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ABSTRACT

Conditional image synthesis is an integral part of many X2I translation systems,
including image-to-image, text-to-image and audio-to-image translation systems.
Training these large systems generally requires huge amounts of training data.
Therefore, we investigate knowledge distillation to transfer knowledge from a
high-quality unconditioned generative model (e.g., StyleGAN) to a conditioned
synthetic image generation modules in a variety of systems. To initialize the con-
ditional and reference branch (from a unconditional GAN) we exploit the style
mixing characteristics of high-quality GANs to generate an infinite supply of
style-mixed triplets to perform the knowledge distillation. Extensive experimen-
tal results in a number of image generation tasks (i.e., image-to-image, semantic
segmentation-to-image, text-to-image and audio-to-image) demonstrate qualita-
tively and quantitatively that our method successfully transfers knowledge to the
synthetic image generation modules, resulting in more realistic images than pre-
vious methods as confirmed by a significant drop in the FID. Code is available in
https://github.com/yaxingwang/KDIT.

1 INTRODUCTION

Conditional image synthesis, also X2I translation, maps from an input domain (e.g. text, audio,
segmentation maps, etc.) to the image domain. Benefiting from GANs (Goodfellow et al., 2014)
and its follow-up improved versions (Gulrajani et al., 2017; Kang & Park, 2020; Salimans et al.,
2016), they obtain remarkable performance on a wide variety of image synthesis tasks: image to
image (I2I) (Lee et al., 2018; Zhu et al., 2017), audio to image (Chen et al., 2017; Wang et al.,
2020a), text to image (Hu et al., 2021; Li et al., 2019; 2020; Radford et al., 2021; Zhang et al.,
2017a) and semantic segmentation map to image (Isola et al., 2017; Wang et al., 2018). Despite
impressive leaps forward for a variety of image synthesis tasks, there are still important challenges.
Specifically, to obtain good results, existing works rely on large labelled datasets. Labeling these
datasets is both laborious and time-consuming, considerably reducing the practical impact of these
methods. It is noteworthy to observe that many of these models (Zhang et al., 2017a) apply transfer
learning to the text and audio encoders (e.g. using a pretrained LSTM (Reed et al., 2016) model
for text and pretrained GRU (Merkx et al., 2019) model for audio), however they train the image
synthesis decoder from scratch. This happens because there are no established methods to transfer
pretrained GANs to conditional image decoders; an omission which we aim to address in this paper.

In this paper, we investigate knowledge transfer for a variety of conditional image synthesis tasks.
Traditional knowledge transfer for conditional image synthesis is often not possible, because there
might not be a pretrained network available for the desired translation task (e.g. at the moment no
high-quality pretrained network for segmentation map-to-image translation is available). It would
therefore be preferable if the wide variety of high-quality GANs available for image generation
could be exploited for X2I. Recent works (Wang et al., 2021; 2020b) leveraged a pretrained GAN
to initialize an I2I translation model, managing to transfer knowledge to different image synthesis
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Figure 1: Various examples of our method. Using the proposed knowledge transfer method, we are able to
generate high-quality images for several image synthesis tasks.

tasks. These methods, however, suffer from three problems: (I) They can only be used for I2I
translation and do not generalize to other conditional image synthesis tasks. (II) They are GAN
architecture-specific approaches, requiring the GAN architecture within the X2I system to be exactly
the same as that of the pretrained GAN. This limits transfer to current state-of-the-art X2I systems
for which no similar GAN architecture exists (like for example StarGANv2 (Choi et al., 2020) for
I2I). (III) X2I systems are based on a conditional GAN, however existing methods for knowledge
transfer for I2I do not initialize the conditional branch during the transfer, and therefore this has to
be learned from scratch during the finetuning on the target dataset. Learning this on small target
datasets can be problematic.

To address the aforementioned problems, we propose several improvements for knowledge transfer
to X2I systems: (I) we are the first to investigate knowledge transfer for X2I translation. Therefore,
we propose a novel, unified transfer learning method, which can be used for varying kinds of con-
ditional image synthesis tasks (Figure 1) which is based on generated images and therefore does not
require any real data. (II) The student generator does not need to have the same architecture as the
pretrained GAN. Therefore, we can use well-devised specific image synthesis architectures (e.g.,
SPADE (Park et al., 2019) and StarGANv2 (Choi et al., 2020)) by distilling knowledge from the
pretrained teacher GAN (e.g., StyleGAN) to the task-specific student GAN. (III) We use the style
mixing characteristic of StyleGAN to create style-mixed triplet data, which are used to transfer the
knowledge efficiently to both I2I and X2I translation models. Furthermore, we propose a semantic
diversity loss based on the style-mixed triplet, which contributes to learn the semantic information
of the output image.

We perform experiments on a wide variety of image synthesis tasks, including text-to-image, audio-
to-image, segmentation map-to-image and I2I translations. We demonstrate the efficiency of the
proposed knowledge distillation method, providing qualitative and quantitative results. We prove
that the single pretrained GAN model can be universally used in varying specific task model. Addi-
tionally, leveraging the style mixing character of StyleGAN, further improves I2I translation perfor-
mance.

2 RELATED WORK

GAN-based Conditional Image Synthesis. Benefiting from the advances in GANs and its vari-
ants in recent years, conditional image synthesis (also called X2I translation) research has developed
rapidly. Two typical approaches have been investigated for GAN-based image synthesis, namely, un-
supervised (Kim et al., 2017; Yi et al., 2017) and supervised image generation (Park et al., 2019;
Zhang et al., 2017b; Zhou et al., 2020). The latter inputs conditional information (e.g. text, audio,
image, segmentation map etc.) to synthesize images which contain the corresponding semantic in-
formation (i.e. the conditional information). Specifically, text-to-image translation (Hu et al., 2021;
Li et al., 2020; Zhang et al., 2017a) aims to synthesize high-realistic images which are semantically
consistent with the text descriptions. Recent work (Hu et al., 2021) introduces semantic-spatial
batch normalization to better exploit the text information. Similar to text-to-image translation, both
audio-to-image translation (Chen et al., 2017; Wang et al., 2020a) and segmentation map-to-image
translation (Bau et al., 2020; Park et al., 2019) aim to learn a mapping from the audio/segmentation
map to the output image. Different to the above image synthesis tasks, image-to-image transla-
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tion (Park et al., 2020; Zhu et al., 2017) performs projection from the source to the target image
domain. In this paper, we explore transfer learning from GANs to a variation of conditional image
synthesis tasks.

