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ABSTRACT

The emerging paradigm of scaling test-time compute–enhancing model perfor-
mance by scaling up chain of thought reasoning–is gaining significant traction in
the deep learning community. While effective, these methods incur substantial
computational costs at inference time due to the quadratic memory complexity of
Transformers with respect to sequence length. Recently, subquadratic architec-
tures such as Mamba have emerged which approach the performance of Trans-
formers on language tasks while showcasing significant improvements in compu-
tational efficiency on long sequences. In this paper, we present the first empirical
investigation into test-time compute scaling for subquadratic architectures. Our
findings reveal that while these models do benefit from increase test-time com-
pute, their gains are consistently lower than those observed in Transformers. We
find that this limitation is correlated with their reduced capabilities for in-context
associative memory, which hinder reasoning over extended sequences. These re-
sults shed light on the trade-offs between computational efficiency and reasoning
capabilities in modern architectures, providing a foundation for future research on
designing models for both test-time compute scalability and long-chain reasoning.

1 INTRODUCTION

Just as neural scaling laws for training compute were beginning to plateau, OpenAI’s o1 pointed the
community to a novel paradigm based on test-time scaling, also referred to as inference scaling Ka-
plan et al. (2020); Henighan et al. (2020); Hoffmann et al. (2022); OpenAI et al. (2024). DeepSeek’s
subsequent release of R1 further invigorated research by providing thorough details on the training
process of reasoning models DeepSeek-AI et al. (2025). As such, there has been a rapidly grow-
ing list of strategies for scaling test-time compute, the vast majority of which hinge on leveraging
a model’s internal chain of thought to “reason” before providing a final answer Wei et al. (2022).
These methods have all been shown to drastically improve the performance of models, especially on
tasks such as mathematics and coding with verifiable rewards Shao et al. (2024).

These test-time scaling methods can be categorized broadly into two main branches: sequential
and parallel. Sequential scaling refers to increasing the length of a single chain-of-thought, where
the model is trained to utilize or independently discovers techniques such as backtracking and self-
reflection to improve the quality of the response Kumar et al. (2024); Muennighoff et al. (2025).
This can achieved in a number of different ways, most notably through the use of reinforcement
fine-tuning in DeepSeek-R1 and budget forcing in s1. Parallel scaling refers to increasing the num-
ber of chains of thought, with a fixed or learned strategy to combine answers by searching through
completed responses to identify the best response candidates or average to reduce variance in re-
sponses Snell et al. (2024); Brown et al. (2024). More advanced methods attempt to combine these
methods together by encouraging the model to search over multiple chains of thought simultaneously
during generation and allow each chain-of-thought to learn from the others’ mistakes/reasoning Xie
et al. (2024). Further yet, there exist some additional approaches to test-time scaling which allow
the model to ”reason” on internal representations without outputting tokens altogether Hao et al.
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(2024). These methods have various advantages and disadvantages, and it is an area of active re-
search to determine which methods are best-suited for a given task, model, and compute budget.

However, regardless of the specific test-time scaling approach, it remains the case that these boosts
in reasoning capabilities always come at a great computational cost. For instance, OpenAI’s o3
model was able to score an unprecedented 87.5% on the famous ARC-AGI benchmark, but this
came at the cost of more than $3000 per problem OpenAI (2024); Chollet (2019). This inference
cost is directly tied to the quadratic complexity of the Attention mechanism, which computes the
relation between every token in a sequence resulting in a memory complexity of O(L2) and time
complexity of O(L2D), compared to feed-forward layers which scale as O(LD2), where L and D
are the sequence length and embedding dimension respectively. Thus, as we scale to more or longer
chains-of-thought, the total amount of compute spent on each new token within each chain scales
quadratically.

