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ABSTRACT

As the neural predictor (NP) provides a fast evaluation for neural architectures,
it is highly sought after in neural architecture search (NAS). However, the high
computational cost involved in generating training data results in its scarcity, which
in turn limits the accuracy of the NP. Active learning (AL) has the potential to ad-
dress this issue by prioritizing the most informative samples, yet existing methods
struggle with selection bias when faced with imbalanced data distributions, often
prioritizing diversity over representativeness. In this paper, we redefine the sample
selection mechanism in AL and propose a Distribution-aware Active Learning
framework for Neural Predictor (called DARE). The goal is to select samples that
not only ensure diversity but also exhibit a high degree of generalizability, making
them more representative of the underlying data distribution. Our approach first
extracts architecture representations via a graph-based encoder enhanced with a
consistency-driven objective. Then, a two-stage selection strategy identifies both
globally diverse and locally reliable samples through progressive representation
learning and refinement. For non-uniform data distributions, we further introduce
an adaptive mechanism that anchors sampling to key regions with high similarity
density, avoiding performance degradation caused by outliers. Extensive exper-
iments have shown that the proposed distribution-aware active learning strategy
samples a higher-quality training dataset for NPs, allowing the neural architecture
predictor to achieve state-of-the-art results.

1 INTRODUCTION

In recent years, neural architecture search (NAS) (Elsken et al., 2019; Song et al., 2024; Yu et al.,
2024; Salmani Pour Avval et al., 2025) has gained increasing attention as a powerful technique for
automatically discovering optimal neural architectures. NAS has shown great promise in various
domains, including but not limited to computer vision (CV) (Gao et al., 2023; Poyser & Breckon,
2024), machine learning (ML) (Salehin et al., 2024), and natural language processing (NLP) (Chen
et al., 2024). However, a decent search capacity of traditional NAS often comes with a high
cost in terms of time or computational resources. Therefore, it is urgent to design effective and
reasonable acceleration strategies. Low-fidelity training, a common acceleration strategy in NAS,
reduce evaluation time by shortening training epochs, dataset size, etc., but may lead to inaccurate
performance predictions and the omission of superior architectures due to insufficient training (Liu
et al., 2022), as highlighted by Zhou (Zhou et al., 2020).

An alternative to accelerate the process of NAS is leveraging a neural predictor (NP) to estimate the
performance of neural architectures, obviating the high cost of model training in evaluation. Due to
the superior characteristics of the NP, it soon won the attention of researchers. However, achieving
precise evaluations from the NP requires substantial training samples, each involving training and
testing over several hours or days (Liu et al., 2022; Deng et al., 2017). Therefore, considering the
limited feasibility of acquiring a large number of labeled samples, there is an urgent need to extract the
most informative samples from the existing data under resource constraints, thereby enhancing model
performance. This raises the first major challenge: I) How to effectively select highly informative
architectures for training the predictor under a severely limited labeling budget?
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Given the pivotal role of training samples, Active Learning (AL) (Li et al., 2024a) techniques provide
a new paradigm to address this challenge as an efficient optimization strategy. AL intelligently
selects the most informative samples, achieving the greatest performance improvement with minimal
labeling cost. However, current AL methods (Li et al., 2024b; Lin et al., 2024) primarily focus
on enhancing sample diversity, often overlooking the impact of data distribution characteristics on
sample selection. As a result, the selected samples lack representativeness and fail to accurately
reflect the distribution of the dataset, particularly evident in neural architecture datasets. This leads to
the second key challenge: II) How to balance diversity and distributional representativeness in the
sampling process to ensure more effective predictor training?

To solve both challenges, we redefine the sample selection mechanism in AL and propose a
Distribution-aware Active Learning framework for Neural Predictor (called DARE). The goal is
to efficiently sample instances that exhibit diversity and a high degree of generalization while ac-
counting for dataset-specific distributions. Specifically, in each active learning iteration, we first
extract architecture embeddings using a graph-based encoder, trained with a consistency-preserving
objective to improve representation quality. Based on these embeddings, we perform a two-stage
sample selection process. The first stage identifies globally diverse candidates by computing pairwise
distances between labeled and unlabeled architectures. The second stage enhances local reliability
by leveraging proximity topology, such as clustering and Delaunay Triangulation calculation, to
refine the neighborhood around labeled samples and assign pseudo-labels for retraining. Moreover, to
address the common issue of non-uniform sample distributions in architecture spaces, we introduce
an adaptive sampling mechanism that identifies anchor samples with strong coverage of the unlabeled
pool and restricts sampling to informative intermediate-density regions. This ensures that the selected
samples not only broaden the search space exploration but also align closely with the true data
distribution, enabling the predictor to generalize more effectively.

We evaluate our proposed DARE on three widely used NAS search spaces, i.e., NAS-Bench-101 (Ying
et al., 2019), NAS-Bench-201 (Dong & Yang, 2020), and DARTS (Liu et al., 2018). The experimental
results show that the NP achieves state-of-the-art prediction performance after training on samples
selected by DARE. Furthermore, the DARE also significantly improves the NAS performance in the
search for the optimal neural architecture. Additionally, we validate the effectiveness of DARE on
the TransNAS-Bench-101 (Duan et al., 2021) across various tasks, where it also achieves impressive
performance. Finally, we also perform an in-depth analysis to verify the superiority of the proposed
strategy. In summary, our contributions are:

❶ Problem Connection. Paying attention to the significance of training samples, we establish a
novel connection between neural predictors and sampling bias, emphasizing that the quality and
representativeness of training data are critical for reliable architecture performance estimation. This
is the first work that focuses on the training data of neural predictors.

❷ Novel Framework. We introduce DARE, a two-stage sampling framework that first selects diverse
candidates via max-min strategy, then adaptively refines the sampling regions using a key-point-
guided mechanism. This framework ensures both diversity and representativeness by explicitly
connecting sampling behavior with data distribution.

❸ Comprehensive Validation. The experimental results show that DARE achieves state-of-the-art
prediction performances under limited training data. In addition, we validate our method across
different tasks and consistently achieve excellent performance.

2 RELATED WROK

2.1 NEURAL ARCHITECTURE PERFORMANCE PREDICTORS

Research on neural architecture performance predictors (NPs) has gained increasing attention, with
existing approaches broadly categorized into learning curve-based (Ding et al., 2025) and model-
based methods (Zhao et al., 2025). The former extrapolates final performance from partial training
curves but suffers from instability and sensitivity to hyperparameters, often requiring multi-fidelity
techniques (Falkner et al., 2018). Model-based methods are more widely adopted, where a regression
model is trained directly on architecture representations. These include traditional machine learning
methods (Sun et al., 2019; Luo et al., 2020), graph-based predictors (Mills et al., 2023; Shi et al.,
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2020; Ning et al., 2022), and Bayesian frameworks (White et al., 2021). Recently, the high cost of
labeled training data has motivated studies on improving sample efficiency through semi-supervised
learning (Tang et al., 2020) and data augmentation (Liu et al., 2021). However, these methods rely on
raw labeled samples, and the presence of low-quality initial samples can significantly compromise
their effectiveness, ultimately leading to suboptimal outcomes. Our work proposes leveraging active
learning strategies to construct high-quality training samples.

2.2 ACTIVE LEARNING

Active learning (AL) aims to select the most informative data points for labeling to optimize model
performance with minimal labeled data. The acquisition strategies of AL can be simply divided
into two categories: uncertainty-based methods and diversity-based methods. The uncertainty-based
methods typically choose the sample with the lowest output probability of the model prediction for
labelling (Fuchsgruber et al., 2024; Peng et al., 2021; Ji et al., 2023). The diversity-based methods
are used to select the unlabeled samples that are least similar to the labelled samples to improve the
performance of the classifier, which is the method used in this study. In addition, the diversity-based
methods are commonly combined with clustering algorithms (Li et al., 2023) to achieve similarity
comparisons between samples (Tan et al., 2024). While these methods excel at selecting diverse
samples, they overlook the sampling bias introduced by data distribution. Our study proposes an
adaptive sampling strategy that ensures diversity while providing high-quality training data for NP.