Transfer learning. A considerable research effort has investigated transferring knowledge for both
discriminative (Donahue et al., 2014; Hinton et al., 2014; Xie et al., 2015; Yu et al., 2019a; Zhou
et al., 2022; Zhao et al., 2020a) and generative tasks (Noguchi & Harada, 2019; Zhao et al., 2020b).
There also exist several approaches (Goetschalckx et al., 2019; Jahanian et al., 2020) which focus on
the image manipulation based on the pretrained GAN. Given a target semantic attribute they aim to
manipulate the output image of a pretrained GAN. However, these methods do not focus on transfer
learning for target data. Some other methods (Abdal et al., 2019; Zhu et al., 2020a) reverse the given
image into the input latent space of the pretrained GAN (e.g., StyleGAN), and manage to restructure
the target image by optimization of the latent representation. Recent work (Shocher et al., 2020;
Wang et al., 2021; 2020b) performed knowledge transfer from a pretrained classification model
(e.g., VGG (Simonyan & Zisserman, 2014)) or the discriminator (BigGAN (Brock et al., 2019)) for
I2I translation. However, both DeepI2I (Wang et al., 2020b) and TransferI2I (Wang et al., 2021)
require that the GAN architecture is identical with the generator used in the I2I architecture. As a
consequence, these methods cannot be applied to well-designed I2I translation architectures (like
starGANv2 (Choi et al., 2020)) since they do not use a standard GAN architecture. The proposed
method could address these problems.

3 KNOWLEDGE TRANSFER FOR X2I

Problem setting. Our goal is to transfer knowledge from a pretrained high-quality unconditional
GAN to an X2I translation system for the case when training data is limited. The proposed method
consist of two stages. In the first stage we perform the data-free knowledge transfer method ex-
plained in Sec. 3.2 and 3.3. This stage does not require any target data. In the second stage, we
apply a standard finetuning of this distilled model on the target dataset. Distillation can be used to
perform knowledge transfer to other architectures, however, there is little target data available. For-
tunately, the pretrained GAN can generate infinite data for data distillation, meaning that we do not
require access to any real data (i.e., data-free). Also, we transfer knowledge from an unconditional
GAN (e.g., StyleGAN) to a conditional GAN (e.g., I2I translation); requiring us to propose tech-
niques to initialize the conditional branch. Exploiting the style-mixed characteristic (Sec. 3.1) of
StyleGAN we propose two solutions: one for I2I (Sec. 3.2) and another one for X2I (Sec. 3.3). Our
method consists of two stages:(1) transfer leaning without any real data (i.e., style-mixed triplets in
Sec. 3.1, I2I translation in Sec. 3.2 and X2I translation in Sec. 3.3 ) and (2) finetunning with the real
target data.

3.1 STYLE-MIXED TRIPLETS

Benefiting from the style mixing ((Figure 2 (a))) characteristic of StyleGAN, we are able to create an
infinite amount of triplet images from any of the two domains. Let zt ∈ RZ indicates the input noise
of the pretrained generator GT (teacher). given the input noises z1t and z2t , the mapping network
MT of the StyleGAN generator encodes them to a style vector s1t = MT (z1t ) and s2t = MT (z2t ).
We define GT (z) = G′T (MT (z)) where G′T takes styles vectors as an input to each of its layers.
We further feed these style vectors to the teacher generator G′T to output x1

t = G′T (s1t ) and x2
t =

G′T (s2t ) (where x1
t ,x

2
t ∈ X and image domain X = RH×W×3) respectively. Here the function

Φ(s1t , s
2
t ) selects to forward s1t to the layers of G′T important for the content of the generated image

(the bottom layers), and s2t to those important for the style (the top layers)1. Interestingly, a new
image yt = G′T (Φ(s1t , s

2
t )) (where yt ∈ Y and image domain Y = RH×W×3) contains mixed

information with respect to content and style of both inputs x1
t and x2

t . Based on this observation
above, we propose to leverage these style-mixed triplets (x1

t , x2
t ,yt) to perform distillation for the

I2I and X2I translation models without the need of any real triplet training data. 2

1We use the the style vector s1t in the first four layers of the generator, and do s2t in the following layers.
2In practice, during experiments we generate style-mixed triplets online in the minibatch.
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Figure 2: (a) Synthesis of style-mixed triplets (x1
t ,x2

t ,yt). (b) Overview of our data-free knowledge distil-
lation for I2I translation. We transfer knowledge from the teacher pretrained discriminator DT to both the
student encoder ES and the reference encoder ER. In addition, we transfer from the pretrained generator GT

to the student generator GS . Here x1
t is the input image, x2

t is the reference image, and yt is the target image.
(c) Overview of our data-free distillation for X2I translation. The semantic encoder SE aims to extract the at-
tribute embedding, and further control the semantic characteristic of the student generator output. The semantic
encoder is identical to the teacher discriminator and initialized by it.

3.2 DATA-FREE KNOWLEDGE DISTILLATION FOR I2I TRANSLATION

We aim to leverage the style-mixed triplets to perform knowledge transfer for the I2I model. Let
xt ∈ X and yt ∈ Y indicate the two domains. We expect to map an image xt from domain X
into another sample yt which mimics to Y . Note we never get access to any real data. Figure 2
(b) shows the knowledge distillation framework for I2I translation. Our framework is composed
of six neural networks: a pretrained teacher GAN (consisting of GT and DT ), and an I2I model
with a student generator GS , a student discriminator DS , a student encoder ES that extracts the
content information from the input image x1

t , and a reference encoder ER that extracts the style
information from the reference image x2

t . Similarly to StarGANv2, we investigate two cases of I2I
translation: the style representation is from noise (i.e., latent-guided synthesis) and from the refer-
ence image (i.e., reference-guided synthesis). Here we mainly focus on reference-guided synthesis,
since latent-guided synthesis can be adapted easily by replacing the reference encoder with several
fully connection layers, which take the noise as input.

Both the teacher discriminator DT and the student encoder ES take the input image x1
t as input,

extracting the hierarchical representation
{
DT (x1

t )l
}

and
{
ES(x1

t )l
}

. Here DT (x1
t )l represents

the output of the lth ResBlock 3. We align them via the feature-based knowledge distillation loss:
Le
kdl =

∑
l

γl
∥∥DT (x1

t )l − ES(x1
t )l
∥∥
1 (1)

where parameters γl are scalars to balance the terms. We set them to 0.1. When the teacher and
student dimensions are not the same, an additional layer can be introduced to map the teacher output
to the desired dimensions (similar as the hint distillation used in (Romero et al., 2015)).

