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Abstract

Few-shot prompting has been shown to help001
large language models produce desired out-002
puts or reduce instances of hallucination. How-003
ever, consistently providing models with exam-004
ples that are intentionally contrary to facts can005
lead to the models’ in-context learning abilities006
adapting to these inputs and generating answers007
that do not align with the truth. This study008
aims to examine whether such language model009
priming also occurs when validating linguis-010
tic knowledge, and has crafted two scenarios011
to this end. The first scenario involves consis-012
tently providing false examples to provoke a013
conflict between the model’s parameter knowl-014
edge and its contextual understanding, while015
the second mixes false and true examples to cre-016
ate a conflict within the context. Five models017
were employed to explore eight linguistic phe-018
nomena related to Syntax: Subject-Verb Agree-019
ment, Determiner-Noun Agreement, Anaphor020
Agreement, Irregular Verb/Noun Forms, Filler-021
Gap Dependencies, Island Constraints, Argu-022
ment Structure, and Elliptical Constructions.023
We conducted experiments with various instruc-024
tion options and demonstration designs to eval-025
uate the robustness of language models against026
erroneous linguistic information and their ca-027
pability to manage conflicts between linguistic028
contexts.029

1 Introduction030

Large Language Models(LLMs) have been utilized031

to tackle a range of problems, but their consider-032

able size and the opacity of their inner workings033

often pose challenges in understanding how these034

models operate. As a means to investigate the lin-035

guistic capabilities of generative language models,036

studies have employed the Minimal-Pair Paradigm037

(MPP). This approach involves manipulating gram-038

matically correct sentences by altering word order039

or changing parts of speech, thereby creating gram-040

matically incorrect versions, which are then paired041

with the original sentences. These studies have 042

tested models by presenting them with sentences 043

and asking them to evaluate how natural the sen- 044

tences seem, either by returning a probability or 045

a direct assessment, thus gauging the models’ lin- 046

guistic knowledge. 047

Moreover, leveraging the characteristic ability of 048

LLMs known as In-Context Learning, researchers 049

have tried to modulate results or reduce hallucina- 050

tions by providing a variety of examples. However, 051

intentionally inputting examples that contradict fac- 052

tual information leads to the model learning and 053

reproducing these falsehoods. This phenomenon, 054

known as Priming, has raised concerns because 055

it suggests that models may not adequately iden- 056

tify and eliminate falsehoods, instead perpetuating 057

errors. This study aims to explore two conflict- 058

ing scenarios using In-Context Learning to assess 059

linguistic knowledge employing the Minimal-Pair 060

Paradigm. 061

Our research has revealed how disruptive lan- 062

guage models are when presented with syntacti- 063

cally incorrect sentences. This finding is signif- 064

icant because if the model demonstrates robust- 065

ness against priming, it suggests that the model 066

has grasped the underlying structure of the sen- 067

tence and possesses reliable linguistic capabilities. 068

Conversely, if the models are easily disrupted, it 069

indicates that they do not fully understand language 070

in the way humans do, but rather analyze the su- 071

perficial heuristics of each sentence. Furthermore, 072

our study proposes a new paradigm for utilizing 073

in-context learning in linguistic probing by creat- 074

ing different scenarios and observing the model’s 075

responses. 076
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Figure 1: The composition of each Prompts

