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Abstract

Large Language Models (LLMs) are powerful but
resource-intensive. Power-of-two (PoT) quanti-
zation offers hardware-friendly compression but
often struggles with accuracy, especially on GPUs
due to sign bit entanglement and sequential de-
quantization. We propose POT-PTQ, a novel PoT
quantization framework for LLM weights that
achieves state-of-the-art accuracy in extremely
low-precision (2- and 3-bit) and enables faster
inference via efficient dequantization. Our two-
step post-training algorithm initializes quantiza-
tion scales robustly and refines them with a min-
imal calibration set. POT-PTQ surpasses inte-
ger quantization baselines at low precisions and
achieves dequantization speedups of up to 3.67×
on NVIDIA V100 and 1.63× on NVIDIA RTX
4090 compared to uniform integer dequantization.

1. Introduction
Large Language Models (LLMs) (Brown et al., 2020; Zhang
et al., 2022; Team et al., 2023; Yang et al., 2024) have
demonstrated remarkable capabilities but their extensive
computational and memory footprints hinder widespread
deployment, particularly on resource-constrained edge de-
vices. Quantization, which reduces numerical precision,
is a critical technique for compressing LLMs. Methods
are broadly categorized into Quantization-Aware Training
(QAT), which requires costly retraining, and Post-Training
Quantization (PTQ), which adapts pretrained models with
minimal calibration data (Nagel et al., 2021). PTQ can tar-
get weights only or both weights and activations. While
weight-only PTQ for formats like INT8 or INT4 (Dettmers
et al., 2022a; Lin et al., 2024) has shown promise, perfor-
mance often degrades significantly at ultra-low bit-widths
(e.g., 2-bit or 3-bit). Furthermore, inference typically in-
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volves dequantizing weights to FP16 for GEMM operations,
adding latency.

Power-of-Two (PoT) quantization, where values are re-
stricted to±2E , is an attractive alternative. It offers inherent
hardware efficiency as multiplications can be replaced by bit
shifts (You et al., 2020; Elhoushi et al., 2021). Statistically,
PoT levels, being logarithmically spaced, align well with
the bell-shaped or exponential distributions of weights in
trained LLMs (Figure 3 in Appendix), potentially offering
better approximation than uniform quantization (Li et al.,
2023). However, prior PoT methods for deep learning (Li
et al., 2020; 2021), when applied to LLMs, often suffer
severe accuracy loss. This is due to the coarse, non-linear
nature of PoT levels and the difficulty of finding optimal
scaling factors, especially under aggressive compression.
Naive dequantization of PoT values on GPUs can also be
inefficient due to bit-level dependencies.

To address these limitations, we propose POT-PTQ (PoT
Post-Training Quantization), a novel framework for LLMs.
Our main contributions are:

• A specialized two-stage PTQ algorithm that first ro-
bustly initializes PoT scales data-agnostically, then
refines them with a lightweight, data-dependent cali-
bration tailored to PoT’s structure.

• State-of-the-art accuracy for LLM quantization at 2-
bit and 3-bit precision, outperforming strong integer
PTQ baselines like GPTQ (Frantar et al., 2023) and
OmniQuant (Shao et al., 2024).

• A highly optimized GPU dequantization kernel for PoT
values that leverages bitwise parallelism, achieving
significant inference speedups.

2. Preliminaries: PoT Quantization
We focus on weight-only PoT quantization for transformer-
based LLMs. Each full-precision weight Wij in layer l is

quantized to W̃
(l)
ij = S

(l)
ij · P

(l)
ij · 2

E
(l)
ij . Here, S(l)

ij ∈ R+

is the learnable scaling factor, P (l)
ij = sign(W

(l)
ij ) is the

sign bit, and E
(l)
ij ∈ N0 is the quantized exponent. E(l)

ij is
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computed as:

E
(l)
ij = clamp

(
round

(
log2

(
|W (l)

ij |/S
(l)
ij

))
, 0, qmax

)
,

(1)
where qmax = 2n−1 − 1 for an n-bit quantization scheme
(excluding the sign bit, which is stored separately), and
clamp(x, a, b) = min(max(x, a), b). To balance model
compression and accuracy, we employ group-wise quan-
tization. Each column of the weight matrix W(l) is par-
titioned into fixed-size groups (e.g., G = 64 or 128 con-
tiguous rows). All weights within a group share the same
scaling factor S(l)

ij . This significantly reduces the overhead
of storing scales while allowing adaptability to local weight
distributions.

