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Psychology endeavors to develop theories of human capacities and behaviors based on a variety
of methodologies and dependent measures. We argue that one of the most divisive factors in
our field is whether researchers choose to employ computational modeling of theories (over and
above data) during the scientific inference process. Modeling is undervalued, yet holds prom-
ise for advancing psychological science. The inherent demands of computational modeling
guide us towards better science by forcing us to conceptually analyze, specify, and formalise
intuitions which otherwise remain unexamined — what we dub “open theory”. Constraining
our inference process through modeling enables us to build explanatory and predictive theor-
ies. Herein, we present scientific inference in psychology as a path function, where each step
shapes the next. Computational modeling can constrain these steps, thus advancing scientific
inference over and above stewardship of experimental practice (e.g., preregistration). If psy-
chology continues to eschew computational modeling, we predict more replicability “crises”
and persistent failure at coherent theory-building. This is because without formal modeling we
lack open and transparent theorising. We also explain how to formalise, specify, and imple-
ment a computational model, emphasizing that the advantages of modeling can be achieved by

anyone with benefit to all.
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Challenges for scientific inference in psychological
science

Psychology is a science that attempts to explain the ca-
pacities and behaviors of the human organism. This res-
ults in a wide range of research practices, from conduct-
ing behavioural and neuroscientific experiments, to clinical
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work, to qualitative work. Psychology intersects with many
other fields, creating interdisciplinary sub-fields across sci-
ence, technology, engineering, mathematics, and the human-
ities. Here we focus on a distinction within psychological
science that is under-discussed: the difference in explanatory
force between research programmes that use formal, math-
ematical, and/or computational modeling, and those that do
not. To wit, programmes that explicitly state and define their
models and those that do not.

We start by explaining what a computational model is,
how it is built, and how formalisation is required at various
steps along the way. We illustrate how specifying a model
naturally results in better-specified theories, and therefore in
better science. We give an example of a specified, formal-
ised, and implemented computational model and use it to
model a cartoon example where intuition is insufficient in de-
termining a quantity. Next, we present our path model of how
psychological science should be done in order to maximise
the relationship between theory, specification, and data. The
scientific inference process is a function from theory to data
— but this function must be more than a state function to
have explanatory force — it is a path function which must
step through theory, specification, and implementation be-
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fore an interpretation can have explanatory force in relation
to a theory. Our path function model also enables us to evalu-
ate claims about the process of doing psychological and cog-
nitive science itself, pinpointing where in the path question-
able ways of doing research occur, such as p-hacking (bias-
ing data analysis or collection to force statistical modeling
to return significant p-values, e.g., Head, Holman, Lanfear,
Kahn, & Jennions, 2015). Finally, we believe the field needs
to use modeling to address the structural problems in the-
ory building that underlie the so-called replication “crisis”
in, e.g., social psychology (see Flis, 2019). We propose a
core yet overlooked component of open science that compu-
tational modeling forces scientists to carry out: open theory.

A fork in the path of psychological science

Psychological scientists typically ascribe to a school of
thought that specifies a framework, a theoretical position,
or at the least some basic hypotheses, which they then set
out to test using inferential statistics (Meehl, 1967; Newell,
1973). Almost every paper in psychological science can be
boiled down to introduction, methods, analysis, results, and
discussion. The way we approach science is near identical:
we ask nature questions by collecting data and then report
p-values, more rarely Bayes-factors or Bayesian inference,
or some qualitative measure. Computational models do not
feature in the majority of psychology’s scientific endeavours.
Most psychological researchers are not trained in modeling
beyond constructing statistical models of their data, which
are typically applicable off-the-shelf.

In contrast, a subset of researchers — formal, mathem-
atical, or computational modelers — take a different route
in the idea-to-publication pipeline. They construct models
of something other than the data directly; they create semi-
formalised or formalised versions of scientific theories, often
creating (or least amending) their accounts along the way.
A computational modeler is somebody who has the tools to
be acutely aware of the assumptions and implications of the
theory they are using to carry out their science. This aware-
ness comes, ideally, from specification and formalization, but
minimally, it also comes from the necessity of writing code
during implementation.

Involving modeling in a research programme has the ef-
fect of necessarily changing the way the research process is
structured. It changes the focus from testing hypotheses gen-
erated from an opaque idea or intuition (e.g., a theory that
has likely never been written down in anything other than
natural language, if that), to testing a formal model of the
theory, as well as continuing to also be able to generate and
test hypotheses using empirical data. Computational mod-
eling does this by forcing scientists to explicitly document
an instance of what their theory assumes, if not what their
theory is. In our view, the most crucial part of the process
is creating a specification — but even just creating an imple-

mentation (programming code) leverages more explicitness
than going from framework to hypothesis to data collection
directly.

What is a computational model? And why build one?

Let us calculate, without further ado, and see
who is right (Leibniz, 1685; translated by:
Wiener, 1951)

Leibniz predicted computational modeling when he envis-
aged a characteristica universalis that allows scientists to
formally express theories and data (e.g., formal languages,
logic, programming languages) and a calculus ratiocinator
that computes the logical consequences of theories and data
(e.g., digital computers; Cohen, 1954; Wiener, 1951). Com-
putational modeling is the process by which a verbal descrip-
tion is formalised to remove ambiguity, as Leibniz correctly
predicted, while also constraining the dimensions a theory
can span.