Next, we take the image x2
t for both the pretrained discriminator DT and the reference encoder ER,

extracting the hierarchical representation
{
DT (x2

t )l
}

and
{
ER(x2

t )l
}

, both of which we encourage
to be aligned via the feature-based knowledge distillation loss

Lr
kdl =

∑
l

τl
∥∥DT (x2

t )l − ER(x2
t )l
∥∥
1 (2)

3After each ResBlock the feature resolution is half of the previous one in both encoder and discriminator,
and two times in generator.
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where parameters τl are scalars which balance the terms. We set them to 0.1.

Finally, taking the output of the student encoder ES(x1
t ) and the output of the reference

encoder ER(x2
t ), for the student generator GS we obtain the hierarchical representation{

GS(ES(x1
t ), ER(x2

t ))l
}

and the output image ŷs = GS(ES(x1
t ), ER(x2

t )), both of which we
encourage to align with the hierarchical representation {G′T (Φ(s1t , s

2
t ))l}. We also align the output

image yt = G′T (Φ(s1t , s
2
t )) with yt:

Lg
kdl =

∑
l

αl

∥∥G′T (Φ(s1t , s
2
t ))l −GS(ES(x1

t ), ER(x2
t ))l

∥∥
1

+ β ‖yt − ŷs‖1 . (3)

where parameters αl and β are scalars to balance the terms. We set them to 0.1.

We also employ the following GAN loss (Goodfellow et al., 2014) to optimize this problem:

Ladv = Eyt∼Y [logDS (yt)] + Eŷs∼Y [log(1−DS (ŷs)] , (4)

The full objective function of our model is:

min
ES ,GS

max
DS

λadvLadv + λkdl(Le
kdl + Lr

kdl + Lg
kdl) (5)

where λadv and λkdl are hyper-parameters to balance their relative importance. We set them to 1.

In conclusion, to improve knowledge transfer for I2I, we have presented two novel contributions.
Firstly, we have shown that the pretrained StyleGAN can be used to generate an unlimited number
of style-mixed triplets which we can use to perform the training. We are the first to exploit the style-
mixing possibilities of StyleGAN to transfer knowledge to I2I systems. Secondly, we have proposed
a distillation approach to transfer knowledge from the GAN to the I2I model. We name this data-
free distillation because no real data is required and it is based on generated data. our method can
transfer knowledge between generators with different architectures.

3.3 DATA-FREE KNOWLEDGE DISTILLATION FOR X2I TRANSLATION

Here we show how the proposed data-free knowledge distillation can be generalized to X2I trans-
lation problems. We will perform the distillation based on a noise input to the student generator.
For X2I translation, the conditional information c determines the structural information and the se-
mantic information. For instance, in text2image translation on the birds dataset, we take as an input
text descriptor (information c), and expect to generate an image which mimics the shape and the
appearance of a real bird. However, during the knowledge transfer, the conditional information c
is not available. Therefore, we propose to use the teacher GAN discriminator to extract a semantic
encoder of the image that can be used to replace the conditional information c. However, when
directly applying this for knowledge distillation, we found that this information can still be ignored
by the network (see e.g. Figure 11). We therefore introduce two additional techniques. We again
use the style-mixed triplets introduced in the previous section to perform the knowledge transfer and
we propose a novel semantic diversity loss to diversify the semantic information of the output when
varying the condition c.

As shown in Figure 2(c), we additionally introduce a semantic encoder SE to extract a pseudo-
condition vector c, which assists in distilling the knowledge from the unconditional GAN GT to
the conditional GAN GS . The semantic encoder SE is identical to the teacher discriminator after
removing the last fully connection layer, and initialized by the teacher discriminator, which is well-
optimized on the input images yt and x1

t . Utilizing the style-mixed triplets (Sec. 3.1), we extract
teacher output x1

t = G′T (s1t ) and yt = G′T (Φ(s1t , s
2
t )), and the corresponding hierarchical repre-

sentation
{
G′T (s1t )l

}
and

{
G′T (Φ(s1t , s

2
t ))l

}
, respectively. Note that G′T (s1t )1 and G′T (Φ(s1t , s

2
t ))1

are identical, since x1
t provides the structural information of yt. Semantic encoder SE extracts the

semantic attributes from the input images x1
t and yt respectively, termed as cx = SE(x1

t ) and
cy = SE(yt) respectively.

For the student generator GS , we take as input the teacher’s latent representation at the first layer,
the output the semantic encoder and the noise. Note, the teacher’s latent representation 4 is summed

4We ignore the latent representation in the second stage (i.e., fintunning on target domain), which means
that the student generator has two inputs: the noise and the condition c.
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with the corresponding feature of the student generator. When the input of the semantic encoder
SE is x1

t , we generate the hierarchical representation
{
GS(zs, G

′
T (s1t )1, cx)l

}
and final student

output x̂1
s = GS(zs, G

′
T (s1t )1, cx). Similarly, when yt is the input of semantic encoder SE , we

have the hierarchical representation
{
GS(zs, G

′
T (Φ(s1t , s

2
t ))1, cy)l

}
and final student output ŷs =

GS(zs, G
′
T (Φ(s1t , s

2
t ))1, cy).

By conditioning the student generator with the teacher representation, the student generator can
output a similar image (this would otherwise be impossible). The loss is defined as:

Lkdl =
∑
l

αl

∥∥G′T (s1t )l −GS(zs, G
′
T (s1t )1, cx)l

∥∥
1

+ β
∥∥x1

t − x̂1
s

∥∥
1

+∑
l

αl

∥∥G′T (Φ(s1t , s
2
t ))l −GS(zs, G

′
T (Φ(s1t , s

2
t ))1, cy)l

∥∥
1

+ β ‖yt − ŷs‖1
(6)

where parameters αl and β are scalars to balance the terms.

Yang et al. (2019) proposed a loss to promote diversity of the generated images with respect to
changes of the input noise z. Inspired by this work, to address the lack of diversity with respect to
the conditional vector, we propose the semantic diversity loss is:

Lsrl = −‖x̂1
s − ŷs‖1

= −‖GS(zs, G
′
T (s1t )1, cx)−GS(zs, G

′
T (Φ(s1t , s

2
t ))1, cy)‖1

= −‖GS(zs, G
′
T (s1t )1, cx)−GS(zs, G

′
T (s1t )1, cy)‖1

(7)

Other than (Yang et al., 2019), our loss promotes diversity with respect to changes of the conditional
vectors (i.e., cx and cy) while we retain the input noise vector zs. Since the conditional vector
influences the semantic information (e.g., gender, style), we call our loss the semantic diversity loss.
The full objective function of our model is:

min
GS

max
DS

λadvLadv + λkdlLkdl + λsrlLsrl (8)

where λadv , λkdl and λsrl are trade-off parameters, and Ladv is defined in Eq. 4.