The logarithmic spacing of PoT levels provides finer reso-
lution for small magnitude weights, which are abundant in
LLMs, compared to the uniform spacing of integer quantiza-
tion (Figure 3, Appendix). This statistical alignment is a key
motivation for PoT. However, the discrete and non-linear
nature of PoT makes scale optimization challenging. Ex-
isting PTQ methods, often designed for smoother uniform
quantization error landscapes, struggle to find effective PoT
scales, leading to substantial accuracy loss. Our POT-PTQ
framework is specifically engineered to overcome these PoT-
specific optimization hurdles.

3. Two-Step Power-of-Two Post-Training
Quantization (POT-PTQ)

Our POT-PTQ framework, illustrated in Figure 1, uses a
two-step algorithm to optimize PoT quantization scales for
LLM weights.

3.1. Step 1: Data-Agnostic Scale Initialization

The primary difficulty in PoT quantization is the highly non-
smooth error surface with respect to the scaling factors S(l).
This is due to the round(log2(·)) operation in Equation (1),
where small changes in S

(l)
ij can cause discrete jumps in

the assigned exponent E(l)
ij , leading to abrupt changes in

reconstruction error (Figure 4, middle, in Appendix). This
makes gradient-based optimization of scales from scratch
unstable and ineffective. Moreover, as shown in Figure 4
(right), the optimal scales often differ substantially from
naive choices (e.g., b = 1).

Step 1 addresses this by initializing group-wise scales s∗

using only the weight statistics, without any calibration data.
For each weight group Wgroup (a contiguous subvector of G
weights from a column of W(l)), we seek a scale multiplier
b∗ that minimizes the L2 reconstruction error:

b∗ = argmin
b∈B

∥∥∥Wgroup − W̃group(b)
∥∥∥2
2
, (2)

where the reconstructed group is W̃group(b) = (s0 · b) ·
Pgroup ◦ 2Egroup(b). Pgroup = sign(Wgroup) stores the signs,
and Egroup(b) are the exponents calculated using the candi-
date scale s0 · b as per Equation (1). The base scale s0 is
set to s0 =

max |Wgroup|
2qmax−1 , which aligns the largest magnitude

in the group with the maximum PoT level 2qmax−1 if b = 1.
We perform a grid search for b over a discrete set of mul-
tipliers B = {0.01 · i | i = 1, . . . , 200}. This range for b
(0.01 to 2.00) allows sufficient flexibility to adjust s0. The
optimal scale for the group is s∗ = s0 · b∗. This search
is performed independently and can be fully parallelized
across all groups in W(l), yielding the initial scale matrix
S(l). Alg. 1 (Appendix) details this process.

3.2. Step 2: Data-Dependent Fine-Tuning

The scales S(l) from Step 1 are optimized for weight re-
construction error but may not be optimal for preserving
the layer’s output function due to complex interactions with
input activations X. Step 2 refines these scales using a small
calibration dataset. This is a lightweight fine-tuning stage
that learns a low-dimensional residual adjustment Γ for the
scales, avoiding costly full model retraining.

Let X be the input hidden states to layer l. The layer’s
operation (e.g., a linear transformation in attention or MLP
blocks) is denoted by F (l)(W(l),X). We aim to minimize
the Frobenius norm of the output difference:

min
Γ

Q2(Γ) =
∥∥∥F (l)(W(l),X)−F (l)(W̃(l)(Γ),X)

∥∥∥2
F
+
λ

2
∥Γ∥2F ,

(3)
where λ is an L2 regularization hyperparameter for Γ. The
refined group-wise scale Ŝ

(l)
ij (Γ) is parameterized as:

Ŝ
(l)
ij (Γ) = S

(l)
ij · (1 + Γij), (4)

where S
(l)
ij are the robust scales from Step 1. The learn-

able parameter Γij shares the same group structure as the
scales (i.e., one Γ value per group) and is initialized to
zero. The dequantization process then uses these refined
scales Ŝ(l)(Γ) to compute exponents E

(l)
ij (Γ) and recon-

struct weights W̃
(l)
ij (Γ). The rounding in Equation (1) is

non-differentiable. We use the Straight-Through Estimator
(STE) (Bengio et al., 2013) for the gradient of E(l)

ij with

respect to Ŝ
(l)
ij :

∂E
(l)
ij

∂Ŝ
(l)
ij

≈ ∂

∂Ŝ
(l)
ij

log2

(
|W(l)

ij |
Ŝ

(l)
ij

)
= − 1

Ŝ
(l)
ij ln 2

.

