δ800

1

K

K∑
k=1

max
µ∈Π

⟨d0, V µ,νk⟩ −min
ν∈Π

⟨d0, V µk,ν⟩ ≤ O(ε).

Therefore, the total number of expert queries is O(K) = O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4

)
.801

The next results shows that the policies updates used in Algorithm 1 and Algorithm 2 are mirror802
descent updates for an appropriately chosen Bregman divergence. To this end for any p, d ∈ ∆A803
we define the KL divergence as KL(p, q) =

∑
a∈A p(a) log(p(a)/q(a)) with the convention that804

KL(p, q) = 0 if there exists an action a such that p(a) = 0 and q(a) > 0.805

Lemma F.1. The updates used in Algorithm 1 and Algorithm 2, that is806

µk+1(a | s) ∝ µk(a | s) exp (−ηgµk (s, a)) νk+1(b | s) ∝ νk(b | s) exp (−ηgνk(s, a))

are equivalent to mirror descent updates for the Bregman divergence
∑

s∈S KL(µ(·|s), µk(·|s)).807
That is, the updates can be equivalently rewritten as808

µk+1 = argmin
µ∈Π

⟨gµk , µ⟩+
1

η

∑
s∈S

KL(µ(·|s), µk(·|s))

and809

νk+1 = argmin
ν∈Π

⟨gνk , ν⟩+
1

η

∑
s∈S

KL(ν(·|s), νk(·|s))
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Proof. We prove the result for one player ( the µ player ). The result for the other player would810
follow exactly the same steps. Let us consider the proximal update811

µk+1 = argmin
µ∈Π

⟨gµk , µ⟩+
1

η

∑
s∈S

KL(µ(·|s), µk(·|s))

The Bregamn divergence chosen is induced by the function ψ(µ) =
∑

s∈S
∑

a∈A µ(a|s) logµ(a|s)812
sum of the negative entropy over the state space. Notice that the gradient norm tends to infinite813
as µ approaches the border of the policy space (i.e. some entries µ(a|s) tends to zero), that is814
limµ→δΠ ∥∇ψ(µ)∥. This means that the first order optimality condition implies that the derivative815
F (µ) = ⟨gµk , µ⟩+ 1

η

∑
s∈S KL(µ(·|s), µk(·|s)) equals zero at the minimizing policy which is µk+1816

by definition. Therefore, in the following we use this fact to derive the exponential weight updates817
used in Algorithm 1 and 2.818

∇F (µk+1) = 0 =⇒ gµk (s, a) +
1

η
log

(
µk+1(a|s)
µk(a|s)

)
= c

for some c ∈ R which ensures normalization of µk+1. Therfore, inverting the last expression, we819
have that820

µk+1(a|s) = µk(a|s) exp (η(c− gµk (s, a)))

Choosing c ∈ R to ensure that for all s ∈ S it holds that
∑

a∈A µk+1(a|s) = 1 concludes the821
proof.822

G Analysis of Algorithm 2823

This section presents the analysis of Algorithm 2 which provides a sample complexity guarantee824
without requiring neither concentrability or best response oracle.825

Theorem 4.2. Let us run Algorithm 2 for K = O
(

|S||Amax|2 log|Amax| log(1/ε)
(1−γ)4ε4

)
outer iterations826

and T = O
(

|S|3|Amax|3 log(1/ε)
(1−γ)8ε4

)
inner iterations with learning rate η = 2|S| log|Amax|

K . Then, for a827

certain k̂ ∼ Unif([K]) it holds that E
[
Nash-Gap(µk̂, νk̂)

]
≤ ϵ.828

Proof. The proof follows similar to the one of Theorem 4.1 with the addition of an RL inner loop. In829
a first step, we first derive the same decomposition as in (5). Again, dividing by K squaring, applying830
the performance difference, the Cauchy-Schwartz inequality leads to (6) and using Jensen’s inequality831
and the concavity of the square root we get832 (

1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ |Amax|
K(1− γ)2

K∑
k=1

E
s∼dµk,ν⋆

k

[
∥µE(·|s)− µk(·|s)∥2

]
, (8)

where ν⋆k ∈ br(µk) and analogously for νk833 (
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE

〉)2

≤ |Amax|
K(1− γ)2

K∑
k=1

E
s∼dµ⋆

k
,νk

[
∥νE(·|s)− νk(·|s)∥2

]
, (9)

where µ⋆
k ∈ br(νk). At this point, as we do not assume to have access to a Best Response oracle, let us834

introduce the sequence {zk}Kk=1 and {yk}Kk=1 produced by UCB-VI in the inner loop of Algorithm 2.835
Since the stochastic reward used in the inner loop is unbiased and almost surely bounded by 2 by836
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Lemma H.7, Lemma H.6 run for a number of inner iterations T = O
(

|S|3|Amax| log(1/δ)
(1−γ)4ε2opt

)
ensures837

that with probability 1− 3δ838

E
s∼dµ⋆

k
,νk

[
∥νE(·|s)− νk(·|s)∥2

]
≤ Es∼dzk,νk

[
∥νE(·|s)− νk(·|s)∥2

]
+ εopt (10)

and839
E
s∼dµk,ν⋆

k

[
∥µE(·|s)− µk(·|s)∥2

]
≤ Es∼dµk,yk

[
∥µE(·|s)− µk(·|s)∥2

]
+ εopt (11)

Note that now we can sample Sµ
k ∼ dµk,yk and Sν

k ∼ dzk,νk . Therefore, we can again add and840
subtract the terms ∥µE(·|Sµ

k )− µk(·|Sµ
k )∥

2 in (8) and ∥νE(·|Sν
k )− νk(·|Sν

k )∥
2 in (9) we obtain that841 (

1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ |Amax|
K(1− γ)2

K∑
k=1

(
Es∼dµk,yk

[
∥µE(·|s)− µk(·|s)∥2

]
− ∥µE(·|Sµ

k )− µk(·|Sµ
k )∥

2
)

(12)

+
|Amax|

K(1− γ)2

K∑
k=1

∥µE(·|Sµ
k )− µk(·|Sµ

k )∥
2 (Regret)

+
|Amax|
(1− γ)2

εopt (Inner RL Loop Error)

We have that (12) can be bounded analogously as in Eq. (Martingale) with Sµ
k ∼ dµk,yk .842

Again, as done in the proof of Theorem 4.1, we recognize that the policies updates performed by843
Algorithm 2 are instances of online mirror descent ( see Lemma F.1 ). Therefore, we can bound the844
regret term as follows845

K∑
k=1

⟨∇µℓk(µk), µk − µE⟩ ≤
√
K |S| log |Amax|

2
+
√
2K |S| log(1/δ).

