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Abstract

U-Net architectures are an extremely powerful tool for segmenting 3D volumes, and the
recently proposed multi-planar U-Net has reduced the computational requirement for using
the U-Net architecture on three-dimensional isotropic data to a subset of two-dimensional
planes. Despite this considerable reduction in model-parameters and training data needed,
providing the required manually annotated data can still be a daunting task. In this
article, we investigate the multi-planar U-Net’s ability to learn three-dimensional structures
in isotropic data from sparsely annotated training samples. Technically, we pick random
training planes intersecting the three-dimensional image and sparsely annotate the pixels
along random lines in each of these planes. We present our empirical findings on a public
domain, electron microscopy data set, which has been fully annotated by an expert, and
surprisingly we find that the multi-planar U-Net with our random annotation strategy on
average requires less than 30% of the annotations. Sometimes less is more!
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1. Introduction

Deep learning methods for the segmentation of 3D image data typically require a lot of
manually labeled data for training, and manual labeling is a very time-consuming process.
Often this is also an inefficient process since similar structures in the images may be labeled
repeatedly, even if the model could learn from fewer samples. In this paper, we investigate
how well a 2D U-Net segmentation model can learn to segment 3D images from only sparsely
annotated label maps.

Over the years the U-Net architecture has been altered to work on a variety of 3D
imaging tasks through a number of different modifications. These range from simply adapt-
ing the architecture to use 3D convolutions (Özgün Çiçek et al., 2016) to a more complex
multi-planar approach that attempts to learn the rotational properties of the data by slicing
through random planes in the volume (Perslev et al., 2019). In all cases, we continue to run
into the limitations that arise due to a lack of annotated data. It is both time-consuming
and expensive to have experts manually annotate large 3D volumes to be able to train
effective segmentation models.

There have been various other techniques to efficiently train CNN segmentation models
from limited and/or sparse data. These include defining loss balancing methods to weigh
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the contributions from each class equally as in (Bokhorst et al., 2019), a more complete loss
function overhaul that facilitates learning from sparse data as in (Kervadec et al., 2019),
or learning from bounding box annotations as in (Rajchl et al., 2017). The common aspect
of many of these methods is that they attempt to extract that extra bit of performance
from the data during the optimization of the model (Bokhorst et al., 2019; Kervadec et al.,
2019). Here, we investigate a different approach that involves improving the dataset itself
via a method more similar to data augmentation.

Aggressive data augmentation is one of the ways we can attempt to counteract the prob-
lems of limited data. The common structural data augmentations (translations, rotations,
flips, shear, scaling, elastic deformations) attempt to capture the structural variability in
the data while visual data augmentations (brightness, contrast, color shift, gamma adjust-
ments, noise, Gaussian blur) attempt to capture the variability in lighting and color as well
as possible imaging artifacts in the data. Elastic deformations in particular (Simard et al.,
2003) have been shown to be useful in medical imaging due to the inherent deformability
of biological structures (Ronneberger et al., 2015).

Structural augmentation is an attempt to estimate the source distribution of image
patches, however, it is often unknown to what extent, the imposed transformations reflect
the true distribution of random image-patches from the data source. The multi-planar U-
Net (Perslev et al., 2019) makes use of the computational efficiency of the 2D U-Net and
includes off-plane training samples, thus better estimating the true underlying distribution
of image-patches in isotropic data. We argue that multi-planar sampling may maximize
the use of the available information in the ground truth images by facilitating a stronger
learning signal.

While typical approaches include fitting a 3D segmentation model to the 3D data di-
rectly, or a 2D model to 2D image-slices along a single axis, such approaches use each
– sparsely available – label only once (i.e., with exactly one image input) in each epoch.
Multi-planar sampling allows each label to appear in a large number of unique, yet biologi-
cally plausible, input image-slices. As many 2D image features are invariant to the rotation
of the 3D image volume (e.g., low-level features such as edges and textures), multi-planar
sampling allows the learning of such features from an expanded training dataset. For some
datasets, such as the biological tissues imaged using electron microscopy that we consider
here, there are no intrinsic orientations of the imaged objects within the volume. In such
cases, most learned features will apply equally well to any 2D image-slice independent of
its orientation within the volume.