To circumvent this, we propose the usage of Attention-free architectures such as Mamba or Mamba2,
also referred to as subquadratic architectures due to their complexity scaling subquadratically with
sequence length Gu & Dao (2023); Dao & Gu (2024). These architectures have been shown to
closely match the performance of Transformers on many language tasks, and have been shown to
be performant in a slew of other tasks Liu et al. (2025); Ma et al. (2024); Nguyen et al. (2024); Yan
et al. (2024). The development and popularization of this architecture has reinvigorated research
into recurrent neural networks, resulting in a flurry of new subquadratic architectures Yang et al.
(2023); Sun et al. (2023); Peng et al. (2023); Yang et al. (2024c); Beck et al. (2024). Additionally,
recent methods have demonstrated that one can effectively distill from pre-trained Transformers into
Mamba and other subquadratic architectures using supervised fine-tuning Wang et al. (2024); Bick
et al. (2025); Zhang et al. (2024). These distilled models outperform subquadratic models trained
from scratch by leveraging the performance and optimization of high-quality models such as Meta’s
Llama series to develop highly performant subquadratic models with a limited compute and data
budget Dubey et al. (2024).

While these architectures can match Transformers on most tasks, recent works have identified a clear
performance gap between Mamba and Transformers on in-context learning tasks. In particular, these
architectures struggle on language tasks requiring associative memory such as selective copying
and multi-query associative recall Arora et al. (2023); Jelassi et al. (2024), where the model must
be able to effectively recall information seen only at inference time. This calls back to research
directly connecting Attention to the Hopfield Network Hopfield (1982), the canonical associative
memory device Ramsauer et al. (2020). Empirical researchers have developed a suite of synthetic
tasks that highlight differences between Mamba and Transformers while theoretical researchers have
formally proven that transformers are strictly more expressive Arora et al. (2024); Poli et al. (2024).
Simply put, the finite size of Mamba’s hidden states limits its memory capacity. However, it is still
unclear what impact this associative recall gap has on the performance of the model in real-world
applications. Furthermore, researchers have found that hybrid models composed of Mamba layers
interleaved with Attention layers can alleviate this associative recall gap in language tasks while
retaining much of the computational gains Lieber et al. (2024); Ren et al. (2024); Glorioso et al.
(2024).
In this work, we provide the first exploration into the efficacy of test-time scaling on these sub-
quadratic architectures. To our surprise, we find that subquadratic architectures systematically un-
derperform Attention-based architectures on mathematical reasoning tasks, something that has not
been addressed in the literature. We experiment with hybrid models interleaving Attention with
Mamba layers and find that increasing the percentage of Attention in the architecture monotonically
improves performance. Through a series of synthetic tasks, we find that this poor performance is
closely tied to the models’ poor performance on in-context associative recall, highlighting a close
relationship between associative memory and effective chain-of-thought reasoning. This suggests
that these subquadratic architectures would be poor candidates for reasoning tasks, and highlights
the need for subquadratic architectures with better associative memory capabilities in the era of
test-time scaling.

2 TEST-TIME SCALING OF SUBQUADRATIC ARCHITECTURES

We evaluate the efficacy of test-time scaling by increasing the number of parallel chains of thought.
We put a specific focus on majority voting, also known in the literature as self-consistency, to in-
crease model accuracy by selecting the majority response over N samples thereby reducing variance
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Figure 1: Test-Time Sample Scaling of Llama3, Mamba2, and hybrid models on GSM-8K.

in the responses and masking individual mistakes Wang et al. (2022). We also show results for other
parallel test-time scaling methods such as weighted voting using an outcome reward model in Ap-
pendix A.2. We examine 8B Mamba / Mamba2 based architectures distilled from Meta’s Llama3-
8B-Instruct model Dubey et al. (2024). The distillation procedure consists of distilling the weights
from the teacher to the student, supervised fine-tuning Kim & Rush (2016), and direct preference
optimization Rafailov et al. (2023). This method of distilling architectures has been shown to out-
perform Mamba / Mamba2 models trained from scratch and closely matches the performance of
Llama3-8B-Instruct on language tasks Wang et al. (2024). Furthermore, it enables a fair comparison
between architectures based on Mamba2 and Attention. To systematically probe the importance of
the Attention mechanism, we also assess 3 hybrid architectures respectively interleaving Mamba2
and Attention layers in the following ratios: 50% / 50%, 75% / 25%, and 87.5% / 12.5%. For a fair
comparison, we also compare these models to the performance of Llama3-8B-Instruct which has
100% Attention layers. Results for Mamba models are shown in Appendix A.2.

