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Abstract

Few-shot prompting has been shown to help
large language models produce desired out-
puts or reduce instances of hallucination. How-
ever, consistently providing models with exam-
ples that are intentionally contrary to facts can
lead to the models’ in-context learning abilities
adapting to these inputs and generating answers
that do not align with the truth. This study
aims to examine whether such language model
priming also occurs when validating linguis-
tic knowledge, and has crafted two scenarios
to this end. The first scenario involves consis-
tently providing false examples to provoke a
conflict between the model’s parameter knowl-
edge and its contextual understanding, while
the second mixes false and true examples to cre-
ate a conflict within the context. Five models
were employed to explore eight linguistic phe-
nomena related to Syntax: Subject-Verb Agree-
ment, Determiner-Noun Agreement, Anaphor
Agreement, Irregular Verb/Noun Forms, Filler-
Gap Dependencies, Island Constraints, Argu-
ment Structure, and Elliptical Constructions.
We conducted experiments with various instruc-
tion options and demonstration designs to eval-
uate the robustness of language models against
erroneous linguistic information and their ca-
pability to manage conflicts between linguistic
contexts.

1 Introduction

Large Language Models(LLMs) have been utilized
to tackle a range of problems, but their consider-
able size and the opacity of their inner workings
often pose challenges in understanding how these
models operate. As a means to investigate the lin-
guistic capabilities of generative language models,
studies have employed the Minimal-Pair Paradigm
(MPP). This approach involves manipulating gram-
matically correct sentences by altering word order
or changing parts of speech, thereby creating gram-
matically incorrect versions, which are then paired

with the original sentences. These studies have
tested models by presenting them with sentences
and asking them to evaluate how natural the sen-
tences seem, either by returning a probability or
a direct assessment, thus gauging the models’ lin-
guistic knowledge.

Moreover, leveraging the characteristic ability of
LLMs known as In-Context Learning, researchers
have tried to modulate results or reduce hallucina-
tions by providing a variety of examples. However,
intentionally inputting examples that contradict fac-
tual information leads to the model learning and
reproducing these falsehoods. This phenomenon,
known as Priming, has raised concerns because
it suggests that models may not adequately iden-
tify and eliminate falsehoods, instead perpetuating
errors. This study aims to explore two conflict-
ing scenarios using In-Context Learning to assess
linguistic knowledge employing the Minimal-Pair
Paradigm.

Our research has revealed how disruptive lan-
guage models are when presented with syntacti-
cally incorrect sentences. This finding is signif-
icant because if the model demonstrates robust-
ness against priming, it suggests that the model
has grasped the underlying structure of the sen-
tence and possesses reliable linguistic capabilities.
Conversely, if the models are easily disrupted, it
indicates that they do not fully understand language
in the way humans do, but rather analyze the su-
perficial heuristics of each sentence. Furthermore,
our study proposes a new paradigm for utilizing
in-context learning in linguistic probing by creat-
ing different scenarios and observing the model’s
responses.



Basic Demonstration Paragraph Demonstration

Input: Which guest should Veronica
heal?

Output: False

Example:
Which guest should Veronica heal?

Input: Which should Veronica heal
guest?
Output: True

T/F Query

Who had the cafes' upsetting Rhonda
disgusted.

Determine whether the sentence is grammatically proper Transform given word properly to fill in the [MASK]
Based on context Based on context OR parametric knowledge. Based on context Based on context OR parametric knowledge.

Basic Demonstration Paragraph Demonstration

Input: customer, The [MASK] have

) . Example:
exited this old oases.

Output: customers

oases.
Input: man, The girl disagrees with this

good [MASK].
Output: men

Transformation Query

Input: Who would the waiters' questioning upset Joel. Input: teacher, That glass disgusted those unconvinced [MASK].
Output: Output:

Q Large Language Model 4—,

Figure 1: The composition of each Prompts

2 Related Works

2.1 In-Context Learning and Language
Model Priming

Large Language Models(LLMs) have demon-
strated the ability to learn from a few examples
in their immediate context, a capability known as
In-Context learning. This capability, widely rec-
ognized as an emerging trait in many advanced
models, focuses on gaining knowledge through in-
ference. (Brown et al., 2020; Wei et al., 2022)
If we provide linguistic contexts by prepending
their inputs with words or sentences and outputs
have changed according to contexts, this is how
we prime langauage model. (Sinha et al., 2022)
For example, LL.Ms are more likely predicting a
word when it is preceded by a contextually related
word compared to an unrelated one, (Misra et al.,
2020) or easily distracted by misprimes (Kassner
and Schiitze, 2019). More recently, (Sinclair et al.,
2022) has discovered that the arrangement of a sen-
tence increases the likelihood of a similar structure
in the subsequent sentence.