In this paper, we investigate the multi-planar U-Net’s (Perslev et al., 2019) ability
to learn from sparse annotations. Our paper is organized as follows: First, we motivate
and formalize our method and the sampling technique. Then we present an empirical
investigation on the relation between the number of annotated pixels and the Dice (Dice,
1945; Sørensen, 1948) score on a public domain, expert-annotated electron microscopy 3-
dimensional dataset. Finally, we give our conclusions.

2. Methods

Multi-planar training with sparse labels is an algorithm for learning a 3D image segmen-
tation model from a training dataset with sparse ground truth segmentation maps. Our
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Figure 1: (a) Mitochondria (green) and 4 annotation-planes, (b) sparsely-labeled volume
used for training-plane generation, (c) an example training-plane (red) that slices
through the sparsely-labeled volume, (d) the weight map for a possible training-
plane to define which pixels contribute to the loss computations.

method is based on multi-planar data sampling as described in (Perslev et al., 2019), which
expands the training dataset by isotropic sampling of the image and label space on 2D
planes of random orientation. Specifically, we fully annotate a small set of randomly selected
annotation-planes from a 3D image, then we choose another set of random training-planes
that are intersected with the annotation-planes. Finally, we fit a 2D fully convolutional
neural network (FCN) inspired by the popular U-Net (Ronneberger et al., 2015) architec-
ture to the training-planes only considering the annotations in the intersecting lines. This
is illustrated in Figure 1. In the following sections, we will discuss the sampling strategies
in detail.

2.1. Random annotation-planes

Given a dataset D = {(I1, L1), ..., (In, Ln)} where Ii ∈ Rw×h×d×C are 3D image volumes
with C channels and Li ∈ Nw×h×d

0 are corresponding label maps, we wish to learn a function
f : I → L̂ where L̂ ≈ L for a new image-label map pair (I, L) drawn from the same (stable)
distribution that generated D. In practice, the label map Li is generated by a human
annotator in an often time-consuming effort. Our method aims to learn an alternative, but
similarly performing function, f∗, from an only partially annotated dataset D∗. Specifically,
each label volume L∗

i ∈ D∗ has a defined label value at voxel x ∈ Rw×h×d, only if x is an
element of a pre-determined set of indices Ai where |Ai| < w · h · d.

We create each set Ai by selecting nannot numbers of 2D planes with random orientation
and location (referred to as annotation-planes), and use these to sample the image volume
Ii. The selected annotation-planes are then fully annotated by a human expert and in union
define the available label map. Because each annotation-plane spans volume Ii at a random
angle and offset from the image center, each label volume L∗

i may be labeled to variable
degrees. For instance, the selected annotation-planes may span beyond the domain of the
image volume, or multiple planes may overlap causing some voxels to be annotated multiple
times.
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2.2. Random training-planes

The decisive feature of our method is the multi-planar sampling of the sparse datasets D∗.
From across all images and label maps (Ii, L

∗
i ) ∈ D∗ we select ntrain number of planes with

random orientation and location (referred to as training-planes), and use these to sample
the image and label-map (Ii,j , L

∗
i,j) where j ∈ [1, 2, ..., ntrain]. We used trilinear interpolation

and nearest neighbour interpolation for sampling the image and label maps, respectively.
An example of a training-plane is displayed in Figure 2.

2.3. Sampling heuristics

For any model to learn a segmentation task, the training set must contain examples of all
classes. In our setup, we generate the annotation- and training-planes according to the
following heuristics:

• Annotation-planes: Randomly chosen uniformly from the set of planes that contain
at least one positive and one negative label. This ensures the model will learn both
classes.

• Training-planes: Randomly chosen uniformly from the set of possible planes that
contain at least one voxel from an annotation-plane. This prevents zero division
in the loss computation when N = 0 (see Equation 1). These are sampled with a
probability of 0.5 that they will contain at least one positive label to ensure there is
some information regarding the positive class in the set of ntrain samples.

2.4. Sparse, multi-planar U-Net training

We use a U-Net based architecture with noticeable modifications from the original archi-
tecture (Ronneberger et al., 2015) being the use of nearest neighbor up-sampling blocks
(Odena et al., 2016) and added batch normalization (Ioffe and Szegedy, 2015) layers. Both
models have 4 down-sampling and 4 up-sampling blocks. The U-Net defined here has a
total of 31,044,289 trainable parameters.

