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Abstract

Large Language Models (LLMs) are powerful but
resource-intensive. Power-of-two (PoT) quanti-
zation offers hardware-friendly compression but
often struggles with accuracy, especially on GPUs
due to sign bit entanglement and sequential de-
quantization. We propose POT-PTQ, a novel PoT
quantization framework for LLM weights that
achieves state-of-the-art accuracy in extremely
low-precision (2- and 3-bit) and enables faster
inference via efficient dequantization. Our two-
step post-training algorithm initializes quantiza-
tion scales robustly and refines them with a min-
imal calibration set. POT-PTQ surpasses inte-
ger quantization baselines at low precisions and
achieves dequantization speedups of up to 3.67 %
on NVIDIA V100 and 1.63x on NVIDIA RTX
4090 compared to uniform integer dequantization.

1. Introduction

Large Language Models (LLMs) (Brown et al., 2020; Zhang
et al., 2022; Team et al., 2023; Yang et al., 2024) have
demonstrated remarkable capabilities but their extensive
computational and memory footprints hinder widespread
deployment, particularly on resource-constrained edge de-
vices. Quantization, which reduces numerical precision,
is a critical technique for compressing LLMs. Methods
are broadly categorized into Quantization-Aware Training
(QAT), which requires costly retraining, and Post-Training
Quantization (PTQ), which adapts pretrained models with
minimal calibration data (Nagel et al., 2021). PTQ can tar-
get weights only or both weights and activations. While
weight-only PTQ for formats like INT8 or INT4 (Dettmers
et al., 2022a; Lin et al., 2024) has shown promise, perfor-
mance often degrades significantly at ultra-low bit-widths
(e.g., 2-bit or 3-bit). Furthermore, inference typically in-
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volves dequantizing weights to FP16 for GEMM operations,
adding latency.

Power-of-Two (PoT) quantization, where values are re-
stricted to +2F | is an attractive alternative. It offers inherent
hardware efficiency as multiplications can be replaced by bit
shifts (You et al., 2020; Elhoushi et al., 2021). Statistically,
PoT levels, being logarithmically spaced, align well with
the bell-shaped or exponential distributions of weights in
trained LLMs (Figure 3 in Appendix), potentially offering
better approximation than uniform quantization (Li et al.,
2023). However, prior PoT methods for deep learning (Li
et al., 2020; 2021), when applied to LLMs, often suffer
severe accuracy loss. This is due to the coarse, non-linear
nature of PoT levels and the difficulty of finding optimal
scaling factors, especially under aggressive compression.
Naive dequantization of PoT values on GPUs can also be
inefficient due to bit-level dependencies.

To address these limitations, we propose POT-PTQ (PoT
Post-Training Quantization), a novel framework for LLMs.
Our main contributions are:

* A specialized two-stage PTQ algorithm that first ro-
bustly initializes PoT scales data-agnostically, then
refines them with a lightweight, data-dependent cali-
bration tailored to PoT’s structure.

* State-of-the-art accuracy for LLM quantization at 2-
bit and 3-bit precision, outperforming strong integer
PTQ baselines like GPTQ (Frantar et al., 2023) and
OmniQuant (Shao et al., 2024).

» A highly optimized GPU dequantization kernel for PoT
values that leverages bitwise parallelism, achieving
significant inference speedups.

2. Preliminaries: PoT Quantization

We focus on weight-only PoT quantization for transformer-

based LLMs. Each full-precision weight W;; in layer [ is
— )

quantized to Wl(;) = Sf;) . Pi(;) - 2Fi;" . Here, Si(;-) € Ry

is the learnable scaling factor, P7(Jl) = Sign(Wi(;)) is the

sign bit, and EZ(JI) € Ny is the quantized exponent. Ez(]l) is
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computed as:

qujl-) = clamp (round <log2 <|Wl(]l)|/Sz(Jl))) ,0, qmax) ,

ey
where guax = 2"~ ! — 1 for an n-bit quantization scheme
(excluding the sign bit, which is stored separately), and
clamp(z,a,b) = min(max(z,a),b). To balance model
compression and accuracy, we employ group-wise quan-
tization. Each column of the weight matrix W) is par-
titioned into fixed-size groups (e.g., G = 64 or 128 con-
tiguous rows). All weights within a group share the same
scaling factor SZ-(;-). This significantly reduces the overhead
of storing scales while allowing adaptability to local weight
distributions.