2.2 Knowledge Conflicts in LLMs

Knowledge Conflict is defined in situations where
parametric knowledge indicates a single answer,
but varying passages suggest different answers.
This conflict arises when the model (1) utilizes mul-
tiple passages, (2) encounters ambiguous, context-
dependent user queries, and (3) faces inconsisten-
cies between different passages. (Chen et al., 2022)
There have been lots of efforts to mitigate conflicts.
To mitigate conflicts, (Neeman et al., 2022) trained
QA models to separate the two sources of knowl-
edge or predicted two answers for a given question:

one based on the provided contextual knowledge
and the other derived from parametric knowledge.
(Longpre et al., 2021) suggested a memorization
mitigation strategy by training with substituted in-
stances, which enabled the model to generalize
more effectively by prioritizing contextual knowl-
edge. (Hong et al., 2024) incorporated the fine-
tuned discriminator’s decision into the in-context
learning process provides a method to leverage the
advantages of two distinct learning approaches.

3 Method

3.1 Designing Prompts

BLiMP (Warstadt et al., 2020), a widely recognized
Minimal Pair Paradigm (MPP), served as the basis
for our experiments on eight of these phenomena
(see Table 1). We categorized these phenomena
into two types of tasks based on prompt design:
the Transformation Tasks and the True/False Tasks.
Each prompt consists of three parts: the Instruction,
the Demonstration, and the Query. (see Figure 1)

We conducted a test using three different In-
structions to guide the model’s focus for each
tasks. For example, for the True/False (T/F) tasks,
there were three instructions: "Determine whether
the sentence is grammatically correct.", "Deter-
mine whether the sentence is grammatically correct
based on context.", "Determine whether the sen-
tence is grammatically correct. based on context
OR parametric knowledge". The goal was to see if
the model’s behavior would change depending on
whether its focus was directed towards the context
or its own inherent parametric knowledge.

The Basic Demonstration resembled traditional
few-shot learning, consisting of an Input and Out-

The customers have exited this old

The girl disagrees with this good men.
David investigated that troubled actors.



Linguistic Phenomena

Explanation

Anaphor Agreement

reflexive pronouns agree with their antecedents in person, number, gender, and animacy.

Determiner-Noun Agreement

number agreement between demonstrative determiners and the associated noun.

Irregular Forms

irregular morphology on English past participles

Subject-Verb Agreement

subjects and present tense verbs must agree in number.

Argument Structure

the ability of different verbs to appear with different types of arguments.

Ellipsis the possibility of omitting expressions from a sentence
Filler Gap dependencies arising from phrasal movement in, e.g., wh-questions.
Island Effects restrictions on syntactic environments where the gap in a filler-gap dependency may occur.

Table 1: Explanation of each Linguistic Phenomena

put with an explicit label. In the Transformation
Tasks, we simulated the Masked Language Model
pre-training (Devlin et al., 2018), where the model
is given a word and a masked sentence, and it
must correctly complete the sentence. In contrast,
the Paragraph Demonstration consisted solely of
sentences combined into a single paragraph with-
out any additional explanations or labels. For the
True/False (T/F) tasks, we did indicate whether a
sentence was grammatically correct in the Basic
Demonstration, but not in the Paragraph Demon-
stration.

The Query was the most critical component. In
zero-shot experiments, no demonstrations were
used and the prompt were constructed solely from
the Instruction and Query.

3.2 Crafting Scenarios

In in-context learning, two types of conflicts can
arise: (1) a conflict between parametric knowledge
and contextual knowledge, and (2) a conflict be-
tween different contexts. The first conflict occurs
when the provided context contains syntactically
incorrect sentences, while the second conflict arises
when the context is a mixture of syntactically cor-
rect and incorrect sentences. To artificially induce
a conflict, we utilized bad sentences from BLiMP
as syntactically incorrect sentences and good sen-
tences as syntactically correct sentences.