3 APPROACH

3.1 PROBLEM SETTING

NAS is to search from the space of neural architectures and identify the optimal one. Due to the high
cost of the performance evaluation process in NAS, it is inevitable to design an efficient architecture
evaluation method. To this end, we focus on accelerating this process with neural predictors.

Let the search space of the neural architectures be X . Due to the limited budget, only parts of X
are evaluated and obtain the ground truth Y (i.e., the performance). Considering that there are tens
of thousands of neural architectures in X , it is not realistic to assign a true performance label to
each network architecture, so the amount of data in Y is far less than X , that is, D = {X ;Y} =
{x1, x2, . . . , xp; y1, y2, . . . , yk} (k ≪ p). Then, according to the performance in Y , the neural
architectures with the labels are obtained from X , forming the training data Dtrain =

{
X l;Y

}
={

xl
1, x

l
2, . . . , x

l
k; y1, y2, . . . , yk

}
. The performance predictor P (a regression model) is trained with

input X l, and the resulting output is compared with Y . The objective function J(·) of this process
can be formulated as:

J(W,D) =
1

|D |

|D|∑
i=1

L(P (W, xi), yi), (1)

where W is the training parameters of the regression model, D denotes the data involved in training,
in this case Dtrain, and L(·) denotes the loss function of P . To get a well-performing predictor, it is
necessary to put forward a high requirement for X l. Under the condition of keeping the number of
samples unchanged, improving the quality of the samples is an effective way.

3.2 OVERVIEW

In this paper, we consider that the budget for annotating the samples is limited. We aim to effectively
annotate the samples and thus obtain an accurate predictor for the final NAS. Formally speaking,
let the budget of the annotation number be K. The problem of this paper is how to select these K
samples from the search space, such that the performance predictor can be well-trained. To address the
challenge, we propose a distribution-aware active learning framework to select the most informative
K samples such that we can train an accurate NP based on them. Specifically, in each iteration of
AL, we propose a two-stage max-min sampling strategy to ensure sample diversity (as illustrated
in Figure 1). In the first stage, the predictor extracts embeddings and computes distances between
labeled and unlabeled samples, selecting those with the largest and smallest distances. In the second
stage, spatial partitioning techniques such as clustering and Delaunay triangulation are employed

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Model Training

GCN
Acc

Acc

Acc

Acc

Acc

Acc

Acc

Acc

All  Samples GCN

……

Extract Representations

……

Labeled Features

Unlabeled Features
iD

Max-Min Distance Calculation

Delaunay Triangle

Cluster Algorithm

M
in

 D
is

ta
n

ce
 C

al
cu

la
ti

o
n

…

Top m in Max Distance 

(1)
…

Top n in Min Distance 

∩ ＝

∩ ＝

∩ ＝

∩ ＝
GCN

Retraining and Max Distance Calculation

…

Top q in Max Distance (2)

Diversity Sample Selection

…

Top m in Max Distance (1)

…

Top q in Max Distance (2)

…

Labeled 

……

…Save

Labeled Pool

Intersection

First Stage Second Stage

assign pseudo-label

Figure 1: The flowchart of the Two-stage Max-Min Sampling. First stage (purple background): (1)
Model Training. (2) Max-Min Distance Calculation. The distance between labeled and unlabeled
samples is calculated using the cosine distance. Second stage (yellow background): (1) Min Distance
Calculation. The unlabeled samples with the minimum distance from the labeled samples are obtained
by Delaunay triangulation or a clustering algorithm. (2) Retraining and Max Distance Calculation.
The minimum distance between unlabeled samples obtained from the two acquisitions is intersected
and assigned pseudo-labels provided to the model for retraining. (3) Diversity Sample Selection.

to re-evaluate these distances and improve the reliability of the selected samples. To further handle
the challenges introduced by non-uniform sample distributions, we incorporate a key-point guided
adaptive sampling strategy that dynamically adjusts the sampling region, refining the candidate pool
for more effective selection. The sampling framework ensures that the queried samples are both
diverse and well-aligned with the underlying distribution.

3.3 TWO-STAGE MAX-MIN SAMPLING

Calculating the distance between samples to enhance diversity is a commonly effective method.
However, when an accurate representation of the samples cannot be ensured, distance calculations
may not capture sample diversity. Therefore, in this section, a two-stage distance calculation is
proposed to ensure diversity. In the first stage, we refined the model training process to extract more
accurate sample representations, which were then used for distance calculation. In the second stage,
a semi-supervised mechanism was employed to further train the model and recompute the distances,
enhancing the reliability of the results.

First Stage: Model Training. The neural architecture is a model with extremely tight internal
connections, and both the order of the structures and the way of connection are key factors affecting
the performance, so representing it as a graph structure can highlight this characteristic. Consequently,
a model capturing such a graph structure is essential for processing graph-structured data. In this
context, employing graph convolutional networks (GCNs) enhances the extraction of meaningful
representations R from neural architecture graphs. Specifically, we adopted the GCN to deal with the
bi-directional information flow of the neural architecture (Wen et al., 2020). The layers (or blocks) of
the neural architecture are represented by nodes I and transformed into a one-hot vector to form the
operation matrix O. In addition, the adjacency matrix A ∈ RI×I denotes the relationship among
nodes. Therefore, the representations V of the sample at ith layer can be expressed as follows:{

V2 = 1
2 ReLU

(
AOW+

1

)
+ 1

2 ReLU
(
ATOW−

1

)
Vi =

1
2 ReLU

(
AVi−1W

+
i−1

)
+ 1

2 ReLU
(
ATVi−1W

−
i−1

)
,

(2)

where W denotes the training parameters and RELU(·) denotes the activation function.

However, it is tough for the GCN to train with a small amount of data and obtain an accurate
representation of the neural architecture, so we designed a new loss function to assist in training.
Data augmentation (Liu et al., 2021; Ma et al., 2025) is an effective technique to increase the amount
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of data, especially in image processing. In this study, we perform data augmentation for each neural
architecture and compare the similarity between the augmented and original architectures (detailed in
Appendix C). As a result, we convert the loss function from the original Equation 1 to:

min
W

1

k

k∑
i=1

((1− λ)× L(P (W, xl
i), yi) + λ× S(xl

i,ori, x
l
i,aug)), (3)

where xl
i,ori and xl

i,aug denote the representation of the ith original and augmented sample, λ is the
equilibrium coefficient, and k is the number of samples. In addition, S is the cosine distance.

First Stage: Max-Min Distance Calculation. Leveraging the trained model, we extracted the
embeddings of all samples, including labeled and unlabeled ones, and computed the cosine distance
Di (i indicates the ith labelled data) between each labeled sample and all unlabeled samples. Then,
Xmax

i ∈ X u (|Xmax
i | = m) and Xmin

i ∈ X u (|Xmin
i | = n) are extracted via Di, denoting the

m unlabeled samples furthest from the ith labeled sample and the n unlabeled samples nearest to
ith the labeled sample, respectively. Crucially, the current computation method is better suited for
uniformly distributed datasets. However, when dealing with non-uniformly distributed datasets (as
illustrated in Figure 2), the current maximum distance computation is not applicable (c.f., Sec. 3.4).