In the best of possible worlds, modeling makes us think
deeply about what we are going to model, (e.g., which phe-
nomenon or capacity), in addition to any data, both before
and during the creation of the model, and both before and
during data collection. It can be as simple as the scientist
asking: “How do we understand brain and behaviour in this
context, and why?”” By thinking through how to represent the
data, model the experiment, scientists gain insight into the
computational repercussions of their ideas, in a much deeper
and explicit way than by just collecting data. By providing
a transparent genealogy for where predictions, explanations,
and ideas for experiments come from, the process of model-
ing stops us from atheoretically testing hypotheses — a core
value of open science. Open theorising, in other words expli-
citly stating and formalising our theoretical commitments, is
done by default as a function of the process.

Through modeling, even in, or especially in, failures we
hone our ideas: can our theory be formally specified, and
if not, why not? Thus, we may check if what we have de-
scribed formally still makes sense in light of our theoretical
commitments. It aids both us as researchers communicating
with each other, and it aids those who may wish to apply
these ideas to their work outside science in e.g., industrial or
clinical settings.

One of the core properties of models is allowing us
to “safely remove a theory from the brain of its author”
(A. Wills, personal communication, May 19, 2020; also
see Wills, O’Connell, Edmunds, & Inkster, 2017; Wills &
Pothos, 2012). Thus allowing the ideas in one’s head to run
on other computers. Modeling also allows us to compare
models based on one theory to those based on another and
compare different parameter values’ effects within a model,
including damaging models in ways that would be uneth-
ical in human participants (e.g., “lesioning” artificial neural
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network models, see Guest, Caso, & Cooper, 2020). When
multiple theories can make sense of the present data, this is
one of the only ways to dissociate between them in a formal
setting (e.g., Levering, Conaway, & Kurtz, 2019, although
also see Cox and Shiffrin, in press; Navarro, 2019; Wills and
Pothos, 2012).

Now we will walk the reader through building a computa-
tional model from scratch in order to illustrate our argument,
and then present a path function of research in psychology.
We emphasise that often “merely” building a formal model
of a problem is not enough — actually writing code to im-
plement a computational model is required to understand the
model itself.

The pizza problem

All models are wrong but some are more wrong
than others. (pastiche based on: Box, 1976; Or-
well, 1945)

Imagine it is Friday night, and your favourite pizzeria has
a special: two 12” pizzas for the price of one 18”. Your
definition of a good deal is one in which you purchase the
most food. Is this a good deal?

A Twitter user, Fermat’s Library (@fermatslibrary), pos-
ted “a useful counterintuitive fact [that] one 18 inch pizza
has more ‘pizza’ than two 12 inch pizzas™' — along with
an image similar to Figure 1. The reaction to this tweet was
largely surprise or disbelief; with @MarkSykes15 replying:
“But two pizzas are more than one”.> Why were people taken
aback?

When it comes to comparing the two options in Figure 1,
though we all agree on how the area of a circle is defined,
the results of the “true” model, that one 18" pizza has more
surface, and therefore is more food in Figure 1, are counterin-
tuitive. Computational modeling is able to demonstrate how
one cannot always trust one’s gut. To start, one must create:
a) a verbal description, a conceptual analysis, and/or a the-
ory; b) a formal(isable) description, i.e., a specification us-
ing mathematics, pseudocode, flowcharts, etc.; and ¢) an ex-
ecutable implementation written in programming code (see
the red area of Figure 2 for an overview of the three steps
described above). This process is the cornerstone of com-
putational modeling and by extension of modern scientific
thought, enabling us to refine our gut instincts through ex-
perience.

Experience is seeing our ideas being executed by a com-
puter, giving us the chance to “debug” scientific thinking in
a very direct way. If we do not make explicit our thinking
through formal modeling, and if we do not bother to execute,
i.e., implement and run our specification through computa-
tional modeling, we can have massive inconsistencies in our
understanding of our own model(s). We call this issue the
pizza problem.

Herein we model the most pizza for our buck — overkill
for scientific purposes, but certainly not for pedagogical
ones. For any formalised specification, including that for
pizza orders in Figure 1, simplifications need to be made,
so we choose to represent pizzas as circles. Therefore we
define the amount of food ¢ per order option i as:

¢i = NinR} (1)

where i is the pizza order option, N is the number of pizzas in
the order, and the rest is the area of a circle. We also propose
a pairwise decision rule:

i, if ¢i > ¢j
J, otherwise

w(¢i, ¢)) = { (2)

where the output of the w function is the order with the most
food.

This is the model that everybody would have claimed to
be running in their heads, but they still were surprised — an
expectation violation occurred — when faced with the ac-
tual results. How do we ensure we are all running the same
model? We execute it on a computer that is not the human
mind! To make this model computational, we move from
specification to implementation (consider where we are in
the path shown in Figure 2). We notice Equation 1 is not
wrong but ¢ could be defined more usefully as:

N
gi= ) 7R (3)
j=1

where j is the current pizza, allowing us to sum over all piz-
zas N within food order i.

This change allows generalisation of the model (both in
the specification above and the implementation below) to
account for different radii per order (i.e., in future we can
compare an 117 pizza plus a 13” pizza with one 18 pizza).
One possible implementation (in Python) of our pizza model
looks like this:

import numpy as np
import math

def food(ds):
Amount of food in an order as a function
of the diameters per pizza (eq. 3).

L]

return (math.pi (ds/2)**2) .sum()

# Order option a in fig. 1,
two_pizzas = np.array([12,

two 12’° pizzas:

121)

! Archived tweet: archive.ph/Fb66R
2 Archived tweet: archive.ph/BoyRs


http://archive.ph/Fb66R
http://archive.ph/BoyRs
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Two 12” pizzas

Area = 2 X 762 = 226 in®

b

One 18” pizza

Area = 792 = 254 in?