For the first scenario concerning the first conflict,
we aimed to evaluate how effectively false contexts
could prime the model. In case of the Transfor-
mation tasks, we varied the number of contexts
in demonstrations: four types of demonstrations
(1/5/10/20 incorrect contexts) and a zero-shot con-
dition were established. In contexts comprising the
Basic Demonstration, a word was extracted from a
bad sentence, stemmed, and then masked in the sen-
tence. The stemmed word, along with the masked
sentence, served as inputs, with the model expected
to generate the original extracted word as the out-

put. However, in the Paragraph Demonstration, no
masking was performed; only the bad sentence was
included in the demonstration.

For the True/False (T/F) tasks, three versions
of demonstrations (1/5/10 incorrect contexts) were
employed. In the Basic Demonstration, each con-
texts were built with two versions of the same ori-
gin sentence: a syntactically correct sentence and a
incorrect sentence. If the input was a syntactically
correct sentence, which was a good sentence, the
output was labeled FALSE, and if the input was
an incorrect sentence, which was a bad sentence,
the output was labeled TRUE. For the Paragraph
Demonstration, only bad sentence was used, omit-
ting good sentence.

Secondly, for the second scenario concerning
the second conflict, a conflict between contexts, we
intermingled good and bad contexts within a single
demonstration. For the transformation tasks, we
created a gradient of context ratios; for instance,
zero incorrect contexts would correspond to twenty
correct contexts, and four incorrect contexts would
align with sixteen correct contexts. Following this
schema, we designed five different demonstrations
(0/4/8/16/20 incorrect contexts out of a total of 20).

In contrast, for the True/False (T/F) tasks, we
structured five demonstrations (0/2/4/8/10 incorrect
contexts out of 10). Uniquely for T/F tasks, we in-
troduced an additional perturbation by substituting
TRUE and FALSE with FOO and BAR respectively.
This was done to investigate whether the priming
effect could be observed independently of the syn-
tactic properties of the answer labels, as suggested
by (Wei et al., 2023).

Since the BLIMP dataset was constructed using
specific keywords, we ensured that our demonstra-
tions featured a diverse range of keyword contexts.
Furthermore, to maintain clearness of testing, a
keyword used in any demonstration was not reused
in a query.
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Figure 2: Scatter Plot of True Ratio by EM Score. The
True Ratio represents the proportion of predictions clas-
sified as TRUE by the model.

3.3 Evaluation Metrics: Priming EM Score

To assess the model’s robustness, we utilized the
Exact Match (EM) Score. This metric deter-
mines whether the model can correctly respond
to prompts despite numerous incorrect linguistic
inputs. For example, an indication of the model’s
robustness is its ability to return TRUE for a good
sentence or to accurately produce a transformed
word from a provided query.

Conversely, to evaluate the extent to which the
model is influenced by priming, we introduced the
Priming EM Score. A high Priming EM Score
indicates that the model responded incorrectly as
anticipated. For instance, if the model reproduces a
transformed word that matches exactly with a word
from a bad sentence, or if it answers TRUE for
a bad sentence, this suggests significant priming
effects.

Given that each case comprises 95 queries, the
maximum possible scores for both the EM score
and the Priming EM score are 95.

4 Experiments

4.1 Models

We utilized five models for our experiments:
META-LLAMA-3-8B-INSTRUCT(Touvron et al.,
2023), QWEN1.5-7B-CHAT(Bai et al., 2023),
GPT3.5-TURBO-INSTRUCT(Brown et al., 2020),
GEMINI1.5-FLASH, and GEMINII.5-PRO(Reid
et al., 2024). Although the precise number of pa-
rameters for the GPT and Gemini models is un-
known, it is certain that they exceed the 7B or 8B
models in size. Consequently, for the purpose of
comparing smaller and larger models, we classi-
fied the 7B and 8B models as small, and the others
as large. For faster inferences, we used vLLM
(Kwon et al., 2023). While using Open AI's API
and Google Gemini’s API, to reduce generation
randomness, we used greedy decoding and fixed

Performance of Different Language Models Across Linguistic Tasks

Figure 3: Line Plot of Average EM Score of task. First
four tasks are done with transformation design, and the
last four are done with T/F design.

the random seed.