Second Stage: Min Distance Calculation. For the initially obtained sets Xmax
i and Xmin

i , their
reliability and representativeness cannot be fully guaranteed due to potential noise and embedding
inaccuracy. Therefore, a second refinement step is required to enhance selection precision, starting
with a recalculation of the minimum-distance samples.

To improve the accuracy of nearest-neighbor selection, we further incorporate spatial partitioning
methods to redefine sample neighborhoods from complementary perspectives: I) Delaunay Triangu-
lation. We perform Delaunay triangulation of the region near the labelled samples, and an unlabeled
sample node is considered neighbours (nearest samples) if it lies on the same side of at least one
triangle as the nodes of the labelled samples. II) Cluster Algorithm. The clustering algorithm is
used to divide the unlabeled samples into L classes (L denotes the number of labelled samples) and
make the labelled samples the centre of the clusters to find neighbouring samples.

Based on the either method, Xmin∗

i ∈ X u(|Xmin∗

i | = n∗) is obtained to denote the n∗ nearest
unlabeled samples to the ith labeled sample. Notably, the two methods are not used simultaneously.
We prioritise Delaunay triangulation, as it captures the geometric structure of the sample space
and yields more spatially coherent neighbors, making it well-suited for reliable distance refinement.
However, due to its limited neighbor count, we also employ clustering to expand the neighborhood
set and ensure sufficient overlap for subsequent intersection operations.

Second Stage: Retraining and Max Distance Calculation. Based on the nearest unlabeled
samples obtained from the different rules above, we will first perform an intersection operation.
Combining Xmin

i and Xmin∗

i , the samples coexisting in the two sets are acquired, i.e., Xmin
i,comb =

Xmin
i ∩ Xmin∗

i . Next, we assign pseudo-labels Ỹ to the Xmin
i,comb and get the training data D∗

train ={
Xmin

1,comb, . . . ,Xmin
k,comb; Ỹ

}
(k is the number of labelled samples in the labelled pool currently

available). Finally, we use D∗
train to re-train the NP.

After re-training, the NP will extract the representations of all samples once again. Based on
these new representations, we perform the maximum distance calculation and obtain Xmax∗

i ∈
X u (|Xmax∗

i | = m∗), i.e., the furthest m∗ unlabeled samples from the ith labelled sample (note
that the difference of Xmax

i and Xmax∗

i is that the unlabeled sample representations are different
when participating in the distance calculation).

Second Stage: Diverse Sample Selection. Diversity selection aims to identify the samples with the
lowest similarity between the obtained unlabelled samples and the existing labelled samples. So, we
perform the following intersection of unlabeled samples:{

Xmax
i,comb =

{
Xmax

i ∩ Xmax∗

i ; i = 1, . . . ,K
}

Xfinal = Top(Xmax
i,comb, ns),

(4)

where the resulting Xfinal is the final selected unlabeled samples, which are also the least similar to
the labelled sample. In addition, ns denotes the number of samples selected in each iteration, and
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Top(·) denotes the ns samples selected from Xmax
i,comb with the greatest distance. Note that m∗ is less

than m to reduce the impact of pseudo-labeled samples.

3.4 KEY-POINT GUIDED ADAPTIVE SAMPLING

As detailed above, for Xmax
i , we have to consider the scenario where the sample similarity is non-

uniformly distributed. In Figure 2, for example, we plot the non-uniform distribution of the sample
in the search space based on similarity. It can be seen that the samples are mainly concentrated in
the green circles, while those outside the green circle are not only sparse but also very dispersed.
Experimentally, it was found that if more attention was paid to the sample outside the green circle,
which was considered to be more diverse, the performance of the trained predictor was poor.

Therefore, we design a novel Key-point Guided Adaptive sampling method for the scenario of
non-uniform distribution of sample similarity. The details are shown in the equations below:{

xkey = argminxl
i∈X l

(
1
T

∑T
t=1 U(xl

i)
)

U(xl
i) =

∑
xu
j ∈Xu S

(
xl
i, x

u
j

)
, j = 1 . . . z,

(5)

where xkey (i.e., key point) is the labelled sample with the minimum average distance from
z randomly selected unlabeled samples, T denotes the number of repetitions, S(·) represents
the cosine distance, and X u denotes the unlabeled data set. We assume that the resulting

key point

selection region

Search Space

Figure 2: The calculation of the maximum dis-
tance between unlabelled and labelled samples is
performed in scenarios with a non-uniform distri-
bution of similarity.

xkey has the highest proportion of similarity to
unlabeled samples, which can cover more infor-
mation about unlabeled samples. Then, we will
select samples with the maximum distance be-
tween intervals [|Dxkey

| × α, |Dxkey
| × β] (the

interval corresponds to the blue region in the
Figure 2), where Dxkey is the distance from xkey

to all unlabeled samples (sorted from smallest
to largest), α and β are coefficients and α < β.
Note that in a uniformly distributed scenario,
the maximum distance calculation is performed
for each labelled sample, whereas in a non-
uniformly distributed scenario, the maximum
distance is only calculated for key samples.

4 THEORETICAL ANALYSIS

To achieve superior performance of the NP, we hope that the selected samples remain as diverse as
possible while selecting as few samples as possible. On the other hand, we have found experimentally
that the NP performs better when the distribution of the selected sample approximates the total sample.
Proceeding from this, we provide a brief analysis of the minimum number of selected samples when
the distributions are similar. The details are shown in the Appendix D.

Let D and Dtrain be the dataset containing all samples and the dataset of the selected samples (used
as training data). cos(·) denotes the cosine similarity calculation between samples. The following
proposition gives the minimum value of n (i.e., the number of selected samples) based on the cosine
similarity between the samples.

Proposition 4.1 Let Dtrain = {X1, X2, . . . , Xn}, and X̄ = 1
n

∑n
i=1 Xi. With probability of 1− δ,

we have:

n ≥
√∑n

i=1(bi − ai)2

2t2
ln

2

δ
, t =

1

n(n− 1)

n∑
i=0

n∑
j ̸=i

(1− cos (Xi, Xj)) + ϵ, (6)

where ϵ is a very small positive number to avoid the situation that the denominator is 0 in Equation 6.

The proposition gives the bounded value of n, which is subject to the variable t. This means that
the smaller the cosine similarity among the samples, the smaller the value of n, i.e. the higher the
sample diversity and the smaller the number of samples to be selected. Notably, this analysis relies
on simplified static assumptions and aims to provide theoretical intuition for the sampling strategy.
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Table 1: Comparison results of DARE with the SOTA methods on two datasets. “–” indicates the
indicator could not be reproduced or has no available public report. Bold indicates the best result.

NAS-Bench-101 NAS-Bench-201
Methods

K KTau↑ MSE↓ Methods
K KTau↑ MSE↓

Peephole 1K 0.4373±0.0112 0.0071±0.0005
Peephole

150 0.5112±0.0311 0.0062±0.0010
E2Epp 1K 0.5705±0.0082 0.0042±0.0003 78 0.4561±0.0280 0.0077±0.0009
SSANA 1K 0.6541±0.0078 0.0031±0.0003

E2Epp
150 0.6699±0.0100 0.0013±0.0008

HAAP 1K 0.7126±0.0024 0.0023±0.0003 78 0.5729±0.0193 0.0019±0.0006
HAAP 424 0.7010±0.0022 0.0024±0.0003

HAAP
150 0.7375±0.0200 0.0005±0.0001

RFGIAug 424 0.6513±0.0026 0.0019±0.0002 78 0.6619±0.0219 0.0011±0.0003
ReNAS 424 0.6619±0.0033 0.0021±0.0005

RFGIAug
150 0.7219±0.0019 0.0009±0.0002

NPNAS 424 0.6743±0.0029 0.0027±0.0003 78 0.6941±0.0008 0.0010±0.0002
MLP 381 0.5116±0.0011 0.0058±0.0001

ReNAS
150 0.6731±0.0041 0.0008±0.0011

LSTM 381 0.5874±0.0017 0.0046±0.0002 78 0.6210±0.0190 0.0012±0.0005
BOGCN 381 0.5790 —

NPNAS
150 0.7004±0.0031 0.0009±0.0002

HOP-2 190 0.6440 — 78 0.6635±0.0195 0.0010±0.0017
1K 0.7576±0.0030 0.0014±0.0001
424 0.7311±0.0031 0.0018±0.0002

150 0.7854±0.0050 0.0005±0.0002

381 0.6814±0.0030 0.0018±0.0001
DARE

190 0.6593±0.0030 0.0020±0.0003

DARE
78 0.7014±0.0300 0.0008±0.0003

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. This study mainly carries out experiments on search spaces, i.e., NAS-Bench-101 (NB101)
(Ying et al., 2019), NAS-Bench-201 (NB201) (Dong & Yang, 2020), DARTS (Liu et al., 2018), and
TransNAS-Bench-101 (TransBench-101) (Ying et al., 2019). More detail can be found in Appendix E.