The proposed initialization procedure is not applicable to the case when the conditioning is a one-
hot spatial map (we found the semantic encoder was not able to predict these). Therefore, for this
case, we do not initialize the conditional branch and we set c are 1 in the student generator and 0 in
the student discriminator during the distillation. We found that even for these cases the knowledge
transfer led to large performance gains (Table 2).

4 EXPERIMENTS

In Sec. 4.1, we investigate knowledge transfer for I2I translation. We explore how the proposed
method affects image synthesis by using conditional information c (i.e., audio, text and seman-
tic segmentation) in Sec. 4.2. For the experimental evaluation, we apply our proposed knowledge
transfer method explained in the previous section (i.e the first stage) and use this distilled model
for the downstream task where we finetuned it on the target data (i.e. the second stage). We use
the pretrained StyleGAN optimized on HHFQ human face (Karras et al., 2019) except for semantic
segmentation-to-image(SS2image), which is on AFHQ dataset (Choi et al., 2020). More detailed
information and visualization results can be found in the Appendix A and C.

4.1 DATA-FREE KNOWLEDGE DISTILLATION FOR I2I TRANSLATION

We first evaluate our method for I2I translation with a reference image, named reference-guided I2I
translation. Then we verify the proposed method without reference image, called latent-guided I2I
translation, in which we use random noise to control the style of the output image. We take state-
of-the-art StarGANv2 as the student network. Except for the well known metrics: FID (Heusel
et al., 2017) and KID (Bińkowski et al., 2018), we also train a real (RC) and a fake classifier
(FC) (Shmelkov et al., 2018) to evaluate the ability to generate class-specific images. RC is trained
on real data and evaluated on the generated data and vice versa for FC.
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Figure 3: (a) Qualitative comparison on Animal faces, Birds and Foods datasets.(b) Ablation study of variants
of our method on Animal faces, Birds and Foods. (c) User study.

Method
Datasets Animal faces (10/per class) Birds (78/per class) Foods (110/per class)

mKID×100↓ mFID↓ RC↑ FC↑ mKID×100↓ mFID↓ RC↑ FC↑ mKID×100 ↓ mFID↓ RC↑ FC↑
Latent-guided I2I translation

SDIT 31.4 283.6 5.51 4.64 22.7 223.5 8.90 8.71 23.7 236.2 11.9 11.8
DMIT 29.6 280.1 5.98 5.11 23.5 230.4 12.9 11.4 19.5 201.4 8.30 10.4

DRIT++ 26.6 270.1 4.81 6.15 24.1 246.2 11.8 13.2 19.1 198.5 10.7 12.7
StarGANv2 11.38 131.2 12.4 14.8 10.7 152.9 25.7 21.4 6.72 142.6 34.7 22.8

DeepI2I 11.48 137.1 10.3 9.27 8.92 146.3 20.8 22.5 6.38 130.8 30.2 19.3
TransferI2I 9.25 103.5 22.3 25.4 6.23 118.3 27.1 28.4 3.62 107.8 43.2 24.8

Ours 9.01 94.7 25.6 27.8 6.15 107.4 29.5 30.2 5.52 115.2 38.2 21.6
StarGANv2* 10.8 119.4 30.6 35.7 6.08 125.7 29.4 38.7 5.86 115.6 43.3 24.7

Ours* 9.97 92.8 33.4 39.9 5.88 110.4 32.5 41.3 5.28 105.9 48.5 26.1
Reference-guided I2I translation

StarGANv2* 13.2 134.7 29.3 36.6 8.53 128.7 28.6 25.5 6.38 132.2 35.6 23.6
Ours* 9.45 96.2 37.2 39.5 6.96 103.2 32.6 34.2 5.92 120.5 39.3 25.4

Table 1: Comparison with baselines. * means the training image resolution is 256× 256.

Reference-guided I2I translation. We conduct multi-class I2I translation on three datasets: Ani-
mal faces (Liu et al., 2019), Birds (Van Horn et al., 2015) and Foods (Kawano & Yanai, 2014). The
Animal faces dataset contains 1,490 images and 149 categories in total, Birds has 48,527 images and
555 classes , Foods consists of 31,395 images and 256 classes. We compare to StarGANv2 (Choi
et al., 2020). We also explore a wide variety of configurations for our approach, including: no
knowledge distillation (No KD), knowledge distillation only using L1 distance between the teacher
generator and the student generator (KD (w-L1, w/o-adv.)), knowledge distillation only using the
adversarial loss (KD (w/o-L1, w-adv.)) and knowledge distillation with both losses (KD (w-L1,
w-adv.)). We also ablate the style-mixed triplets. We replace both the reference image x2

t and the
style-mixed output yt with the input image x1

t (indicated by KD* (w-L1, w-adv.)).

Knowledge distillation and style-mixed triplets. Figure 3(b) presents a comparison between several
variants of our method in terms of mean FID (mFID) on three datasets. Taking Animal faces as
an example, adding either L1 distance or the adversarial loss improves the I2I translation task in
general compared to the I2I model trained from scratch (mFID: 134.7). Finally combining both
losses obtains the best score (mFID: 96.2), indicating that the proposed method largely improves
I2I translation performance. Without the style-mixed triplets, the model performance largely drops
(mFID:104.1), even with both the L1 distance and the adversarial loss. This is probably because
the generator fails to perform disentanglement, and the reference encoder does not learn the style
information. In conclusion, this experiment validates the effectiveness of the style-mixed triplets.

Results. Table 1 (reference-guided I2I translation) reports results for baseline and our method on
Animal faces, Birds and Foods datasets with image resolution 256× 256. StarGANv2 training from
scratch obtains lower results (e.g., mFID:134.7 on Animal faces dataset), indicating training I2I
model from scratch is challenging when given limited data. Our method achieves a significant ad-
vantage (mFID: 96.2 on Animal faces dataset), demonstrating that the proposed knowledge transfer
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The flower is made 
of white petals and 

a pistol that is 
yellow in color

Spoken description

This flower is white 
and pink in color, 
with petals that 
have small veins

This small bird has
 a red head and 
a curved beak.

A small bird with a
 red cheek and 
pointed beak.

Input OutputReference Input OutputReference

(a) Text2image (b) Audio2image (c) Segmentation map2image

(d) Segmentation map2image with reference image
Figure 4: Qualitative results of the proposed method on various image synthesis tasks.