2 Related Works077

2.1 In-Context Learning and Language078

Model Priming079

Large Language Models(LLMs) have demon-080

strated the ability to learn from a few examples081

in their immediate context, a capability known as082

In-Context learning. This capability, widely rec-083

ognized as an emerging trait in many advanced084

models, focuses on gaining knowledge through in-085

ference. (Brown et al., 2020; Wei et al., 2022)086

If we provide linguistic contexts by prepending087

their inputs with words or sentences and outputs088

have changed according to contexts, this is how089

we prime langauage model. (Sinha et al., 2022)090

For example, LLMs are more likely predicting a091

word when it is preceded by a contextually related092

word compared to an unrelated one, (Misra et al.,093

2020) or easily distracted by misprimes (Kassner094

and Schütze, 2019). More recently, (Sinclair et al.,095

2022) has discovered that the arrangement of a sen-096

tence increases the likelihood of a similar structure097

in the subsequent sentence.098

2.2 Knowledge Conflicts in LLMs099

Knowledge Conflict is defined in situations where100

parametric knowledge indicates a single answer,101

but varying passages suggest different answers.102

This conflict arises when the model (1) utilizes mul-103

tiple passages, (2) encounters ambiguous, context-104

dependent user queries, and (3) faces inconsisten-105

cies between different passages. (Chen et al., 2022)106

There have been lots of efforts to mitigate conflicts.107

To mitigate conflicts, (Neeman et al., 2022) trained108

QA models to separate the two sources of knowl-109

edge or predicted two answers for a given question:110

one based on the provided contextual knowledge 111

and the other derived from parametric knowledge. 112

(Longpre et al., 2021) suggested a memorization 113

mitigation strategy by training with substituted in- 114

stances, which enabled the model to generalize 115

more effectively by prioritizing contextual knowl- 116

edge. (Hong et al., 2024) incorporated the fine- 117

tuned discriminator’s decision into the in-context 118

learning process provides a method to leverage the 119

advantages of two distinct learning approaches. 120

3 Method 121

3.1 Designing Prompts 122

BLiMP (Warstadt et al., 2020), a widely recognized 123

Minimal Pair Paradigm (MPP), served as the basis 124

for our experiments on eight of these phenomena 125

(see Table 1). We categorized these phenomena 126

into two types of tasks based on prompt design: 127

the Transformation Tasks and the True/False Tasks. 128

Each prompt consists of three parts: the Instruction, 129

the Demonstration, and the Query. (see Figure 1) 130

We conducted a test using three different In- 131

structions to guide the model’s focus for each 132

tasks. For example, for the True/False (T/F) tasks, 133

there were three instructions: "Determine whether 134

the sentence is grammatically correct.", "Deter- 135

mine whether the sentence is grammatically correct 136

based on context.", "Determine whether the sen- 137

tence is grammatically correct. based on context 138

OR parametric knowledge". The goal was to see if 139

the model’s behavior would change depending on 140

whether its focus was directed towards the context 141

or its own inherent parametric knowledge. 142

The Basic Demonstration resembled traditional 143

few-shot learning, consisting of an Input and Out- 144
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Linguistic Phenomena Explanation
Anaphor Agreement reflexive pronouns agree with their antecedents in person, number, gender, and animacy.

Determiner-Noun Agreement number agreement between demonstrative determiners and the associated noun.
Irregular Forms irregular morphology on English past participles

Subject-Verb Agreement subjects and present tense verbs must agree in number.
Argument Structure the ability of different verbs to appear with different types of arguments.

Ellipsis the possibility of omitting expressions from a sentence
Filler Gap dependencies arising from phrasal movement in, e.g., wh-questions.

Island Effects restrictions on syntactic environments where the gap in a filler-gap dependency may occur.