Baselines. We compare DARE with multiple state-of-the-art methods. The competitors include:
Peephole (Deng et al., 2017), E2Epp (Sun et al., 2019), SSANA (Tang et al., 2020), HAAP (Liu
et al., 2021), RFGIAug (Xie et al., 2023), ReNAS (Xu et al., 2021), NPNAS (Wen et al., 2020),
MLP (Wang et al., 2019), LSTM (Wang et al., 2019), BOGCN (Shi et al., 2020), HOP-2 (Chen
et al., 2021b). In the architectural search for real scenarios, we also introduce additional comparison
algorithms, including: GATES (Ning et al., 2022), NASBOT (White et al., 2020), ResNet (He et al.,
2016), TNASP (Lu et al., 2021), PINAT (Lu et al., 2023), NAR-Former (Yi et al., 2023), BRP-NAS
(Dudziak et al., 2020), MeCo (Jiang et al., 2024), SWAP (Peng et al., 2024), REA (Dong & Yang,
2020), RS (Dong & Yang, 2020), HNAS (Shu et al., 2022), and RoBoT (He et al., 2024).

Implementation Details and Evolution Metrics. We use the GCN model as a predictor, and
the input to the predictor is the representation of the architecture in the form of multiple matrices,
following the setting in (Liu et al., 2021). The selection in AL is divided into two parts, in which 5
samples are randomly selected for annotation at initialization, while 10 samples are subsequently
selected at each iteration using the proposed sampling method. The predictor is trained using the
Adam optimizer for 300 epochs with a learning rate of 0.001, and the batch size is the same as
the number of samples selected at each iteration. The λ in Eq. equation 3 is 0.3. We evaluate the
predictor using Kendall’s Tau (KTau), Mean Squared Error (MSE), and Rank to assess ranking
consistency and regression accuracy, while the top-1 architecture’s performance is further reported
using validation (Val) and test (Test) accuracy. In addition, for the DARE sampling strategy, the
hyperparameters are adjusted according to the search space scale. For NAS-Bench-101, the size of
the farthest candidate set m is set to 10,000, and the nearest candidate set n is 10,000 in the first
stage. The refined farthest candidate size m∗ is 10,000, while the key-point sampling parameters
(Equation 5) are set to z = 1, 000 and T = 10. For NAS-Bench-201 and DARTS, these parameters
are set to m = 1, 000, n = 1, 000, m∗ = 1, 000, z = 500, and T = 10, respectively.

5.2 EMPIRICAL RESULTS

Comparison Results. We first compare the DARE with several SOTA methods on two datasets to
verify its effectiveness. The comparison results are shown in Table 1. DARE consistently outperforms
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Table 2: Search results of DARE with the SOTA methods on three datasets.
NAS-Bench-101 NAS-Bench-201 DARTS

Methods K Accuracy(%)↑ Rank↓ Methods Val ACC.(%) Test ACC.(%) Methods K CIFAR10 ImageNet
Peephole 1K 93.41±0.34 1922 NASBOT - 93.64±0.23 TNASP 1000 97.48 75.50
E2Epp 1K 93.77±0.13 687 E2Epp 90.61±0.89 93.39±0.75 PINAT 1000 97.58 77.80
SSANA 1K 94.01±0.12 59 HAAP 91.18±0.25 94.00±0.25 NAR-For 100 97.52 -
ReNAS 1K 93.95±0.11 148 NPNAS 91.27±0.29 93.95±0.28 BRP-NAS 60 97.52 -
HAAP 1K 94.09±0.11 16 ReNAS 90.90±0.31 93.99±0.25 MeCo - 97.36 -
BOGCN 381 — 1362 ResNet 90.83 93.97 SWAP - 97.61 76.00
GATES 381 — 22 optimal 91.61 94.37 DARE 100 97.63 78.01
DARE 381 94.11±0.11 6 DARE 91.47±0.14 94.06±0.30 DARE 60 97.55 77.13

all baseline methods across both NB101 and NB201 datasets under various training sample sizes. On
NB101, DARE achieves the highest ranking accuracy with a KTau improvement of up to 6.31% over
the best baseline (HAAP) when using 1K training samples, while reducing the regression error (MSE)
by 39.13%. Even with fewer samples (e.g., K = 424), it still outperforms strong baselines such as
NPNAS by 8.42% in KTau and 33.33% in MSE, demonstrating its effectiveness in low-resource
settings. On NAS-Bench-201, DARE achieves a KTau of 0.7854 with K = 150, surpassing the
second-best method (HAAP) by 6.49%, while maintaining the lowest MSE of 0.0005. When the
sample size drops to 78, it still maintains a 1.05% lead in KTau over the next best performer, indicating
that DARE selects more informative and generalizable samples under strict budget constraints.

Results of NAS To test the performance of the DARE further, we apply the proposed algorithm
to a real scenario to perform a search for the optimal network architecture. The search results in
Table 2 demonstrate the strong generalization performance of architectures discovered by DARE
across three benchmark datasets. On NB101, DARE achieves an accuracy of 94.11% with only
381 training samples, surpassing all other baselines including HAAP and ReNAS, and ranking
6-th among all 423k architectures, which represents a substantial improvement in sample efficiency.
On NAS201, the architecture selected by DARE achieves 94.06% test accuracy, outperforming all
baseline predictors and even approaching the performance of the optimal architecture (94.37%)
identified through exhaustive evaluation. On the DARTS benchmark, DARE also achieves state-of-
the-art performance with only 100 queried samples, reaching 97.63% on CIFAR-10 and 78.01%
on ImageNet, outperforming existing NAS approaches such as TNASP, PINAT, and SWAP. These
results collectively verify the effectiveness of DARE in identifying high-performing architectures
under limited supervision across diverse search spaces and task types.

Application on Various Tasks. To validate the effectiveness of our sampling strategy, we fur-
ther conduct experiments on various tasks from TransBench-101 (Micro). Additional results

Table 3: Search results on TransBench-101.
Accuracy (%) mIoU (%)

Methods
Scene Object Jigsaw Segment.

REA 54.63 44.92 94.81 94.55
RS 54.56 44.76 94.63 94.53
HNAS 54.29 44.08 94.56 94.57
RoBoT 54.87 45.59 94.76 94.58
DEAR 54.91 45.59 95.01 94.61
Optimal 54.94 45.59 95.37 94.61

are provided in the Fig. 12. As shown in Table 3,
DARE achieves the best performance in all four tasks,
including 54.91% accuracy on scene classification
and 95.01% on jigsaw puzzle recognition, both sur-
passing all compared methods. On object classifi-
cation and semantic segmentation, DARE reaches
45.59% accuracy and 94.61% mIoU, matching the
optimal values reported in the benchmark. Com-
pared to representative baselines such as HNAS,
DARE demonstrates consistent improvements across
all tasks, highlighting its superior ability to select architectures that generalize well in multi-task.

