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Abstract

Models that accurately detect depression from001
text are important tools for addressing the post-002
pandemic mental health crisis. BERT-based003
classifiers’ promising performance and the off-004
the-shelf availability make them great candi-005
dates for this task. However, these models006
are known to suffer from performance incon-007
sistencies and poor generalization. In this008
paper, we introduce the DECK (DEpression009
ChecKlist), depression-specific model behav-010
ioral tests that allow better interpretability and011
improve generalizability of BERT classifiers in012
depression domain. We create 23 tests to eval-013
uate BERT, RoBERTa and ALBERT depres-014
sion classifiers on three datasets, two Twitter-015
based and one clinical interview-based. Our016
evaluation shows that these models: 1) are ro-017
bust to certain gender-sensitive variations in018
text; 2) rely on important depressive language019
marker of the increased use of first person020
pronouns; 3) fail to detect some other depres-021
sion symptoms like suicidal ideation. We also022
demonstrate that DECK tests can be used to023
incorporate symptom-specific information in024
the training data and consistently improve gen-025
eralizability of all three BERT models, with the026
out-of-distribution F1-score increase of up to027
53.93%. The DECK tests, together with the028
associated code, are available for download at029
https://github.com/Anonymous.030

1 Introduction031

With the coronavirus pandemic starting the world’s032

worst mental health crisis (Ghebreyesus, 2020;033

De Sousa et al., 2020), successful application of034

predictive models to depression detection becomes035

more relevant than ever. As language can be a036

powerful indicator of mental health (Tausczik and037

Pennebaker, 2010; Ramirez-Esparza et al., 2008;038

Pennebaker, 2011) the transformer-based architec-039

tures like BERT-family models that have achieved040

the state-of-art results on many NLP tasks (De-041

vlin et al., 2019) become the obvious choice for042

Test type Test case Expected Predicted Pass?

MFT. Test prediction
of high use of
1st-person pronoun

I talk about myself
and my problems
a lot.

depressed
non-depressed
depressed

✗

✓

INV. Test no change
in prediction when
swapping
3rd-person pronoun

[She <->He] says
[she <->he] loves
comedies.

non-depressed
non-depressed
depressed

✓
✗

Test prediction
DIRection
change with
PHQ-9 symptoms

My life sucks.
I feel down
all the time.

[depressed]
conf. 0.7

[depressed]
conf. 0.52

✗

Table 1: Examples of DECK behavioral tests for de-
pression classifiers. Three types of tests: Minimum
Functionality Test (MFT), Invariance (INV), Directional
(DIR).

academia and industry alike. Several recent studies 043

report promising performance metrics of the BERT- 044

based models on text-based depression classifica- 045

tion (Dinkel et al., 2019; Martınez-Castano et al., 046

2020; Wang et al., 2020). However BERT, same 047

as other deep neural language models may learn 048

pseudo patterns from training data to attain artifi- 049

cially high performance on held-out test sets (Goyal 050

et al., 2019; Gururangan et al., 2018; Glockner 051

et al., 2018; Tsuchiya, 2018; Geva et al., 2019). 052

To echo this, recent works raise concerns about 053

generalizability of depression detection models, as 054

there is a certain degree of performance loss that 055

occurs when transferring from one corpus to an- 056

other and from one clinical context to a slightly 057

different one (Harrigian et al., 2020; Trifan and 058

Oliveira, 2021). Therefore, in order to be confident 059

in the outcomes of BERT-based depression detec- 060

tion models it is important, in addition to standard 061

held-out test evaluation, to better interpret the mod- 062

els and assess whether the models are successful 063

in learning the traits of language that characterize 064

depression. 065

The interpretability of BERT models has re- 066

ceived an extensive amount of interest analysing 067

what linguistic information (Tenney et al., 2019; 068

Jawahar et al., 2019; Warstadt et al., 2019; Rogers 069

et al., 2020) and world knowledge (Petroni et al., 070

2019; Forbes et al., 2019) these models learn. How- 071
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ever, to the best of our knowledge, there have been072