Table 1: Explanation of each Linguistic Phenomena

put with an explicit label. In the Transformation145

Tasks, we simulated the Masked Language Model146

pre-training (Devlin et al., 2018), where the model147

is given a word and a masked sentence, and it148

must correctly complete the sentence. In contrast,149

the Paragraph Demonstration consisted solely of150

sentences combined into a single paragraph with-151

out any additional explanations or labels. For the152

True/False (T/F) tasks, we did indicate whether a153

sentence was grammatically correct in the Basic154

Demonstration, but not in the Paragraph Demon-155

stration.156

The Query was the most critical component. In157

zero-shot experiments, no demonstrations were158

used and the prompt were constructed solely from159

the Instruction and Query.160

3.2 Crafting Scenarios161

In in-context learning, two types of conflicts can162

arise: (1) a conflict between parametric knowledge163

and contextual knowledge, and (2) a conflict be-164

tween different contexts. The first conflict occurs165

when the provided context contains syntactically166

incorrect sentences, while the second conflict arises167

when the context is a mixture of syntactically cor-168

rect and incorrect sentences. To artificially induce169

a conflict, we utilized bad sentences from BLiMP170

as syntactically incorrect sentences and good sen-171

tences as syntactically correct sentences.172

For the first scenario concerning the first conflict,173

we aimed to evaluate how effectively false contexts174

could prime the model. In case of the Transfor-175

mation tasks, we varied the number of contexts176

in demonstrations: four types of demonstrations177

(1/5/10/20 incorrect contexts) and a zero-shot con-178

dition were established. In contexts comprising the179

Basic Demonstration, a word was extracted from a180

bad sentence, stemmed, and then masked in the sen-181

tence. The stemmed word, along with the masked182

sentence, served as inputs, with the model expected183

to generate the original extracted word as the out-184

put. However, in the Paragraph Demonstration, no 185

masking was performed; only the bad sentence was 186

included in the demonstration. 187

For the True/False (T/F) tasks, three versions 188

of demonstrations (1/5/10 incorrect contexts) were 189

employed. In the Basic Demonstration, each con- 190

texts were built with two versions of the same ori- 191

gin sentence: a syntactically correct sentence and a 192

incorrect sentence. If the input was a syntactically 193

correct sentence, which was a good sentence, the 194

output was labeled FALSE, and if the input was 195

an incorrect sentence, which was a bad sentence, 196

the output was labeled TRUE. For the Paragraph 197

Demonstration, only bad sentence was used, omit- 198

ting good sentence. 199

Secondly, for the second scenario concerning 200

the second conflict, a conflict between contexts, we 201

intermingled good and bad contexts within a single 202

demonstration. For the transformation tasks, we 203

created a gradient of context ratios; for instance, 204

zero incorrect contexts would correspond to twenty 205

correct contexts, and four incorrect contexts would 206

align with sixteen correct contexts. Following this 207

schema, we designed five different demonstrations 208

(0/4/8/16/20 incorrect contexts out of a total of 20). 209

In contrast, for the True/False (T/F) tasks, we 210

structured five demonstrations (0/2/4/8/10 incorrect 211

contexts out of 10). Uniquely for T/F tasks, we in- 212

troduced an additional perturbation by substituting 213

TRUE and FALSE with FOO and BAR respectively. 214

This was done to investigate whether the priming 215

effect could be observed independently of the syn- 216

tactic properties of the answer labels, as suggested 217

by (Wei et al., 2023). 218

Since the BLiMP dataset was constructed using 219

specific keywords, we ensured that our demonstra- 220

tions featured a diverse range of keyword contexts. 221

Furthermore, to maintain clearness of testing, a 222

keyword used in any demonstration was not reused 223

in a query. 224
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Figure 2: Scatter Plot of True Ratio by EM Score. The
True Ratio represents the proportion of predictions clas-
sified as TRUE by the model.

3.3 Evaluation Metrics: Priming EM Score225

To assess the model’s robustness, we utilized the226

Exact Match (EM) Score. This metric deter-227

mines whether the model can correctly respond228

to prompts despite numerous incorrect linguistic229

inputs. For example, an indication of the model’s230

robustness is its ability to return TRUE for a good231

sentence or to accurately produce a transformed232

word from a provided query.233

Conversely, to evaluate the extent to which the234

model is influenced by priming, we introduced the235

Priming EM Score. A high Priming EM Score236

indicates that the model responded incorrectly as237

anticipated. For instance, if the model reproduces a238

transformed word that matches exactly with a word239

from a bad sentence, or if it answers TRUE for240

a bad sentence, this suggests significant priming241

effects.242

Given that each case comprises 95 queries, the243

maximum possible scores for both the EM score244

and the Priming EM score are 95.245

4 Experiments246

4.1 Models247

We utilized five models for our experiments:248

META-LLAMA-3-8B-INSTRUCT(Touvron et al.,249

2023), QWEN1.5-7B-CHAT(Bai et al., 2023),250

GPT3.5-TURBO-INSTRUCT(Brown et al., 2020),251

GEMINI1.5-FLASH, and GEMINI1.5-PRO(Reid252

et al., 2024). Although the precise number of pa-253

rameters for the GPT and Gemini models is un-254

known, it is certain that they exceed the 7B or 8B255

models in size. Consequently, for the purpose of256

comparing smaller and larger models, we classi-257

fied the 7B and 8B models as small, and the others258

as large. For faster inferences, we used vLLM259

(Kwon et al., 2023). While using Open AI’s API260

and Google Gemini’s API, to reduce generation261

randomness, we used greedy decoding and fixed262

Figure 3: Line Plot of Average EM Score of task. First
four tasks are done with transformation design, and the
last four are done with T/F design.