All in all, we obtain via a union bound that with probability at least 1− 4δ846 (
1

K

K∑
k=1

〈
d0, V

µE ,ν⋆
k − V µk,ν

⋆
k

〉)2

≤ |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K
+ εopt

)
.

Moreover, analogous calculations give847 (
1

K

K∑
k=1

〈
d0, V

µ⋆
k,νk − V µ⋆

k,νE

〉)2

≤ |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K
+ εopt

)
.

Then, using the same decomposition presented in (5), using a union bound and taking square root on848
both sides, we obtain via another union bound that with probability at least 1− 5δ849

1

K

K∑
k=1

max
µ∈Π

⟨d0, V µ,νk⟩ −min
ν∈Π

⟨d0, V µk,ν⟩

≤

√√√√4 |Amax|
(1− γ)2

(√
(2 |S|+ 1) log(1/δ)

K
+

√
|S| log |Amax|

2K
+ εopt

)
.
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At this point, setting K = O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4

)
ensures that with probability at least850

1− 5δ851

1

K

K∑
k=1

max
µ∈Π

⟨d0, V µ,νk⟩ −min
ν∈Π

⟨d0, V µk,ν⟩ ≤ O(ε) + 2
√
|Amax| (1− γ)−2εopt.

Finally, setting εopt = |Amax|−1
(1 − γ)2ε2 that is T = O

(
|S|3|Amax|3 log(1/δ)

(1−γ)8ε4

)
852

ensures that with probability 1 − 5δ, we have that 1
K

∑K
k=1 maxµ∈Π ⟨d0, V µ,νk⟩ −853

minν∈Π ⟨d0, V µk,ν⟩ ≤ O(ε). Therefore, the total number of expert queries in O(K · T ) =854

O
(

|S||Amax|2 log|Amax| log(1/δ)
(1−γ)4ε4 · |S|3|Amax|3 log(1/δ)

(1−γ)8ε4

)
.855

H Analysis for the RL inner loop856

For the RL inner loop we analyze UCBVI for stochastic rewards in the discounted setting with857
a random reward. In particular we have that each time a state-action pair is visited we observe858
a stochastic reward which is unbiased and with almost surely bounded noise. Compared to the859
standard analysis in Azar et al. (2017), we handle the discounted infinite horizon setting. In principle,860
MURMAIL can be used replacing UCBVI with other RL algorithms in the inner loop.

Algorithm 3: UCBVI
Input: iteration budget T , transition dynamics P , unbiased reward function sampler R
Initialize Q1(s, a) = (1− γ)−1 and V1(s) = (1− γ)−1 for all s, a ∈ S ×A.
for t = 1 to T do

πt(s) = argmaxa∈AQt(s, a)
Sample St, At ∼ dπt , S′

t ∼ P (·|St, At).
Generate stochastic reward function Rt ∼ R(St).
Update counts Nt(s, a) = Nt(s, a) + 1{St,At=s,a},
Nt(s, a, s

′) = Nt(s, a) + 1{St,At,S′
t=s,a,s′}.

Estimate transitions and reward

P̂t(s
′|s, a) = Nt(s, a, s

′)

Nt(s, a) + 1
r̂t(s, a) =

∑T
t=1Rt1{St,At=s,a}

Nt(s, a) + 1

Set bonuses

bt(s, a) =
4 |S|
1− γ

√
log(2T (T + 1) |S| /δ)

Nt(s, a) + 1

Update state action value functions

Qt+1 =
[
r̂t + γP̂tVt + bt

]Qt

0

Vt+1(s) = max
a∈A

Qt+1(s, a)

end
return πout such that dπout = T−1

∑T
t=1 d

πt

861

The first step of our analysis is to invoke a standard extended performance difference lemma in the862
infinite horizon setting.863

We first introduce some Lemmas which will be useful in the rest of the analysis864

Lemma H.1. Consider the MDP M = (S,A, γ, P, r, d0) and two policies π, π′ : S → ∆A. Then865

consider for any Q̂ ∈ R|S||A| and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ′

, V π′
be respectively the state-866
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action and state value function of the policy π in MDPM . Then, it holds that (1−γ)
〈
d0, V̂

π − V π′
〉

867

equals868 〈
dπ

′
, Q̂− r − γP V̂ π

〉
+ Es∼dπ′

[〈
Q̂(s, ·, π(·|s)− π′(·|s)

〉]
.

Proof. A proof can be found in Viel et al. (2025).869

We assume for the moment to have valid bonuses, that is functions bk such that they guarantees for870
all t ∈ [T ] and for all s, a ∈ S ×A871 ∣∣∣γP̂tVt(s, a)− γPVt(s, a) + r̂t(s, a)− r(s, a)

∣∣∣ ≤ bt(s, a)

and we prove that under the above conditions pointwise optimism hold. This point is made precise in872
the next Lemma873

Lemma H.2. Given a sequence bt : S ×A → R such that874 ∣∣∣γP̂tVt(s, a)− γPVt(s, a) + r̂t(s, a)− r(s, a)
∣∣∣ ≤ bt(s, a)

for all t ∈ [T ], and s, a ∈ S ×A it holds that875

Vt ≥ V π⋆

Qt ≥ Qπ⋆ ∀ t ∈ [T ]

876

Proof. First, let us proof the base case. This is easy since Q1(s, a) =
1

1−γ and V1(s) = 1
1−γ for all877

s, a ∈ S × A and it holds that Qπ⋆

(s, a) ≤ 1
1−γ and V π⋆

(s) ≤ 1
1−γ for all s, a ∈ S × A. For the878

inductive step, let us set as inductive hypothesis that Qt −Qπ⋆ ≥ 0 and Vt − V π⋆ ≥ 0. Then, recall879
the update for Qt+1,880

Qt+1 =
[
r̂t + γP̂tVt + bt

]Qt

0

In case the upper truncation is triggered in a generic state action pair s, a, we have that Qt+1(s, a)−881
Qπ⋆

(s, a) = Qt(s, a)−Qπ⋆

(s, a) ≥ 0 by the inductive hypothesis. For the state action pairs, where882
the upper transitions is not triggered we have that883

Qt+1(s, a)−Qπ⋆

(s, a) ≥ r̂t(s, a) + γP̂tVt(s, a) + bt(s, a)−Qπ⋆

(s, a)

= r̂t(s, a) + γP̂tVt(s, a) + bt(s, a)− r(s, a)− γPV π⋆

(s, a)

= r̂t(s, a) + γP̂tVt(s, a)− γPVt(s, a) + bt(s, a)− r(s, a)− γPV π⋆

(s, a) + γPVt(s, a)

≥ γPVt(s, a)− γPV π⋆

(s, a)

≥ 0.