no previous attempts to evaluate model’s ability073

to learn depression-specific signals from text and074

to relate it to models’ generalizability in the de-075

pression domain. To address this gap, we present076

the DECK (DEpression ChecKlists) tests with the077

aim to better interpret behavior of depression clas-078

sification models by identifying their weaknesses079

and providing targeted diagnostic insights. Follow-080

ing CheckList framework introduced by Ribeiro081

et al. (2020), we build 23 test cases of three test082

types: Minimum Functionality tests (MFT), Invari-083

ance (INV), and Directional (DIR), where each test084

type checks a specific depression-related model085

functionality (Table 1). MFT tests check model’s086

prediction accuracy in case of the increased or de-087

creased use of first-person pronouns. INV tests088

check if there is a change in prediction when third-089

person pronouns are swapped. Finally, DIR tests090

check how the prediction changes when PHQ-9091

depression symptom-specific text is added to test092

samples.093

We fine-tune three models from the BERT fam-094

ily - BERT, RoBERTa and ALBERT - on three095

different datasets, two from Twitter and one from096

DAIC-WOZ interviews and then compare the stan-097

dard performance metrics to the results from the098

DECK tests. We demonstrate that standard perfor-099

mance metrics are indeed overly simplistic in evalu-100

ation of these complex models and relying on them101

solely may lead to missing critical model weak-102

nesses. We demonstrate that directional DECK103

tests help uncover models’ limitations in their abil-104

ity to recognize cognitive and somatic symptoms of105

depression, as well as suicidal ideation. Moreover,106

the tests help in improving models performance on107

the out-of-distribution datasets, which is important108

for practical application of depression detection109

models.110

We consider this study to be the most thorough111

performance evaluation analysis to date of the112

BERT-based models focused on binary depression113

classification. In addition to this, in this work we:114

• Introduce DECK, a suite of 23 behavioral tests115

for depression detection models (Section 3).116

• Using DECK, evaluate BERT-based models on117

their ability to detect depression language signals118

and depression symptoms from text (Sections 5).119

• Explain the weaknesses and limitations of the120

models to recognize granular aspects of depression121

and its symptoms from text (Section 6.1).122

• Demonstrate how to improve generalizability of 123

the models with the help of DECK tests (Section 124

6.2). 125

• Make all associated code publicly available, in- 126

cluding detailed analysis results and a set of devel- 127

oped behavioral tests1. 128

2 Related Work 129

BERT-based models. Some of the recent stud- 130

ies suggest promising performance of BERT-based 131

models on depression classification. For example, 132

Dinkel et al. (2019) achieved a macro F1 score of 133

0.84 on depression detection on sparse data with the 134

multi-task sequence model with pretrained BERT. 135

Wang et al. (2020) achieved an F1 score of 0.85 136

on BERT-based depression detection in Chinese 137

micro-blogs. These results are comparable to the 138

in-distribution performance level achieved by the 139

models in our work. However, in contrast to our 140

work, this previous research does not empirically 141

confirm whether BERT is able to learn depression 142

symptom-specific language. 143

Having confidence in BERT-based models’ 144

learning the right patterns is critical given that there 145

is still lack of understanding why these models are 146

so successful and what they learn from language 147

(Rogers et al., 2020). Despite the large amount of 148

studies on BERT models’ interpretability (includ- 149

ing, among others Rogers et al., 2020; Tenney et al., 150

2019; Ettinger, 2020; Forbes et al., 2019), to the 151

best of our knowledge there was no detailed evalu- 152

ation of the BERT-based models for the depression 153

domain. 154

CheckList testing. From the variety of the evalua- 155

tion and interpretation techniques we select Check- 156

List2, an NLP testing framework (Ribeiro et al., 157

2020) because of it abstraction from the implemen- 158

tation and data, and instead focusing on testing spe- 159

cific capabilities. Additional motivational was that 160

Ribeiro et al. (2020) in their work used CheckList 161

to test BERT and RoBERTa on sentiment analysis 162

which is closely related to depression. In contrast 163

with CheckLists that are targeting general lingusitic 164

capabilities of NLP models, we develop our DECK 165

test set specifically for the depression detection 166

domain. 167

Depression Signs in Language. Research show- 168

ing that there are language signals that can be used 169

as depression indicators (Pennebaker et al., 2003) 170

1https://github.com/Anonymous
2Distributed under the MIT license.
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motivates us to test BERT-based models’ capability171

to recognize these signals. As multiple studies indi-172

cate that increased usage of first-person pronouns173

can be a reliable indicator of the onset of depression174

because a depressed person becomes self-focused175

(Bucci and Freedman, 1981; Rude et al., 2004; Zim-176

mermann et al., 2013), we choose this language177

marker for our DECK tests.178

Cognitive symptoms of depression are known to179

be the most expressed through language (Smirnova180

et al., 2018). Certain depression-specific somatic181

symptoms, such as sleep deprivation, fatigue or182

loss of energy, also significantly affect language183

production (Harrison and Horne, 1998). Patient184

Health Questionnaire (PHQ-9), a routinely used185

self-administered test for depression severity as-186

sessment, is based on nine diagnostic criteria from187

Diagnostic and Statistical Manual of Mental Disor-188

ders that include four cognitive symptoms, four189

somatic symptoms, and assessment of suicidal190

ideation (Kroenke et al., 2001; Kroenke and Spitzer,191

2002; Arroll et al., 2010). This along with Perlis192

et al. (2012) suggestion that PHQ-9 scores could193

improve performance of NLP models in depres-194

sion detection motivates us to use questions from195

PHQ-9 to create DECK tests.196

3 DECK tests for depression classification197

models198

We introduce behavioral tests DECK with the aim199

to better interpret behavior of models classifying200

depression from text. The DECK tests are moti-201

vated by the CheckList framework (Ribeiro et al.,202

2020) that presents a behavioral testing technique203

for evaluating NLP systems providing a more in-204

depth understanding of a model performance. In205

line with the intended use of this framework, we206

aim to test different functional capabilities of the207

model rather than its internal components.208

Following Ribeiro et al. (2020), we introduce209

three types of DECK tests: Minimum Functional-210

ity tests (MFT), Invariance (INV) tests, and Direc-211

tional Expectation (DIR) tests. MFT tests are sim-212

ilar to software development unit testing where a213

specific functionality of the model is tested. Within214

the depression detection domain, MFT tests are215

suitable to testing whether models rely on the fre-216

quency of first-person pronouns in text, as multiple217

research suggests that depressed people are more218

self-focused in their speech (Bucci and Freedman,219

1981; Rude et al., 2004; Zimmermann et al., 2013).220

INV tests are akin to metamorphic tests in software 221

development because they are focused on the rela- 222

tionship between input and output. Perturbations 223

that are not supposed to affect the output are ap- 224

plied to the input and then the actual results are 225

observed. Within the depression domain, replace- 226

ment of pronoun she with he should not change the 227

prediction of the model since both are third-person 228

pronouns and there is no difference in depression 229

signs in text between the two (Scherer et al., 2014). 230

We could have swapped any words that are not 231

associated with depression however, we choose 232

pronouns to stay consistent with the MFT tests. Fi- 233

nally, DIR tests measure the change in the direction 234

of prediction of a model. For example, if we add 235

I feel depressed at the end of the text we expect 236

the model to pass the test only if it maintains the 237

same prediction confidence or changes its direction 238

towards being more depressed. We use a prediction 239

confidence score3 to assess the change of direction 240

in the DIR tests, while with the INV and MFT tests 241

we use a binary prediction label to calculate failure 242

rates. 243

We developed 23 behavioral tests that fall into 244

the three test categories mentioned above in the 245

following way: two INV tests, four MFT tests 246

and seventeen DIR tests (details in Tab. 2). Our 247

INV and MFT tests evaluate model’s ability to pick 248

up personal pronouns language marker. We cre- 249

ated three MFT tests where we replaced all subjec- 250

tive, objective, possessive and reflexive first-person 251

pronouns I/me/my/mine/myself with corresponding 252

third-person pronouns (they, he, she). For these 253

tests, we only took the subset of data with the label 254

‘non-depressed’. The underlying logic here was to 255

first indirectly (i.e. in a data-driven way) establish 256

the level of usage of first-person singular pronouns 257

in non-depressed texts and then artificially reduce 258

that level by replacing all the pronouns with the 259

third-person ones. We considered the model to fail 260

the test if it predicted the depressed class in such a 261

situation. In fourth MFT test we did the opposite 262

replacement of all third-person pronouns with the 263

first-person pronouns but within the subset of data 264

labelled as depressed. We considered the model to 265

fail the test if it predicted the non-depressed class. 266

In two INV tests, we swapped the third-person 267

pronouns he and she and expected the model to 268

maintain the same prediction labels it produced 269

3Calculated as the the output value after softmax of the
huggingface transformers implementation of BERT, RoBERTa
and ALBERT classifiers
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Depression Symptoms DECK Tests RoBERTa / Accuracy %
PHQ-9 description Type / ✗ # Type Description Fail criterion TWPHMDEPR TWSELFDIAG DAIC-WOZ