Output (teacher) Output (student,  ) Output (student,  )

Figure 5: Examples generated after semantic diversity loss. For each triplet, we depict the teacher’s out-
put(left), the student’s output (middle) with condition cx and the one (right) with condition cy . Note the
student model is SSA-GAN. Results could be found in the Appendix C when student model is S2IGAN.

facilitates I2I translation. Figure 3(a) compares the results of mapping the input to the target image
domain with a reference image. Given both the input and reference image our method manages to
generate higher quality images than StarGANv2, that retain the pose of the input and keep a simi-
lar style as the reference image. It clearly indicates that our method improves the image synthesis
model. Note that the existing approaches which address transfer learning for I2I (Wang et al., 2020b;
2021) cannot be applied to this case, since they require the I2I image synthesis architecture to be the
same as the pretrained GAN architecture.

Latent-guided I2I translation. We also validate the proposed method without reference image.
We compare to StarGANv2, SDIT (Wang et al., 2019), DRIT++ (Lee et al., 2020b), DMIT (Yu
et al., 2019b), DeepI2I and TransferI2I. We use random noise to control the style information of
output images. As reported in Table 1 (latent-guided I2I translation), all baselines training from
scratch (from 4rd to 6th row) suffer a significant disadvantage on small dataset. StarGANv2 ob-
tains the best result (131.2 mFID on Animal faces). However, using knowledge transfer TransferI2I
performs significantly better (103.5 mFID on Animal faces), and achieves the best score on Foods
dataset. Finally, our method obtains the best results on both Animal faces and Birds datasets, and
competitive performance on the Foods dataset. This could be due to the fact that the Foods dataset
has more training data, and the importance of transfer learning is negligible. We also evaluate our
method with higher resolution images (256×256). As shown in the last two rows of Table 1 (latent-
guided I2I translation), we still retain a large advantage comparing to StarGANv2, demonstrating
that our method still obtains better performance for higher resolution images. Neither DeepI2I nor
TransferI2I is applicable, since there is no the released pretrained model for usage (they are based
on the BigGAN). We conduct a user study and ask subjects to select the results that is more realistic
given the target label, and has the same pose as the input image. We apply pairwise comparisons
(forced choice) with 20 users (100 image pairs/user) for I2I translation. Experiments are performed
on images from the Animal faces dataset. Fig. 3(c) shows that our method considerably outperforms
the other methods. The synthesized images on three datasets are in the Appendix C.
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Method
Dataset text2image

FID↓ KID*100 ↓ IS↑
SSA-GAN 30.48 0.91 4.29

Ours(w-L1,w/o-adv.) 23.74 0.80 4.19
Ours (w/o-L1,w-adv.) 23.01 0.78 4.22

Ours † 23.26 0.79 4.26
Ours ‡ 24.78 0.83 4.23
Ours 20.19 0.64 4.52

Method
Dataset audio2image

FID↓ KID*100 ↓ IS↑
S2IGAN 109.02 9.12 2.97

Ours(w-L1,w/o-adv.) 85.74 6.48 2.94
Ours (w/o-L1,w-adv.) 80.21 5.96 3.19

Ours † 88.81 6.52 3.03
Ours ‡ 90.76 7.43 2.99
Ours 70.88 3.96 3.97

Method
Dataset SS2image (w/o reference) SS2image (w reference)

FID↓ KID*100 ↓ IS↑ mIoU↑ FID↓ KID*100 ↓ IS↑ mIoU↑
SPADE 43.91 3.26 2.53 45.3% SEAN 36.57 2.34 2.67 44.7%
OASIS 37.60 1.74 2.75 48.6% - - - - -

CoCosNetv2 36.31 1.69 2.71 46.3% - - - - -
Ours † 32.98 1.42 2.80 50.4% Ours † 27.17 1.38 2.89 52.1%
Ours ‡ 37.49 1.86 2.66 47.3% Ours ‡ 34.26 2.30 2.68 46.2%
Ours 35.32 1.76 2.72 48.4% Ours 35.70 2.31 2.69 45.9%

Table 2: The results on a wide range of image synthesis tasks. † means the condition c is 1 in the student
generator and 0 in the student discriminator. ‡ means we remove the semantic diversity loss (Eq. 7) from final
objective (Eq. 8). Left: text-to-image. Middle: audio-to-image. Right: semitic segmentation (SS) to image.

4.2 DATA-FREE KNOWLEDGE DISTILLATION FOR X2I TRANSLATION

We apply our approach for conditional image synthesis. We consider conditioning information
c from text, audio and segmentation maps. We explore four variants of our method: knowledge
distillation only using L1 distance between the teacher generator and the student generator (Ours
(w-L1, w/o-adv.)); knowledge distillation only using the adversarial loss (Ours (w/o-L1, w-adv.));
next we set the condition c=1 in the student generator and 0 in the student discriminator (ours †);
finally we remove the semantic diversity loss in Eq. 7 from the final objective in Eq. 8 (ours ‡). More
details on training and hyperparameters can be found in Appendix A.

Text-to-image. We evaluate the proposed method on the CUB bird dataset (Welinder et al., 2010).
It contains 8,855 training images (150 species) and 2,933 test images (50 species), following 10 text
descriptions for each bird. Here we use 10 images per class for training, and verify our method
on the test dataset. We compare with SSA-GAN (Hu et al., 2021) which is one of state-of-the-art
methods. Results are depicted in Figure 1, Figure 4 (a) and Table 2 (left).

Audio-to-image. We evaluate on the commonly-used dataset: Oxford-102 (Nilsback & Zisser-
man, 2008), where 82 categories and 10 images per category are selected for training, and 20 cat-
egories and 1,155 images for test. Note that we split the training and test categories following
S2IGAN (Wang et al., 2020a). Results are depicted in Figure 1, Figure 4 (b) and Table 2 (middle).

Semantic segmentation-to-image. Here we conduct experiments by conditioning on segmentation
map on the CeleAMask-HQ (Lee et al., 2020a) dataset containing 30,000 image and segmentation
mask pairs. We follow the same train/test split as SEAN (Zhu et al., 2020b). We randomly select
500 pairs of data from the train set for training, and 2,000 pairs for testing. To evaluate our method,
we compare to three baselines: SPADE (Park et al., 2019), OASIS (Simonyan et al., 2013) and
CoCosNetv2 (Zhou et al., 2021), which are trained from scratch. We report the generator perfor-
mance using the pretrained StyleGAN optimized on AFHQ (Choi et al., 2020)(animal face dataset).
Results are depicted in Figure 1, Figure 4 (c) and Table 2 (right, w/o reference). We also compare
to SEAN (Zhu et al., 2020b) which additionally uses a reference image to control the style of the
output image, the results are shown in Figure 4 (d) and Table 2 (right, w reference).