Notice that the second last step follows from the validity of the bonuses and the last one follows from884
the monotonicity of the operator P and by the inductive hypothesis Vt − V π⋆ ≥ 0.885

At this point we have proven that Qt+1 −Q⋆ ≥ 0. For proving the optimism of the estimated state886
value functions we proceed as follows. Let a⋆ = argmaxa∈AQ

π⋆

(s, a),887

Vt+1(s)− V π⋆

(s) = max
a∈A

Qt+1(s, a)−max
a∈A

Qπ⋆

(s, a)

= max
a∈A

Qt+1(s, a)−Qπ⋆

(s, a⋆)

≥ Qt+1(s, a
⋆)−Qπ⋆

(s, a⋆) ≥ 0.

888
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The next lemma bounds the regret of UCBVI (Algorithm 3) with a sequence of valid bonuses with889
the sum of expected on policy bonuses.890

Lemma H.3. Let us consider UCBVI run for T iteration with a sequence of valid bonuses {bt}Tt=1,891
then it holds that892

1

T

T∑
t=1

〈
d0, V

π⋆ − V πt

〉
≤ 2

T (1− γ)

T∑
t=1

⟨dπt , bt⟩+
|S| |A|

(1− γ)2T
.

Proof. Using the point wise optimism in Lemma H.2 and the decomposition in Lemma H.1 we have893
the following decomposition on the regret of UCBVI894

1− γ

T

T∑
t=1

〈
d0, V

π⋆ − V πt

〉
≤ 1− γ

T

T∑
t=1

⟨d0, Vt − V πt⟩

=
1

T

T∑
t=1

⟨dπt , Qk+1 − r + γPVt⟩+
1

T

T∑
t=1

⟨dπt , Qt −Qk+1⟩

≤ 1

T

T∑
t=1

〈
dπt , r̂t + γP̂tVt + bt − r + γPVt

〉
+

1

T

T∑
t=1

⟨dπt , Qt −Qk+1⟩

≤ 2

K

T∑
t=1

⟨dπt , bt⟩+
1

T

T∑
t=1

⟨dπt , Qt −Qt+1⟩

where last inequality holds thanks to the validity of the bonuses. For the second term, we can get895
the following bound which crucially use in the first inequality the fact that the sequence {Qt}Tt=1 is896
decreasing.897

1

T

T∑
t=1

⟨dπt , Qt −Qk+1⟩ ≤
1

T

T∑
t=1

∑
s,a

Qt(s, a)−Qt+1(s, a)

=
1

T

∑
s,a

T∑
t=1

Qt(s, a)−Qt+1(s, a)

=
1

T

∑
s,a

Q1(s, a)

=
|S| |A|

(1− γ)T
.

898

H.1 Showing validity of the bonuses899

We show in this section how to design a valid sequence of bonuses.900

Lemma H.4. Let us consider run UCBVI for T for a stochastic reward almost surely bounded by 2,901
i.e. Rmax ≤ 2 iterations and consider the following transition and reward estimators902

P̂t(s
′|s, a) = Nt(s, a, s

′)

Nt(s, a) + 1
r̂t(s, a) =

∑T
t=1Rt1{St,At=s,a}

Nt(s, a) + 1
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then the bonus sequence defined as903

bt(s, a) =
4 |S|
1− γ

√
log(2T (T + 1) |S| /δ)

Nt(s, a) + 1

satisfies904

P
[∣∣∣r̂t(s, a) + γP̂tVt(s, a)− r(s, a)− γPVt(s, a)

∣∣∣ ≤ bt(s, a) ∀t ∈ [T ]
]
≥ 1− 2δ.

Proof. For all t ∈ [T ] simultaneously, we have the following upper bound high probability upper905
bound906

P̂t(s
′|s, a)− P (s′|s, a)

=

∑T
τ=1 1{Sτ ,Aτ=s,a}1{S′

τ=s′}

Nt(s, a) + 1
− Nt(s, a) + 1

Nt(s, a)

∑T
τ=1 1{Sτ ,Aτ=s,a}P (s

′|s, a)
Nt(s, a) + 1

=

∑T
τ=1 1{Sτ ,Aτ=s,a}

(
1{S′

τ=s′} − P (s′|s, a)
)

Nt(s, a) + 1
−
∑T

τ=1 1{Sτ ,Aτ=s,a}P (s
′|s, a)

Nt(s, a)(Nt(s, a) + 1)

=

∑T
τ=1:Sτ ,Aτ=s,a

(
1{S′

τ=s′} − P (s′|s, a)
)

Nt(s, a) + 1
−
∑T

τ=1 1{Sτ ,Aτ=s,a}P (s
′|s, a)

Nt(s, a)(Nt(s, a) + 1)

≤
√
Nt(s, a) log(Nt(s, a)(Nt(s, a) + 1)/δ)

Nt(s, a) + 1
−
∑T

τ=1 1{Sτ ,Aτ=s,a}P (s
′|s, a)

Nt(s, a)(Nt(s, a) + 1)

≤
√

log(T (T + 1)/δ)

Nt(s, a) + 1
−
∑T

τ=1 1{Sτ ,Aτ=s,a}P (s
′|s, a)

Nt(s, a)(Nt(s, a) + 1)

where the last inequality follows with probabilitry 1− δ from an application of the Azuma Hoeffding907
inequality making special care of the fact that the total number of visitsNt(s, a) is not an independent908
random variable with respect to the random variables of which we are computing the mean, that909

is
{
1{Sτ ,Aτ=s,a}

}T
t=1

. For this reason we pay the factor log(Nt(s, a)(Nt(s, a) + 1)) in the upper910
bound. We refer the reader to (Lattimore & Szepesvári, 2020, Exercise 7.1 ) for details. Since, we911
have also Therefore, by triangular inequality and a union bound over the state space.912

∥∥∥P̂t(·|s, a)− P (·|s, a)
∥∥∥
∞

≤
√

log(2T (T + 1) |S| /δ)
Nt(s, a) + 1

+

∑T
τ=1 1{Sτ ,Aτ=s,a}P (s

′|s, a)
Nt(s, a)(Nt(s, a) + 1)

≤
√

log(2T (T + 1) |S| /δ)
Nt(s, a) + 1

+
1

(Nt(s, a) + 1)

For the reward concentration we have that913

|r(s, a)− r̂k(s, a)| =
∣∣∣∣∣
∑T

t=1 1{St,At=s,a}(Rt − r(s, a))

Nt(s, a) + 1
−
∑T

t=1 1{St,At=s,a}r(s, a)

Nt(s, a)(Nt(s, a) + 1)

∣∣∣∣∣
≤
∣∣∣∣∣
∑T

t=1 1{St,At=s,a}(Rt − r(s, a))

Nt(s, a) + 1

∣∣∣∣∣+
∣∣∣∣∣
∑T

t=1 1{St,At=s,a}r(s, a)