T1 INV replace ’he’ with ’she’ Fails if prediction
label changes

100.00% 96.73% 98.73%
T2 INV replace ’she’ with ’he’ 100.00% 99.64% 99.75%

T3 MFT
replace "I/me/my/mine/myself"
with "they/them/their/theirs/themselves"

Fails if the model
predicts the
depressed class

100.00% 69.14% 91.21%

T4 MFT
replace "I/me/my/mine/myself"
with "he/him/his/himself"

100.00% 69.74% 92.91%

T5 MFT
replace "I/me/my/mine/myself"
with "she/her/hers/herself"

100.00% 70.16% 91.97%

T6 MFT

replace "they/he/she" with "I"
replace "them/him/her" with "me"
replace "their/his/her" with "my"
replace "theirs/his/hers" with "mine"
replace "themselves/himself/herself"
with "myself

Fails if the model
predicts a
non-depressed class

100.00% 86.03% 91.96%

Little interest
or pleasure
in doing things

COG T7 DIR
[ORIG TXT]+"I don’t feel like doing
anything at all"

Fails if prediction
confidence goes
down by >0.1

71.93% 65.23% 77.65%

COG ✗ T8 DIR [ORIG TXT]+"I love doing all my activities!"
Fails if prediction
confidence goes
up by >0.1

71.93% 75.44% 99.99%

Feeling down,
depressed,
or hopeless

COG T9 DIR
[ORIG TXT]+"I feel hopeless about the future"
[ORIG TXT]+"I feel down all the time"
[ORIG TXT]+"I feel depressed most of the time"

Fails if prediction
confidence goes
down by >0.1

61.40% 77.50% 78.02%

COG ✗ T10 DIR
[ORIG TXT]+"I am full of energy and
excitement all the time!"

Fails if prediction
confidence goes
up by >0.1

71.93% 67.37% 81.65%

Trouble falling
or staying
asleep, or
sleeping too much

SOM T11 DIR

[ORIG TXT]+"I have insomnia"
[ORIG TXT]+"I have trouble falling asleep"
[ORIG TXT]+"I want to sleep all the time"
[ORIG TXT]+"I just don’t want to wake up"

Fails if prediction
confidence goes
down by >0.1

77.19% 69.79% 77.80%

Feeling tired or having
little energy

SOM T12 DIR
[ORIG TXT]+"I don’t want to get out of bed"
[ORIG TXT]+"I feel tired all the time"

Fails if prediction
confidence goes
down by >0.1

70.18% 67.08% 77.86%

SOM ✗ T13 DIR [ORIG TXT]+"I feel rested and full of energy"
Fails if prediction
confidence goes
up by >0.1

71.93% 80.09% 99.94%

Poor appetite
or overeating

SOM T14 DIR

[ORIG TXT]+"I never want to eat anything"
[ORIG TXT]+"I have very poor appetite
all the time"
[ORIG TXT]+"I don’t feel like eating
anything at all"
[ORIG TXT]+"I am obsessed with food"
[ORIG TXT]+"I cannot stop eating"

Fails if prediction
confidence goes
down by >0.1

61.40% 69.95% 77.99%

SOM ✗ T15 DIR
[ORIG TXT]+"I have no problems with my
appetite"

Fails if prediction
confidence goes
up by >0.1

71.93% 74.64% 99.99%

Feeling bad about yourself, or
that you are a failure or have
let yourself or your family
down

COG T16 DIR

[ORIG TXT]+"I always feel bad about myself"
[ORIG TXT]+"I feel like a failure"
[ORIG TXT]+"I feel like I let my family
down all the time"

Fails if prediction
confidence goes
down by >0.1

59.65% 74.96% 78.06%

COG ✗ T17 DIR
[ORIG TXT]+"I love making my family
proud of me"

Fails if prediction
confidence goes
up by >0.1

71.93% 70.60% 99.96%

Trouble concentrating on
things

COG T18 DIR [ORIG TXT]+"I constantly struggle to focus"
Fails if prediction
confidence goes
down by >0.1

71.93% 77.18% 78.14%

COG ✗ T19 DIR

[ORIG TXT]+"I am very good at
concentrating on things"
[ORIG TXT]+"I do a good job staying
focused"
[ORIG TXT]+"I don’t have any problems
staying focused"

Fails if prediction
confidence goes
up by >0.1

61.40% 72.37% 99.97%

Moving or speaking so slowly
that other people could have
noticed. Or the opposite, being
so fidgety or restless that you
have been moving around a lot
more than usual

SOM T20 DIR

[ORIG TXT]+"I have being very slow lately"
[ORIG TXT]+"People tell me I speak much
slower now than usual"
[ORIG TXT]+"I feel restless all the time now"
[ORIG TXT]+"I am now much more agitated
than usual"

Fails if prediction
confidence goes
down by >0.1

75.44% 65.35% 82.81%

SOM ✗ T21 DIR [ORIG TXT]+"People say I keep a good pace"
Fails if prediction
confidence goes
up by >0.1

71.93% 72.62% 0.97%

Thoughts that you would be
better off dead or of hurting
yourself in some way

SUI T22 DIR
[ORIG TXT]+"I want to kill myself"
[ORIG TXT]+"I wish I were dead"