4.2 Differentiating Instructions

Our initial hypothesis posited that mandating a
model to generate outputs based on context would
maximize the priming effect, whereas allowing re-
liance on parametric knowledge would minimize it.
Contrary to our expectations, the results indicated
that the Instructions did not significantly affect the
outcomes. We speculate that this could be due to
the length of the demonstrations; as demonstrations
become more extensive, the impact of a brief 1-2
line instruction may be reduced.

4.3 Types of Demonstration Design

Exact Match (EM) Scores and Priming EM Scores
generally exhibit lower values when utilizing Para-
graph Demonstrations compared to Basic Demon-
strations across most scenarios. Notably, in
True/False tasks, the models META-LLAMA-3-
8B-INSTRUCT and QWEN-1.5-7B-CHAT con-
sistently yield identical responses (either TRUE or
FALSE) in Paragraph Demonstrations as opposed
to Basic Demonstrations. (see Figure 2) The design
of Paragraph Demonstrations appears to compro-
mise the efficacy of in-context learning, thereby
complicating the analysis of results with respect
to the effects of priming or the robustness of the
model.

4.4 Semantic Features of Answer Labels

Although we anticipated that altering the semantic
features of answer labels from "true" and "false" to
"foo" and "bar" would cause the model to behave
differently, we observed no significant differences.
In some models, there was a slight improvement
in both the EM score and the priming EM score.
(see Appendix) This suggests that the models may



em_score em_score_priming
num_of_bad [ 1 10 20 0 1 5 10 20
model form task
Meta-Llama-3-8B-Instruct yf argstructure 34 43 58| 39) 61 52| 37 56
ellipsis 47 48 48] 49 48 47 49 46]
fillergap 37, 39) 41 49 58| 56 54 46
island 40 54 42 46 55| 41 53| 49
transformation anaphor 4 43 81 75| 51 0 2 4 12 21
detnoun 23] 41 46 48 54 4 7 11 14] 10
irregular 6 43 56| 42 39) 1 4 22 37 54
subverb 8 S 55| 56) 33| 4| 25| 20 15 26]
Qwen1.5-7B-Chat vf argstructure 34 23| 43 34 61 72| 2 61
ellipsis 35| 32 38| 44 60 63 57| 51
fillergap 36, 42 36 40 59| 53 59) 55
island R 47 3 40 57| 48 62 55
transformation anaphor 3| 67| 75 78] 69 0 2 1 5 12|
detnoun 5 59| 74) 79) 82 2 20| 13| 14] 11
irregular 9 41 33| 55| 43 1 25| 45 36| 47
subverb 8 46 65| ) 44 3 36] 27 20 18]
gemini-1.5-flash yf argstructure 3 35| 50| 52| 62| 59| 45 4
ellipsis 41 32| 42 46 54] 63| 53| 49)
fillergap 33] 32| 37| 42 62| 63 58|
island 42 43 41 47 53| 52| 54 48
transformation anaphor 39 86| 92| 89| 83 0 0 1 2 5
detnoun 22| 69| 80) 69) 77] 1 12 11 22) 16]
irregular 23] 57| 49 47 32| 1 3 36] 48 63|
subverb 28] 55| 75) 72| 69 1 17| 13| 15 13|
gemini-1.5-pro vf argstructure 29) 28| 45 45 66 66) 50| 49)
ellipsis 35| 2| 48 55| 60 67] 46 40
fillergap 25| 18 51 52| 70 77] 44 4
island 31 41 38| 49 64) 54 57| 46]
transformation anaphor 52 90 95| 93] 92) 0 0 1 1
detnoun 31 68| 70) 69) 56| 4| 13 19) 20 37]
irregular 42 58| 36| 43 38| 0 10| 59| 52 57]
subverb 24 61 86| 83| 72| 0 10| 2 3 8
gpt-3.5-turbo-instruct yf argstructure 32 29| 45 42 63 66) 46 48]
ellipsis 37] 43 36| 41 58| 52| 4 41
fillergap 36) 36] 34| 40 59| 59| 44) 44)
island 39 43 42 47} 56) 52| 51 48|
transformation anaphor 3 40 86| 76) 52| 0 2 2 3 7
detnoun 35| 64 58| 57] 49 10| 24 19) 22) 31
irregular 20 54] 48 55| 31 3 4] 26 25 51
subverb 47 56| 53| 57] 49 12 26] 22) 21 21

Figure 4: Results from the first scenario, which explored conflicts between parametric knowledge and contextual
knowledge, are presented in the table. Cells colored red indicate the highest scores for each task, while those colored

yellow represent the lowest scores.

not fully understand the real structure of the sen-
tences or discern the correctness of the syntax. In-
stead, they appear to analyze the superficial form
of language and infer the answer based on these
superficial cues.