Nt(s, a)(Nt(s, a) + 1)

∣∣∣∣∣
≤
√
Rmax log(2T (T + 1)/δ)

Nt(s, a) + 1
+

Rmax

(Nt(s, a) + 1)

where the last inequality holds with probability 1− δ thanks to the double sided Azuma-Hoeffding914
inequality.915
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For the second part of the statement consider that each possible element of the sequence {Vt}Tt=1916

generated by UCBVI satisfies ∥Vt∥1 ≤ |S|
1−γ . Therefore, it holds that917 ∣∣∣P̂tVt(s, a)− PVt(s, a)

∣∣∣ ≤ ∥∥∥P̂t(·|s, a)− P (·|s, a)
∥∥∥
∞

∥Vt∥1

≤ |S|
1− γ

∥∥∥P̂t(·|s, a)− P (·|s, a)
∥∥∥
∞

≤ |S|
1− γ

(√
log(2T (T + 1) |S| /δ)

Nt(s, a) + 1
+

1

(Nt(s, a) + 1)

)

where the last inequality holds with probability 1 − δ. Therefore, it follows that for all t ∈ [T ]918
simultaneously, with probability at least 1− 2δ919 ∣∣∣r̂t(s, a) + γP̂tVt(s, a)− r(s, a)− γPVt(s, a)

∣∣∣ ≤ Rmax + |S|
1− γ

·
(√

log(2T (T + 1) |S| /δ)
Nt(s, a) + 1

+
1

(Nt(s, a) + 1)

)
≤ bt(s, a),

where the final upper bound by the bonus uses that |S| ≥ 2 and
√

log(2T (T+1)|S|/δ)
Nt(s,a)+1 ≥ 1

(Nt(s,a)+1) .920
921

H.2 Bound the bonus sum922

Lemma H.5. The expected on policy bonus sum is bounded as follows with probability 1− δ923

T∑
t=1

⟨dπt , bt⟩ ≤
4 |S|

√
log(2T (T + 1) |S| /δ)

1− γ

√
2 |S| |A|T log(T )

+
16 |S|
1− γ

√
log(2T (T + 1) |S| /δ) log

(
2T

δ

)

≤ Õ


√
|S|3 |A|T log(1/δ)

1− γ

 .

924

Proof. We apply (Rosenberg et al., 2020, Lemma D.4) to conclude that with probability at least 1− δ925

T∑
t=1

⟨dπt , bt⟩ = 2

T∑
t=1

bt(St, At) +
16 |S|
1− γ

√
log(2T (T + 1) |S| /δ) log

(
2T

δ

)
Then, we have that926

T∑
t=1

bt(St, At) =

T∑
t=1

4 |S|
1− γ

√
log(2T (T + 1) |S| /δ)

Nt(St, At) + 1

≤ 4 |S|
√
log(2T (T + 1) |S| /δ)

1− γ

√√√√T

T∑
t=1

1

Nt(St, At) + 1

≤ 4 |S|
√
log(2T (T + 1) |S| /δ)

1− γ

√√√√T

T∑
t=1

1

Nt(St, At) + 1
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Finally, it holds that927

T∑
t=1

1

Nt(St, At) + 1
=
∑
s,a

T∑
t=1

1{St,At=s,a}

1 +
∑t

τ=1 1{Sτ ,Aτ=s,a}

≤ |S| |A| log(T )

where the last inequality follows applying (Orabona, 2023, Lemma 4.13) for f(x) = x−1. Putting928
everything together concludes the proof.929

H.3 Final UCBVI bound930

Lemma H.6. Let us consider UCBVI (Algorithm 3) in an environment with a stochastic unbiased931
reward almost surely bounded by 2 run for T iteration with a sequence of valid bonuses {bt}Tt=1932
specified in the statement of Lemma H.4, then it holds that with probability at least 1− 3δ933

1

T

T∑
t=1

〈
d0, V

π⋆ − V πt

〉
≤ Õ

(√
|S|3 |A| log(1/δ)

(1− γ)
4
T

)
+

|S| |A|
(1− γ)2T

.

Therefore, for the mixture policy πout such that 1
T

∑T
t=1 d

πt = dπout it holds that with probability934
1− 3δ935 〈

d0, V
π⋆ − V πout

〉
≤ εopt

for T = Õ
(

|S|3|A| log(1/δ)
(1−γ)4ε2opt

)
.936

Proof. The proof follows trivially from the combination of Lemma H.5 and Lemma H.3 and a union937
bound over the event that the bonus are valid and the event under which the bound in Lemma H.5938
holds .939

940

H.4 Properties of the reward estimate941

Lemma H.7. For any policy π ∈ Π and expert policy πE ∈ Π consider a particular state s ∈ S and942
sampling AE ∼ πE(·|s), A′

E ∼ πE(·|s) . Then, the following facts hold true943

E
[
1 {AE = A′

E} − 2π(AE |s) + ∥π(·|s)∥2
]
= ∥πE(·|s)− π(·|s)∥2

and944
1 {AE = A′

E} − 2π(AE |s) + ∥π(·|s)∥2 ≤ 2 almost surely

Proof. First note that945

∥πE − π∥2 = ∥πE(·|s)∥2 − 2
〈
πE(·|s), xk(·|s)

〉
+ ∥π(·|s)∥2

=
∑
a

πE(a | s)2 +
∑
a

π(a | s)2 − 2
∑
a

πE(a | s)π(a | s)

=
∑
a

πE(a | s)2 +
∑
a

π(a | s)2 − 2EA∼πE(·|s)[π(a | s)].

Now, note that for a given a ∈ A, we get that946

π2
E(a | s) = P(AE = a)2 = P(AE = a)P(A′

E = a) = P(AE = A′
E) = E[1{AE=A′

E}],
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where AE , A
′
E are independent samples from πE(· | s). Therefore, we can conclude that947

1 {AE = A′
E} − 2π(AE |s) + ∥π(·|s)∥2 .

is an unbiased estimator of ∥πE − π∥2. The second statement is easy to show948

1 {AE = A′
E} − 2π(AE |s) + ∥π(·|s)∥2 ≤ 1 {AE = A′

E}+ ∥π(·|s)∥2 ≤ 2.