As reported in Table 2, our approach outperforms all baselines without using knowledge distillation
on several metrics. The semantic diversity loss gets the best performance except for the semantic-
map-to-image task. The qualitative results in Figure 1 and 4 indicate that our method can generate
high-quality images with limited data due to the benefit of the knowledge transferred from the expert
teacher network. Figure 5 shows the output images of the X2I generator after knowledge distillation
and shows that we synthesize diverse outputs given different condition c. In conclusion, our method
is an efficient, general purpose mechanism for conditional image synthesis with limited data.

5 CONCLUSIONS

Conditional image synthesis tasks require vast amounts of training data. Therefore, we proposed
to transfer knowledge from a unconditional pretrained GAN model to conditional image synthesis
tasks. We perform the distillation with style-mixed triplets that can be automatically computed from
high-quality GANs. Our experiments confirmed that the proposed transfer learning method obtains
state-of-the-art results and allows to train high-quality X2I systems from fewer labeled samples.

Acknowledgement. We acknowledge the support from Huawei Kirin Solution, and the Spanish
Minesterio de Ciencia, Innovacion, y Universidades for funding the project PID2019-104174GB-
I00, 10.13039/501100011033.
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A ARCHITECTURE AND TRAINING DETAILS

The proposed method is implemented in Pytorch (Paszke et al., 2017). We transfer knowledge from
StyleGAN to X2I translation. We introduce here the architecture and model details for each task.
Note we perform the knowledge distillation on one GPU(Quadro RTX6000) with 24GB VRAM.

A.1 KNOWLEDGE DISTILLATION FOR TEXT-TO-IMAGE TRANSLATION

For text-to-image translation the training is composed of two stages: data-free distillation from the
unconditional prerained StyleGAN to text-to-image translation model, and finetuning text-to-image
translation model using the target data and label.

Model details for the first stage. The student model is the same as SSA-GAN (Hu et al., 2021),
which is composed of three sub-networks: a text encoder, a student generator GS , a student dis-
criminator DS . The text encoder is the pretrained one provided by (Xu et al., 2017). The generator
takes random noise as input, following one fully connection (100 × 8192) and 7 ResBlocks 5. The
input feature size of the first ResBlock is B × 512 × 4 × 4 (B is the batch size). We extract the
hierarchical representation from StyleGAN (Karras et al., 2019). The first feature from StyleGAN
is B × 512 × 8 × 8, and fed into the student generator, which is summed with the student gener-
ator feature representation which has the same dimension. The student discriminator contains one
convolution layer and 6 ResBlocks.

We optimize the model using Adam (Kingma & Ba, 2014) with batch size of 16. The learning rates
of the generator and the discriminator are set as 0.0001 and 0.0004 with exponential decay rates of
(β1, β2) = (0.0, 0.9). The model is trained for 300 epochs for knowledge distillation. In the second
stage, we iterate 300 epochs, with same batch size, learning rate and exponential decay rate. In Eq. 6
both αl and β are identical. For the specific features of which the dimension is less than 128, we set
them 0.1. In other case they are 0.01. In Eq. 8 λadv and λkdl are 1, and λsrl is 0.1.

Model details for the second stage. We finetune the well-initialized student network learned in
the first stage. In this stage, we get access to the target data. We keep all the details on training and
the hyperparameters of SSA-GAN (Hu et al., 2021). We refer readers for more detailed information
to (Hu et al., 2021).

5After each ResBlock the feature resolution is half of the previous one in both encoder and discriminator,
and two times in generator.
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A.2 KNOWLEDGE DISTILLATION FOR AUDIO-TO-IMAGE TRANSLATION

For audio-to-image translation the training is composed of two stages: data-free distillation from
the unconditional prerained StyleGAN to audio-to-image translation model, and finetuning audio-
to-image translation model using the target data and label.

Model details for the first stage. We perform knowledge distillation for audio-to-image based on
S2IGAN (Wang et al., 2020a). To obtain stable training, S2IGAN proposed a progressive mecha-
nism to generate multi-scale images. S2IGAN introduced a two-stage study, i.e., a speech semantic
embedding stage and an image generation stage. The former is to extract the speech embedding
with a pretrained speech extractor, the latter takes as an input both random noise and the speech
embedding to synthesize photo-realistic images in a multi-stage (coarse-to-fine) way. The generator
is composed of one fully connected layer (228× 2048), one batchnorm, one Gaussian Error Linear
Unit(GLU) (Devlin et al., 2019) and 7 UpsBlocks 6. The first UpsBlock is B × 512 × 4 × 4 (B is
the batch size). We extract the hierarchical representation from StyleGAN (Karras et al., 2019). The
first feature from StyleGAN isB×512×8×8, and fed into the student generator, which is summed
with the student generator feature representation which has the same dimension.

We optimize the model using Adam (Kingma & Ba, 2014) with batch size of 12. The learning
rates of both the generator and the discriminator are set as 0.0002 with exponential decay rates of
(β1, β2) = (0.5, 0.999). The model is trained for 300 epochs for knowledge distillation. In the
second stage, we iterate 300 epochs, with same batch size, learning rate and exponential decay rate.
In Eq. 6 both αl and β are identical, and are 10. In Eq. 8 λadv , λkdl and λsrl are 10.

Model details for the second stage. We finetune the well-initialized student network learned in
the first stage. In this stage, we get access to the target data. We keep all the details on training
and the hyperparameters of S2IGAN (Wang et al., 2020a). We refer readers to check more detailed
information to (Wang et al., 2020a).

A.3 KNOWLEDGE DISTILLATION FOR SEGMENTATION MAP-TO-IMAGE TRANSLATION

For segmentation map-to-image translation the training is composed of two stages: data-free distil-
lation from the unconditional prerained StyleGAN to segmentation map-to-image translation model,
and finetuning segmentation map-to-image translation model using the target data and label.

Model details for the first stage. For segmentation map-to-image task, we use SEAN (Zhu
et al., 2020b) as the student model, since it is state-of-the-art. SEAN is composed of one generator,
one style encoder and one discriminator. The generator contains several SEAN ResBlks. Each
of the ResBlks is followed by a nearest neighbor upsampling layer. We extract the hierarchical
representation from StyleGAN (Karras et al., 2019). The first feature from StyleGAN is B × 512×
8× 8.