Ablation Study. We conduct ablation studies on NB101 to assess the contributions of each

Table 4: Ablation Study on NB101.
Distribution Uni. Non-Uni.

w/o FS 0.6628 0.6518
w/o SS 0.6564 0.6834
w/o TMMS 0.6127 0.6255
w/o KGA 0.6943 0.7122
DARE 0.7019 0.7311

component in our framework. DARE w/o FS or SS
denotes removing the first stage or second stage max-
min sampling strategy, DARE w/o TMMS denotes
removing the two-stage max-min sampling strategy,
DARE w/o KGA indicates removing the key-point
guided adaptive sampling strategy. Notably, KGA
does not exist without TMMS, as it depends on
TMMS. In addition, NB101 is a non-uniformly dis-
tributed dataset processed to obtain a uniform distri-
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(b) Entropy(a) CoreSet (c) BADGE (d) Ours

The number of samples selected Proportion of total samples(Control) Proportion of selected samples 

Figure 4: Distribution of samples selected by different AL methods. The x-axis coordinate indicates
the accuracy range, the y-axis coordinate (left) indicates the number of samples selected by the sam-
pling strategy in different accuracy ranges, and the y-axis coordinate (right) indicates the proportion
of samples to the total samples.

bution to evaluate the behavior of the sampling strategies under different conditions. As shown in
Table 4, either w/o FS or w/o SS will reduce performance to some extent. While removing TMMS
leads to a significant performance drop in both settings, this indicates its importance for ensuring
sample diversity and representativeness. In contrast, the impact of KGA is more pronounced under
non-uniform distributions, where it adapts the sampling region to account for data imbalance.

Sensitive Analysis. The sensitivity analysis illustrates the impact of the sampling range (i.e., α
and β) in Key-point Guided Adaptive Sampling. As shown in the Figure 3, the choice of sampling

0.0-0.1 0.2-0.3 0.4-0.5 0.6-0.7 0.8-0.9 0.9-1.0
Range

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
KT

au

NAS-Bench-101
NAS-Bench-201

Figure 3: Sensitive analysis of α and β.

range has a significant impact on model performance.
When the selected range is centered (i.e., 0.4–0.5),
the model achieves the highest KTau on both datasets,
indicating that samples in this region are more repre-
sentative. In contrast, when the range is too narrow
and close to the key point (i.e.., 0.0–0.1), the selected
samples tend to be redundant and offer limited addi-
tional information. On the other hand, selecting from
a range too far from the key point (i.e., 0.9–1.0) leads
to performance degradation as these samples may
lie in sparse or noisy regions of the space, reducing
the reliability of the predictor. These findings high-
light the importance of carefully setting the sampling
interval to balance informativeness and stability.

Expansion Experiments on different AL. To comprehensively evaluate the effectiveness of
our active learning strategy, we conducted a fair comparison against several state-of-the-art

Table 5: Comparison of AL Strategies on NB101
Methods KTau MSE

NoiseStability 0.5817±0.0055 0.0024±0.0005
EOAL 0.6472±0.0035 0.0020±0.0003
BAL 0.6351±0.0072 0.0014±0.0003
DARE 0.7311±0.0031 0.0018±0.0002

methods, including NoiseStability (Li et al.,
2024b), EOAL (Safaei et al., 2024), and BAL
(Li et al., 2023), on the NAS-Bench-101 dataset.
In the experiment, neural predictors were trained
using 424 samples, with KTau and MSE as the
evaluation metrics. As shown in Table 5, the
results strongly demonstrate the superiority and
robustness of our method. It achieved a KTau of 0.7311, significantly surpassing all baselines and
showcasing a superior ability to rank architectural performance. Meanwhile, although its MSE
(0.0018) is slightly higher than that of BAL (0.0014), it remains highly competitive. Moreover, its
substantial advantage in KTau confirms that its overall performance is optimal for tasks that rely on
precise ranking, such as neural architecture search.

In-depth Analyze In this part, we conduct an in-depth analysis of the samples obtained through
different AL methods, including CoreSet (Sener & Savarese, 2018), Entropy (Wang & Shang, 2014),
and BADGE (Ash et al., 2020). As discussed earlier, our goal is to ensure that the selected samples
excel in both diversity and representativeness. In Fig 4, the histogram is the number of samples
selected. The red line refers to the proportion of the number of samples in the corresponding accuracy
range to the total number of samples in the NB101. The orange line refers to the proportion of the
number of samples selected by AL methods in the corresponding accuracy range to the total number
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of samples selected (the total number is 424). The comparison with three other AL methods reveals
that the samples selected by our strategy closely align with the original data distribution. Compared to
the baselines, our method avoids over-concentrating on low-accuracy regions and instead selects more
samples from moderate- and high-accuracy intervals. This balanced distribution not only reflects the
underlying data characteristics more faithfully but also helps improve the generalization ability of the
predictor by covering a wider performance spectrum.

More Experiments. For additional experimental results and in-depth analysis, please refer to Ap-
pendix F-I. Furthermore, in Appendix I, we conducted a neural architecture search on the Transformer-
based structure, which also obtained effective results.

6 CONCLUSION

This study highlights the critical role of training samples in the training process of neural predictors
and proposes a novel and significant distribution-aware active learning method tailored for neural
architecture datasets. The method incorporates a two-stage max-min selection strategy to ensure the
diversity of selected samples and introduces a key-point-guided adaptive sampling strategy to enhance
their representativeness, thereby comprehensively improving sample quality. Extensive experiments
across various datasets validate the effectiveness and advantages of the proposed approach.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used the Large Language Model (LLM) to polish the
language and correct grammatical errors to improve readability. The LLM was not involved in any
core research aspects of the paper, such as research ideation, experimental design, or analysis of
results.

B OVERVIEW

The pipeline of the DARE is shown in Algorithm 1. Note that several randomly selected labelled
samples are used for the first training of the NP before the AL strategy is applied.

As can be seen in the algorithm, the GCN is first trained on randomly selected labelled samples,
after which the trained GCN is taken into the loop. In each iteration, the trained GCN performs
representation extraction on all samples (Rl, Ru). Based on the representations, we perform the
first round of computation of the maximum and minimum distance between labeled and unlabeled
samples. Immediately after that, a second round of computation is performed, first to re-obtain the
sample set of minimum distances by proximity topology. The two nearest sample sets are intersected
and assigned pseudo-labels. The GCN is retrained on the data with pseudo-labels. Finally, the trained
GCN is used to extract the representation of the sample again (Rl∗,Ru∗), and the sample with the
farthest distance is selected according to the calculated distance. Intersection is done on the two most
distant sample sets to obtain a diversity sample. After several iterations or satisfying the termination
conditions, the final GCN is output.