The selected training-planes are input to a 2D U-Net segmentation model with the
modifications defined above. Specifically, the model f∗(Ii,j ; θ) with parameter vector θ
maps an image-slice Ii,j to a probabilistic segmentation map L̂i,j ∈ R256×256×K with K
classes (referred to as prediction-planes). K = 2 in our experiments. No information
was supplied to the model regarding the orientation of each input slice. Consequently, to
successfully minimize the loss function, the segmentation model must learn to segment the
image volumes as seen from all orientations defined in the training-planes.

We minimize a masked cross-entropy (CE) loss function defined by,

E(L̂i,j , L
∗
i,j) =

1

N

∑
x

wxCE(L̂i,j,x, L
∗
i,j,x), (1)

where x is an index into the 2D image-slice, wx is 1 if the voxel at index x is annotated
(i.e., x ∈ Ai) and 0 otherwise, and N =

∑
wx is the number of such annotated pixels in the

given slice. We evaluated L on batches of 4 slices. Data augmentations are performed on
the fly and include a combination of flips, rotations, scaling, brightness, contrast, gamma
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Figure 2: An example of a training-plane taken from the electron microscopy mitochondria
dataset. (a) Randomly oriented slice through the sparsely annotated volume, (b)
the corresponding label map, (c) the corresponding binary weight map, (d) label
and weight maps overlayed on the image-slice.

adjustments, and random noise. We used the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of η = 10−5 and default β1 = 0.9, β2 = 0.999 and ε = 10−7 parameters.
We monitored the performance of the model on a held-out validation set of nannot/2 image-
slices. Optimization continued for 22400 gradient updates. The best observed model (as
per validation performance) was selected for further analysis on a held-out test set.

At test-time, the learned invariance is exploited further by segmenting the target vol-
umes multiple times. Specifically, the model is used to predict along 3 randomly chosen
views, V = {v1, v2, v3} with v ∈ R3 and ||v|| = 1, establishing a set of 3 proposal segmen-
tation volumes P = {Pv ∈ Rw×h×d×K | v ∈ V }. Each Pv is re-aligned with the voxel grid
and the single volume P = arg maxK(mean(P)) is considered the final segmentation.

3. Datasets

For empirical evaluation of the network’s ability to learn from a varying number of anno-
tations, we consider the task of mitochondrial binary segmentation in electron microscopy
images of a 5× 5× 5µm CA1 hippocampus region of a rodent brain (Lucchi et al., 2013).
The dataset consists of two annotated 165×768×1024 sub-volumes with a voxel resolution
of approximately 5 × 5 × 5 nm. The two volumes define the training and testing sets of
our experiments, respectively. Given that we have ground truth annotations available for
the full volumes, we simulate the process of creating sparse dataset D∗

1 (i.e., labeling only
the voxels in Ai) by taking values along these randomly oriented annotation-planes from
the already annotated volumes and ignoring all other annotations. Finally, we evaluate our
method on a separate cardiac dataset (Simpson et al., 2019) consisting of 20 mono-modal
MRIs of dimension 320 × 320 × z, where z varies between 90 and 130 depending on the
scan. The cardiac dataset tests if the network can learn to segment objects with high shape
variation across views.
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4. Experiments and Results

We tested the performance of models obtained from our proposed method as a function of
two hyperparameters:

• Degree of label sparsity: We fitted and evaluated models trained on dataset D∗ with
each label map L∗

i defined in Ai spanning nannot = {4, 8, 12, 16} random image-slices.

• Number of sampled image planes: From each sparsely annotated dataset, we generated
ntrain ∈ {0, 128, 256, 384, 512} random 2D image-slices using the multi-planar sampling
algorithm. ntrain = 0 is a notation we use for the base case, where the annotation-
and training-planes coincide, such that we do not make use of the off-plane sampling
but train on the fully annotated annotation-planes.

We tested all combinations of nannot and ntrain for a total of 20 experimental setups. When
the number of sampled training-planes ntrain = 0 the model is fit to only the nannot fully
annotated planes. In all other cases, each model observes only the sampled sparse training-
planes.