Fails if prediction
confidence goes
down by >0.1

77.19% 73.02% 78.11%

SUI ✗ T23 DIR

[ORIG TXT]+"I never think about hurting
myself"
[ORIG TXT]+"I never think about killing
myself"
[ORIG TXT]+"My family is happy I am alive"

Fails if prediction
confidence goes
up by >0.1

61.40% 66.11% 66.84%

Table 2: Description of DECK tests and their relation to PHQ-9 symptoms, performance of the RoBERTa model on
the tests. Here, COG represent cognitive symptoms, SOM - somatic, SUI - suicidal ideation. denotes presence of
symptoms, ✗- absence of symptoms. Red denotes lower than mean accuracy for DIR tests, per dataset.
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before this change.270

The rest of the tests were DIR tests based on271

the nine symptoms of depression from Patient272

Health Questionnaire (PHQ-9) (Kroenke et al.,273

2001). PHQ-9 was designed as a self-administered274

assessment of the severity of depression across nine275

symptoms: 1. lack of interest; 2. feeling down; 3.276

sleeping disorder; 4. lack of energy; 5. eating277

disorder; 6. feeling bad about oneself; 7. trouble278

concentrating; 8. hyper/lower activity; 9. self-harm279

and suicidal ideation.280

We created two tests for each PHQ-9 symptom,281

one being related to presence of a symptom in282

text, and another - to absence of such a symptom.283

For example, for the depression symptom "lack284

of energy" we added sentence I feel tired all the285

time to indicate presence of a symptom and I feel286

rested and full of energy to show its absence. To287

ensure that sentences that we manually labelled as288

depressed were indeed representative of the depres-289

sive text, we classified them with our three BERT-290

based models and selected only those sentences291

that were classified as depressed by the majority of292

the models with the median confidence above 0.5.293

That left us with 17 DIR tests out of initial 18.294

Finally, we grouped 17 DIR tests into three cat-295

egories based on the type of symptoms they rep-296

resented: eight tests representing presence and ab-297

sence of cognitive symptoms (COG tests in Tab. 2) ,298

seven - presence and absence of somatic symptoms299

(SOM in Tab. 2), and two for presence and absence300

of suicidal ideation (SUI in Tab. 2).301

4 Methodology302

4.1 Models303

In this work, we experimented with BERT-based304

models as these models were able to achieve state-305

of-the-art performance on many NLP tasks (Devlin306

et al., 2019; Liu et al., 2019; Lan et al., 2019).307

We tested three sets of classifiers fine-tuned from308

three different, pre-trained BERT variants: BERT,309

RoBERTa, and ALBERT, downloaded from Hug-310

gingface4. The pretrained models were the base311

versions of bidirectional transformers and standard312

tokenizers, as implemented by Huggingface5, were313

used for each model. We added one classifier layer314

on top of each of the three pre-trained BERT en-315

coders. The final hidden state corresponding to316

the first start ([CLS]) token which summarizes the317

4https://huggingface.co/models
5Library transformers, version 4.15.0

information across all tokens in the utterance was 318

used as the aggregate representation (Devlin et al., 319

2019; Wolf et al., 2019), and passed to the classifi- 320

cation layer for the fine-tuning step. 321

To tune hyperparameters of the BERT-based 322

models, we used the automated optuna search (Ak- 323

iba et al., 2019) with 10 trials for each model. Op- 324

timized hyperparameters for each model are pro- 325

vided in Appendix A. 326

4.2 Datasets 327

To fine-tune our three BERT-based models we used 328

the following previously collected datasets: 329

1. TWSELFDIAG (Shen et al., 2017): The dataset 330

of tweets for depression detection. This is an un- 331

balanced collection of tweets from 2009 to 2019 332

where users were labeled as depressed if their an- 333

chor tweet satisfied the strict pattern “(I’m/ I was/ 334

I am/ I’ve been) diagnosed depression”. Here, an- 335

chor tweet refers to the tweet that met the pattern 336

and was used to label this user and all their other 337

tweets as depressed. Thus, positive class labeling 338

was done based on self-reporting using regular ex- 339

pressions. 340

We conducted data cleaning and created a fi- 341

nal well-balanced dataset TWSELFDIAG of 23,454 342

tweets (details in App.2). During cleaning we re- 343

moved non-personal Twitter accounts (i.e. com- 344

mercial, companies, bots), we also removed non- 345

English tweets. We only took tweets one month 346

prior to the anchor tweet. We removed curse words, 347

cleaned apostrophes and processed emoji using 348

apostrophe and emoticon dictionaries6. 349

2. TWPHMDEPR (Karisani and Agichtein, 2018): 350

Collection of 7,192 English tweets from 2017 351

across six diseases: depression, Alzheimer’s dis- 352

ease, cancer, heart attack, Parkinson’s disease, and 353

stroke. We only used 273 tweets labeled as de- 354

pressed and 273 tweets equally distributed across 355

the other five diseases for the control non-depressed 356

class. Four methods were used for labeling: self- 357

reporting, others-reporting, awareness, non-health. 358

3. DAIC-WOZ (Gratch et al., 2014): Wizard- 359

of-Oz interviews from the Distress Analysis Inter- 360

view Corpus, provided by USC Institute of Cre- 361

ative Technologies. This includes transcriptions of 362

189 clinical interviews, on average 16 min long, 363

chunked into individual utterances. We only used 364

textual data from the multi-modal dataset. 365

6https://www.kaggle.com/gauravchhabra/nlp-twitter-
sentiment-analysis-project
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Figure 1: Distributional shift across datasets.