949

I Extension to n-player general-sum Games950

In this section, we sketch the analysis for the n-player general sum extension. The goal of this951
section is to show that the algorithm design is decentralized, meaning that it can avoid the curse of952
multi-agents in n-player general-sum Games as stated in Remark 4.1. The idea is that the introduced953
algorithms keep the other players fixed, in the RL inner-loop and the BR oracle calls respectively. This954
results in a decentralized execution. This section starts with the introduction of n-player general-sum955
Games and all the necessary notations. Then, we show how the objective varies slightly from the one956
in Zero-Sum Games. Last, we give the proof sketch for the n- player general-sum case.957

First note that, an infinite-horizon general-sum Markov game is defined by G = (n,S,A, P, r, γ, d0),958
where n is the number of players, S is the finite (joint-)state space, A := A1 × . . .×An is the finite959
(joint-)action space, where Ai is the action space of player i ∈ {1, . . . , n}, P ∈ R|S||A|×|A| is the960
(unknown) transition function, r ∈ R|S||A| the reward vector, a discount factor γ ∈ [0, 1) and d0961
a distribution over the state space from which the starting distribution is sampled. In general-sum962
games there is no additional restriction on the reward function. A policy of a player i is defined as963
πi : S → ∆Ai

and we denote the joint policy as π = (π1, . . . , πn) = (πi, π−i), where π−i denotes964
the policy of all players except player i. We also use π−(i,j) to denote all players but players i, j.965
Additionally, we denote a joint action as a = (a1, . . . , an). The value function and state-action value966
function for any player i for a given state s ∈ S , and any state-action pair (s, a) ∈ S ×A is given by967

V π
i (s) := Eπ

[ ∞∑
t=0

ri(s, a) | s0 = s

]

Qπ
i (s, a) := Eπ

[ ∞∑
t=0

ri(s, a) | s0 = s, a0 = a

]
.

All other expressions are defined as in Section 2 with the extension that the joint actions are now968
given by a and one fixes the polices of all players expect player i, i.e. π−i, for the induced Games.969

The important difference for our analysis is in the change of the objective. In the two player Zero-sum970
case the objective of the the Nash Gap (1) is already a simplified form. In general, the Nash Gap is971
defined as the sum of exploitabilities of each player, i.e.972

Nash-Gap(π) :=
n∑

i=1

max
π′
i

V
π′
i,π−i

i (s0)− V
πi,π−i

i (s0). (13)

One can easily see the structure of the 2 player zero-sum Game leads to973

Nash-Gap(π) :=
2∑

i=1

max
π′
i

V
π′
i,π−i

i (s0)− V
πi,π−i

i (s0)

= max
π′
1

V
π′
1,π2

1 (s0)− V π1,π2

1 (s0) + max
π′
2

V
π1,π

′
2

2 (s0)− V π1,π2

2 (s0)

= max
π′
1

V
π′
1,π2

1 (s0)− V π1,π2

1 (s0)−min
π′
2

V
π′
2,π1

1 (s0) + V π1,π2

1 (s0)

= max
π′
1

V
π′
1,π2

1 (s0)−min
π′
2

V
π1,π

′
2

1 (s0),
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where in the third equality, we used the assumption on the reward for two player zero-sum games, i.e.974
r1(s, a, b) = −r2(s, a, b). Noting that π = (π1, π2) = (µ, ν) this is exactly the definition of (1).975

In the following, we will show the implication of the change of the objective on the Multi-agent976
Imitation Learning setting. We start again by rewriting the objective with the expert policies977

Nash-Gap(π) =
n∑

i=1

max
π′
i

V
π′
i,π−i

i (s0)− V
πi,π−i

i (s0)

=

n∑
i=1

V
π⋆
i ,π−i

i (s0)− V
πEi

,πE−i

i (s0) + V
πEi

,πE−i

i (s0)− V
πi,π−i

i (s0)

≤
n∑

i=1

V
π⋆
i ,π−i

i (s0)− V
π⋆
i ,πE−i

i (s0)︸ ︷︷ ︸
Exploit−Gapi

+V
πEi

,πE−i

i (s0)− V
πi,π−i

i (s0)︸ ︷︷ ︸
Value−Gap

.

The Exploit-Gap is similar to the objective analyzed in the zero-sum case with the difference that now978
that the policies of the other players are varying in n− 1 cases. The Value-Gap is new and does not979
appear in the zero-sum case as one can again use the structure of the reward in that case. However,980
the latter is easy to analyze as it can be seen as a single-agent MDP with the joint policy π and the981
joint expert πE respectively.982

We can now compute the analysis for Behavior Cloning and start by bounding Exploit−Gap983

Exploit−Gapi ≤
2

1− γ
max

πi∈br(π−i)
Eπi,πE−i

[ ∞∑
t=0

γtTV
(
πE−i

(· | s), π̂−i(· | s)
)]

≤ 2

1− γ
max

πi∈br(π−i)
Eπi,πE−i

[ ∞∑
t=0

γtTV (πE(· | s), π̂(· | s))
]

≤ 2

1− γ
max

πi∈br(π−i)

∥∥∥∥ dπi,πE−i

dπEi
,πE−i

∥∥∥∥
∞

EπE

[ ∞∑
t=0

γtTV (πE(· | s), π̂(· | s))
]

Next, we can use that the policies are all conditionally independent in the state as we assumed to have984
a NE expert. Therefore, it holds true that985

TV (πE(· | s), π̂(· | s)) ≤
n∑

i=1

TV (πEi(· | s), π̂i(· | s)) .

Similar arguments can be used to minimize the Value-Gap without the change of measure to obtain986

Value−Gap ≤ 2

1− γ

(
n∑

i=1

TV(πEi , π̂i)

)
(14)

Using this for each player we obtain987

Nash-Gap(π) ≤ 8n

(1− γ)2
max

i
max

πi∈BR(π−i)

∥∥∥∥ dπi,πE−i

dπEi
,πE−i

∥∥∥∥
∞

√
|S| (∑i Ai) log

2(n |S| /δ)
N

Next, we want to sketch the extension of Algorithm 2 for n-player general-sum Game. We only give988
the extension for this algorithm as the ideas translate analogously to Algorithm 1. In a first step we989
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have to adjust the decomposition in (5). We get990