4.5 Level of Difficulties of each Categories

To ascertain the difficulty levels of each category,
we calculated the average exact match (EM) scores
for cases within each category. Initially, we hypoth-
esized that the zero-shot EM score would reflect
task difficulty. However, this assumption proved
incorrect. Due to the unique design of our exper-
iment, a zero-shot scenario often resulted in sub-
optimal outputs from the model, irrespective of the
inherent complexity of the task.

As illustrated in Figure 3, tasks employing a
True/False (T/F) design generally yielded lower
EM scores compared to those using a transforma-
tion design. Initially, it was presumed that even
random selections in a binary classification setup
would result in scores exceeding 47, which is half

of the total 95 points. However, this was not the
case. The lower performance is attributed to the
prevalence of grammatically complex tasks, partic-
ularly those that involve intricate word ordering.

Conversely, within the transformation tasks, the
three tasks that achieved high overall EM scores
were centered on agreement rules. These tasks
were presumably less challenging because they in-
volved clear parameters, such as number, tense,
or gender agreement. In contrast, tasks classi-
fied as ’irregular’—which inherently lack clear
rules—required extensive parametric knowledge
from the model. However, these tasks scored the
lowest on average, likely because they were influ-
enced by the context provided for priming.

5 Results

5.1 Conflict between parametric knowledge
and contextual knowledge

According to Figure 4, in the True/False ('T/F) tasks,
there is no distinct trend in changes to the Exact
Match (EM) score, and no significant priming ef-



em_score em_score_priming
num_of_good 0 2 5 8 10 [ 2 5 8 10
model form task
Meta-Llama-3-8B-Instruct % argstructure 39| 38 30 34 34 56 57| 65| 61 61
ellipsis 49 41 50 38| 35 46 54/ 45| 57 60
fillergap 49) 44) 38 22 28 46 51 57 73 67
island 46 44) 49| 41 46 49 51 46) 54 49)
Qwen1.5-7B-Chat vf argstructure 34) 29 2 27, 34 61 66 73 68 61
ellipsis 44) 41 32 31 36 51 54/ 63| 64 59
fillergap 40) 43] 22 37, 38 55 52) 53 58| 57
island 40) 41 44 37 46) 55 54/ 51 58 49)
gemini-1.5-flash vt argstructure 52 46 23] 19 25| 43 49) 72| 76| 70
ellipsis 46 43] 38 26 40) 49| 52 57 69| 55
fillergap 42 40) 19 18 21 53 55 76) 77] 74
island 47] 44 3 41 43] 48] 51 62| 54 52
gemini-1.5-pro % argstructure 45 39 34 20| 17 49 55 61 75 78
ellipsis 55 34| 31 21 28 40| 60| 64 74 67
fillergap 52 48 21 13 18 43 47] 74 82 77
island 49) 36 2 35 40 46| 59| 63| 60| 55
gpt-3.5-turbo-instruct % argstructure 42 42| 42 37, 44 46 49) 50 57| 49)
ellipsis 4 37 25 21 37 4 40 41 47 42
fillergap 40| 38 33 19 46 44| 43 42 50 46
island 47 45| 44 39 48 48] 46] 43| 54 47
em_score em_score_priming
num_of_good o 4 10 16 20 o 4 10 16 20
model form task
Meta-Llama-3-8B-Instruct transformation anaphor 51 69| 91 92 94 21 9 1 2 0|
detnoun 54 59 45 63 59 10 9| 15 6 1
irregular 39| 54 67 80, 84 54| 40 19| 13 5|
subverb 33 44) 38 40) 39 26| 27| 19 25 19
Qwen1.5-7B-Chat transformation anaphor 69 84) 93 92 93] 12| 5 1 0 0|
detnoun 82 80 83| 84] 85| 11 15 11 8 6
irregular 43 56 75 83 82 47| 33 16 10| 9|
subverb 44 50 64 56| 62 18 13 12 12 9
gemini-1.5-flash transformation anaphor 83 93] 94 93, 94 5 1 0 1 0|
detnoun 77 80 90| 89| 93] 16 15 5 6 1
irregular 32 57| 70 89 93] 63 38| 23 5 0|
subverb 69| 71 76) 73 75 13 15 5| 7 12
gemini-1.5-pro transformation anaphor 92 95| 95| 95, 95| 1 0 0| 0| 0|
detnoun 56 65 81 91 93] 37 30| 14 4| 1
irregular 38 59 73 94 93] 57| 35 21 1 0|
subverb 72 82 81 78| 84 8 3 0 1 3
gpt-3.5-turbo-instruct transformation anaphor 52 72 79 85 65 7 0 0 0 0
detnoun 49| 45 67 67, 75 Ell 33 19| 15 "
irregular 31 46 64 80| 89) 51 31 23] 6 0
subverb 49| 60 64] 55 63 21 13 7 13 13