Figure 1. The pizza problem: something like comparing the two options above can appear “counterintuitive” even though we
all learn the formula for the area of a circle in primary school. Compare a) two 12” pizzas with b) one 18” pizza (all three

pizzas to-scale). Which order would you prefer?

# Option b, one 18’’ pizza:
one_pizza = np.array([18])

# Decision rule (eq. 2):
print (food(two_pizzas) > food(one_pizza))

Importantly, this implementation change, which we choose
to percolate upwards, editing our specification, does not af-
fect the verbal description of the model. By the same token,
a change in the code to use a for-loop in the definition of the
food() function would neither affect the specification nor
the theory in this case. This is a core concept to grasp: the
relationships between theory, specification, and implementa-
tion — consider our “movements” up and down the path as
depicted in Figure 2.

Computational modeling, when carried out the way we
describe herein, is quintessentially open science: verbal de-
scriptions of science, specifications and implementations of
models are transparent, open to be replicated, and open to
be modified. If one disagrees with any of the formalisms,
they can plug in another decision rule or definition of the
amount of food or even another aspect of the order being
evaluated (e.g., perhaps they prefer more crust than overall
surface). Computational modeling — when done the way
we describe, since it requires the creation of specifications

and implementations — affords open theorising to go along
with open data, open source code, etc. In contrast to merely
stating: two 12” pizzas are more food than one 18” pizza, a
computational model can be generalised and can show our
work clearly. Through writing code, we debug our scientific
thinking.

Model of psychological science

[T]heory takes us beyond measurement in a way
which cannot be foretold a priori, and it does
so by means of the so-called intellectual exper-
iments which render us largely independent of
the defects of the actual instruments. (p. 27
Planck, 1936)

In this section, we describe an analytical view of psycho-
logical research, shown in Figure 2. Although other such
models exist for capturing some aspect of the process of psy-
chology (e.g., Haig, 2018; Haslbeck, Ryan, Robinaugh, Wal-
dorp, & Borsboom, 2019; Kellen, 2019; van Rooij & Bag-
gio, 2020), ours proposes a unified account that demonstrates
how computational modeling can play a radical and central
role in all of psychological research.

We propose that scientific outputs can be analysed using
the levels shown in the left column of Figure 2. Scientific
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inquiry can be understood as a function from theory to data
and back again, and this function must pass through several
states to gain explanatory force. The function can express
a meaningful mapping, transformation, or update between a
theory at time ¢ and that theory at time ¢ + 1 as it passes
through specification and implementation, which enforces a
degree of formalisation. We note that each level (in blue) can,
but does not have to, involve the construction of a (computa-
tional) model for that level, with examples of models shown
in the left column (in green) connected by a dotted line to
their associated level. If a level is not well-understood, mak-
ing a model of that level helps elucidate implicit assump-
tions, addressing pizza problems.

A path function is function where the output is dependent
on a path of transformations the input undergoes. Path func-
tions are used in thermodynamics to describe heat and work
transfer; an intuitive example is distance to a destination be-
ing dependent on the route and mode of transport taken. The
path function moves from top to bottom in terms of depend-
encies, but the connections between each level and those ad-
jacent are bidirectional (represented by large blue and small
black arrows). Connections capture the adding or removing,
loosening or tightening, of constraints that one level can im-
pose on those above or below it.

In our model depicted in Figure 2, the directionality of
transitions is constrained only when moving downwards.
Thus, a) at any point transitions moving upwards are per-
missible — while, ») moving downwards is only possible
if an expectation violation is resolved by first moving up-
wards. Downwards transitions can be thought of as functions
where the input is the current layer and the output is the next.
Upward transitions are more complex and involve adjusting
(e.g., a theory given some data), and can involve changes to
levels along the way to obtain the required (theory-)level up-
date. With respect to why we might want to move upwards
out of choice and recalling the case of the pizza model above:
we updated the specification (changing Equation 1 to Equa-
tion 3) because we thought about the code/implementation
more deeply and decided it is worth updating our formal spe-
cification (Equation 3). Downwards motion is not allowed if
a violation occurs, e.g., our model at the current step is not
inline with our expectations. Once this violation is resolved
by moving to any step above, we may move downwards re-
specting the serial ordering of the levels. For example, when
the data does not confirm the hypothesis, we must move up-
wards and understand why and what needs to be amended in
the levels above the hypothesis. Attempting to “fix” things
at the hypothesis level is hypothesising after results known
(HARKing, Kerr, 1998). In the case of the pizza model,
an expectation violation occurs when we realise that the one
pizza is more food. At that point, we re-evaluate our unspe-
cified/implicit model and move back up to the appropriate
level to create a more senible account.

At least implicitly, every scientific output is model-
and theory-laden (i.e., contains theoretical and modeling
commitments). By making these implicit models expli-
cit via computational modeling the quality, usefulness, and
verisimilitude of research programmes can be secured and
ascertained. The three levels with a red background (the-
ory, specification, and implementation in Figure 2) are those
which we believe are left implicit in most of psychological
research — this is especially so in parts of our field that
have been most seriously affected by the so-called replica-
tion “crisis”. This tendency to ignore these levels is a result
of the same process by which theory and hypothesis are con-
flated (Fried, 2020; Meehl, 1967; Morey, Homer, & Proulx,
2018), and by which models of the data are taken to be mod-
els of the theory: “theoretical amnesia” (Borsboom, 2013).
When models of the data are seen as models of the theory
potentially bizarre situations can arise — eventually forcing
(sub)fields to dramatically rethink themselves (e.g., Jones &
Love, 2011).