The logarithmic spacing of PoT levels provides finer reso-
lution for small magnitude weights, which are abundant in
LLMs, compared to the uniform spacing of integer quantiza-
tion (Figure 3, Appendix). This statistical alignment is a key
motivation for PoT. However, the discrete and non-linear
nature of PoT makes scale optimization challenging. Ex-
isting PTQ methods, often designed for smoother uniform
quantization error landscapes, struggle to find effective PoT
scales, leading to substantial accuracy loss. Our POT-PTQ
framework is specifically engineered to overcome these PoT-
specific optimization hurdles.

3. Two-Step Power-of-Two Post-Training
Quantization (POT-PTQ)

Our POT-PTQ framework, illustrated in Figure 1, uses a
two-step algorithm to optimize PoT quantization scales for
LLM weights.

3.1. Step 1: Data-Agnostic Scale Initialization

The primary difficulty in PoT quantization is the highly non-
smooth error surface with respect to the scaling factors S,
This is due to the round(log,(-)) operation in Equation (1),

where small changes in S(l) can cause discrete jumps in

the assigned exponent El(]), leading to abrupt changes in
reconstruction error (Figure 4, middle, in Appendix). This
makes gradient-based optimization of scales from scratch
unstable and ineffective. Moreover, as shown in Figure 4
(right), the optimal scales often differ substantially from

naive choices (e.g., b = 1).

Step 1 addresses this by initializing group-wise scales s*
using only the weight statistics, without any calibration data.
For each weight group W g,y (a contiguous subvector of G
weights from a column of W(l)), we seek a scale multiplier
b* that minimizes the L2 reconstruction error:

—~ 2
b = arg min | Wop = Waro(®)| . @)
beB 2

where the reconstructed group is ngup(b) = (sp - b) -
Pyroup © 2Ezroup (b) Pyroup = sign(Wroup) stores the signs,
and Egroup (b) are the exponents calculated using the candi-
date scale sg - b as per Equation (1). The base scale s is
in the group with the maximum PoT level 29 —1if b = 1.
We perform a grid search for b over a discrete set of mul-
tipliers B = {0.01 -4 | 4 = 1,...,200}. This range for b
(0.01 to 2.00) allows sufficient flexibility to adjust sg. The
optimal scale for the group is s* = sg - b*. This search
is performed independently and can be fully parallelized
across all groups in W), yielding the initial scale matrix
S® . Alg. 1 (Appendix) details this process.

setto sg = , which aligns the largest magnitude

3.2. Step 2: Data-Dependent Fine-Tuning

The scales S from Step 1 are optimized for weight re-
construction error but may not be optimal for preserving
the layer’s output function due to complex interactions with
input activations X. Step 2 refines these scales using a small
calibration dataset. This is a lightweight fine-tuning stage
that learns a low-dimensional residual adjustment I' for the
scales, avoiding costly full model retraining.

Let X be the input hidden states to layer [. The layer’s
operation (e.g., a linear transformation in attention or MLP
blocks) is denoted by F (W ¥, X). We aim to minimize
the Frobenius norm of the output difference:

Y I R o
3)

where )\ is an L2 regularization hyperparameter for I'. The
refined group-wise scale Sgé) (T") is parameterized as:

SV =8 (1+1y), )

where SE? are the robust scales from Step 1. The learn-
able parameter T';; shares the same group structure as the
scales (i.e., one I' value per group) and is initialized to
zero. The dequantization process then uses these refined
scales S(l)(l") to compute exponents EE?(I‘) and recon-
struct weights Wfé) (T'). The rounding in Equation (1) is
non-differentiable. We use the Straight-Through Estimator
(STE) (Bengio et al., 2013) for the gradient of E{ with

0] )

respect to S(l 85;1) A 65(1) log, (' s(éj)v l) = _7S<.’.>11n2'
This allows end-to- end backpropagatlon to optimize 1‘? This
step is highly efficient, learning only one scalar per weight
group (e.g., for a group size of 128, this is 128 x fewer pa-
rameters than learning individual weight adjustments). It
typically converges in a few epochs with a small calibration
set (e.g., 128 sequences). Alg. 2 (Appendix) provides the
procedure.