Mitochondrial segmentation: We evaluated the performance of each experimental con-
figuration on the held-out test set containing four 165 × 165 × 165 volumes. The training
volume is split into 4 sub-volumes of dimensions 165 x 448 x 448. We did 12 experimental
runs using train-validation pairs from these 4 volumes. In each repetition, the sparse label
volumes L∗

i were randomly re-created by selecting new random annotation-planes from each
image volume xi. A new training dataset was created in each repetition by sampling a new
set of training-planes. The parameter vector θ was randomly initialized before training in
each repetition. We report the mean and standard deviation F1/Dice (Dice, 1945; Sørensen,
1948) scores and the mean and standard deviation of the number of annotated pixels across
the 12 repetitions. For further validation, additional metrics (sensitivity, specificity, average
surface distance) as well as examples of predicted masks are included in Appendices A and
D, respectively.

As was to be expected, the performance for the mitochondria segmentation task improves
as both the number of initial annotation planes and the number of generated training planes
increases, see Figure 3.

As a peculiarity, we note that models trained with nannot = 4 and ntrain = 0 have the
highest variability (standard deviation of 0.2280 and median absolute deviation of 0.1106)
and lowest scores (mean of 0.6493 and median of 0.6979). This suggests a difficulty during
optimization and is the result of some of the experimental runs overfitting to the 4 samples
in the training set, thus performing poorly on the held-out test set.

Surprisingly, we see that we can achieve nearly the same performance with nannot = 4
and ntrain = 512 as we can with nannot = 16 and ntrain = 0 (0.8974 and 0.8985 respectively).
Consequently, this means that with this dataset we can achieve roughly the performance
of 16 manually annotated planes with only 25% of the manual segmentation effort. Inter-
estingly, models trained with nannot = 4 and ntrain = 512 have, on average, more than 70%
fewer annotated pixels in the dataset than those trained with nannot = 16 and ntrain = 0 yet
the model still performs just as well. Impressively, the highest Dice score achieved, 0.9245,
(when nannot = 16 and ntrain = 512) is comparable to the score of 0.9288 achieved with full
supervision in (Lucchi et al., 2013).
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Figure 3: (a) Mean number of annotated pixels in the set used to train each model, (b)
Mean Dice scores on the held-out test set, (c) Best fit plane through mean Dice
scores using log of nannot and ntrain, (d) Standard deviation of the number of
pixels used to train each model, (e) Standard deviation of Dices scores on the
held-out test set, (f) Best fit plane through the standard deviations of Dice scores
using log of nannot and ntrain.

Finally, we fitted functions to the mean and standard deviation of the Dice scores as a
function of nannot and ntrain:

fmean(nannot, ntrain) = 0.02025 · log nannot + 0.00848 · log ntrain + 0.81093 (2)

fstd(nannot, ntrain) = −0.00999 · log nannot +−0.00319 · log ntrain + 0.05952 (3)

These functions are visualized in the last row of Figure 3 on a non-logarithmic scale. Al-
though based on only a few samples, the increase in mean Dice score and decrease in
standard deviation by nannot and ntrain seems to follow a simple law, which supports the
view, that the more unique planar views that we give to the model, the more likely we will
arrive at a well-converged model. It is of course expected that beyond our tested range
(nannot > 16 and/or ntrain > 512) we will begin to see significant diminishing returns.

Cardiac segmentation: We performed a similar set of experiments on the caridac dataset.
Out of the 20 available MRIs four were set aside and used as the held-out test set. The
remaining 16 volumes were divided into 12 training volumes and 4 validation volumes. This
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was repeated 12 times with different train-validation splits. The results are included in
Appendix B. Overall, the results follow the pattern observed on the mitochondria dataset
with increasing performance as a function of both ntrain and nannot. With nannot = 16
and ntrain = 512 the model achieves a mean dice score of 0.83. For comparision, a fully
supervised multi-planar model achieves approximately 0.89 (Perslev et al., 2019) although
on a separate, non-public test-set.