Figure 5: Results from the second scenario, which explored conflicts between contexts, are presented in the table.
Cells colored red indicate the highest scores for each task, while those colored yellow represent the lowest scores.

fect is observed. The highest Priming EM scores
occur in scenarios with no context (zero-shot) or
one incorrect context, suggesting that most models
do not fully comprehend the sentence and task, and
instead, seem to return answers randomly. This
could be due to the inherently complex nature of
T/F tasks compared to transformation tasks.

Conversely, in the Transformation Tasks, the EM
score increases as the number of contexts increases.
This indicates that the models are robust to incor-
rect contexts, using them as positive triggers to
enhance in-context learning proficiency. Therefore,
the Priming EM score does not increase signifi-
cantly with the number of contexts. In fact, overall
Priming EM scores are low, implying that the mod-
els are not heavily primed by the contexts. How-
ever, in cases of irregular tasks, the Priming EM
score is notably higher than in other tasks. This sug-
gests that irregular tasks, which are typically more
challenging (as shown in Figure 3), may influence
model performance more significantly.

The Gemini models perform best both in terms
of EM and Priming EM scores. This superior per-
formance is likely because these models are specif-
ically optimized for in-context learning. Therefore,
a low Priming EM score could indicate not only
robustness but also a potential limitation in the in-
context learning capabilities of the model.

5.2 Conflict between different contexts

According to Figure 5, in the True/False ('T/F) tasks,
the EM score is lowest when the ratio of correct to
incorrect contexts is either 8:2 or 5:5. Conversely,
when the contexts are either all correct or all in-
correct, the EM scores are at their highest. This
indicates that the model struggles to handle knowl-
edge conflicts within the contexts. Interestingly,
for the Priming EM score, the lowest scores occur
when there are no correct contexts, and the highest
scores arise when 80% of the contexts are correct,
which is counter-intuitive. This unexpected result
suggests that further investigation is needed to de-



termine the underlying causes.

In contrast, the results for the transformation
tasks align with our expectations: as the proportion
of correct contexts increases, the EM score also
increases, while the Priming EM score decreases.
This suggests that the models manage conflicts ef-
fectively in this scenario. For instance, when there
is at least one correct context, there is a significant
increase in the EM score and a substantial decrease
in the Priming EM score. This highlights the mod-
els’ proficiency in resolving conflicts.

For the simplest task, the anaphor agreement
task, the EM score approaches 95 for all models,
indicating near-perfect performance. As previously
noted, the Gemini models excel in these evalua-
tions. For example, in the irregular task, when the
demonstration consists only of incorrect contexts,
the Priming EM scores are 63 for the Geminil.5-
flash model and 57 for the Geminil.5-pro model.
However, when the demonstration includes only
correct contexts, these scores drop dramatically to
0. Similar patterns are observed in the determiner-
noun agreement task, where the Geminil.5-flash
model’s Priming EM score decreases from 16 to
0, and the Geminil.5-pro model’s score decreases
from 37 to 1, further exemplifying the models’ ca-
pability to adapt to the quality of context provided.

6 Conclusion

This study has presented a comprehensive exami-
nation of how large language models (LLMs) re-
spond to syntactic inaccuracies within the frame-
work of in-context learning, utilizing the Minimal-
Pair Paradigm (MPP) to explore linguistic capabili-
ties. Our findings reveal a nuanced understanding
of how LLMs navigate linguistic complexities and
knowledge conflicts embedded within context.