+5 T,
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Figure 1: The two-step POT-PTQ algorithm. Step 1: Data-agnostic scale initialization adjusts scales by aligning weight
matrices to minimize reconstruction error per group. Step 2: Data-dependent fine-tuning refines these scales by aligning
layer outputs using a minimal calibration dataset, learning a small residual adjustment.

4. Efficient Dequantization for PoT

A significant advantage of PoT quantization is its potential
for highly efficient dequantization, which is critical for ac-
celerating inference, especially the GEMM operations that
dominate LLM computation. Conventional uniform quanti-

zation reconstructs weights as WO = (Wg) —Z) 0S.uniform,

where Wg) are integer quantized values, Z is an integer
zero-point, and Sypiferm 1S @ floating-point scale. Dequanti-
zation involves floating-point subtraction and multiplication,
which can be a bottleneck.

In our PoT scheme, weights are reconstructed as W(l) =
SWo(—1)% 028 Here, S() are the FP16 scales from our
two-step optimization, Sy is the stored sign bit, and E, ) is
the integer exponent value derived from the n-bit quantized
representation. The key insight is that the multiplication by
2B« can be implemented by directly manipulating the ex-
ponent field of the FP16 scale S() using integer operations,
rather than performing an FP16 multiplication.

An FP16 number z is stored with a sign bit, a 5-bit exponent,
and a 10-bit mantissa. Its value is

x = (—1)sien i gexponentval=bias . (1 mantissa_bits).

The bias for FP16 is 15.

To dequantize a PoT value (sign Sy, integer exponent F,)
and combine it with an FP16 scale

s=(=1)%.2F715 .1 M,
the dequantized value is:

g - (_l)sw . 9Bw — (_I)SSGBSW . (Es—15)+Ey | 1. M.

FP16 Dequantization
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Figure 2: PoT dequantization (3-bit example: 1 sign, 2
exponent bits) for FP16 reconstruction. The quantized sign
(Sp) and exponent value (from F; E5) are combined with
the FP16 scale s by manipulating s’s bit representation using
integer arithmetic (exponent addition, sign XOR).

This means the PoT dequantization effectively becomes:

1. Extract PoT components: From the n-bit storage,
extract the sign bit S,, and the bits representing E,,,.
Convert these bits to the integer F,,.

2. Modify FP16 scale via integer ops:

* Treat the 16-bit representation of the scale s as an
integer.

* Add FE,, to the 5-bit exponent field of s. This is
an integer addition on a sub-field of the 16-bit
integer.

¢ XOR the sign bit of s with S,,.

This process, depicted conceptually in Figure 2, avoids any
floating-point multiplication for the 25+ term. The entire de-
quantization per element can be implemented with a few bit-
wise and integer arithmetic operations, making it extremely
fast on GPUs.
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5. Experiments and Results

We evaluated POT-PTQ on LLaMA1 (Touvron et al., 2023a)
and L1ama2 (Touvron et al., 2023b) (7B, 13B, 30B param-
eters) for 2-bit and 3-bit weight-only PTQ (average 2.25
and 3.25 bits per weight, including sign and shared scales).
Group size G was 128. Step 2 calibration used 128 se-
quences (2048 tokens each) from WikiText-2 (Merity et al.,
2016) for 10 epochs (3-bit) or 40 epochs (2-bit). All quanti-
zation was performed on a single NVIDIA V100 GPU. Base-
lines include RTN (Dettmers et al., 2022b), GPTQ (Frantar
etal., 2023), AWQ (Lin et al., 2024), and OmniQuant (Shao
et al., 2024). Further details are in Appendix A.3.