This allows end-to-end backpropagation to optimize Γ. This
step is highly efficient, learning only one scalar per weight
group (e.g., for a group size of 128, this is 128× fewer pa-
rameters than learning individual weight adjustments). It
typically converges in a few epochs with a small calibration
set (e.g., 128 sequences). Alg. 2 (Appendix) provides the
procedure.

2



POT-PTQ: A Two-step Power-of-Two Post-training for LLMs

Step 1: data agnostic approximation Step 2: data dependent fine-tune

Calibration Samples

Store by Low-Bit

Figure 1: The two-step POT-PTQ algorithm. Step 1: Data-agnostic scale initialization adjusts scales by aligning weight
matrices to minimize reconstruction error per group. Step 2: Data-dependent fine-tuning refines these scales by aligning
layer outputs using a minimal calibration dataset, learning a small residual adjustment.

4. Efficient Dequantization for PoT
A significant advantage of PoT quantization is its potential
for highly efficient dequantization, which is critical for ac-
celerating inference, especially the GEMM operations that
dominate LLM computation. Conventional uniform quanti-
zation reconstructs weights as W̃(l) = (W

(l)
Q −Z)◦Suniform,

where W
(l)
Q are integer quantized values, Z is an integer

zero-point, and Suniform is a floating-point scale. Dequanti-
zation involves floating-point subtraction and multiplication,
which can be a bottleneck.

In our PoT scheme, weights are reconstructed as W̃(l) =
S(l)◦(−1)Sbit ◦2Eval . Here, S(l) are the FP16 scales from our
two-step optimization, Sbit is the stored sign bit, and Eval is
the integer exponent value derived from the n-bit quantized
representation. The key insight is that the multiplication by
2Eval can be implemented by directly manipulating the ex-
ponent field of the FP16 scale S(l) using integer operations,
rather than performing an FP16 multiplication.

An FP16 number x is stored with a sign bit, a 5-bit exponent,
and a 10-bit mantissa. Its value is

x = (−1)sign × 2exponent val−bias × (1.mantissa bits).

The bias for FP16 is 15.

To dequantize a PoT value (sign Sw, integer exponent Ew)
and combine it with an FP16 scale

s = (−1)Ss · 2Es−15 · 1.Ms,

the dequantized value is:

s · (−1)Sw · 2Ew = (−1)Ss⊕Sw · 2(Es−15)+Ew · 1.Ms.

POTPTQ Dequantization

FP16 Dequantization

(a) Bit
Manipulation

(b) INT
Addition

Figure 2: PoT dequantization (3-bit example: 1 sign, 2
exponent bits) for FP16 reconstruction. The quantized sign
(S0) and exponent value (from E1E2) are combined with
the FP16 scale s by manipulating s’s bit representation using
integer arithmetic (exponent addition, sign XOR).

This means the PoT dequantization effectively becomes:

1. Extract PoT components: From the n-bit storage,
extract the sign bit Sw and the bits representing Ew.
Convert these bits to the integer Ew.

2. Modify FP16 scale via integer ops:

• Treat the 16-bit representation of the scale s as an
integer.

• Add Ew to the 5-bit exponent field of s. This is
an integer addition on a sub-field of the 16-bit
integer.

• XOR the sign bit of s with Sw.

This process, depicted conceptually in Figure 2, avoids any
floating-point multiplication for the 2Eval term. The entire de-
quantization per element can be implemented with a few bit-
wise and integer arithmetic operations, making it extremely
fast on GPUs.
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5. Experiments and Results
We evaluated POT-PTQ on LLaMA1 (Touvron et al., 2023a)
and Llama2 (Touvron et al., 2023b) (7B, 13B, 30B param-
eters) for 2-bit and 3-bit weight-only PTQ (average 2.25
and 3.25 bits per weight, including sign and shared scales).
Group size G was 128. Step 2 calibration used 128 se-
quences (2048 tokens each) from WikiText-2 (Merity et al.,
2016) for 10 epochs (3-bit) or 40 epochs (2-bit). All quanti-
zation was performed on a single NVIDIA V100 GPU. Base-
lines include RTN (Dettmers et al., 2022b), GPTQ (Frantar
et al., 2023), AWQ (Lin et al., 2024), and OmniQuant (Shao
et al., 2024). Further details are in Appendix A.3.