Inspired by Lee et al. (2018) and Rychener et al.366

(2020), we used sentence embeddings produced367

by the language models to quantify the distribu-368

tional shift across the datasets. Distributions of the369

embeddings of each dataset were compared using t-370

SNE visualisation (Fig. 1). To understand the level371

of dissimilarity among the datasets, we calculated372

the 1-Wasserstein distance (“earth mover distance",373

W1), since it measures the minimum cost to turn374

one probability distribution into another (see W1375

scores in Table 3). Both t-SNE visualization and376

W1 distances show TWPHMDEPR and TWSELFDIAG377

are the most similar datasets, while DAIC-WOZ and378

TWPHMDEPR are the most dissimilar.379

4.3 Experiments380

In this work, we were interested in whether stan-381

dard performance metrics were fully representative382

of the capabilities and limitiations of BERT-based383

models in recognizing signs of depression from384

text. As such, we first performed In-Distribution385

(ID, same distribution as training data) classifica-386

tion experiments by training each of three models387

on the training subset of each dataset and testing388

them on the test subset of the same dataset. We389

selected the best performing models based on the390

standard evaluation metrics of Accuracy, AUC and391

Brier score, for use in further experiments.392

For neural networks, it is well studied that the393

Out-Of-Distribution (OOD, different distribution394

than training distribution) performance can be sig-395

nificantly worse than In-Distribution performance396

(Harrigian et al., 2020). The level to which classifi-397

cation performance of the model changes when the398

model is tested on the OOD data, shows the ability399

of the model to generalize to unseen data. As such,400

we tested each of our best performing models on401

the test subset of the two other datasets.402

Finally, we assessed models performance on the403

DECK tests that we created to gain insights into the404

TWSELFDIAG TWPHMDEPR DAIC-WOZ
TWSELFDIAG 0.00 6.86 7.13
TWPHMDEPR 6.86 0.00 8.27
DAIC-WOZ 7.13 8.27 0.00

Table 3: Pairwise 1-Wasserstein distances (W1 scores)
among the datasets used for experiments. Lighter cell
color indicates higher similarity level, stronger - higher
dissimilarity.

granular depression-related performance of the best 405

models. We calculated accuracy rate of a model 406

on each given test as ratio of number of tests that 407

did not fail over the total number of tests. A test 408

was considered failed if the actual model output 409

did not match the expected one. For example, for 410

INV tests where the pronoun he was replaced with 411

she, the model was expected to maintain the same 412

prediction. If the predicted label or predicted value 413

changed we considered the model to have failed 414

this test (more details on the failure criteria for each 415

test in Table 2). 416

5 Results 417

5.1 In-Distribution and Out-Of-Distribution 418

Performance 419

The results of the best performing models, re- 420

ported in the Table 4 (see details of the average 421

model performance on multiple seeds in App.3), 422

show that models fine-tuned on the TWPHMDEPR 423

dataset achieve near-perfect in-distribution perfor- 424

mance, while on the DAIC-WOZ dataset the highest 425

achieved AUC is only slightly (though significantly, 426

with p<0.05 of the McNemar test) higher than ran- 427

dom level. Interestingly, BERT and ALBERT were 428

not even able to achieve a significantly higher than 429

random performance on the DAIC-WOZ dataset. 430

The models fine-tuned on the TWSELFDIAG dataset, 431

achieve a sufficiently strong ID performance of 432

77-79% F1-score. 433

With all the datasets, RoBERTa was the best 434

performing model in the ID settings. Interestingly 435

in the OOD settings, RoBERTa demonstrates the 436

steapest decrease in F1-score. For example, when 437

RoBERTa model is trained on the TWPHMDEPR 438

data and tested on DAIC-WOZ (the two most dissim- 439

ilar datasets), F1-score decreases by 86.9%, from 440

100% to 13.1%. When RoBERTa is trained on TW- 441

SELFDIAG and tested on TWPHMDEPR (the two most 442

similar datasets), F1-score only decreases by 8.9%. 443
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In-Distribution Performance Out-Of-Distribution Performance
Acc F1 Brier AUC TWPHMDEPR F1 DAIC-WOZ F1 TWSELFDIAG F1

TWPHMDEPR

ALBERT 100.00% 100.00% 0.00% 100.00% N/A 37.51% 52.63%
BERT 96.49% 96.55% 3.51% 96.49% N/A 36.56% 18.82%
RoBERTa 100.00% 100.00% 0.00% 100.00% N/A 13.07% 44.54%

DAIC-WOZ RoBERTa 68.42% 13.07% 31.58% 51.01% 65.06% N/A 11.80%

TWSELFDIAG

ALBERT 71.45% 75.04% 28.55% 70.88% 69.05% 36.61% N/A
BERT 75.47% 77.00% 24.53% 75.45% 70.89% 39.29% N/A
RoBERTa 76.90% 79.66% 23.10% 76.40% 70.73% 37.50% N/A

Table 4: In-distribution and out-of-distribution performance of the best performing models for each dataset. Bold
denotes best performance for the dataset.

5.2 Performance on DECK Tests444

Results of DECK tests (see Tab.2 for RoBERTa445

results, results of all the other models are in App.4)446

show that all the models were able to achieve near-447

perfect performance on the INV-type tests.448

Performance on the MFT-type DECK tests was449

lower for models trained on TWSELFDIAG and450

DAIC-WOZ datasets, while still very high for the451

models trained on TWPHMDEPR . These accuracy452

values follow very closely the ID accuracy level of453

each model, with the values being not significantly454

different between the average DECK accuracy and455

average ID accuracy (t-test, p>0.75) and correla-456

tion between these values being 72.3% (Pearson457

correlation test, p<0.05).458

Performance of the models on the DIR-type tests459

varies strongly across datasets and models. The460

same model trained on one dataset may perform461

substantially stronger on a specific DIR test com-462

pared to the same model, trained on a different463

dataset. For example, BERT model trained on464

TWSELFDIAG only achieves 36.23% accuracy on465

the test T8, while BERT trained on TWPHMDEPR466

achieves 73.68% accuracy on the same test. AL-467

BERT and RoBERTa perform better on average on468

the DIR tests that represent presence of a symptom,469

while BERT achieves higher accuracy on the tests470

representing absence of symptoms. No significant471

correlation is observed between DIR-type DECK472

tests and standard performance metrics (Pearson473

correlation = 1.6%, p>0.05).474

BERT and ALBERT both perform slightly better475

on the tests representing somatic symptoms, while476

RoBERTa is able to achieve the highest accuracy on477

the tests representing cognitive symptoms. All the478

models perform the worst on the tests representing479

suicidal symptoms.480

Symptom
type

ALBERT
mean acc (std)

BERT
mean acc (std)

RoBERTa
mean acc (std)

COG 66.46% (6.9%) 67.39% (15.3%) 75.67% (11.0%)
SOM 69.63% (6.1%) 68.75 (14.6%) 72.23% (18.9%)
SUI 65.91% (8.9%) 56.49% (17.9%) 70.45% (6.7%)

Table 5: Performance on DECK tests, by symptom
type, measure with accuracy %. Red denotes lowest
accuracy/worst performance.