We assess the performance of these models on standard mathematical reasoning datasets GSM-8K,
high-quality grade school math word problems Cobbe et al. (2021). We also show results for the
MATH-500 dataset, composed of more difficult competition-level math problems, in Appendix A.2
Hendrycks et al. (2021). We gauge performance as a function of the number of samples (per ques-
tion). We present our key results in Figure 1, demonstrating a monotonic increase in performance
as we increase the amount of Attention layers. We find that the pure Mamba2 architecture performs
poorly on the GSM-8K dataset, with its normal prediction performance hovering below 10%. Even
as we scale test-time compute by increasing the number of samples, majority voting is only able
to improve prediction performance to below 20%. On the other hand, the hybrid architecture with
12.5% outperforms the pure Mamba2 model even with a single sample, with significant improve-
ments as we increase the number of samples up to above 60% at 128 samples. Increasing the ratio
of Attention strictly increases performance, with the lower Attention models seeming to saturate in
performance at lower accuracy values.

In order to account for the inference efficiency of Mamba2, we also assess the performance of
the model as a function of compute. Due to the difficulty of computing FLOPs for the hybrid
architectures, we elect to utilize wall-clock time as a surrogate for time complexity. This enables us
to assess whether the computational gains of Mamba2 can compensate for any performance deficits,
and understand whether its test-time scaling with respect to number of samples might differ from
its test-time scaling with respect to compute. We omit the plots for Llama3 as it was implemented
with the inference package vLLM, which was not available for Mamba2 and thus prevents a fair
comparison Kwon et al. (2023). Note that the generated sequence lengths are limited to 768 tokens
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Figure 2: Test-Time Compute Scaling of Mamba2 and hybrid models on GSM-8K.

so for 8B models, the time complexity of the feedforward layers dominates over that of the Attention
layers. Therefore, while increasing the ratio of Mamba2 does boost efficiency, the gains would only
be relevant at longer context lengths. However, we see the models’ performance begin to plateau
already at this scale, indicating that Attention-based architectures will scale better with compute.

3 ASSOCIATIVE MEMORY IS IMPORTANT FOR MATHEMATICAL REASONING

To probe the importance of associative memory in reasoning, we design a set of synthetic mathe-
matical reasoning tasks. In particular, we test the models’ performance on two similar tasks, one
which explicitly requires associative recall (AR) to solve and the other which does not. For each
problem, we generate a set of key-value pairs {(K1, V1), (K2, V2), . . . , (KL, VL)} where each key
is a randomly chosen word from the tokenizer and each value is a random integer. We select unique
natural numbers a, b, c ∈ {1, . . . , L} as indices. Then, we ask the model two separate questions:

1. AR Task: Given the list of key-value pairs, return the value of Ka + Kb + Kc.

2. Non-AR Task: Given the list of key-value pairs, return the value of Va + Vb + Vc.

The first question requires associative memory to identify the values associated with each key, and
then do some basic arithmetic. The latter question only requires the model to do arithmetic. We
provide the same list of key-value pairs and indices a, b, c in both questions in order to control for
sequence length, and ensure the model is provided the same information in both tasks. This enables
us to clearly disambiguate arithmetic / logical mistakes from associative recall mistakes. We test
the aforementioned Llama3, Mamba2, and hybrid models on these tasks, assessing the performance
of the models as a function of the number of KV-pairs in Table 1 and number of samples in Figure
3. Note that across all models, the model performs worse on the AR task than the non-AR task.
Furthermore, pure Mamba2 models seem to perform terribly on both the AR and non-AR tasks.

Llama3 Mamba2-50% Mamba2-75% Mamba2-87.5% Mamba2-100%

10 Pairs
No AR 100.0% 98.0% 82.6% 98.8% 4.2%

AR 100.0% 97.4% 71.0% 62.0% 2.0%

20 Pairs
No AR 100.0% 99.4% 91.0% 99.8% 2.2%

AR 99.8% 97.8% 70.8% 33.6% 0.4%

50 Pairs
No AR 100% 99.8% 97.8% 97.8% 2.8%

AR 99.6% 93.8% 53.8% 11.8% 0.6%

Table 1: Performance comparison of Llama3, Mamba2, and hybrid models on synthetic math tasks
(with/without associative recall) with increasing numbers of KV pairs to increase difficulty.
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Figure 3: Test-Time Scaling of Llama3, Mamba2, and hybrid models on AR task with 20 KV-pairs.