Perplexity Evaluation. Table 1 details WikiText-2 per-
plexity (PPL) results. POT-PTQ consistently achieves lower
(better) PPL compared to strong uniform PTQ baselines,
particularly excelling in the challenging 2.25-bit regime
where some alternatives like AWQ falter. Our approach
often matches or surpasses even the best-performing uni-
form methods like OmniQuant at these ultra-low precisions.
Critically, naive adaptations of existing PTQ methods for
PoT representations yield very poor PPL (see Table 4 in
Appendix), confirming the necessity of our specialized two-
step optimization for effective PoT quantization.

Table 1: WikiText-2 perplexity (PPL) of 2- and 3-bit quan-
tized LLaMA models. Baselines use uniform quantization;
PoT is our POT-PTQ. Lower is better. Our method shows
strong performance, especially at very low bit-widths.

Bits Model Size RTN GPTQ AWQ OMNI PoT

3.25
LLaMA1

7B 7.01 6.55 6.46 6.16 6.12
13B 5.88 5.62 5.51 5.46 5.42
30B 4.87 4.80 4.63 4.58 4.50

LLaMA2
7B 6.66 6.29 6.24 6.21 6.03
13B 5.51 5.42 5.32 5.28 5.24

2.25
LLaMA1

7B 1.9e3 44.01 2.6×105 9.77 9.79
13B 781.2 15.6 2.8×105 7.93 7.96
30B 68.04 10.92 2.4×105 7.13 7.01

LLaMA2
7B 4.2e3 36.77 2.2×105 11.23 11.03
13B 122.08 28.14 1.2×105 8.33 8.29

Harness Evaluation. On the Open LLM Leaderboard
common sense reasoning tasks (Table 5, Appendix), POT-
PTQ generally matches or slightly outperforms OmniQuant
on average scores across multiple LLaMA model sizes and
bit-widths. This indicates that POT-PTQ effectively pre-
serves not just language modeling fluency but also broader
reasoning capabilities.

Ablation Study. To isolate the effect of each step, we per-
form an ablation study on 2-bit LLaMA1-7B and 13B models
(Table 2). Step 1 alone (agnostic initialization) yields rea-
sonable results, demonstrating the effectiveness of our scale
grid search. Step 2 alone, without proper initialization, per-

forms poorly due to suboptimal starting points. The best
performance is consistently achieved by combining both
steps, confirming their complementarity: Step 1 provides
a strong initialization, while Step 2 refines it with minimal
calibration.

Table 2: Ablation study on LLaMA models (2-bit quantiza-
tion). PPL on WikiText-2. Step 1: scale initialization; Step
2: calibration fine-tuning. Both steps are crucial for optimal
performance.

Model Step 1 (Init) Step 2 (Tuning) Perplexity

LLaMA1 7B

✗ ✗ 408,838.25
✓ ✗ 20,135.70
✗ ✓ 51.87
✓ ✓ 9.79

LLaMA1 13B

✗ ✗ 40,328.34
✓ ✗ 8,267.57
✗ ✓ 103.45
✓ ✓ 7.96

Dequantization Speed. Our custom PoT dequantization
kernel, implemented using efficient bitwise and integer op-
erations as described in Section 4, was benchmarked on
NVIDIA V100 and RTX 4090 GPUs. Table 3 shows warp
cycles for dequantizing a block of weights. Compared to a
standard FP16 dequantization for uniformly quantized in-
tegers, our PoT kernel achieves a 3.67× speedup on V100
and 1.63× on RTX 4090. This demonstrates the signifi-
cant inference-time advantage of our hardware-friendly PoT
approach.

Table 3: Dequantization efficiency (warp cycles per block).
PoT (Ours) is significantly faster due to integer-based oper-
ations. Speedup: 3.67× on V100, 1.63× on RTX 4090.

GPU Arch. Uniform (FP16) PoT (Ours)

Tesla V100 Volta 110 30 (3.67×)
RTX 4090 Ada 98 60 (1.63×)

The entire POT-PTQ quantization process for LLaMA1-7B
(both steps) completes in approximately 0.71 hours on a
single V100 GPU, highlighting its practicality. The fine-
tuning efficiency of Step 2 is further detailed in Table 6
(Appendix), showing rapid convergence.

6. Conclusion
POT-PTQ introduces an effective two-step post-training
quantization framework for Power-of-Two (PoT) repre-
sentations in LLMs. It first derives robust, data-agnostic
scales via grid search, followed by lightweight, data-driven
calibration. This design enables state-of-the-art accuracy
at ultra-low bit-widths (2–3 bits), outperforming uniform
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baselines in perplexity and downstream tasks. Addition-
ally, our integer-only PoT dequantization kernel offers sub-
stantial speedups (up to 3.67× on V100, 1.63× on RTX
4090). Combining high accuracy and efficiency, POT-PTQ
is a practical solution for deploying LLMs in resource-
constrained settings.