6 Discussion 481

In this section, we discuss what aspects of depres- 482

sion, i.e. use of personal pronouns, presence and 483

absence of certain depression symptoms, such as 484

suicidal ideation, are detected best and worst by 485

different models. This allows us to present differ- 486

ent depression-specific capabilities of the models. 487

We then provide suggestions on how to improve 488

a model if certain capabilities are lacking in the 489

model, as detected by the DECK tests. 490

6.1 Ability of the Models to Detect 491

Depression-Specific Language Signals 492

Strong performance on INV-type tests indicates our 493

proposed tests were not able to recognize model 494

bias towards gender. It is important to note though 495

that good performance on each particular DECK 496

test only reveals the absence of a particular weak- 497

ness, rather than necessarily characterizing a gen- 498

eralizable model strength, in line with the negative 499

predictive power concept (Gardner et al., 2020). 500

MFT tests strongly correlate with Accuracy val- 501

ues of ID settings (Pearson correlation of 72%), 502

which suggest that standard performance metrics 503

are analogous to model performance on MFT tests. 504

Such correlation also suggests that models rely on 505

the frequency of first-person pronoun use when 506

making depression prediction decision. 507

Suicidal ideation is the most commonly difficult 508

symptom of depression for the models to detect. 509

Here, BERT is failing to correctly behave when 510
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F1-score
Trained on Tested on Model w/o DECK w/ DECK
TWPHMDEPR +DECK TWSELFDIAG ALBERT 52.63% 68.09%**
TWPHMDEPR +DECK TWSELFDIAG BERT 18.82% 51.83%**
TWPHMDEPR +DECK TWSELFDIAG RoBERTa 44.54% 68.96%**
TWPHMDEPR +DECK DAIC-WOZ ALBERT 33.81% 41.53%**
TWPHMDEPR +DECK DAIC-WOZ BERT 14.21% 41.13%**
TWPHMDEPR +DECK DAIC-WOZ RoBERTa 24.04% 45.89%**
DAIC-WOZ +DECK TWPHMDEPR RoBERTa 65.06% 73.68%*
DAIC-WOZ +DECK TWSELFDIAG RoBERTa 11.80% 65.73%**
TWSELFDIAG +DECK DAIC-WOZ ALBERT 36.61% 42.66%**
TWSELFDIAG +DECK DAIC-WOZ BERT 39.29% 41.35%**
TWSELFDIAG +DECK DAIC-WOZ RoBERTa 37.50% 38.79%**
TWSELFDIAG +DECK TWPHMDEPR ALBERT 69.05% 70.18%
TWSELFDIAG +DECK TWPHMDEPR BERT 70.89% 72.73%
TWSELFDIAG +DECK TWPHMDEPR RoBERTa 70.73% 80.00%*

Table 6: Change of the OOD performance after adding
DECK tests to the training data. Bold indicates the best
performance. * indicates significance level of p<0.05,
** - significance of p<0.01.

presented with both presence and absence of sui-511

cidal ideation. ALBERT fails to behave correctly512

when tested with presence of the symptom, while513

RoBERTa is failing on the tests with absence of514

suicidal ideation. As such, none of the models515

is capable to confidently and consistently detect516

suicidality patterns from text.517

6.2 Improving Generalizability of the Models518

with the Help of DECK Tests519

DECK test results showing that models fail to reli-520

ably detect aspects of suicidal ideation, as well as521

other important symptoms of depression, may be522

the reason why these models fail to generalize well.523

This motivates us to use the DECK tests as a tool to524

experiment with generalizability. For this, we add525

the texts of the tests with the worst performance7526

to the training and development sets of the original527

data, re-run the model fine-tuning step and test the528

performance in the OOD settings.529

The results of these experiments demonstrate530

that F1-score is consistently increasing compared531

to the original OOD performance for all the models532

trained on all the datasets (Tab. 6). Such an increase533

indicates that DECK tests indeed highlight the im-534

portant weaknesses that may prevent models from535

generalizing to unseen textual data from the same536

depression domain, and as such, can be effectivvely537

used as a complimentary tool to standard model538

evaluation, as well as an interpretability technique.539

7For each model, we select the subset of DIR tests with
the accuracy level that is lower than mean accuracy across all
the DIR tests for that model.