Algorithm 1: DARE algorithm
Input: GCN: neural predictor; K: the total number of labeled samples; ns: the number of samples selected

in each iteration; X : all samples; X l: labeled pool; k: the size of X l;
Output: GCN: trained predictor

1 Dtrain =
{
X l,Y

}
2 GCN←− Train(GCN, Dtrain) ▷ model training
3 while k < K do
4 Rl,Ru ←− GCN(X ) ▷ get representations
5 Xmax,Xmin ←− Dist(Rl,Ru) ▷ calculate distance
6 Xmin∗

←− Select(Xu
f ) ▷ select nearest samples

7 Xmin
comb ←− Xmin ∩ Xmin∗

8 D∗
train ←−

{
Xmin

comb, Ỹ
}

▷ assign pseudo-labels

9 GCN←− Train(GCN, D∗
train)

10 Rl∗,Ru∗ ←− GCN(X )
11 Xmax∗

←− Dist(Rl∗,Ru∗)

12 Xfinal ←− Xmax ∩ Xmax∗
▷ select diverse samples

13 X l ←− X l ∩ Top(Xfinal, ns)

14 GCN←− Train(GCN,X l)
15 end
16 Return: GCN

C TECHNICAL DETAILS

Data Augmentation. In Sec. 3.3 (First Stage), we introduce a data augmentation mechanism to
enable the GCN to learn accurate topological representations of architectures. Specifically, each
architecture is represented as a computational graph, encoded by a node-type matrix and an adjacency
matrix, where nodes signify operations and edges denote connections. To augment the data, we fix
the input and output nodes while permuting the order of the remaining intermediate nodes. When
the node-type matrix is reordered, the rows and columns of the adjacency matrix are rearranged
synchronously. This process ensures that the network’s topology and semantics remain strictly

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

identical. By exposing the GCN to multiple isomorphic representations of the same architecture, this
method compels it to learn intrinsic structural features that are invariant to the node ordering.

Architectural Representation. Each neural architecture is formally represented as a Directed
Acyclic Graph (DAG), where nodes correspond to specific network operations (e.g., convolution)
and directed edges represent the flow of data between them, with special nodes designated for the
overall input and output. To make this graphical structure processable by a Graph Convolutional
Network (GCN), we encode it into a matrix format. Specifically, each node’s operation is encoded as
a one-hot vector, and these are collectively stacked to form a node-type matrix. Concurrently, the
graph’s connectivity is captured by an adjacency matrix, where an entry of 1 signifies a connection
and 0 signifies its absence. Consequently, each architecture is uniquely described by this pair of
matrices, the node-type matrix and the adjacency matrix, which together serve as the input to the
GCN.

D THEORETICAL ANALYSIS

To achieve superior performance of the NP, we hope that the selected samples remain as diverse as
possible while selecting as few samples as possible. On the other hand, we have found experimentally
(In-depth Analysis) that the NP performs better when the distribution of the selected sample
approximates the total sample. Proceeding from this, we theoretically analyse the minimum number
of selected samples when the distributions are similar.

We first introduce Lemma 1 (Hoeffding’s inequality (Hoeffding, 1994)), which is a theorem in
probability theory, and further, we deduce the minimum number of selected samples to be taken.

Lemma 1. (Hoeffding, 1994) Let X1, X2, . . . , Xn be a collection of n independent random variables,
each with support in the intervals [ai, bi], and let the expected value be µ = 1

n

∑n
i=1 E[Xi]. For any

t > 0, it holds that:

P
(∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ ≥ t

)
≤ 2 exp

( −2n2t2∑n
i=1(bi − ai)2

)
. (7)

Proposition 1. Let Dtrain = {X1, X2, . . . , Xn}, and X̄ = 1
n

∑n
i=1 Xi. With probability of 1− δ,

we have:

n ≥
√∑n

i=1(bi − ai)2

2t2
ln

2

δ
, (8)

and

t =
1

n(n− 1)

n∑
i=0

n∑
j ̸=i

(1− cos (Xi, Xj)) + ϵ. (9)

Let D and Dtrain be the dataset containing all samples and the dataset of the selected samples (used
as training data). We can translate the bias calculations for the variables in the Lemma into differences
in sample distributions. For n samples X1, X2, . . . , Xn, the sample mean is X̄ = 1

n

∑n
i=1 Xi, and

the sample variance is S2 = 1
n−1

∑n
i=1(Xi − X̄)2. Then Hoeffding’s inequality can be written in

the following form:

P
(∣∣∣X̄ − µ| ≥ t

)
≤ 2 exp

( −2n2t2∑n
i=1(bi − ai)2

)
, (10)

where µ represents the excepted value in D, and
∑n

i=1(bi − ai)
2 is the upper and lower bound of all

sample values.

We can solve the inequality about n by restricting the value of the upper bound on the probability
of the right-hand side of the inequality. Specifically, assuming we want the upper bound of the
probability to be less than probability δ, that is:
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Table 6: More Comparison results of DARE with the SOTA algorithms on NAS-Bench-101.
Method 1K 424 381

E2EPP 0.5705±0.0082 0.5117±0.0132 0.4667±0.0099
HAAP 0.7126±0.0024 0.7010±0.0022 0.6594±0.0035
RFGIAug 0.7094±0.0021 0.6513±0.0026 0.6271±0.0031
ReNAS 0.6894±0.0019 0.6619±0.0033 0.6143±0.0027
MLP 0.6237±0.0018 0.5819±0.0023 0.5116±0.0011
LSTM 0.6837±0.0012 0.6349±0.0020 0.5874±0.0017

DARE 0.7576±0.0030 0.7311±0.0031 0.6814±0.0030

2 exp
(
− 2n2t2∑n

i=1(bi − ai)2

)
≤ δ. (11)

By transformation, we have:

n ≥
√∑n

i=1(bi − ai)2

2t2
ln

2

δ
. (12)

Therefore, when we know the sample value and the probability upper bound δ we want, we can
use the above formula to calculate the minimum sample size n that meets the requirement of the
probability upper bound.

In addition, the prerequisite for achieving an approximation of the sample distribution is to ensure that
the sample is diverse, so it is necessary to combine the difference value t with the sample diversity,
which has:

t =
1

n(n− 1)

n∑
i=0

n∑
j ̸=i

(1− cos (Xi, Xj)) + ϵ, (13)

where cos(·) is used to calculate the cosine similarity between samples and ϵ is a very small positive
number to avoid the situation that the denominator is 0 in Equation 12.

E DATASETS

This study mainly carries out experiments on search spaces, i.e., NAS-Bench-101 (Ying et al., 2019),
NAS-Bench-201 (Dong & Yang, 2020), and DARTS (Liu et al., 2018). The NAS-Bench-101 dataset
contains 423K neural network architectures, each of which is trained, tested, and validated on
CIFAR10 (Krizhevsky et al., 2009). The number of neural architectures in the NAS-Bench-201 is
15K, and each network architecture is trained on three image datasets, namely, CIFAR10, CIFAR100,
and ImageNet16-120 (Russakovsky et al., 2015). DARTS is a method of differentiable architecture
search that optimizes continuous parameters to find the best architecture. We tested our proposed
method within the DARTS search space, which includes 7 nodes and 14 edges. In DARTS, each
neural architecture is made up of two cells, a normal cell and a reduction cell. TransNAS-Bench-
101 (Duan et al., 2021) is a multi-task neural architecture search (NAS) benchmark that provides
performance data across seven tasks, including classification, regression, pixel-level prediction, and
self-supervised learning. It features two types of search spaces: a macro-level space containing 3,256
architectures, and a cell-level space with 4,096 architectures. All architectures in both spaces have
been trained, validated, and tested on the seven tasks.

NAS-Bench-101 and NAS-Bench-201 datasets are proposed to reduce expensive computational costs,
and the users can quickly evaluate the performance of the neural architectures in the search space. In
contrast, DARTS is used to validate the effectiveness of our approach in a larger search space, which
does not contain performance metrics for the architecture. In addition, the neural architectures in all
datasets can be conveniently transformed into graph structures, which facilitates the pre-processing
of the data when we use the GCN model as a predictor.
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(a) E2EPP (b) HAAP (c) DARE

KTau=0.54 KTau=0.70 KTau=0.73

Figure 5: Qualitative comparison of DARE with E2EPP and HAAP algorithms. The x-axis represents
the ground truth of the sample, and the y-axis represents the predicted value of the sample.