Perplexity Evaluation. Table 1 details WikiText-2 per-
plexity (PPL) results. POT-PTQ consistently achieves lower
(better) PPL compared to strong uniform PTQ baselines,
particularly excelling in the challenging 2.25-bit regime
where some alternatives like AWQ falter. Our approach
often matches or surpasses even the best-performing uni-
form methods like OmniQuant at these ultra-low precisions.
Critically, naive adaptations of existing PTQ methods for
PoT representations yield very poor PPL (see Table 4 in
Appendix), confirming the necessity of our specialized two-
step optimization for effective PoT quantization.

Table 1: WikiText-2 perplexity (PPL) of 2- and 3-bit quan-
tized LLaMA models. Baselines use uniform quantization;
PoT is our POT-PTQ. Lower is better. Our method shows
strong performance, especially at very low bit-widths.

Bits Model Size RTN GPTQ AWQ OMNI PoT

7B 7.01 6.55 6.46 6.16  6.12
LLaMA1 13B  5.88 5.62 551 546 542
3.25 30B  4.87 4.80 4.63 458 450

7B 6.66 6.29 6.24 6.21 6.03
13B 5.51 5.42 5.32 528 524

LLaMA2

7B 19e3 4401 2.6x10° 977 979
LLaMAT 13B 7812 156 2.8x10° 7.93 796
225 30B 68.04 1092 2.4x10° 7.3  7.01

7B 42e3 3677 2.2x10° 1123 11.03

LLaMA2 13B 122.08 28.14 1.2x10° 833 829

Harness Evaluation. On the Open LLM Leaderboard
common sense reasoning tasks (Table 5, Appendix), POT-
PTQ generally matches or slightly outperforms OmniQuant
on average scores across multiple LLaMA model sizes and
bit-widths. This indicates that POT-PTQ effectively pre-
serves not just language modeling fluency but also broader
reasoning capabilities.

Ablation Study. To isolate the effect of each step, we per-
form an ablation study on 2-bit LLaMA1-7B and 13B models
(Table 2). Step 1 alone (agnostic initialization) yields rea-
sonable results, demonstrating the effectiveness of our scale
grid search. Step 2 alone, without proper initialization, per-

forms poorly due to suboptimal starting points. The best
performance is consistently achieved by combining both
steps, confirming their complementarity: Step 1 provides
a strong initialization, while Step 2 refines it with minimal
calibration.

Table 2: Ablation study on LLaMA models (2-bit quantiza-
tion). PPL on WikiText-2. Step 1: scale initialization; Step
2: calibration fine-tuning. Both steps are crucial for optimal
performance.

Model Step 1 (Init)  Step 2 (Tuning)  Perplexity

408,838.25
20,135.70
51.87

9.79

40,328.34
8,267.57
103.45
7.96

LLaMAT 7B

LLaMA1 13B

Nx N% [N % N %
NN X X% | NN % X%

Dequantization Speed. Our custom PoT dequantization
kernel, implemented using efficient bitwise and integer op-
erations as described in Section 4, was benchmarked on
NVIDIA V100 and RTX 4090 GPUs. Table 3 shows warp
cycles for dequantizing a block of weights. Compared to a
standard FP16 dequantization for uniformly quantized in-
tegers, our PoT kernel achieves a 3.67x speedup on V100
and 1.63x on RTX 4090. This demonstrates the signifi-
cant inference-time advantage of our hardware-friendly PoT
approach.

Table 3: Dequantization efficiency (warp cycles per block).
PoT (Ours) is significantly faster due to integer-based oper-
ations. Speedup: 3.67x on V100, 1.63x on RTX 4090.

GPU Arch. Uniform (FP16) PoT (Ours)
Tesla V100 Volta 110 30 (3.67x)
RTX 4090 Ada 98 60 (1.63x)

The entire POT-PTQ quantization process for LLaMA1-7B
(both steps) completes in approximately 0.71 hours on a
single V100 GPU, highlighting its practicality. The fine-
tuning efficiency of Step 2 is further detailed in Table 6
(Appendix), showing rapid convergence.