(
1

K

K∑
k=1

n∑
i=1

max
πi∈Π

〈
d0, V

πi,π
k
−i

〉
−
〈
d0, V

πk
i ,π

k
−i

〉)2

=

(
1

K

K∑
k=1

n∑
i=1

〈
d0, V

π⋆,k
i ,πk

−i − V πk
i ,π

k
−i

〉)2

=

(
1

K

K∑
k=1

n∑
i=1

〈
d0, V

π⋆,k
i ,πk

−i − V πEi
,πE−i + V πEi

,πE−i − V πk
i ,π

k
−i

〉)2

≤
(

1

K

K∑
k=1

n∑
i=1

〈
d0, V

π⋆,k
i ,πk

−i − V π⋆,k
i ,πE−i + V πEi

,πE−i − V πk
i ,π

k
−i

〉)2

≤ 2

 1

K

K∑
k=1

n∑
i=1

〈
d0, V

π⋆,k
i ,πk

−i − V π⋆,k
i ,πE−i

〉
︸ ︷︷ ︸

(i)Exploit−Gap


2

+ 2

 1

K

K∑
k=1

n∑
i=1

〈
d0, V

πEi
,πE−i − V πk

i ,π
k
−i

〉
︸ ︷︷ ︸

(ii)Value−Gap


2

≤ 2n

( 1

K

K∑
k=1

〈
d0, V

br(πk
−1),π

k
−1 − V br(πk

−1),πE−1

〉)2

+ . . .+

(
1

K

K∑
k=1

〈
d0, V

br(πk
−n),π

k
−n − V br(πk

−n),πE−n

〉)2


+ 2

(
1

K

K∑
k=1

n∑
i=1

〈
d0, V

πEi
,πE−i − V πk

i ,π
k
−i

〉)2

,

where π⋆,k
i ∈ br(πk

−i). We will focus on (i) from now on, as the Value Gap is easy to bound by eg991
the Total Variation as also done in (14) and discussed in Tang et al. (2024). In particular, we will992
focus on the composition for any player i ∈ {1, . . . , n}. For (i), we cannot continue directly as done993
in proof of Theorem 4.2 as now the policies inside differ in n − 1 other policies and therefore we994
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cannot directly apply the performance difference lemma. Instead, we first have to do the following995

(i) =

(
1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,πk

−i − V π⋆,k
i ,πE−i

〉)2

=

(
1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,π
k
i−1,π

k
i+1,...π

k
n) − V π⋆,k

i ,(πE1
,...,πEi−1

,πEi+1
,...,πEn )

〉)2

=

(
1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,π
k
i−1,π

k
i+1,...π

k
n) − V π⋆,k

i ,(πk
1 ,...,π

k
i−1,π

k
i+1,...,π

k
n−1,πEn )

+V π⋆,k
i ,(πk

1 ,...,π
k
i−1,π

k
i+1,π

k
n−1,...πEn ) − V π⋆,k

i ,(πk
1 ,...,π

k
i−1,π

k
i+1,...,πEn−1

,πEn )

...

+V π⋆,k
i ,(πk

1 ,...,πEi−1
,πEi+1

,...,πEn ) − V π⋆,k
i ,(πE1

,...,πEi−1
,πEi+1

,...,πEn )
〉)2

≤ (n− 1)

( 1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,π
k
i−1,π

k
i+1,...π

k
n) − V π⋆,k

i ,(πk
1 ,...,π

k
i−1,π

k
i+1,...,π

k
n−1,πEn )

〉)2

...

+

(
1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,πEi−1
,πEi+1

,...,πEn ) − V π⋆,k
i ,(πE1

,...,πEi−1
,πEi+1

,...,πEn )
〉)2


Note that by the telescopic sum construction, we now have that each difference of value function only996
differs in one policy and last we applied (a+ b)2 ≤ 2(a2 + b2) . We will now focus on one term for997
the exploit Gap for any i. Therefore, we can proceed similar as in proof Theorem 4.2 and by dividing998
out K2, applying the performance difference lemma ((n− 1) times, for every player but player i),999
Cauchy Schwartz and Jensen we get1000

(n− 1)

( 1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,π
k
i−1,π

k
i+1,...π

k
n) − V π⋆,k

i ,(πk
1 ,...,π

k
i−1,π

k
i+1,...,π

k
n−1,πEn )

〉)2

...

+

(
1

K

K∑
k=1

〈
d0, V

π⋆,k
i ,(πk

1 ,...,πEi−1
,πEi+1

,...,πEn ) − V π⋆,k
i ,(πE1

,...,πEi−1
,πEi+1

,...,πEn )
〉)2


≤ (n− 1) |Amax|

(1− γ)2K

(
K∑

k=1

E
s∼d

π
⋆,k
i

,πk
−i

[∥∥πk
n(· | s)− πEn

(· | s)
∥∥2]

...

+

K∑
k=1

E
s∼d

π
⋆,k
i

,(πk
1 ,πE−(i,1)

)

[∥∥πk
1 (· | s)− πE1

(· | s)
∥∥2])

Now, we have to run n − 1 RL-inner loops. Following the same analysis as done in proof of1001

Theorem 4.2, we get a total bound in the order of O(n
2|S|4|Amax|5
(1−γ)12ϵ8 ). Similar steps can also be done1002

for Algorithm 1 to obtain O(n
2|S||Amax|2
(1−γ)4ϵ4 ). This shows that the algorithm design indeed allows to1003

avoid the curse of multi-agents and instead scales polynomial in the number of agents n.1004
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J Comparison to Lower Bound in Tang et al.1005

In this section, we compare our result Theorem 3.2 to Theorem 4.3 in Tang et al. (2024). In particular,1006
we emphasize how their construction allows to avoid a linear regret in the case of a fully known1007
transition model. Note that they consider a finite horizon setting and general-sum games with a1008
correlated equilibrium expert. For a better readability we first restate their Theorem in a infinite1009
horizon setting.1010

Theorem J.1 (Theorem 4.3 in Tang et al. (2024)). There exists a Markov Game, an expert policy pair1011
(µE, νE) and a learner policy (µ, ν), such that even when the state visitation distribution of (µ, ν)1012
exactly matches (µE, νE), the Nash gap satisfies1013

Nash-Gap(µ, ν) ≥ Ω
(
(1− γ)−1

)
.

The Markov Game that they construct is given in Fig. 3.

s0

s1

s2

s3

s4

a2a1

else

a2a1

all

else

all

all

Figure 3: Cooperative Markov Game with Linear Regret in case of unknown transitions

1014

The Markov Game consists of the action space A = {a1, a2, a3} and the state space S =1015
{s0, s1, s2, s3, s4}. For the transition model, which is unknown to the learner, it holds true that1016

P (·|s0, a, b) =
{
s1 if (a, b) = a2a1,
s4 otherwise.

and for all other states transition to one neighboring state with probability one, independent of the1017
chosen action. The state-only reward of the cooperative Markov Game is given by1018

R1(s) =

{
1 if s = s3,
0 otherwise.

It follows immediately, that an expert with a Nash-gap of 0, i.e. an NE is given by the following1019
policy pair1020

µE(a1 | s0) = νE(a1 | s0) = 1, µE(a3 | s1) = νE(a3 | s1) = 1,

and in the other states any action a ∈ A can be chosen. As the expert data is not covering data for1021
state s1, it only covers the blue path in Fig. 3, Tang et al. (2024) argue that any policy can be chosen1022
for the learner in state s1 and choosing µ(a1 | s1) = ν(a1 | s1) = 1. However, if we know the1023
transition model, the learner can be steered to choose a robust action such that the learner will be1024
taken back to states known from the expert data, i.e. state s4, even when one agent would deviate1025
from the current policy. This is highlighted in green in Fig. 3. The only action that is considered1026
robust is action a3 for both agents, exactly the action chosen from the expert. This implies that the1027
learning policy in the case of a fully known transition model has1028

Nash-Gap(µ, ν) = 0.