Table 7: Comparison results of DARE with the SOTA algorithms on NAS-Bench-201.
KTau MSE

Algorithms Nl CIFAR10 CIFAR100 ImageNet16-120 CIFAR10 CIFAR100 ImageNet16-120

E2Epp 150 0.6699±0.010 0.6620±0.080 0.6541±0.067 0.0013±0.0008 0.0024±0.0006 0.0022±0.0007
HAAP 150 0.7375±0.020 0.7184±0.009 0.7403±0.010 0.0005±0.0001 0.0015±0.0000 0.0010±0.0001

RFGIAug 150 0.7356±0.001 — — — — —
RFGIAug 78 0.7002±0.001 — — — — —

MLP 78 0.0974 — — — — —
LSTM 78 0.555 — — — — —
HOP-2 78 0.5764 — — — — —
DARE 150 0.7854±0.005 0.7675±0.010 0.7906±0.010 0.0005±0.0002 0.0012±0.0003 0.0007±0.0001
DARE 78 0.7014±0.030 0.7198±0.020 0.7178±0.040 0.0008±0.0003 0.0021±0.0007 0.0013±0.0003

F RESULTS OF THE NEURAL PREDICTOR

In this section, we will give more comparison results on NAS-Bench-101 and NAS-Bench-201.

• NAS-Bench-101. For the NAS-Bench-101, we also perform a qualitative comparison and present
the results in Fig. 5. The comparison algorithms include HAAP and E2EPP. We selected 424 samples
as the training data and another 5000 samples randomly selected as the test data. In the figure, the
x-axis represents the ground truth of the samples, the y-axis represents the predicted value of the
samples, and the straight line y = x is used as a reference, i.e. the more samples close to the straight
line, the better the result. It can be seen from Fig. 5 that the effect of the DARE is the best, and
the sample points are more concentrated. Additionally, we conducted more experimental results on
NAS-Bench-101, as shown in Table 6, which similarly demonstrated the effectiveness of DARE.

• NAS-Bench-201. On NAS-Bench-201, we test all three image datasets (CIFAR10, CIFAR100,
and ImageNet16-120). Table 7 shows the comparison results on the NAS-Bench-201. For the KTau,
our algorithm achieves optimal results on all three image classification datasets, and the improvement
is significant. On ImageNet16-120, for example, the DARE compared to E2EPP and HAAP improves
by about 0.14 and 0.05 respectively. For the MSE, the DARE only shows a slightly larger bias than
HAAP on CIFAR10, with the best performance for the rest of the image datasets. This indicates
that our proposed algorithm can better predict the true performance of architectures than the other
algorithms.

G RESULTS OF NAS

To further test the performance of the DARE, we apply the proposed algorithm to a real scenario to
perform a search for the optimal network architecture. The same operation is also represented in (Liu
et al., 2021; Xu et al., 2021), and the relevant experimental settings in this experiment are the same
as in (Liu et al., 2021). Specifically, genetic algorithm (GA) (Sampson, 1976) is used as a search
strategy to search the optimal architecture on three datasets (NAS-Bench-101, NAS-Bench-201,
and DARTS). For the NAS-Bench-101 and NAS-Bench-201, the performance of the algorithm is
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Table 8: Search results of DARE with SOTA algorithms on NAS-Bench-201.
CIFAR10 CIFAR100 ImageNet16-120

Algorithms validation(%) test(%) validation(%) test(%) validation(%) test(%)

RSPS 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88
DATRS-V1 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

GDAS 90.00±0.21 93.51±0.13 71.15±0.27 70.61±0.26 41.70±1.26 41.84±0.90
ENAS 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

NPENAS 91.08±0.11 91.52±0.16 — — — —
REA 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03
RS 90.03±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25

REINFORCE 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49

NASBOT — 93.64±0.23 — 71.38±0.82 — 45.88±0.37
E2Epp 90.61±0.89 93.39±0.75 71.08±2.00 71.11±1.93 44.36±1.85 44.87±1.43
HAAP 91.18±0.25 94.00±0.25 71.24±1.48 71.58±1.56 45.31±1.14 46.03±0.90
ReNAS 90.90±0.31 93.99±0.25 71.96±0.99 72.12±0.79 45.85±0.47 45.97±0.49
DARE 91.47±0.14 94.06±0.30 72.1±1.39 72.53±0.51 45.90±0.65 46.47±0.23
ResNet 90.83 93.97 70.42 70.86 44.53 43.63
optimal 91.61 94.37 73.49 73.51 46.77 47.31

evaluated by calculating the ranking of the selected optimal architecture in the whole search space.
For the DARTS, we make the following settings. Since there are no corresponding metrics for the
architectures in DARTS, we first trained the predictor by collecting 100 (or 60) architectures (tested
on CIFAR10 to get the accuracy) using the AL strategy and then re-trained the optimal architectures
obtained from the search on CIFAR10. To further validate the effectiveness of the algorithm, we
also transferred the optimal architectures to the ImageNet dataset for testing. In addition, we set the
maximum number of iterations to 20 for the GA and the population size to 100. The probabilities of
crossover and mutation are 0.9 and 0.2, respectively. The experiment is repeated 20 times, and the
Top-10 architectures are selected.

• NAS-Bench-201. Table 8 shows the search results on NAS-Bench-201, where we compare both
the validation and test sets of three image datasets. The algorithms involved in the comparison can be
divided into two categories, i.e., algorithms provided in the seminal paper and algorithms based on
predictors, which are listed in Table 8. In addition, the optimal represents the optimal architecture in
the search space. Experimental settings are followed (Dong & Yang, 2020)

As shown in Table 8, DARE achieves optimal results on all three datasets. Compared to the
optimal, the neural architectures obtained by DARE are all close or even equal in terms of accuracy.
For example, on the CIFAR10 and CIFAR100 validation sets, DARE can search for the network
architecture with the best performance, while on the CIFAR10 test set, the accuracy of the architecture
searched by DARE differs from that of optimal by only 0.1%.

H ABLATION STUDY

The ablation study on NAS-Bench-201 (NB102) further validates the effectiveness of each component
in our framework (DARE). As shown in Table 9, removing either the first-stage (w/o FS) or the second-
stage (w/o SS) sampling strategy leads to a noticeable decline in model performance. The removal
of the entire two-stage max-min sampling strategy (w/o TMMS) results in a sharp performance
drop, highlighting the crucial role of TMMS in ensuring sample diversity and representativeness. In
contrast, the impact of removing the key-point guided adaptive sampling strategy (w/o KGA) is more
pronounced under the non-uniform distribution, demonstrating that KGA can effectively adapt to
data imbalances by adaptively adjusting the sampling region to enhance performance in complex data
environments.
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Figure 6: Performance comparison curves of our proposed method with other sampling strategies
on NAS-Bench-101. All strategies select 424 samples. The x-axis indicates the number of samples
selected and the y-axis indicates the corresponding KTau.

Table 9: Ablation Study on NB201.
Distribution Uni. Non-Uni.
w/o FS 0.7172 0.6634
w/o SS 0.7059 0.6791
w/o TMMS 0.5743 0.6118
w/o KGA 0.7258 0.7029
DARE 0.7714 0.7854

Table 10: performance on different samples.
Predictors selected samples random samples

LR 0.3969 0.35042
RF 0.5674 0.51668

AdaBoost 0.3917 0.33342
Bagging 0.4918 0.46574

ExtraTree 0.3541 0.31348

I OTHER EXPERIMENTS

Sampling Strategies. To verify the effectiveness of the proposed strategy, we compare it with other
AL methods, including:

• Random: A baseline for the random selection of unlabeled samples.

• Entropy (Wang & Shang, 2014): A strategy of selecting samples with maximum entropy, which
means the more information the sample contains.