Framework

A framework is a conceptual system of building blocks
for creating facsimiles of complex psychological systems,
see topmost level of Figure 2. A framework is typically
described using natural language and figures, but can also
be implemented in code like ACT-R (Anderson & Lebiere,
1998) and Soar (Newell, 1992). Some frameworks appear
superficially simple or narrow, like the concept of work-
ing memory (Baddeley, 2010) or dual-systems approaches
(Dayan & Berridge, 2014; Kahneman, 2011), while others
can be all-encompassing such as unified theories of cognition
(Newell, 1990) or connectionism (McClelland, Rumelhart, &
the PDP Research Group, 1986).

In the simplest case a framework is the context, the inter-
pretation of the terms of a theory (Lakatos, 1976). Frame-
works usually require descending further down the path be-
fore they can be computationally modeled (Hunt & Luce,
1992; Vere, 1992). While it is possible to avoid explicit
frameworks, it is “awkward and unduly laborious” (Suppes,
1967, p. 58) to work without one and thus depend on the next
level down in the path to do all the heavy lifting.

It is not the case that all psychological models are or can
be evaluated against data directly. For example, ACT-R is
certainly not: we have to descend the path first, creating a
specific theory, then a specification, then an implementation,
and then generate hypotheses, before any data can be collec-
ted (see Cooper, 2007; Cooper, Fox, Farringdon, & Shallice,
1996).

Theory

A theory is a scientific proposition — described by a col-
lection of natural language sentences, mathematics, logic,
and figures — that introduces causal relations with the aim
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ACT-R, connectionism,
Soar, working memory.
prospect theory, Rescorla-
Wagner, SUSTAIN.

Eramewlks

= o . mathematics, natural
Specification
language, TLA+, Z.

models written in code,
e.g., C, Python, R.

Implementation

“Group A will be faster

Hypothesis

than group B”

ANOVA, linear regression,
MVPA, SEM, t-test.

Data

Figure 2. One of many possible paths (in blue) that can be
used to understand and describe how psychological research
is carried out with examples of models at each step shown
on the left (in green). Each research output within psycho-
logy can be described with respect to the levels in this path.
The three levels superimposed on a red background (theory,
specification, implementation) are those that are most often
ignored or left out from research descriptions.

of describing, explaining, and/or predicting a set of phenom-
ena (Lakatos, 1976), see second level of Figure 2. Examples
of psychological theories are prospect theory (Kahneman &
Tversky, 1979), the Rescorla-Wagner model for Pavlovian
conditioning (Rescorla & Wagner, 1972), and SUSTAIN, an
account of categorisation (Love, Medin, & Gureckis, 2004).

To move to the next level and produce a specification for
a psychological theory, we must posit a plausible mechanism
for the specification model to define. As can be seen from
our path, direct comparisons to data can only happen once a
model is at the right level. However, not all psychological
models must be (or can be) evaluated against data directly.
Theoretical computational models allow us to check if our
ideas, when taken to their logical conclusions, hold up (e.g.,

Guest & Love, 2017; Martin, 2016, 2020; Martin & Baggio,
2020; van Rooij, 2008). If a theory cannot lead to coherent
specifications, it is our responsibility as scientists to amend,
or more rarely, abandon it, in favour of one that does.

Specification

A specification is a formal(isable) description of a sys-
tem to be implemented based on a theory, see third level
of Figure 2. It provides a means of discriminating between
theory-relevant, closer to the core claims of the theory, and
theory-irrelevant, auxiliary assumptions (Cooper & Guest,
2014; Lakatos, 1976). Specifications provide both a way
to check if a computational model encapsulates the theory,
and a way to create a model even if the theory is not clear
enough, simply by constraining the space of possible com-
putational models. Specifications can be expressed in nat-
ural language sentences, mathematics, logic, diagrams, and
formal specification languages, such as Z notation (Spivey &
Abrial, 1992) and TLA+ (Lamport, 2015).

The transition to code from specification has been auto-
mated in some cases in computer science (Monperrus,
Jézéquel, Champeau, & Hoeltzener, 2008). In psychology,
creating an implementation typically involves taking the spe-
cification implicitly embedded in a journal article and writ-
ing code that is faithful to it. Without specifications we can-
not debug our implementations, and we cannot properly test
our theories (Cooper et al., 1996; Cooper & Guest, 2014;
Mitkowski, Hensel, & Hohol, 2018).

Implementation

An implementation is an instantiation of a model created
using anything from physical materials, e.g., a scale model of
an airplane (Morgan & Morrison, 1999), to software, e.g., a
git repository, see fourth level of Figure 2. A computational
implementation is a codebase written in one or more pro-
gramming languages, constituting a software unit and em-
bodying a computational model. While the concept of an
implementation is simple to grasp — perhaps what most psy-
chologists think when they hear “model” — it might appear
to be the hardest step. This is arguably not the case. Provided
one follows the steps in Figure 2, a large proportion of the
heavy lifting is done by all the previous steps.