the random seed. 263

4.2 Differentiating Instructions 264

Our initial hypothesis posited that mandating a 265

model to generate outputs based on context would 266

maximize the priming effect, whereas allowing re- 267

liance on parametric knowledge would minimize it. 268

Contrary to our expectations, the results indicated 269

that the Instructions did not significantly affect the 270

outcomes. We speculate that this could be due to 271

the length of the demonstrations; as demonstrations 272

become more extensive, the impact of a brief 1-2 273

line instruction may be reduced. 274

4.3 Types of Demonstration Design 275

Exact Match (EM) Scores and Priming EM Scores 276

generally exhibit lower values when utilizing Para- 277

graph Demonstrations compared to Basic Demon- 278

strations across most scenarios. Notably, in 279

True/False tasks, the models META-LLAMA-3- 280

8B-INSTRUCT and QWEN-1.5-7B-CHAT con- 281

sistently yield identical responses (either TRUE or 282

FALSE) in Paragraph Demonstrations as opposed 283

to Basic Demonstrations. (see Figure 2) The design 284

of Paragraph Demonstrations appears to compro- 285

mise the efficacy of in-context learning, thereby 286

complicating the analysis of results with respect 287

to the effects of priming or the robustness of the 288

model. 289

4.4 Semantic Features of Answer Labels 290

Although we anticipated that altering the semantic 291

features of answer labels from "true" and "false" to 292

"foo" and "bar" would cause the model to behave 293

differently, we observed no significant differences. 294

In some models, there was a slight improvement 295

in both the EM score and the priming EM score. 296

(see Appendix) This suggests that the models may 297
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Figure 4: Results from the first scenario, which explored conflicts between parametric knowledge and contextual
knowledge, are presented in the table. Cells colored red indicate the highest scores for each task, while those colored
yellow represent the lowest scores.

not fully understand the real structure of the sen-298

tences or discern the correctness of the syntax. In-299

stead, they appear to analyze the superficial form300

of language and infer the answer based on these301

superficial cues.302

4.5 Level of Difficulties of each Categories303

To ascertain the difficulty levels of each category,304

we calculated the average exact match (EM) scores305

for cases within each category. Initially, we hypoth-306

esized that the zero-shot EM score would reflect307

task difficulty. However, this assumption proved308

incorrect. Due to the unique design of our exper-309

iment, a zero-shot scenario often resulted in sub-310

optimal outputs from the model, irrespective of the311

inherent complexity of the task.312

As illustrated in Figure 3, tasks employing a313

True/False (T/F) design generally yielded lower314

EM scores compared to those using a transforma-315

tion design. Initially, it was presumed that even316

random selections in a binary classification setup317

would result in scores exceeding 47, which is half318

of the total 95 points. However, this was not the 319

case. The lower performance is attributed to the 320

prevalence of grammatically complex tasks, partic- 321

ularly those that involve intricate word ordering. 322

Conversely, within the transformation tasks, the 323

three tasks that achieved high overall EM scores 324

were centered on agreement rules. These tasks 325

were presumably less challenging because they in- 326

volved clear parameters, such as number, tense, 327

or gender agreement. In contrast, tasks classi- 328

fied as ’irregular’—which inherently lack clear 329

rules—required extensive parametric knowledge 330

from the model. However, these tasks scored the 331

lowest on average, likely because they were influ- 332

enced by the context provided for priming. 333

5 Results 334

5.1 Conflict between parametric knowledge 335

and contextual knowledge 336

According to Figure 4, in the True/False (T/F) tasks, 337

there is no distinct trend in changes to the Exact 338

Match (EM) score, and no significant priming ef- 339

5



Figure 5: Results from the second scenario, which explored conflicts between contexts, are presented in the table.
Cells colored red indicate the highest scores for each task, while those colored yellow represent the lowest scores.

fect is observed. The highest Priming EM scores340

occur in scenarios with no context (zero-shot) or341

one incorrect context, suggesting that most models342

do not fully comprehend the sentence and task, and343

instead, seem to return answers randomly. This344

could be due to the inherently complex nature of345

T/F tasks compared to transformation tasks.346

Conversely, in the Transformation Tasks, the EM347

score increases as the number of contexts increases.348

This indicates that the models are robust to incor-349

rect contexts, using them as positive triggers to350

enhance in-context learning proficiency. Therefore,351

the Priming EM score does not increase signifi-352

cantly with the number of contexts. In fact, overall353

Priming EM scores are low, implying that the mod-354

els are not heavily primed by the contexts. How-355

ever, in cases of irregular tasks, the Priming EM356

score is notably higher than in other tasks. This sug-357

gests that irregular tasks, which are typically more358

challenging (as shown in Figure 3), may influence359

model performance more significantly.360

The Gemini models perform best both in terms 361

of EM and Priming EM scores. This superior per- 362

formance is likely because these models are specif- 363

ically optimized for in-context learning. Therefore, 364

a low Priming EM score could indicate not only 365

robustness but also a potential limitation in the in- 366

context learning capabilities of the model. 367

5.2 Conflict between different contexts 368

According to Figure 5, in the True/False (T/F) tasks, 369

the EM score is lowest when the ratio of correct to 370

incorrect contexts is either 8:2 or 5:5. Conversely, 371

when the contexts are either all correct or all in- 372

correct, the EM scores are at their highest. This 373

indicates that the model struggles to handle knowl- 374

edge conflicts within the contexts. Interestingly, 375

for the Priming EM score, the lowest scores occur 376

when there are no correct contexts, and the highest 377

scores arise when 80% of the contexts are correct, 378

which is counter-intuitive. This unexpected result 379

suggests that further investigation is needed to de- 380
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termine the underlying causes.381