We use the pretrained StyleGAN optimized on HHFQ human face (Karras et al., 2019) except for
semantic segmentation-to-image(SS2image), which is on AFHQ dataset (Choi et al., 2020). In fact
we are able to use the pretrained one from HHFQ, which further improve the performance.

In the knowledge distillation stage, we set the learning rates to 0.0001 and 0.0004 for the generator
and discriminator, respectively (Heusel et al., 2017). For the optimizer, we choose Adam (Kingma
& Ba, 2014) with β1 = 0, β2 = 0.999, with batch size 4. In second stage (segmentation map-to-
image translation), we use same setting except for batch size (i.e., 8). We update 100 epochs for
knowledge distillation. In second stage (image-to-image translation) we iterate 100 epochs. In Eq. 6
both αl and β are identical. For the specific features of which the dimension is less than 128, we set
them 0.1. In other case they are 0.01. In Eq. 8 λadv and λkdl are 1, and λsrl is 0.1.

Model details for the second stage. We finetune the well-initialized student network learned in
the first stage. In this stage, we get access to the target data. We keep all the details on training and

6Each UpsBlock consists of one interpolate with scale factor 2, one convolutional layer (3× 3 kernal size,
stride 1), batchnorm and GLU (Devlin et al., 2019). After each UpsBlock, the resolution is half of the previous
one in the discriminator, and two times the previous one in generator.
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the hyperparameters of SEAN (Zhu et al., 2020b). We refer readers to check all detailed information
in (Zhu et al., 2020b).

A.4 KNOWLEDGE DISTILLATION FOR IMAGE-TO-IMAGE TRANSLATION

Model details. We take StarGANv2 (Choi et al., 2020) as the student model. StarGANv2 con-
tains 5 sub-networks: a context encoder, a mapping network, a style encoder, a generator and a
discriminator. For both content encoder and generator, we extract hierarchical representations with
dimension size range from 16 to 256. We also extract the corresponding dimension hierarchical rep-
resentations from the pretrained generator and discriminator respectively. To align the student style
encoder with the teacher discriminator, we extract hierarchical representations for both networks
with the dimension size ranging from 4 to 256.

We use the Adam (Kingma & Ba, 2014) with β1 = 0, β2 = 0.99, with batch size 2. We update
20,000 iterations for knowledge distillation. In second stage (image-to-image translation), we iterate
100,000.

Model details for the second stage. We finetune the well-initialized student network learned in the
first stage. In this stage, we get access to the target data. We keep all the details on training and the
hyperparameters of StarGANv2 (Choi et al., 2020). We refer readers to check all detail information
in (Choi et al., 2020).

We are able to explicitly control domains/classes as starGANv2 does. For the latent-guided synthe-
sis, starGANv2 introduces a class-specific mapping networks (one for each class) to project the class
embedding into the shared latent space. Thus starGANv2 uses the class-specific mapping network
to control the domains/classes. In this paper, we follow the same setup as starGANv2. In the first
stage of our method, we only learn one mapping network, which is duplicated to initialize all the
mapping networks (one for each class) of the second stage. Then we use the target dataset (second
stage) to train the well-initialized class-specific mapping networks.

B I2I TRANSLATION

B.1 TWO-CLASS I2I TRANSLATION RESULTS

To evaluate the generalization of our method, here we validate the proposed algorithm for two-class
I2I translation on a two-category dataset: cat2dog-200 (Wang et al., 2021) with an image size of
256 × 256. In cat2dog-200, the training set is composed of 200 images (100 images/per class) and
the test set has 200 images (100 images/per class). We investigate two cases of I2I translation: the
style representation is from noise (i.e., latent-guided synthesis) and from the reference image (i.e.,
reference-guided synthesis). As reported Tables 3 and 4, compared to the transfer learning methods
(i.e., DeepI2I (Wang et al., 2020b) and TransferI2I (Wang et al., 2021)) we still maintain a large
advantage.

B.2 MULTI-CLASS I2I TRANSLATION RESULTS

We also further validate the proposed algorithm for multi-class I2I translation on AFHQ-500 (Choi
et al., 2020) with an image size of 256 × 256. In AFHQ-500, the training set is composed of
500 images (100 images/per class) and the test set has 1500 images (500 images/per class). We
investigate two cases of I2I translation: the style representation is from noise (i.e., latent-guided
synthesis) and from the reference image (i.e., reference-guided synthesis). As reported Tables 5,
compared to StarGANv2 we still maintain a large advantage.

B.3 VARIANTS OF THE BASELINES

We adapt both DeepI2I (Wang et al., 2020b) and TransferI2I (Wang et al., 2021) to use a very sim-
ilar architecture to StarGANv2 (the architectural details are in Table 5, 6, 7 of StarGANv2 (Choi
et al., 2020)). Specially, to devise the generator, we preserve the subnets of the discriminator of the
pretrained StyleGAN as image encoder which has 16 × 16 × 512output, then additionally add 4
ResBlks like StarGANv2, and finally use the subnets of the generator of the pretrained StyleGAN as
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dog2cat cat2dog
FID KID*100 FID KID*100

DeepI2I 154.6 6.97 194.6 24.53
TransferI2I 137.2 6.48 182.1 24.14

Ours 60.17 4.83 86.4 5.46
Table 3: The metric results of reference-guided synthesis on cat2dog-200 dataset. Note we multiply 100 for
KID.

dog2cat cat2dog
FID KID*100 FID KID*100

DeepI2I 83.71 4.26 112.4 5.67
TransferI2I 55.2 3.97 83.6 4.56

Ours 42.7 3.46 74.2 4.03
Table 4: The metric results of Latent-guided synthesis on cat2dog-200 dataset. Note we multiply 100 for KID.

the decoder to output the image. We keep the mapping network of the pretrained StyleGAN for the
I2I translation generator when performing latent-guided I2I translation. We adapt the discriminator
of the pretrained StyleGAN as the style encoder when performing reference-guided I2I translation.
Similar to StarGANv2, we also use a multitask discriminator, which consists of multiple output
branches. We use cat2dog-200 dataset to compare the adapted DeepI2I (DeepI2I*), adapted Trans-
ferI2I (TransferI2I* ) and ours. As reported in Tables 6 and 7, compared to the transfer learning
methods (i.e., Adapting DeepI2I and TransferI2I ) we still maintain a large advantage.

B.4 ABLATION OF THE ENCODER

In this paper we use the pre-defined discriminator to initialize the encoder, since the discriminator
of the StyleGAN is trained on HHFQ with 70k images, which optimizes it to be an effective feature
extractor. A similar technique was also explored in SGD (Shocher et al., 2020) and transferI2I.