Impact Statement
This work aims to make large language models more com-
putationally efficient and accessible, potentially broadening
their beneficial applications while reducing energy consump-
tion associated with their deployment. We do not foresee
direct negative societal impacts arising from the quantiza-
tion methodology itself. Ethical considerations related to
LLM applications generally remain relevant.

References
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A. Appendix
A.1. Additional Figures

Figure 3: Left: Density distribution of the first weight matrix in LLaMA-7B, exemplifying the bell-shaped or exponential
decay commonly observed in LLM weight distributions. Middle: Quantization levels for power-of-two (PoT) quantization,
showing finer resolution near zero, aligning well with the distribution’s high-density region. Right: Quantization levels for
uniform quantization, which allocate levels evenly and poorly capture the dense region near zero.
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Figure 4: Left: Illustrative loss comparison for Step 1, showing the benefit of careful scale initialization versus a naive
approach. (Original caption: ”Loss in Step1 O/W Step 1”) Middle: Loss curve of 3-bit PoT quantization as a function of the
scale multiplier b, showing non-smooth transitions due to discrete exponent rounding. Right: Histogram of optimal scaling
multipliers b∗ found during Step 1. Many deviate significantly from the naive choice b = 1, underscoring the importance of
the grid search.
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A.2. Algorithms

Algorithm 1 Parallel Data-Agnostic Scale Initialization (Step 1)

1: for each weight group Wgroup in parallel do

2: s0 ←
max |Wgroup|
2qmax − 1

▷ Initialize base scale

3: B ← {0.01 · i | i = 1, . . . , 200} ▷ Set candidate multipliers
4: Qmin

1 ←∞ ▷ Initialize minimum error
5: for each b ∈ B do
6: sb ← s0 · b ▷ Compute candidate scale
7: E(b)← clamp (round (log2 (|Wgroup| /sb)) , 0, qmax)

8: W̃group(b)← sb · sign(Wgroup) ◦ 2E(b)

9: Q1(b)←
∥∥∥Wgroup − W̃group(b)

∥∥∥2
2

10: if Q1(b) < Qmin
1 then

11: Qmin
1 ← Q1(b)

12: b∗ ← b
13: end if
14: end for
15: s∗ ← s0 · b∗ ▷ Optimal scale for this group
16: Store s∗ into the corresponding position in S(l)

17: end for
18: return S(l)

Algorithm 2 Fine-Tuning the Learnable Parameter Γ for Scaling Factors (Step 2)

1: Initialize: Γ← 0 (with same group structure as scales)
2: Set Parameters: Learning rate η, weight decay λ, epochs N
3: for epoch = 1 to N do
4: for each calibration batch X do
5: Compute original output: Horig ← F (l)(W(l),X)

6: Update scales: Ŝ(l) ← S(l) ◦ (11⊤ + Γ) (element-wise, respecting group structure for Γ)
7: Quantize exponent using Ŝ(l):
8: E(l)(Γ)← clamp(round(log2(|W(l)|/Ŝ(l)(Γ))), 0, qmax)

9: Dequantize using Ŝ(l) and E(l)(Γ): W̃(l)(Γ)← Ŝ(l)(Γ) ◦P ◦ 2E(l)(Γ)

10: Compute quantized output: Hquant ← F (l)(W̃(l)(Γ),X)
11: Compute loss: Q2(Γ)← ∥Horig −Hquant∥2F + λ

2 ∥Γ∥
2
F

12: Update Γ via gradient descent (using STE for E(l)(Γ))
13: end for
14: end for
15: Return: Refined scale matrix Ŝ(l) = S(l) ◦ (11⊤ + Γ)

A.3. Experimental Setup Details

We evaluate POT-PTQ on LLaMA1 (Touvron et al., 2023a) and Llama2 (Touvron et al., 2023b) models with 7B, 13B, and
30B parameters. The method targets ultra-low precision quantization at 2 and 3-bit levels (specifically, average bits of 2.25
and 3.25, which includes one sign bit and 1.25 or 2.25 exponent bits on average due to grouping and scale storage). All
quantization and calibration procedures are performed on a single Tesla V100 GPU (32GB), while kernel benchmarks are
additionally run on an RTX 4090 to assess inference efficiency.