39



Under review for RLC 2025, to be published in RLJ 2025

This in contrast to our construction in Fig. 1, where even under a known transition there is no way1029
to steer the learner to known paths. Therefore, Theorem 3.2 shows the necessity of the single agent1030
deviation coefficient and separates MAIL form SAIL, where effective learning is possible under1031
known transitions Rajaraman et al. (2020). Additionally, we consider a Zero-Sum Markov Game, not1032
considered in Tang et al. Tang et al. (2024).1033

K Experiments1034

In this section, we give a detailed description of the underlying environments used for the numerical1035
validation of MURAIL and describe the setup in general. Additionally, we give some practical1036
insights that could speed up convergence.1037

K.1 Environments1038

We consider two different environments for our numerical validation, one that has C(µE, νE) <∞,1039
and the lower bound construction Fig. 1 with different NE experts to control C(µE, νE). In particular1040
we have multiple with C(µE, νE) <∞ and the same NE expert as in Theorem 3.2 to get C(µE, νE) =1041
∞.1042

Environments with C(µE, νE) < ∞. For this we consider two environments. For the first en-1043
vironment, we generate a random Zero-Sum Markov Game with |S| = 10, |A| = |B| = 3 and a1044
reward between −1 and 1. To ensure that the expert covers all states we use a uniform initial state1045
distribution, i.e d0(s0) := Unif(S). We set the discount factor to 0.9.1046

Additionally, we choose the Markov Game from the Lower bound construction and use that the set of1047
Nash equilibria is convex for Zero-sum Games. This way we take a mixture of Nash equilibria that1048
chooses the Scopy path and the blue path, for a detailed description see Appendix K.2.1049

Environment with C(µE, νE) = ∞. For C(µE, νE) = ∞, we use the Zero-Sum Markov Game1050
given in Fig. 1 with the simplification that |Sxplt1| = |Sxplt1| = |Scopy| = 1 as our goal here is only1051
to verify the theoretical insights, but not to prove that also the transition model cannot be used for1052
non-interactive Imitation Learning algorithms. This means that we have |S| = 7. Additionally, we1053
have |A| = |B| = 3 and d0(s0) = δs0 . We set the discount factor to 0.9. The reward is given by1054
R(Sxplt2), R(Sxplt1) = −0.1 and 0 otherwise.1055

Exploitability. To calculate the exploitability, we fix the current policies of one player iteratively1056
and then run a standard Value Iteration for single-agent MDPs under the true underlying reward1057
function.1058

K.2 Experimental Setup1059

We run the experiments for each environments 1000 times over different seeds and average the results.1060
For both environments we compute the optimal learning rate η. For simplicity, we use UCBVI1061
algorithm for a state only reward as the RL inner loop of MURMAIL. Note, that this can be replaced1062
by any other no regret algorithm.1063

Expert distributions for different C(µE, νE). To get control over C(µE, νE), note that the set1064
of Nash equilibria is convex for Two Player Zero-Sum Games. Therefore, consider the Lower1065
bound example illustrated in Fig. 1. Note that we have a pure NE that chooses action a3b3 to1066
get on the blue path. Choosing a different pure action, let us assume a2, b2 will lead the agent to1067
choose the path that goes on s1, Scopy. Now, as the set of NE is convex, we can also mix these1068
equilibria. To choose the minimal C(µE, νE), we pick for (a) the Nash equilibrium such that1069
µE(a2 | s0) = νE(a2 | s0) = µE(a3 | s0) = νE(a3 | s0) = 0.5. To increase C(µE, νE), we have1070
to increase the probability of the experts to take action a3 and b3 respectively. We choose for (c)1071
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µE(a3 | s0) = νE(a3 | s0) = 0.999, for (c) we pick µE(a3 | s0) = νE(a3 | s0) = 0.9999. For (d),1072
we use the same expert policy as in the lower bound construction, i.e. µE(a3 | s0) = νE(a3 | s0) = 1.1073

To generate the expert distributions, we use a Value Iteration algorithm for Two Player Zero-Sum1074
Games as e.g. described in Perolat et al. (2015) for the randomly generated Markov Game.1075

K.3 Practical considerations1076

Next, we list practical considerations for our algorithms, that could speed up the performance. First,1077
note that while solving the RL inner loop in Algorithm 2 can be computationally expensive, the1078
objective between successive iterations changes only through the updates of the policies µk and νk.1079
Consequently, if these policies change only slightly between iterations, the optimal solutions for yk1080
and zk may also vary only marginally. This observation suggests that initializing the optimization1081
with the solution from the previous iteration, a common technique known as warm-start optimization,1082
can significantly accelerate convergence.1083

Second, although the samples generated in the RL inner loop cannot formally be reused for the outer1084
loop policy updates due to measurability issues of the resulting Martingale sequence, in practice it is1085
often beneficial to recycle these samples. Doing so can reduce the total number of required samples1086
without noticeably affecting empirical performance.1087

Last, note that we assumed for our analysis that there is no initial dataset for interactive Imitation1088
Learning Section 2. However, in general it is possible to consider an initial dataset D, from which we1089
can learn initial policies with a non-interactive Imitation Learning algorithm like BC. This can speed1090
up the convergence of our proposed algorithms as the maximum uncertainty exploration will mainly1091
focus on states out of the distribution from the initial dataset. We give the algorithm of MURMAIL1092
with an initial dataset in Algorithm 4. Similarly, one can adjust Algorithm 1.1093

Algorithm 4: MURMAIL with initial dataset
Input: number of iterations K, learning rates η, inner iteration budget T , dataset D,

non-interactive Imitation Learning algorithm Alg
Output: ϵ-Nash equilibrium (µ̂, ν̂)
% Run non-interactive Imitation Learning algorithm to initialize policies
(µ1, ν1) = Alg(D)
for k = 1 to K do

Inner Single-Agent RL Updates:
% Maximum uncertainty response to µ-player update
Define single agent transition Pµk

(s′ | s, b) =∑a∈A µk(a | s)P (s′ | s, a, b);
Define single agent stochastic reward Rµk

(s) → 1{AE=A′
E} − 2µk(AE | s) + ∥µk(·|s)∥2

where AE , A
′
E ∼ µE(· | s);

yk = UCBVI(T, Pµk
, Rµk

);
% Maximum uncertainty response to ν-player update
Pνk

(s′|s, a) =∑b∈B νk(b|s)P (s′ | s, a, b);
Rνk

(s) → 1{AE=A′
E} − 2νk(AE | s) + ∥νk(· | s)∥2 where AE , A

′
E ∼ νE(· | s);

zk = UCBVI(T, Pνk
, Rνk

)
Update policies:
Sample Sµ

k ∼ dµk,yk , Aµ
k ∼ µE(· | Sµ

k ), S
ν
k ∼ dzk,νk , Aν

k ∼ νE(· | Sν
k ).