In some senses, implementations are the most disposable
and time-dependant parts of the scientific process of Fig-
ure 2. Very few programming languages stay in vogue for
more than a decade, rendering code older than even a few
months in extreme cases un-runnable without amendments
(Cooper & Guest, 2014; Rougier et al., 2017). This is not
entirely damaging to our enterprise since the core scientific
components we want to evaluate are the theory and specific-
ation. If the computational model is not re-implementable
given the specification, it poses serious questions for the the-
ory (Cooper & Guest, 2014). This constitutes an expecta-
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tion violation and must be addressed by moving upwards to
whichever previous level can amend the issue. However, it is
premature to generalise from the success or failure of one im-
plementation if it cannot be recreated based on the specifica-
tion, since we have no reason to assume it is embodying the
theory. Whether code appropriately embodies a theory can
only be answered by iterating through theory, specification,
implementation.

Running our computational model’s code, allows us to
generate hypotheses. For example, if our model behaves in
a certain way in a given task, e.g., it has trouble categorising
some types of visual stimuli more than others, we can for-
mulate a hypothesis to test this. Alternatively, if we already
know this phenomenon occurs, computational modeling is a
useful way to check that our high-level understanding does
indeed so far match our observations. If our implementa-
tion displays behaviour outside what is permitted by the spe-
cification and theory, then we need to adjust something as
this constitutes a violation. It might be that the theory is
under-specified and this behaviour should not be permissible.
In which case we might need to change both the specifica-
tion and the implementation to match the theory (Cooper &
Guest, 2014). Such a cycle of adjustments until the theory
is captured by the code and the code is a strict subset of the
theory are necessary parts of the scientific process. Loosen-
ing and tightening theory, specification, and implementation
never ends — it is the essence of theory development in sci-
ence.

Hypothesis

A hypothesis is a narrow testable statement, see fifth level
of Figure 2. Hypotheses in psychology focus on properties of
the world that can be measured and evaluated by collecting
data and running inferential statistics. Any sentence that can
be directly tested statistically can be a hypothesis, e.g., “the
gender similarities hypothesis which states that most psycho-
logical gender differences are in the close to zero (d < 0.10)
or small (0.11 < d < 0.35) range” (Hyde, 2005, p. 581).

Hypothesis testing is unbounded without iterating through
theory, specification, implementation and creating computa-
tional models. The supervening levels constrain the space of
possible hypotheses to-be-tested. Testing hypotheses in an
ad hoc way — what we could dub hypo-hacking — is to the
hypothesis layer what p-hacking is to the data layer (Head
et al., 2015). Researchers can concoct any hypothesis and
given big enough data a significant result is likely to be found
when comparing, e.g., two theoretically-baseless groupings.
Another way to hypo-hack is to atheoretically run pilot stud-
ies until something “works”. When research is carried out
this way “losing” the significant p-value, e.g., due to a fail-
ure to replicate, could be enough to destroy the research pro-
gramme. Any theories based on hypo-hacking will crumble
if no bidirectional transitions in the path were carried out,

especially within the steps highlighted in red in Figure 2.
Having built a computational account researchers can avoid
the confirmation bias of hypo-hacking, which cheats the path
and skips levels.

Data

Data are observations collected from the “real world” or
from a computational model, see sixth level of Figure 2. Data
can take on many forms in psychology, the most common
being numerical values that represent variables as defined
by our experimental design, e.g., reaction times, question-
naire responses, neuroimaging, etc. Most psychology under-
graduate students know some basic statistical modeling tech-
niques. Tests such as analysis of variance (ANOVA), linear
regression, multivariate pattern analysis (MVPA), structural
equation modeling (SEM), the t-test, and mixed-effects mod-
eling (e.g., Davidson & Martin, 2013), are all possible infer-
ential statistical models of datasets.

Because data is theory-laden, it can never be free from,
or understood outside, the assumptions implicit in its collec-
tion (Feyerabend, 1957; Lakatos, 1976). For example, func-
tional magnetic resonance imaging (fMRI) data rests our un-
derstanding of electromagnetism and of the blood-oxygen-
level-dependent signal’s association with neural activation.
If any of the scientific theories that support the current inter-
pretation of fMRI data change then the properties of the data
will also change.

If the data model does not support the hypothesis (an ex-
pectation violation), this allows us with a certain confidence
to reject the experimental hypothesis. This does not however
give us licence to reject a theory with as much confidence.
The same caution is advised in the inverse situation (Meehl,
1967). For example, a large number of studies have collec-
ted data on cognitive training over the past century and yet
consensus on its efficacy is absent (Katz, Shah, & Meyer,
2018). To escape these problems and understand how data
and hypothesis relate to our working theory we must ascend
the path and contextualise our findings using computational
modeling. These violations cannot be addressed by inventing
new hypotheses that conveniently fit our data, i.e., HARK-
ing, but by asking what needs to change in our theoretical
understanding.

Harking back to pizza

The pizza example (purposefully chosen in part because
it is simple and devoid of psychological constructs, which
bias reader’s opinions towards one formalism over another)
can be decomposed readily into the six levels in Figure 2. At
the framework level we have the concepts of pizza, food, and
order because we want to compare the total amount of food
per order. These are building blocks for any account which
involves deciding between orders of food made up of pizzas,
even if we disagree on what aspects of the order (e.g., money,



8 GUEST AND MARTIN

speed of delivery), or food (e.g., calories, ingredients), or
pizza (e.g., crust, transportability), we will eventually form-
ally model and empirically test.

Then at the theory level, there are essentially two theories.
The original (implicit) theory T that “the number of pizzas
per order corresponds to the amount of food in that order”
and the post hoc corrected (explicit) 7' that “the surface areas
of the pizzas per order correspond to the amount of food in
that order”. To get to T, we created a specification, created
an implementation, and refined the specification — we shall
go into exactly how this happened using the path model of
Figure 2.