To verify that the previously reported results also hold for our method, we also train both the en-
coder and the reference encoder from scratch in reference-guided translation on Animal faces dataset
(10/per class). we achieve 130 of mFID, which is lower than our method (mFID 96.2) . If we train
the encoder from scratch, the training suffers from overfitting with limited training images.

C ADDITIONAL RESULTS

C.1 DIVERSE OUTPUTS

Figure 6 shows some examples of the synthesized images on three datasets. Taking Animal faces as
example, given the target class label our method manages to generate high visual quality images.

C.2 KNOWLEDGE DISTILLATION FOR I2I SYSTEM IN THE FIRST STAGE

Figures 7 and 8 show examples generated after transfer learning on I2I system. This shows that
our method successfully distills the style-mixing characteristics from the teacher generator to the
student generator.

C.3 KNOWLEDGE DISTILLATION FOR X2I SYSTEM IN THE FIRST STAGE

Figures 9 and 10 show examples generated after semantic diversity loss. For each triplet, we depict
the teacher’s output(left), the student’s output (middle) with condition cx and the one (right) with
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AFHQ-500(Latent-guided synthesis) AFHQ-500(reference-guided synthesis)
FID LPIPS FID LPIPS

StarGANv2 40.21 0.45 41.62 0.42
Ours 35.36 0.48 34.75 0.45

Table 5: The metric results on AFHQ-500 dataset.

dog2cat cat2dog
FID KID*100 FID KID*100

DeepI2I* 189.3 15.4 205.6 29.2
TransferI2I* 182.6 16.7 198.4 26.7

Ours 60.17 4.83 86.4 5.46
Table 6: The metric results of Reference-guided synthesis on cat2dog-200 dataset. Note we multiply 100 for
KID.

condition cy . This shows that our semantic diversity loss manages to diversify the output given the
input condition c.

C.4 ADDITIONAL RESULTS

We additionally depict the generated images in Figures 12- 24.
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dog2cat cat2dog
FID KID*100 FID KID*100

DeepI2I* 210.7 20.7 196.5 21.8
TransferI2I* 197.8 19.4 182.4 20.7

Ours 42.7 2.46 74.2 4.03
Table 7: The metric results of Latent-guided synthesis on cat2dog-200 dataset. Note we multiply 100 for KID.

Input Blenheim
 spaniel

Boston
  bull

Sussex
spaniel

Siberian
  husky

Tabby Lion MeerkatAmerican
black bear

Maltese
   dog

  Grilled
eggplant

  Roll 
bread

Sauteed 
spinach

 Rice 
gratin

 California 
Gull (Adult)

Red Cro.Ame. Gol. Ind. Bun.Input Input

Figure 6: Qualitative results of the proposed method on multi-class I2I translation task. Ame.Gol.:American
Goldfinch (Breeding Male), Red Cro.:Red Crossbill (Adult Male), Ind. Bun.: Indigo Bunting (Adult Male).
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Input Reference Output Input Reference Output

Figure 7: Examples generated after transfer leaning for I2I system. The student model is StarGANv2. Note it
is under reference-guided mode.
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Input Output Input Output

Figure 8: Examples generated after transfer leaning for I2I system. For one input, we sample two noises to
generate images. The student model is StarGANv2. Note it is under latent-guided mode.
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Output (teacher) Output (student,  ) Output (student,  ) Output (teacher) Output (student,  ) Output (student,  )

Figure 9: Examples generated after semantic diversity loss. For each triplet, we depict the teacher’s out-
put(left), the student’s output (middle) with condition cx and the one (right) with condition cy . Note the
student model is SSA-GAN.
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Output (teacher) Output (student,  ) Output (student,  ) Output (teacher) Output (student,  ) Output (student,  )

Figure 10: Examples generated after semantic diversity loss. For each triplet, we depict the teacher’s out-
put(left), the student’s output (middle) with condition cx and the one (right) with condition cy . Note the
student model is S2IGAN.
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Figure 11: Examples generated without semantic diversity loss for tasks: audio2image (top) and text2image
(bottom). For each triplet, we depict the teacher’s output, the student’s output with condition cx and the one
with condition cy .
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Input SSA-GAN

This bird is red and black 

in color with a black beak 

and red eye rings

This bird has a red breast,

 with a red and white belly

This yellow bird's wings

 appear black and 

white in color

A small bird with a short,

 flat beak and a vibrant 

blue body

A black bird with 

a shiny green breast.

This bird has wings 

that are grey and has 

a white belly

The bird has a long curved 

black bill and a tan belly

This bird has wings 

that are black and 

has a yellow belly

Ours GT

Figure 12: Qualitative results on text-to-image synthesis task.
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Input S2IGAN
 

  

The petals on this flower
 are purple with yellow 

stamen

Ours GT

Spoken description

A flower with bright 
red petals and stripes

 of black

This flower has petals that
 are yellow and
 has black lines

The flower shown has thin
 yellow petals as
 its main feature

This flower has petals that
are white with yellow patch

This flower has light 
pink petals and
 a bell shape

The petals are pink and
 rounded and cover

 the pistil

This flower has pointy long
 yellow petals and one sepal

Figure 13: Qualitative results on audio-to-image synthesis task.
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Input SPADE Ours GT

Figure 14: Qualitative results on segmentation map-to-image synthesis task.
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Input SEAN OursReference

Figure 15: Qualitative results with reference images on segmentation map-to-image synthesis task.
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Figure 16: Qualitative results on image-to-image synthesis task. We translate the input image (top left) into
all 149 categories. Please zoom-in for details.
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Figure 17: Qualitative results with reference image for image-to-image synthesis task on Animal dataset .
Refe.: reference image, Reco.: reconstructed image.
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Figure 18: Qualitative comparison on Animal faces datasets.
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Figure 19: Qualitative results on image-to-image synthesis task. We translate the input image (top left) into
all 555 categories. Please zoom-in for details.
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Figure 20: Qualitative results with reference image for image-to-image synthesis task on Birds dataset . Refe.:
reference image, Reco.: reconstructed image
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Figure 21: Qualitative comparison on Birds datasets.
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Figure 22: Qualitative results on image-to-image synthesis task. We translate the input image (top left) into
all 256 categories. Please zoom-in for details.
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Figure 23: Qualitative results with reference image for image-to-image synthesis task on Foods dataset . Refe.:
reference image, Reco.: reconstructed image
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Figure 24: Qualitative comparison on Foods datasets.
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