6.3 Limitations 540

One of the limitations of the tests presented in this 541

work is their negative predictive power (Gardner 542

et al., 2020), which was mentioned in Sec. 6.1. 543

The DECK tests are not suited to emphasize the 544

strengths of a model, rather they are developed 545

to highlight the weaknesses and provide targeted 546

diagnostic insights of a model of interest. As such, 547

these tests should be used in addition to standard 548

evaluation metrics and not instead. 549

The DECK tests were developed and tested on 550

the English text data only. Although PHQ-9 as- 551

sessment, these tests are based on, is available and 552

validated in multiple language (Reich et al., 2018; 553

Carballeira et al., 2007; Sawaya et al., 2016), the 554

results and claims of this work do not extend to 555

languages other than English and data modalities 556

other than text. 557

Future research could expand DECK to cover 558

additional symptoms of depression. Multiple vali- 559

dated clinician-administered and self-rated clinical 560

assessments exist for depression, such as the Hamil- 561

ton Depression Scale (HAM-D) (Hamilton and 562

Guy, 1976), Montgomery Asberg Depression Scale 563

(MADRS) (Montgomery and Åsberg, 1979), Beck 564

Depression Inventory (BDI) (Beck et al., 1988), 565

that could provide basis for a wider range of symp- 566

toms covered by DECK. 567

7 Conclusion and Future Work 568

In this work, we present DECK tests to better under- 569

stand and interpret behavior of depression detection 570

models. We test multiple BERT-family models on 571

these tests and demonstrate that these models are 572

robust to certain gender-sensitive variations in text, 573

such as swapping gender of the third-person pro- 574

nouns. Additionally, we show that the models rely 575

on a well-known language marker of the increased 576

use of first-person pronoun when making depres- 577

sion prediction. However, they have a high failure 578

rate in learning certain depression symptoms from 579

text. We provide recommendations on how to use 580

DECK tests to improve NLP model generalization 581

for depression classification task and support these 582

recommendations with a demonstration of consis- 583

tent increase in OOD performance in our models. 584

We recommend NLP researchers to use DECK 585

tests for analysing depression classification models 586

of different architectures, as well as to generate 587

additional tests that explore other linguistic charac- 588

teristics of depression. 589

8



Ethical Impact590

Personal information. Given the sensitive nature591

of data containing the status of mental health of592

individuals, precautions based on guidance from593

(Benton et al., 2017) were taken during all data594

collection and analysis procedures. Data sourced595

from external research groups, i.e. TWSELFDIAG ,596

was retrieved according to the dataset’s respective597

data usage policy. No individual user-level data,598

including Twitter handles for the TWPHMDEPR and599

TWSELFDIAG data, was shared at any time during600

or after this research.601

Intellectual property rights. The test cases in602

DECK were crafted by the authors. As synthetic603

data, they pose no risk of violating intellectual prop-604

erty rights.605

Intended use. DECK tests are intended to be used606

as an additional evaluation tool for the binary de-607

pression classification models, providing targeted608

insights into model weaknesses and functionalities.609

In this paper, the intended use is demonstrated in610

Section 6.1. We also discussed an additional use of611

the DECK tests as a tool to improve model gener-612

alizability (Section 6.2). The primary aim of both613

intended uses is to aid the development of better614

depression detection models.615

Potential misuse. There is a potential to overex-616

tend the claims made based on the performance of617

the DECK tests. It is necessary to keep in mind that618

DECK tests are granular and each test evaluates619

a very specific functionality of a model. As such,620

while bad performance on the test clearly demon-621

strates weaknesses of a model, good performance622

on the tests does not necessarily indicate general-623

izable model strengths. In this paper, we report624

strong performance on the INV tests indicating the625

models are not sensible to swapping gender in 3rd626

person pronouns. However, this does not neces-627

sarily mean the models are not gender-biased in628

general.629

Contribution to society and to human well-being.630

Prompt and accurate diagnosis of depression is not631

only important for improved quality of life but for632

prevention of potential substance abuse, economic633

problems and suicide (Kharel et al., 2019). While634

current BERT-based models of depression detec-635

tion may achieve high classification accuracy, it636

does not necessarily mean these models perform637

the way it is expected by their developers and users.638

With such a sensitive topic as depression detec-639

tion, this may result in serious unwanted conse-640

quences when these models are deployed in real 641

life. Models may be over confident in detecting 642

non-depressed text and under confident in detect- 643

ing depressed text. As such, depression may not 644

be detected in time, and if any help is supposed to 645

be provided based on the outcome of the model, 646

it may be either delayed or absent. In situations, 647

when depression detection models are not able to 648

recognize suicidal thoughts from textual informa- 649

tion, necessary help will not be provided in time, 650

and in the most critical cases, it may result in un- 651

prevented suicide. On the other hand, when models 652

misclassify individuals as being depressed while 653

they are not, human trust in these models may be 654

compromised, which would lead to slower accep- 655

tance of potentially helpful applications. 656

In this work, we emphasize the importance of 657

additional behavioral testing for classification mod- 658

els even when they are achieving high performance 659

in depression detection, based on standard perfor- 660

mance metrics. We provide researchers and devel- 661

opers with a set of DECK tests that may be used as 662

a tool to find and understand limitations of depres- 663

sion detection models, and thus mitigate the risks 664

of unwanted negative implications. 665
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Appendices930

A Experimental Details931

In addition to the experimental details reported in932

the paper, which include a description of the used933

models, a link to the github repository contain-934

ing associated code, tests and data, the method of935

choosing hyperparameter values, we also report:936

• Computing infrastructure. Google Colab8,937

with Python 3 Google Compute Engine back-938

end (GPU), 12.69 GB RAM, 68.4 GB Disc939

memory.940

• The average runtime for each model, number941

of parameters, number of training epochs for942

each model (Table App.1)943

• hyperparameter (train batch size, eval batch944

size, training epochs, learning rate) config-945

uration for best-performing models, number946

of hyperparameter search trial, criterion for947

choosing hyperparameters (Table App.1)948

Evaluation metrics.949

In this section, we provide additional details950

about the evaluation metrics used in this paper, with951

the associated code presented below. We used a952

standard scikit-learn9 library implementation (ver-953

sion 0.24.1) to calculate all the metrics.954

from s k l e a r n . m e t r i c s import a c c u r a c y _ s c o r e , \
p r e c i s i o n _ r e c a l l _ f s c o r e _ s u p p o r t , b r i e r _ s c o r e _ l o s s , \
r o c _ a u c _ s c o r e

def c o m p u t e _ m e t r i c s ( p r ed ) :
l a b e l s = p red . l a b e l _ i d s
p r e d s = pred . p r e d i c t i o n s . argmax ( −1)
p r e c i s i o n , r e c a l l , f1 , _ = p r e c i s i o n _ r e c a l l _ f s c o r e _ s u p p o r t (

l a b e l s , p reds , a v e r a g e = ’ b i n a r y ’ )
acc = a c c u r a c y _ s c o r e ( l a b e l s , p r e d s )
b r i e r = b r i e r _ s c o r e _ l o s s ( l a b e l s , p r e d s )
auc = r o c _ a u c _ s c o r e ( l a b e l s , p r e d s )
re turn {

’ a c c u r a c y ’ : acc ,
’ f1 ’ : f1 ,
’ p r e c i s i o n ’ : p r e c i s i o n ,
’ r e c a l l ’ : r e c a l l ,
’ b r i e r ’ : b r i e r ,
’ auc ’ : auc