Before obtaining T, we descended the path by going from
basically framework to hypothesis (bypassing the red area
completely; recall Ty was not explicitly stated at all, let alone
formalised at the beginning) to generate the very clear predic-
tion (and thus testable hypothesis) that the order with 2 pizzas
is more food than the order with 1. Because we skipped the
parts of the path that required formalising our ideas (shown in
red in Figure 2), we are faced with an expectation violation.
We believed that 2 12” pizzas are more food than 1 18” pizza
(recall Figure 1) and we also believed that the food per order
is a function of the surface area of the pizzas. Therefore, we
realise our own ideas about the amount of food per order are
incompatible with themselves (what we dub: the pizza prob-
lem), as well as what we know about the world from other
sources (imagine if we had weighed the pizzas per order, for
example). Had this been a real research programme (and
not a toy example), we would have descended all the way
and collected empirical data on the pizzas, by e.g., weighing
them. This act of collecting observations would have further
solidified the existence of an expectation violation since the 2
pizzas would have been found to, e.g., have less mass. Thus
falsifiying both our hypothesis and indirectly 7.

At the point of an expectation violation, we decided to
address the steps we skipped in the red area, so we move up-
wards to create a formal specification S embodied by Equa-
tions 1 and 2. We then attempt to descend from S to create
an implementation [, which led to refining our specification,
thus creating S| (Equations 3 and 2). We are now fully in
the throes of formal and computational modeling by cycling
through the steps shown in Figure 2 in red.

Arguably — and this is one of the core points of this article
— had we not ignored the steps in red and created a theory,
specification, and implementation explicitly, we would have
been on better footing from the start. And so it is demon-
strated that applying the path model adds information to the
scientific inference process. Notwithstanding, we managed
to document and update our less-than-useful assumptions by
going back and formally and computationally capturing our
ideas. We should all strive not to ignore these vital steps by
directly focusing on them, either ourselves or by making sure
the literature contains this explicit formal and computational

legwork.

What our path function model offers

We have denoted the boundaries and functions of levels
within the scientific inference process in psychological re-
search — many should be familiar with similar layers of ab-
straction from computer science and levels of analysis from
Marr and Poggio (1976). Simpler more abstract descriptions
appear higher up, while more complex descriptions of psy-
chological science are lower down the path — e.g., data is
much less “compressed” as a description of an experiment
than a hypothesis. Each level is a renormalisation, coarser
description, of those below (DeDeo, 2018; Flack, 2012; Mar-
tin, 2020). Higher levels contain fewer exemplars than lower
levels. Moving through the path of scientific inference is a
form of dimensionality reduction or of coordinate transform.
Not only are there often no substantive nor formalised the-
ories for some datasets in practice (causing chaos, Forscher,
1963), but also the principle of multiple realisability (Put-
nam, 1967) implies that for every theory there are infinitely
many possible implementations consistent with it and data-
sets that can be collected to test it (Blokpoel, 2018). This
helps contextualise studies that show divergence in data mod-
eling decisions given the same hypotheses (e.g., Botvinik-
Nezer et al., 2020; Silberzahn et al., 2018).

Open theories (i.e., those developed explicitly, defined
formally, and explored computationally, in line with Fig-
ure 2) are more robust to failures of replication of any single
study they might derive some support from, due to the spe-
cific way the path has been followed in order to develop and
test them. For example, if the impetus or inspiration for the-
ory development is a single study (that is post fact found not
to replicate) because we then move to the red area, refine
our ideas, and then drop back down to test them again, we
will avoid dependence on a single (potentially problematic)
study. Failures to replicate can not only be detected but also
explained and perhaps even drive theory creation as opposed
to just theory rejection. Thus, building a theory explicitly
as laid out in Figure 2, even if based on some hypo- and p-
hacking, means once a phenomenon is detected we ascend
the path and spend time formalising our account (e.g., Fried,
2020). Using the procedure described by our path model —
that asks for formalisation using specifications and imple-
mentations (or indeed anything more meta than an individual
study, see Head et al., 2015) — “sins” out of individual
scientists’ control, such as questionable research practises
(QRPs; see John, Loewenstein, & Prelec, 2012) committed
by other labs or publication bias committed by the system as
a whole, can be both discovered and controlled for in many
cases.

Thinking about our science with reference to Figure 2
allows us to discuss and decide where in the path claims
about science are being made. In other words, not just al-
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lowing us to evaluate claims about the phenomena being ex-
amined, modeled, etc., but also to evaluate general claims
about how we conduct research or about how not to conduct
research. For example, the claim that “[s]cience is posthoc,
with results, especially unexpected results, driving theory
and new applications” (Shiffrin, 2018) is not incompatible
with guarding against HARKing. This is because one can-
not have an account of a phenomenon without having access
to some data, anecdotal, observational, and/or experimental,
that guides one to notice said phenomenon in the first in-
stance.