Step 1 (Data-Agnostic Initialization): A grid search over the interval [0.01, 2.00] with step size 0.01 is performed for the
scale multiplier b for each quantization group (group size = 128) to identify the optimal initial scale s∗ = s0 · b∗. Step
2 (Data-Dependent Fine-Tuning): Using 128 randomly sampled 2048-token sequences from WikiText-2 (Merity et al.,
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2016), we apply light fine-tuning. The Adam optimizer is used with a learning rate set to 1× 10−3, and weight decay for Γ
is 1× 10−1. Fine-tuning is run for 10 epochs for 3-bit quantization and 40 epochs for 2-bit quantization.

A.4. Additional Experimental Results

Table 4: Perplexity of baseline PTQ methods adapted to PoT format versus our PoT method (POT-PTQ). Naive adaptations
degrade performance significantly, demonstrating the importance of a PoT-specific optimization strategy.

Avg Bits Model Size AWQ POT GPTQ POT OMNI POT POT-
PTQ

3.125
LLaMA1

7B 6.52 8.27 × 104 6.37 6.25
13B 5.61 5.85 × 104 5.60 5.50
30B 4.72 2.61 × 104 4.75 4.58

Llama2
7B 6.49 NaN 6.46 6.22
13B 5.43 6.41 × 104 5.45 5.34

2.125
LLaMA1

7B 2.69 × 105 2.92 × 105 888 10.86
13B 2.80 × 105 1.83 × 105 487 8.54
30B 2.39 × 105 1.44 × 105 297 7.47

Llama2
7B 2.24 × 105 2.78 × 105 3730 12.80
13B 1.27 × 105 1.03 × 105 812 9.18

Table 5: Harness evaluation on six common sense reasoning tasks comparing PoT (POT-PTQ) and OmniQuant under
3.25-bit and 2.25-bit settings. Scores are accuracies (%). Bold indicates better performance. POT-PTQ generally maintains
or improves performance, indicating robust preservation of model capabilities.

Model Method Avg Bits = 3.25 Avg Bits = 2.25

arc-c arc-e boolq hs piqa wg Avg arc-c arc-e boolq hs piqa wg Avg

LLaMA1 7B Omni 35.6 64.8 71.1 53.9 77.2 64.5 61.2 26.7 52.1 62.2 40.7 67.2 55.5 50.7
PoT 35.8 64.1 70.9 54.3 77.5 65.2 61.3 28.1 50.1 64.4 40.1 67.9 57.3 51.3

LLaMA1 13B Omni 39.8 72.7 67.0 56.8 77.2 68.7 63.7 31.3 60.1 63.1 46.1 72.0 61.8 55.7
PoT 40.7 71.8 65.6 57.0 78.8 70.3 64.0 30.1 59.5 66.1 45.6 70.3 62.7 55.7

LLaMA1 30B Omni 46.0 74.1 71.2 61.3 79.6 74.1 67.7 32.4 65.6 66.1 49.9 72.3 62.9 58.2
PoT 47.2 73.7 71.6 60.8 80.1 75.0 68.1 33.8 64.9 66.8 50.2 73.1 62.5 58.5

Llama2 7B Omni 37.3 67.6 71.2 54.5 76.5 65.7 62.1 26.0 45.0 61.2 39.4 64.5 54.4 48.4
PoT 38.1 66.3 72.0 55.2 76.3 66.6 62.4 25.8 52.1 63.8 40.3 65.2 54.2 50.2

Llama2 13B Omni 41.9 72.3 69.9 57.8 78.0 67.7 64.6 30.0 57.0 63.7 44.5 68.0 53.1 52.7
PoT 42.5 70.7 70.1 58.0 79.2 68.3 64.8 29.4 56.9 68.2 43.4 68.8 56.9 53.9
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Table 6: Epoch-wise perplexity (PPL) and loss on WikiText-2 calibration data for LLaMA1-13B during Step 2 of POT-
PTQ. Our output-aligned fine-tuning objective consistently reduces perplexity and loss with only 128 calibration samples,
demonstrating the efficiency of Step 2.

Epoch 3-bit PPL 3-bit Loss 2-bit PPL 2-bit Loss

1 6.85 6.21 1.01×106 25.75
2 5.93 3.86 3209.49 20.45
3 5.70 3.02 239.27 17.13
4 5.59 2.54 94.25 15.39
5 5.54 2.27 49.95 13.50
6 5.51 2.13 31.46 11.99
7 5.49 2.04 23.30 10.55
8 5.48 1.97 18.27 9.60
9 5.48 1.93 15.31 8.65

10 5.48 1.90 12.90 7.89
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