}

955

956

Evaluation metrics used in this work:957

• Accuracy is the ratio of number of correct958

predictions to the total number of input sam-959

ples.960

• Precision quantifies the number of positive961

class predictions that actually belong to the962

positive class.963

8https://colab.research.google.com
9https://scikit-learn.org/stable/

• Recall, also known as sensitivity, quantifies 964

the number of positive class predictions made 965

out of all positive examples in the dataset. 966

• F1 measure provides a single score that bal- 967

ances both precision and recall in one number. 968

• Brier score is a type of evaluation metric for 969

classification tasks, where you predict out- 970

comes such as win/lose (or depressed/non- 971

depressed in our case). It is similar in spirit 972

to the log-loss evaluation metric, but the only 973

difference is that it is gentler than log loss in 974

penalizing inaccurate predictions. 975

• AUC stands for "Area under the ROC Curve". 976

That is, AUC measures the entire two- 977

dimensional area underneath the entire ROC 978

curve, whether the ROC curve (receiver oper- 979

ating characteristic curve) is a graph showing 980

the performance of a classification model at 981

all classification thresholds. 982

Datasets 983

In addition to the experimental details reported 984

in the paper, which include a description of the 985

used datasets, explanation of the excluded data and 986

other pre-processing steps, and references to the 987

datasets, we also report in the Table App.2 other 988

relevant details, such as number of examples and 989

label distributions, languages, details of data splits. 990

B Classification Performance 991

In this section, we report addition details on classi- 992

fication performance, in Table App.3. 993

C DECK Tests 994

In this section, we report addition details on mod- 995

els’ performance on DECK tests, in Table App.4. 996
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BERT RoBERTa ALBERT
# parameters 109483778 124647170 11685122
Architecture BertForSequenceClassification RobertaForSequenceClassification AlbertForSequenceClassification
Pre-trained model bert-base-uncased roberta-base albert-base-v1
Train time (fine-tuning) 2h 06min 1h 58min 1h 28min
# hyperparam. search trials 10 10 10
Criterion for choosing best trial eval. loss eval. loss eval. loss
Bounds for hyperparameters optuna default optuna default optuna default
# training epochs 3 3 3
# train batch size 8 3 4
# eval batch size 8 3 4
Learning rate 4.141091839433421e-06 4.141091839433421e-06 1.0428224972683394e-05

Table App.1: Architectural, training, validation details, and hyperparameters of the best performing models

TWSELFDIAG TWPHMDEPR DAIC-WOZ

Data nature Twitter Twitter
Clinical
interviews

Language English English English
Years 2009 - 2017 2017 2014

Total size
Depressed 11858 273 5365
Non-depressed 11727 273 18749

Train/dev/test split 80 / 10 / 10 NA 52 / 20 / 28

Test
Depressed 1303 273 1994
Non-depressed 1173 273 4703

Annotation mechanism
Regular expressions,
self-report,
manual verification.

Regular expressions,
manual verification.
Four report methods:
self-report, other-report,
awareness, non-health.

Manual transcriptions
of verbal
semi-structured
clinical interviews
with veterans of
the US armed forces
and general public.
Diagnosis is based
on the PHQ-9 score.

Table App.2: Datasets details.

Accuracy F1 Precision Recall Brier AUC

BERT
Mean 0.577 0.674 0.578 0.846 0.423 0.576
StDev 0.137 0.083 0.132 0.132 0.137 0.138

RoBERTa
Mean 0.503 0.512 0.498 0.539 0.234 0.500
StDev 0.345 0.380 0.335 0.420 0.113 0.343

ALBERT
Mean 0.688 0.711 0.688 0.745 0.312 0.687
StDev 0.105 0.074 0.112 0.055 0.105 0.105

Table App.3: Classification performance of three models trained and tested on the TWSELFDIAG data, on six
different seeds. StDev denotes standard deviation.
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BERT Albert RoBERTa
Test type Test TWSELFDIAG TWPHMDEPR TWSELFDIAG TWPHMDEPR TWSELFDIAG TWPHMDEPR DAIC-WOZ

INV T1 96.57% 100.00% 94.51% 100.00% 96.73% 100.00% 98.73%
INV T2 99.72% 100.00% 99.80% 100.00% 99.64% 100.00% 99.75%
MFT T3 74.42% 96.30% 60.19% 100.00% 69.14% 100.00% 91.21%
MFT T4 75.45% 96.30% 61.38% 100.00% 69.74% 100.00% 92.91%
MFT T5 75.62% 96.43% 62.06% 100.00% 70.16% 100.00% 91.97%
MFT T6 75.83% 96.55% 81.58% 100.00% 86.03% 100.00% 100.00%
DIR T7 65.91% 71.93% 57.71% 73.68% 65.23% 71.93% 77.65%
DIR T8 36.23% 73.68% 66.40% 71.93% 75.44% 71.93% 99.99%
DIR T9 87.96% 64.91% 67.57% 64.91% 77.50% 61.40% 78.02%
DIR T10 61.31% 73.68% 60.74% 73.68% 67.37% 71.93% 81.65%
DIR T11 78.31% 77.19% 65.87% 80.70% 69.79% 77.19% 77.80%
DIR T12 80.98% 71.93% 66.64% 73.68% 67.08% 70.18% 77.86%
DIR T13 37.48% 73.68% 67.41% 68.42% 80.09% 71.93% 99.94%
DIR T14 77.87% 64.91% 62.64% 64.91% 69.95% 61.40% 77.99%
DIR T15 35.46% 73.68% 68.01% 73.68% 74.64% 71.93% 99.99%
DIR T16 88.37% 64.91% 67.57% 63.16% 74.96% 59.65% 78.06%
DIR T17 39.90% 73.68% 63.69% 73.68% 70.60% 71.93% 99.96%
DIR T18 86.83% 73.68% 49.92% 75.44% 77.18% 71.93% 78.14%
DIR T19 50.36% 64.91% 71.93% 61.40% 72.37% 61.40% 99.97%
DIR T20 77.34% 77.19% 58.76% 78.95% 65.35% 75.44% 82.81%
DIR T21 62.84% 73.68% 71.45% 73.68% 72.62% 71.93% 0.97%
DIR T22 37.24% 77.19% 60.90% 78.95% 73.02% 77.19% 78.11%
DIR T23 46.61% 64.91% 64.14% 59.65% 66.11% 61.40% 66.84%

Table App.4: Accuracy rates of individual DECK tests for each model, fine-tuned on each dataset.
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