gµk (s, a) = µk(a | Sµ
k )1Sµ

k=s − 1Aµ
k=a

gνk(s, a) = νk(a | Sν
k )1Sν

k=s − 1Aν
k=a

µk+1(a | s) ∝ µk(a | s) exp (−ηgµk (s, a)) ;
νk+1(b | s) ∝ νk(b | s) exp (−ηgνk(s, a))

end
return µk̂, νk̂ for k̂ ∼ Unif([K])
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K.4 Additional plots1094

In this section, we list an additional plot for the second more involved environment that has1095
C(µE, νE) < ∞. Here we can observe similarly to case (a) of Fig. 2 that the speed of conver-1096
gence from BC is higher compared to MURMAIL. It indicates that the chosen algorithm has a small1097
concentrability coefficient C(µE, νE) and again highlights the importance of algorithm selection1098
depending on the underlying environment.
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Figure 4: Nash Gap for MURMAIL and BC
1099

L Useful Results1100

In this section, we list useful theorems and lemmas used to prove the main results.1101

Lemma L.1 (see e.g. Lemma IX.5 by Alatur et al. (2024)). For any policy of the max-player µ and1102
two policies of the min-player ν and ν′, we have1103

V µ,ν
1 (s0)− V µ,ν′

1 (s0)

= Eµ,ν

[ ∞∑
t=0

γtE(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
]]
.

Similarly, for any two policies of the max-player µ and µ̂ and policy of the min-player ν, we have1104

V µ,ν
1 (s0)− V µ̂,ν

1 (s0)

= Eµ,ν

[ ∞∑
t=0

γtE(a,b)∼(µ,ν)

[
Qµ,ν′

(s, a, b)
]
− E(a,b)∼(µ,ν′)

[
Qµ,ν′

(s, a, b)
]]
.

Proof. The proof can seen as the two player case of the standard simulation lemma for MDPs as1105
one player remains fixed. For completeness reasons we the first statement, the second one follows1106
analogously. By the Bellman equation it holds true that1107

V µ,ν
1 (s) = Ea∼µ,b∼ν [r(s, a, b) + γEs′∼P [V

µ,ν(s′)]] .

Applying this to the difference of the value functions yields1108

V µ,ν
1 (s)− V µ,ν′

1 (s)

= Ea∼µ,b∼ν [r(s, a, b) + γEs′∼P [V
µ,ν(s′)]]− Ea∼µ,b∼ν′

[
r(s, a, b) + γEs′∼P [V

µ,ν′
(s′)]

]
=
(
Ea∼µ,b∼ν

[
r(s, a, b) + γEs′∼P [V

µ,ν(s′)]− Ea∼µ,b∼ν [r(s, a, b) + γEs′∼P [V
µ,ν′

(s′)]
])

+
(
Ea∼µ,b∼ν [r(s, a, b) + γEs′∼P [V

µ,ν′
(s′)]− Ea∼µ,b∼ν′

[
r(s, a, b) + γEs′∼P [V

µ,ν′
(s′)]

])
= γEa∼µ,b∼ν

[
Es′∼P [V

µ,ν(s′)]− Es′∼P [V
µ,ν′

(s′)]
]

+
(
Ea∼µ,b∼ν [Q

µ,ν′
(s, a, b)]− Ea∼µ,b∼ν′

[
Qµ,ν′

(s, a, b))
])
,
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where we used that the immediate reward cancels out for a ∼ µ, b ∼ ν. Applying the same argument1109
inductively for s = s0 completes the proof.1110

Lemma L.2 (Concentration Inequality for Total Variation Distance, see e.g. Thm 2.1 by Berend1111
& Kontorovich (2012)). Let X = {1, 2, · · · , |X |} be a finite set. Let P be a distribution on X .1112
Furthermore, let P̂ be the empirical distribution given m i.i.d. samples x1, x2, · · · , xn from P , i.e.,1113

P̂ (j) =
1

n

n∑
i=1

I {xi = j} .

Then, with probability at least 1− δ, we have that1114 ∥∥∥P − P̂
∥∥∥
1
:=
∑
x∈X

∣∣∣P (x)− P̂ (x)
∣∣∣ ≤√2|X | log(1/δ)

n
.

Proof. Define the function f(x1, . . . , xn) =
∑

x∈X |P̂ (x) − P (x)|, where P̂ is the empirical dis-1115
tribution. Replacing one sample xi can change f by at most 2/n, since the empirical frequencies1116
change by at most 1/n per coordinate and total variation sums these differences.1117

By McDiarmid’s inequality, we have for any ϵ > 0,1118

Pr (f − E[f ] ≥ ϵ) ≤ exp

(
−nϵ

2

2

)
.

Berend and Kontorovich (2013) show that E[f ] ≤
√

|X |
n . Setting the failure probability to δ, we1119

solve1120

exp

(
−nϵ

2

2

)
= δ =⇒ ϵ =

√
2 log(1/δ)

n
.

Therefore, with probability at least 1− δ,1121 ∥∥∥P − P̂
∥∥∥
1
≤
√

|X |
n

+

√
2 log(1/δ)

n
≤
√

2|X | log(1/δ)
n

,

1122

Lemma L.3 (Binomial concentration, see e.g. Lemma A.1 by Xie et al. (2021)). Suppose N ∼1123
Bin(n, p) where n ≥ 1 and p ∈ [0, 1]. Then with probability at least 1− δ, we have1124

p

N ∨ 1
≤ 8 log(1/δ)

n
,

where N ∨ 1 := max{1, N}.1125

Proof. We consider two cases. Case 1: p ≤ 8 log(1/δ)
n . As N ∨ 1 ≥ 1, we have p

N∨1 ≤ p ≤ 8 log(1/δ)
n1126

almost surely. Case 2: p > 8 log(1/δ)
n . Note, that then E[N ] = np > 8 log(1/δ) and by the1127

multiplicative Chernoff bound, for any 0 < ϵ < 1 it holds true that1128

P (N < (1− ϵ)np) ≤ exp

(
−ϵ

2

2
np

)
.

Now, with ϵ = 1
2 we have1129

P (N < (1− ϵ)np) ≤ exp
(
−np

8

)
≤ δ.

Therefore, with probability of at least 1−δ it holdsN ≥ np
2 and therefore on this event also p

n∨1 ≤ 2
n .1130

In total we get p
N∨1 ≤ 8 log(1/δ)

n . Combining both cases completes the proof.1131
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