6. Conclusion

POT-PTQ introduces an effective two-step post-training
quantization framework for Power-of-Two (PoT) repre-
sentations in LLMs. It first derives robust, data-agnostic
scales via grid search, followed by lightweight, data-driven
calibration. This design enables state-of-the-art accuracy
at ultra-low bit-widths (2-3 bits), outperforming uniform
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baselines in perplexity and downstream tasks. Addition-
ally, our integer-only PoT dequantization kernel offers sub-
stantial speedups (up to 3.67x on V100, 1.63x on RTX
4090). Combining high accuracy and efficiency, POT-PTQ
is a practical solution for deploying LLMs in resource-
constrained settings.

Impact Statement

This work aims to make large language models more com-
putationally efficient and accessible, potentially broadening
their beneficial applications while reducing energy consump-
tion associated with their deployment. We do not foresee
direct negative societal impacts arising from the quantiza-
tion methodology itself. Ethical considerations related to
LLM applications generally remain relevant.
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A. Appendix
A.1. Additional Figures
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Figure 3: Left: Density distribution of the first weight matrix in LLaMA-7B, exemplifying the bell-shaped or exponential
decay commonly observed in LLM weight distributions. Middle: Quantization levels for power-of-two (PoT) quantization,
showing finer resolution near zero, aligning well with the distribution’s high-density region. Right: Quantization levels for
uniform quantization, which allocate levels evenly and poorly capture the dense region near zero.
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Figure 4: Left: Illustrative loss comparison for Step 1, showing the benefit of careful scale initialization versus a naive
approach. (Original caption: ”Loss in Stepl O/W Step 1) Middle: Loss curve of 3-bit PoT quantization as a function of the
scale multiplier b, showing non-smooth transitions due to discrete exponent rounding. Right: Histogram of optimal scaling
multipliers b* found during Step 1. Many deviate significantly from the naive choice b = 1, underscoring the importance of
the grid search.
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A.2. Algorithms

Algorithm 1 Parallel Data-Agnostic Scale Initialization (Step 1)

1: for each weight group Wy, in parallel do

W'l’UU .. .

20 s+ 7mz;>; — . o > Initialize base scale
3: B+ {0.01-i|i=1,...,200} > Set candidate multipliers
4: QMM < 0o > Initialize minimum error
5: for each b € B do
6: Sp ¢ S0+ b > Compute candidate scale
7: E(b) + clamp (round (logy (|Wgroup| /55)) ; 0, Gmax)
8: Wroup(b) <= sp - sign(Wgroup) © 2E(®)

— 2
9: Q1) < | Watoup = Weroup (0)]|
10: if Q1(b) < QTin then
11: Q™ <+ Q1(b)
12: b* b
13: end if
14: end for
15: 5% s - b* > Optimal scale for this group
16: Store s* into the corresponding position in S()
17: end for

18: return SO

Algorithm 2 Fine-Tuning the Learnable Parameter I" for Scaling Factors (Step 2)

1: Initialize: T" < O (with same group structure as scales)

2: Set Parameters: Learning rate 7, weight decay A, epochs NV

3: for epoch = 1to N do

4: for each calibration batch X do

5: Compute original output: Heyig < F (WO X)

6: Update scales: S() <~ S o (117 4 T) (element-wise, respecting group structure for I")
7: Quantize exponent using SO:

8 EW(T) « clamp(round (logy(|W | /SU(T))), 0, gmax)

9 Dequantize using S®) and E?)(T): W(l)(I‘) —SO((oPo 2E"(M)

10: Compute quantized output: Hayan < F (W(l) (1), X)
11: Compute loss: Q2(T') « || Horig — Hauane||> + 5[|IT[|%
12: Update T via gradient descent (using STE for E()(T"))
13: end for

14: end for

15: Return: Refined scale matrix S0 = S® o (117 +TI')

A.3. Experimental Setup Details

We evaluate POT-PTQ on LLaMA1 (Touvron et al., 2023a) and L1ama2 (Touvron et al., 2023b) models with 7B, 13B, and
30B parameters. The method targets ultra-low precision quantization at 2 and 3-bit levels (specifically, average bits of 2.25
and 3.25, which includes one sign bit and 1.25 or 2.25 exponent bits on average due to grouping and scale storage). All
quantization and calibration procedures are performed on a single Tesla V100 GPU (32GB), while kernel benchmarks are
additionally run on an RTX 4090 to assess inference efficiency.