3D U-Net: For comparison, we also trained 3D U-Net models with equivalent sparsity on
the mitocondrial dataset. Results and additional training details are included in Appendix
C. Evaluation numbers result from a single, non-repeated evaluations of each experimental
setting. Based on these preliminary results, the 3D U-Net also performs well on the highly
sparse datasets with maximum observed dice scores matching those of the multi planar
model. However, we observe larger variability and lower minimum dice scores compared to
the multi-planar U-Net. The training time for the 3D model takes approximately 2 hours
and 45 minutes, while the multi-planar version takes 1 hour and 5 minutes.

5. Discussion

Segmenting data in 3D is usually the first step in analyzing 3D medical data. As such, we
must do this in a way that is both time-efficient for the doctor/researcher as well as accurate
enough for their needs. The study and method described in this paper are important to
give us an understanding of how we can improve segmentation performance without any
additional manual effort.

With the multi-planar U-Net (Perslev et al., 2019) we can achieve a good segmentation
of a 3D volume via a 2D U-Net from only sparsely annotated samples. The multi-planar
U-Net has two important advantages over traditional 2D U-Nets applied to 3D data:

• Not only can we learn in-plane rotational invariance via rotational data augmenta-
tions, but out-of-plane rotational invariance via planar sampling is also learned. As
a result, the multi-planar method is better than a standard 2D U-Net at learning 3D
structures in the data regardless of their local orientations.

• Sparse sampling also increases dataset variability while reducing the number of re-
peated annotations, thus preventing overfitting to these repeated structures.

It is evident from the results above, that improving the segmentation accuracy is as
simple as creating a more varied, less repetitive dataset. One interesting observation is that
even though the tests with up to ntrain = 512 perform better, they have, on average, fewer
annotated pixels than the nannot samples used to generate them (except when nannot = 4
and ntrain = 512). This suggests that it is less important to have a lot of total data (due
to repeated annotations of similar structures), and more important to have a lot of unique
data (with a large variation in annotated structures). Intrinsically, this makes sense because
as we increase ntrain we increase the number of unique views, thus generating a lot of 2D
structural variation in the dataset.

In summary, we provide evidence that with a small initial set of samples we can increase
the performance of a model by generating a unique dataset with fewer annotated pixels per
sample, but more variation in viewing angles. Thus, sometimes less is more.
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Appendix A. Additional metrics

(a) (b)

(c) (d)

Figure 4: Additional metrics on the mitochondria dataset (a) Mean sensitivity, (b) Mean
specificity, (c) Mean average surface distance from ground truth surface to pre-
dicted surface, (d) Mean average surface distance from prediction surface to
ground truth surface
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Appendix B. Cardiac dataset

(a) (b)

(c) (d)

(e) (f )

Figure 5: Results on cardiac dataset (a) Mean Dice scores (b) Standard deviation of Dices
scores (c) Mean sensitivity, (d) Mean specificity, (e) Mean average surface distance
from ground truth surface to predicted surface, (f) Mean average surface distance
from prediction surface to ground truth surface
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Appendix C. 3D U-Net results

For additional validation, we compared our multi-planar method to a 3D U-Net trained on
the same levels of sparsity using the mitochondria dataset. The 3D model is identical to
the one outlined in the 3D U-Net paper (Özgün Çiçek et al., 2016) with approximately 19
million parameters. Models were trained for 22400 batch updates with a batch size of 1 and
input size of 64× 64× 64. The input size and batch size were chosen to be consistent with
the multi-planar versions such that both models see 262144 pixels during each batch update.
The best model is saved based on the validation loss. Data augmentations are identical to
the multi-planar version. The models were trained on the same data seen by the multi-
planar version (i.e. the annotated voxels are the ones that appear in the intersection of
the nannot voxels and the ntrain voxels when ntrain > 0 and the nannot voxels alone when
ntrain = 0). Prediction is done in patches aligned with the voxel grid.
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(a) (b)

(c) (d)

(e) (f )

Figure 6: 3D U-Net results on mitochondria dataset (a) Mean Dice scores, (b) Standard
deviation of Dices scores, (c) Mean sensitivity, (d) Mean specificity, (e) Mean
average surface distance from ground truth surface to predicted surface, (f) Mean
average surface distance from prediction surface to ground truth surface
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Appendix D. Example predictions

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j ) (k) (l)

(m) (n) (o) (p)

Figure 7: Segmentation results across a number of different nannot and ntrain combinations
on the mitochondrial dataset using the multi-planar model.
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