In contrast, the results for the transformation382

tasks align with our expectations: as the proportion383

of correct contexts increases, the EM score also384

increases, while the Priming EM score decreases.385

This suggests that the models manage conflicts ef-386

fectively in this scenario. For instance, when there387

is at least one correct context, there is a significant388

increase in the EM score and a substantial decrease389

in the Priming EM score. This highlights the mod-390

els’ proficiency in resolving conflicts.391

For the simplest task, the anaphor agreement392

task, the EM score approaches 95 for all models,393

indicating near-perfect performance. As previously394

noted, the Gemini models excel in these evalua-395

tions. For example, in the irregular task, when the396

demonstration consists only of incorrect contexts,397

the Priming EM scores are 63 for the Gemini1.5-398

flash model and 57 for the Gemini1.5-pro model.399

However, when the demonstration includes only400

correct contexts, these scores drop dramatically to401

0. Similar patterns are observed in the determiner-402

noun agreement task, where the Gemini1.5-flash403

model’s Priming EM score decreases from 16 to404

0, and the Gemini1.5-pro model’s score decreases405

from 37 to 1, further exemplifying the models’ ca-406

pability to adapt to the quality of context provided.407

6 Conclusion408

This study has presented a comprehensive exami-409

nation of how large language models (LLMs) re-410

spond to syntactic inaccuracies within the frame-411

work of in-context learning, utilizing the Minimal-412

Pair Paradigm (MPP) to explore linguistic capabili-413

ties. Our findings reveal a nuanced understanding414

of how LLMs navigate linguistic complexities and415

knowledge conflicts embedded within context.416

The research demonstrates that LLMs exhibit417

a variable but generally sophisticated ability to418

discriminate between grammatically correct and419

incorrect constructions, showing a stronger grasp420

on language structure than might be inferred from421

their susceptibility to context-driven errors. In sce-422

narios where models were presented with syntactic423

transformations or factual discrepancies, the perfor-424

mance varied significantly depending on the num-425

ber of correct versus incorrect contexts provided,426

illustrating the models’ reliance on the immediate427

context to guide their responses.428

The study explored the effects of various fac-429

tors on model performance against two types of430

conflicts, focusing on differentiating instructions, 431

demonstration design, semantic features of answer 432

labels, task difficulty. For the first type of con- 433

flict, in the transformation tasks, the EM scores 434

increase with more contexts, indicating that mod- 435

els are robust to incorrect contexts, using them 436

to improve in-context learning. However, for the 437

second type of conflict, the models struggle most 438

with mixed correct and incorrect contexts in the 439

T/F tasks, showing the lowest EM scores. In the 440

transformation tasks, the EM scores increase and 441

Priming EM scores decrease as the proportion of 442

correct contexts increases, showing the models’ 443

ability to manage conflicts effectively. 444

However, our study was conducted solely us- 445

ing the BLiMP dataset, which does not fully cap- 446

ture the diversity of English vocabulary or sentence 447

structure due to its construction with a limited set 448

of keywords, resulting in a lack of diversity. For fu- 449

ture research, employing a Large Language Model 450

for the synthesis or generation of data to create 451

contexts or queries could prove beneficial. Incor- 452

porating words from various domains or syntactic 453

features would be crucial for enhancing the accu- 454

racy of the experiments. Additionally, considera- 455

tion of the order in which contexts are presented is 456

necessary. (Zhou et al., 2023) 457

Moreover, due to resource constraints, we 458

were unable to test META-LLAMA-3-70B- 459

INSTRUCT(Touvron et al., 2023), QWEN1.5-72B- 460

CHAT(Bai et al., 2023). A more meaningful com- 461

parison would involve assessing models with the 462

same architectural framework but varying in the 463

number of parameters, rather than comparing mod- 464

els developed by different companies. 465
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Figure 6: Results after replacing True/False with Foo/Bar from the first scenario, which explored conflicts between
parametric knowledge and contextual knowledge, are presented in the table.

Figure 7: Results after replacing True/False with Foo/Bar from the second scenario, which explored conflicts
between contexts, are presented in the table.
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