Step 1 (Data-Agnostic Initialization): A grid search over the interval [0.01, 2.00] with step size 0.01 is performed for the
scale multiplier b for each quantization group (group size = 128) to identify the optimal initial scale s* = s( - b*. Step
2 (Data-Dependent Fine-Tuning): Using 128 randomly sampled 2048-token sequences from WikiText-2 (Merity et al.,
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2016), we apply light fine-tuning. The Adam optimizer is used with a learning rate set to 1 x 1073, and weight decay for T’
is 1 x 10—, Fine-tuning is run for 10 epochs for 3-bit quantization and 40 epochs for 2-bit quantization.

A.4. Additional Experimental Results

Table 4: Perplexity of baseline PTQ methods adapted to PoT format versus our PoT method (POT-PTQ). Naive adaptations
degrade performance significantly, demonstrating the importance of a PoT-specific optimization strategy.

Avg Bits Model Size AWQ_POT GPTQPOT OMNIPOT PoOT-

PTQ
7B 6.52 8.27 x 10* 6.37 6.25

LLaMAT 13B 5.61 5.85 x 10* 5.60 5.50

3.125 30B 4.72 2.61 x 10* 475 4.58
Llamap /B 649 NaN 6.46 6.22

13B 5.43 6.41 x 10* 545 5.34

7B 2.69 x 10° 2.92 x 10° 888 10.86

LLaMAT 13B 2.80 x 10° 1.83 x 10° 487 8.54

2.125 30B 2.39 x 10° 1.44 x 10° 297 7.47
Lamay 7B 224 % 10° 2.78 x 10° 3730 12.80

13B 1.27 x 10° 1.03 x 10° 812 9.18

Table 5: Harness evaluation on six common sense reasoning tasks comparing PoT (POT-PTQ) and OmniQuant under
3.25-bit and 2.25-bit settings. Scores are accuracies (%). Bold indicates better performance. POT-PTQ generally maintains
or improves performance, indicating robust preservation of model capabilities.

Model Method Avg Bits = 3.25 \ Avg Bits = 2.25
arc-c arc-e boolqg hs piga wg Avg ‘ arc-c arc-e boolg hs piga wg Avg
LLaMA1 7B Omni 356 648 711 539 772 645 612 | 267 521 622 40.7 672 555 50.7
PoT 358 641 709 543 715 652 613 | 281 501 644 40.1 679 573 513
LLaMAT 13B Omni 398 727 670 568 772 687 637 | 313 60.1 631 461 720 61.8 557
PoT 40.7 718 656 570 788 703 64.0 | 30.1 595 661 456 703 627 557
LLaMA1 30B Omni 460 741 712 613 79.6 741 677 | 324 656 66.1 499 723 629 582
PoT 472 737 716 608 80.1 750 68.1 | 338 649 668 502 731 625 585
L1ama2 7B Omni 373 67.6 712 545 765 657 621 | 260 450 612 394 645 544 484
PoT 381 663 720 552 763 66.6 624 | 258 521 638 403 652 542 502
Llama2 13B Omni 419 1723 699 578 78.0 677 646 | 300 570 637 445 68.0 53.1 527
PoT 4.5 707 701 580 792 683 648 | 294 569 682 434 688 569 539
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Table 6: Epoch-wise perplexity (PPL) and loss on WikiText-2 calibration data for LLaMA1-13B during Step 2 of POT-

PTQ. Our output-aligned fine-tuning objective consistently reduces perplexity and loss with only 128 calibration samples,
demonstrating the efficiency of Step 2.

Epoch 3-bit PPL 3-bit Loss 2-bit PPL 2-bit Loss

1 6.85 6.21 1.01x10°  25.75
2 5.93 3.86 3209.49 20.45
3 5.70 3.02 239.27 17.13
4 5.59 2.54 94.25 15.39
5 5.54 227 49.95 13.50
6 5.51 2.13 31.46 11.99
7 5.49 2.04 23.30 10.55
8 5.48 1.97 18.27 9.60
9 5.48 1.93 15.31 8.65
10 5.48 1.90 12.90 7.89
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