Theories in psychology are the result of protracted thought
about and experience with a human cognitive capacity. Sci-
entists immerse ourselves in deep thought about why and
how our phenomena of study behave. This basic principle
of developing theories is captured in the example of Wald’s
investigation into optimally (thus minimally, due to weight)
armouring aircraft to ensure pilots returned safely during the
Second World War (Mangel & Samaniego, 1984). Planes
returned after engaging with the Nazis with a smattering of
bullet holes that were distributed in a specific way: more
holes were present in the fuselage than in the engines, for
example. Wald explained post hoc why and how the holes
were correlated to survival. Contrary to what one might ex-
pect, areas with the least holes would benefit from armour.
Wald theorised that: planes in general were likely hit by bul-
lets uniformly, unlike the planes in the dataset; aircraft hit in
the engines did not make it home and so were not present
in the dataset; therefore armour should be placed over the
engines, the area with the fewest bullet holes. This is not
HARKing — this is formal modeling. Wald moved upwards
from the data (distribution of bullet holes) to a theory (sur-
vivor bias) and created an explicit formal model that could
explain and predict the patterns of the bullets in planes that
made it back safely. In many cases theory development in-
volves analysis at the data level, as an inspiration or impetus,
and then a lot of scientific activity within the levels: theory,
specification, and implementation. This is why we do not
impose any constraints on moving upwards in Figure 2, only
on moving downwards.

On the other hand, our path function model allows us to
pinpoint on which level QRPs are taking place and how to
avoid them. Different QRPs occur at different levels, e.g., p-
hacking at the data level, HARKing at the hypothesis level,
and so on. HARKing does not resolve expectation violations
that occur when the data meets the hypothesis — it is not,
e.g., TARKing (theorising after results known) which is part
of the scientific practice of creating modeling accounts. To
retrofit a hypothesis onto a dataset does not constitute resolv-
ing a violation because this de novo hypothesis is not gener-
ated directly or indirectly by a theory. If we start out with
a hypothesis and collect data that rejects our hypothesis, the
violation has not only occurred at the hypothesis level since

the hypothesis has been generated (via the intervening levels)
by the theory. This is essentially the opposite to conjuring a
new hypothesis (HARKing) that only exists in the scientific
literature because it has been “confirmed” by data — data
collected to test a different hypothesis.

Importantly, it is at the data and hypothesis levels that
preregistration and similar methods attempt to constrain sci-
ence to avoid QRPs (e.g., Flis, 2019; Szollosi et al., 2019). To
ensure scientific quality, however, we propose that preregis-
tration is not enough because it only serves to constrain the
data and hypothesis spaces. Researchers who wish to de-
velop their formal account of a capacity must ascend the
path, instead of, or in addition to, in addition to e.g., preregis-
tering analysis plans. Preregistration cannot on its own eval-
uate theories. We cannot coherently describe and thus can-
not sensibly preregister what we do not yet (formally and
computationally) understand. Indeed theories can and should
be computationally embodied and pitted against each other
without gathering or analysing any new data. To develop,
evaluate, and stress-test theories, we need theory-level con-
straints on and discussions about our science. Figure 2 can
serve as a first step in the right direction towards such an
ideal.

By the same token, our path model allows us to delineate
and discuss where computational modeling itself has been
compromised by QRPs occurring at the specification and im-
plementation levels. A typical case of this is when authors
report only partial results of implementing a specification of
their theory, e.g., only some implementations show the re-
quired or predicted patterns of behaviour. As mentioned, the
solution is to cycle within the red area of Figure 2 in order to
ensure theory-, specification- and implementation-level de-
tails are indeed assigned to and described at the correct level.
Failing to do that, we propose, is a type of QRP.

Computational modeling can be seen as mediating
between theory and data (Morgan & Morrison, 1999;
Oberauer & Lewandowsky, 2019). Asking if we can build
a model of our theory allows us to understand where our
theoretical understanding is lacking. Importantly, claims
are typically not falsifiable — not usually directly testable
at the framework or theory level — but become more so
as we move downwards. We thus iterate through theory,
specification, and implementation as required until we have
achieved a modeling account that satisfies all the various con-
straints imposed by empirical data, as well as collecting em-
pirical data based on hypotheses generated from the com-
putational model. Is an implementation detail pivotal to a
model working? Then it must be upgraded to a specification
detail (Cooper et al., 1996; Cooper & Guest, 2014). Mutatis
mutandis for details at the specification level and so on —
meaning that details at every level can be upgraded (or down-
graded) as required. This process is even useful in the case of
“false” models, i.e., computational accounts that we do not
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agree with, can still improve our understanding of phenom-
ena (e.g., Wimsatt, 2002; Winsberg, 2006).

As mentioned, cycling through the steps in Figure 2,
shines a direct light on what our theoretical commitments are
in deep ways. Mathematically specifying and/or computa-
tionally implementing models, for example, can demonstrate
that accounts are identical or overlap even when their verbal
descriptions (i.e., informal specifications) are seemingly di-
vergent. This can be due to, firstly, multiple theories being
indeed more similar in essence than previously thought, pav-
ing the way for theoretical unification of a seemingly disjoint
literature (e.g., Kelly, Mewhort, & West, 2017). Or secondly,
theories which are indeed different being less computation-
ally explored and thus less constrained in their current state
(e.g., Olsson, Wennerholm, & Lyxzen, 2004). These kinds
of discoveries about how we compartmentalise, understand,
and predict human capacities are why iterating over, and thus
refining, theory, specification, implementation is vital.

Research programmes light on modeling do not have a
clear grasp on what is going in the area highlighted in red
of Figure 2. These areas of psychology might have many,
often informal, theories, but this is not enough (Watts, 2017).
Neither is more data — however open, it will never solve the
issue of a lack of formal theorising. Data cannot tell a sci-
entific story, that role falls to theory and theory needs form-
alisation to be evaluated. Thus, while modelers often use the
full scale of the path, reaping the benefits of formally testing
and continuously improving their theories, those who eschew
modeling miss out on fundamental scientific insights. By
formalising a research programme, we can search and eval-
uate in a meticulous way the space of the account proposed,
i.e., “theory-guided scientific exploration” (Navarro, 2019,
p- 31). As shown using the pizza example, non-modelers re-
main unaware of pizza problems and may not realise they are
implicitly running a different model (in their head) to what
they specify.