• BALD (Gal et al., 2017): A strategy for calculating the uncertainty of unlabeled samples using the
Bayesian method.

• CoreSet (Sener & Savarese, 2018): A strategy for selecting the most representative of the unlabeled
samples and ensuring diversity of the labelled data.

• BADGE (Ash et al., 2020): A strategy that combines Bayesian and embedding to guarantee the
uncertainty of unlabeled samples while considering the similarity of embedding.

The different methods select 424 samples on NAS-Bench-101. We record the change in KTau during
the acquisition process. As shown in Fig. 6, the samples obtained by our strategy resulted in a leading
performance of the predictor from the beginning to the end. In addition, our strategy improved by
at least 0.05 in KTau compared to other strategies, while compared with Entropy, it has improved
by more than 0.3. This demonstrates the effectiveness of our proposed strategy for performance
predictors. However, there is an oddity in this experiment, i.e., the Random method works better than
other strategies. This is due to a data distribution problem with NAS-Bench-101, which we will detail
in the In-depth Analysis.

Neural Predictors. To verify the generalizability of our proposed strategy, we have tested the selected
samples using several predictors, including Linear Regression (LR), Random Forest (RF) (Breiman,
2001), AdaBoost (Freund & Schapire, 1997), Bagging (Breiman, 1996), and ExtraTree (Geurts et al.,
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2006). In addition, we use randomly selected samples as controls. As shown in Table 10, “selected
sample" denotes the samples selected by our strategy and “random samples" denotes the randomly
selected samples. The sample sizes are both 424. In the table, all predictors perform better on samples
obtained by our strategy than on samples obtained at random, which also proves the generalizability
of our proposed algorithm.
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Figure 7: Data distribution based on test accuracy in NAS-Bench-101. The x-axis coordinate indicates
the accuracy range, e.g., “0.0-0.1" means that the test accuracy of the sample (network architecture)
is between [0.0, 0.1], and the y-axis coordinate indicates the number of samples in the corresponding
accuracy range. The left shows the distribution of all samples in the NAS-Bench-101 and the right
shows the distribution of samples with test accuracy between [0.85, 0.95].

In-depth Analysis. In this section, we analyze the sample distribution in the NAS-Bench-101 and
explain the question raised in Sampling strategies why Random would be more effective than other
sampling strategies. Initially, we analyze the data distribution in the NAS-Bench-101. In Fig. 7, we
plot the distribution of the data based on test accuracy, where the x and y axes indicate the accuracy
range and the corresponding number of samples, respectively. As can be visualised in Fig. 7(left),
although the range of accuracy is [0.0, 1.0], the number of samples with an accuracy greater than 0.8
accounts for nearly 99% of the total sample, which is the non-uniform distribution scenario. After
further analysis, we find that the samples’ accuracy is mainly concentrated between [0.85, 0.95], and
therefore a more refined distribution is plotted in Fig. 7(right). Based on the above analysis, we can
obtain that to train an NP with excellent performance, the training samples should be selected in
an accuracy range of [0.85, 0.95]. Thus, as depicted in Fig. 8, the data distributions of the various
sampling strategies are displayed. In the Fig. 8, the histograms show the number of samples, The red
line and the orange line are both proportional curves (see the legend in Fig. 8 for details). Combining
Fig. 8 with Fig. 6, it is clear that the performance of the NP is related to two factors, the number of
samples selected in the accuracy range of [0.85,0.95] and the proportion of samples selected, both of
which our proposed algorithm is optimal in. On the other hand, the main reason for the poor results
of Entropy, BALD, CoreSet and BADGE is that too few samples are selected in the accuracy range
[0.85, 0.95] and too many samples are selected outside the range, resulting in an imbalance in the
training samples. In addition, as Random is free from human interference, the likelihood of selecting
a sample is proportional to its frequency in the dataset. Thus, a large number of samples in the range
[0.85, 0.95] increases the probability of selecting samples from this region, which coincidentally
enhances the quality of the training samples and hence the predictor performance.

Expansion Experiments on Transformer-based Structure. To validate the effectiveness of our
method in large-scale Transformer search spaces, we conducted experiments on the AutoFormer
search space and compared it against baselines, including AutoFormer (Chen et al., 2021a), TF-NAS
(Zhou et al., 2022), and AZ-NAS (Lee & Ham, 2024) (Table 11). The results clearly demonstrate
DARE’s strong competitiveness. In the Small model comparison, DARE achieved the highest
classification accuracy (83.1%) with the fewest parameters (22.7M). Similarly, in the larger Base
model category, DARE achieved the highest accuracy on par with the baseline (82.4%) while
maintaining the best parameter efficiency (53.8M). These results strongly prove that our method can
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The number of samples selected Proportion of total samples(Control) Proportion of selected samples 

(a) Random (b) Entropy (c) BALD

(d) CoreSet (e) BADGE (f) Ours

Figure 8: Distribution of samples selected by different sampling strategies. The x-axis coordinate
indicates the accuracy range, the y-axis coordinate (left) indicates the number of samples selected
by the sampling strategy in different accuracy ranges, and the y-axis coordinate (right) indicates the
proportion of samples to the total samples. Specifically, the histogram is the number of samples. The
red line refers to the proportion of the number of samples in the corresponding accuracy range to
the total number of samples in the NAS-Bench-101. The orange line refers to the proportion of the
number of samples selected by the sampling strategy in the corresponding accuracy range to the total
number of samples selected (the total number is 424).

Table 11: Performance on Transformer-base Structure.
Method Small (Acc. (%) / Params) Base (Acc. (%) / Params)
AutoFormer 81.7 / 22.9M 82.4 / 54.4M
TF-NAS 81.9 / 23.0M 82.2 / 56.5M
AZ-NAS 82.2 / 23.8M 82.3 / 54.1M
DARE 83.1 / 22.7M 82.4 / 53.8M

be successfully extended to complex Transformer architecture search tasks, consistently discovering
superior model architectures that balance both high accuracy and efficiency.

Expansion Experiments on Various Tasks. Table 12 presents the search results of DARE on the
TransNAS-Bench-101 benchmark. We conducted experiments across all seven tasks, and the results
show that DARE achieves the best performance on all tasks except for the Layout task, where it is
slightly outperformed by REA. Notably, on several tasks across different search spaces, DARE even
matches the optimal architecture. These results demonstrate that our method is effective not only for
classification, but also for a wide range of non-classification tasks.
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Table 12: Search results on TransNAS-Bench-101. Bold is the optimal value.
Accuracy (%) L2 Loss (×10−2) mIoU (%) SSIM (×10−2)

Space Methods
Scene Object Jigsaw Layout Segment. Normal Autoenco.

Micro

REA 54.63 44.92 94.81 -62.06 94.55 57.10 56.23
RS 54.56 44.76 94.63 -62.22 94.53 56.83 55.55
HNAS 54.29 44.08 94.56 -64.83 94.57 56.88 48.66
RoBoT 54.87 45.59 94.76 -62.12 94.58 57.44 55.30
DARE 54.91 45.59 95.01 -62.34 94.61 58.03 56.33
Optimal 54.94 45.59 95.37 -60.10 94.61 58.73 57.72

Macro

REA 56.69 46.74 96.78 -59.99 94.80 60.81 71.38
RS 56.53 46.68 96.74 -60.27 94.78 60.72 70.05
HNAS 55.03 45.00 96.28 -61.40 94.79 59.27 57.59
RoBoT 57.41 46.87 96.89 -58.44 94.83 61.66 73.51
DARE 57.41 47.03 97.02 -58.22 94.86 62.17 73.89
Optimal 57.41 47.42 97.02 -58.22 94.86 64.35 74.88
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