4 DISCUSSION

To our knowledge, this paper represents the first exploration of test-time scaling strategies applied to
subquadratic architectures. Shortly after our submission, another paper appeared exploring test-time
scaling in Mamba which we consider concurrent Paliotta et al. (2025). We find that pure Mamba2
models not only have worse baseline performance on mathematical reasoning tasks across the board,
they also barely benefit from test-time scaling methods compared to Transformers. However, we
found that interleaving Attention layers between Mamba2 layers monotonically improved perfor-
mance at baseline and improved test-time scaling, with even the 12.5% Attention model showing
substantial performance increases. Synthetic mathematics tasks were designed to identify the source
of the errors, and we found that Mamba-based models systematically underperformed Attention-
based models on mathematical tasks requiring associative recall. We plan to extend this analysis.

We would like to evaluate the models’ performance on a more fine-grained suite of mathematical
tasks, scaling difficulty via increasing the number and types of operations beyond a simple sum of
three numbers. We would also like to explore distilling from more performant reasoning models,
similar to how small Llama models distilled from DeepSeek-R1 match the performance of o1-mini.
We will also explore alternate reasoning strategies, especially including those based on sequential
scaling of chain-of-thought such as budget forcing or reinforcement fine-tuning to encourage the
model to produce longer, more structured chains of thought. Furthermore, chain-of-thought reason-
ing can be generalized to tree-of-thoughts or graph-of-thoughts for better performance on mathemat-
ical tasks Yao et al. (2023); Besta et al. (2024). Intuitively, we expect these methods to perform even
worse in subquadratic architectures as increasing the sequence length should lead to even lossier
memory. Furthermore, there are other reasoning methods that scale up test-time compute internal
representations without outputting additional tokens Barrault et al. (2024).

We have begun experimenting with reasoning capabilities of other subquadratic architectures men-
tioned in the introduction. Recent works have shown that these architectures can be unified under
the lens of test-time associative recall Yang et al. (2024b); Wang et al. (2025). Among these archi-
tectures, we are interested in exploring architecture which replace the vector or matrix valued hidden
states with nonlinear MLPs trained via a test time associative memory loss, as these seem to match
the accuracy of Transformers while preserving much of the efficiency of recurrent neural networks
Sun et al. (2024); Liu et al. (2024); Behrouz et al. (2024). Through the use of dense associative mem-
ory, there might be ways to even exceed the associative memory capabilities Transformers Krotov
& Hopfield (2016); Chaudhry et al. (2024). We plan to gain insights from these different models to
unpack the relationship between associative memory and reasoning, thereby designing performant
architectures with better test-time scaling laws.

5



New Frontiers in Associative Memory workshop at ICLR 2025

REFERENCES

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

We adapt the Huggingface Search and Learn repository for our scaling methods. Beeching et al..
We also tried a weighted best-of-n scaling method using a Process Reward Model Shao et al. (2024)
but find it scales similar to majority voting. We speculate that this is because the verifier tends to
filter out incorrect answers, which are typically more diverse, while correct answers naturally cluster
together.

We adapt the Qwen2.5-Math repository Yang et al. (2024a) to verify correct answers. This is done
by specifically prompting the language model to reason step by step and answer in a \boxed{}
format.

We use a cluster of H100 GPUs with 80GB of memory. All of these experiments can run on a single
H100 GPU.
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A.2 ADDITIONAL EXPERIMENTS

Figure 4: Test-Time Sample Scaling of Llama3, Mamba2, and hybrid models on MATH500.

Figure 5: Test-Time Sample Scaling of Mamba2-50% on GSM8K with different strategies. Using a
Outcome Reward Model based on Llama3, we score the outputs and retrieve a weighted average in
Weighted Voting or return the answer with the maximum score in Naive Accuracy
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Figure 6: Test-Time Sample Scaling of Mamba hybrid models on GSM8K.
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