Discussion

We hope to spark dialogue on the radical role computa-
tional modeling can play by forcing open theorising. We
also presented a case study in building a basic computational
model, providing a useful guide to those who may not have
modeled before. Models, especially when formalised and
run on a digital computer, can shine a light on when our sci-
entific expectations are violated. To wit, we presented a path
function model of science, radically centering computational
modeling at the core of psychology. Computational models
cannot replace, e.g., data or verbal theories, but the process
of creating a computational account is invaluable and inform-
ative.

There are three routes that psychology can take, mirror-
ing Newell (1973): a) it might bifurcate between research
programmes that use modeling and those that do not; b) it

might unite in so much as research programmes will contain
some modeling to force the creation, refinement, and rejec-
tion of theories; and ¢) we carry on by asking questions that
are not secured to a sound theoretical mooring via computa-
tional modeling. These are not completely mutually exclus-
ive possibilities — some components from each can be seen
in the present.

For a) bifurcation of the field, theoreticians, scientists who
mostly inhabit the red area of Figure 2, will be free to practice
modeling, e.g., without having to run frequentist statistics on
their models if inappropriate. No constraints will be put on
individual scientists to pick a side, e.g., Einstein was active in
theoretical and experimental physics. Unlike in the present,
it will be easy to publish work containing only modeling at
the theory level without direct reference to data (something
rare currently, although possible, e.g., Guest & Love, 2017;
Martin, 2016, 2020).

In the case of b), mass cooperation to work on “larger ex-
perimental wholes” (Newell, 1973, p. 24), is perhaps realistic
given projects that involve many labs are commonplace (e.g.,
Botvinik-Nezer et al., 2020; Silberzahn et al., 2018). We ad-
vise cautious optimism since these collaborations are operat-
ing only at the data and hypothesis levels, which are insuffi-
cient to force theory building. Notwithstanding, such efforts
might constitute the first step in understanding the logistics of
multi-lab projects. On the other hand, modelers often already
currently work on a series of related experiments and publish
them as single experimental whole (Shiffrin, 2018).

The third possibility, ¢) more of the same, is the most
dire: “Maybe we should all simply continue playing our col-
lective game of 20 questions. Maybe all is well [...] and
when we arrive in 1992 [...] we will have homed in to the
essential structure of the mind.” (Newell, 1973, p. 24) Thus,
the future holds more time-wasting and crises. Some sci-
entists will spend time attempting to replicate atheoretical
hypotheses. However, asking nature 20 questions without a
computational model leads to serious theoretical issues even
if results superficially are deemed replicable (e.g., Devezer,
Nardin, Baumgaertner, & Buzbas, 2019; Katz et al., 2018).

A way forward

Psychological science can change if we follow Figure 2
and radically update how we view the place of modeling.
The first step is introspective: realising that we all do some
modeling — we subscribe to frameworks and theories im-
plicitly. Without formalising our assumptions, in the same
way we explicitly state the variables in hypothesis testing,
we cannot communicate efficiently. Importantly, some have
started to demand this shift in our thinking (e.g., Morey et
al., 2018; Oberauer & Lewandowsky, 2019; Szollosi et al.,
2019; Wills et al., 2017).

The second step is pedagogical: explaining what model-
ing is and why it is useful. We must teach mentees that mod-
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eling is neither extremely complex, nor does it require extra
skills over those we already expect they master, e.g., pro-
gramming, experimental design, literature review, and stat-
istical analyses techniques (e.g., Epstein, 2008; Wills et al.,
2017; Wilson & Collins, 2019).

The third step is cooperative: working together as a field
to center modeling in our scientific endeavours. Some be-
lieve the replication crisis is a measure of the scientific qual-
ity of a sub-field, and given that it has affected areas of psy-
chology with less formal modeling, one possibility might be
to ask these areas to model explicitly. By extension, modelers
can begin to publish more in these areas (e.g., in consumer
behaviour, see Hornsby, Evans, Riefer, Prior, & Love, 2019).

In order to ensure experimental results can be replicated
and re-observed, we must force theory building; replicability
in part depends causally on things higher up the path (also
see Oberauer & Lewandowsky, 2019). Data and experiments
that cannot be replicated are clearly important issues. How-
ever, the same is true for theoretical accounts that cannot be
(re)instantiated as code. In the same way that questions such
as “should results of preregistered studies count as stronger
evidence than results of not preregistered studies?” ques-
tions like “should results of computationally modeled studies
count as stronger evidence than those of studies with only a
statistical model?”” must be actively discussed (e.g., Szollosi
etal., 2019).

Thus, while it may superficially appear that we are at
odds with the emphasis on the bottom few steps in our path
model (hypothesis testing and data analysis, recall Figure 2)
by those who are investigating replicability, we are comfort-
able with this emphasis. We believe the proposals set out by
some to automate or streamline the last few steps are part
of the solution (e.g., Lakens & DeBruine, 2020; Poldrack et
al., 2019). Such a division of labor, might help maximise
the quality of theories and showcase the contrast — which
Meehl (1967) and others have drawn attention to — between
substantive theories and the hypotheses they generate. We
imagine a “best of all possible” massively collaborative fu-
ture where scientists allow machines to carry out the least
creative steps and thus, set themselves free to focus wholly
on computational modeling, theory generation, and explana-
tion.
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