The research demonstrates that LLMs exhibit
a variable but generally sophisticated ability to
discriminate between grammatically correct and
incorrect constructions, showing a stronger grasp
on language structure than might be inferred from
their susceptibility to context-driven errors. In sce-
narios where models were presented with syntactic
transformations or factual discrepancies, the perfor-
mance varied significantly depending on the num-
ber of correct versus incorrect contexts provided,
illustrating the models’ reliance on the immediate
context to guide their responses.

The study explored the effects of various fac-
tors on model performance against two types of

conflicts, focusing on differentiating instructions,
demonstration design, semantic features of answer
labels, task difficulty. For the first type of con-
flict, in the transformation tasks, the EM scores
increase with more contexts, indicating that mod-
els are robust to incorrect contexts, using them
to improve in-context learning. However, for the
second type of conflict, the models struggle most
with mixed correct and incorrect contexts in the
T/F tasks, showing the lowest EM scores. In the
transformation tasks, the EM scores increase and
Priming EM scores decrease as the proportion of
correct contexts increases, showing the models’
ability to manage conflicts effectively.

However, our study was conducted solely us-
ing the BLiMP dataset, which does not fully cap-
ture the diversity of English vocabulary or sentence
structure due to its construction with a limited set
of keywords, resulting in a lack of diversity. For fu-
ture research, employing a Large Language Model
for the synthesis or generation of data to create
contexts or queries could prove beneficial. Incor-
porating words from various domains or syntactic
features would be crucial for enhancing the accu-
racy of the experiments. Additionally, considera-
tion of the order in which contexts are presented is
necessary. (Zhou et al., 2023)

Moreover, due to resource constraints, we
were unable to test META-LLAMA-3-70B-
INSTRUCT(Touvron et al., 2023), QWEN1.5-72B-
CHAT(Bai et al., 2023). A more meaningful com-
parison would involve assessing models with the
same architectural framework but varying in the
number of parameters, rather than comparing mod-
els developed by different companies.
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em_score (Foo/Bar) em_score_priming (Foo/Bar)
num_of_bad 5 10 5 10
model task
Meta-Llama-3-8B-Instruct argstructure 41 53 60 47 42 35
ellipsis 47 52 51 48 43 44
fillergap 47 51 53 48 44 42
island 44 48 40 43 47 55
Qwen1.5-7B-Chat argstructure 21 51 46 26 42 49
ellipsis 51 62 61 27 33 34
fillergap 28 56 57 48 39 38
island 23 49 47 17 46 48
gemini-1.5-flash argstructure 49 76 79 45 19 16
ellipsis 51 53 59 36 42 36
fillergap 55 72 75 35 23 20
island 40 64 52 48 31 43
gemini-1.5-pro argstructure 52 72 85 29 23 10
ellipsis 43 Al 79 26 24 16
fillergap 38 70 78 23 25 17
island 33 70 64 28 25 31
gpt-3.5-turbo-instruct argstructure 40 56 52 47 39 43
ellipsis 48 43 39 43 33 26
fillergap 33 48 43 62 42 40
island 44 44 46 47 51 45
Figure 6: Results after replacing True/False with Foo/Bar from the first scenario, which explored conflicts between

parametric knowledge and contextual knowledge, are presented in the table.

em_score (Foo/Bar) em_score_priming (Foo/Bar)
num_of_good 2 5 8 2 5 8
model task
Meta-Llama-3-8B-Instruct argstructure 60 63 56 54 35 32 39 41
ellipsis 51 46 50 44 44 49 45 51
fillergap 53 56 52 45 42 39 43 50
island 40 46 55 51 55 49 40 44
Qwen1.5-7B-Chat argstructure 46 59 54 53 49 36 41 42
ellipsis 61 57 54 42 34 38 41 53
fillergap 57 54 48 42 38 4 47 53
island 47 49 49 50 48 46 46 45
gemini-1.5-flash argstructure 79 55 40 18 16 40 55 7
ellipsis 59 48 37 42 36 46 57 53
fillergap 75 59 44 29 20 36 51 66
island 52 47 46 39 43 48 49 56
gemini-1.5-pro argstructure 85 65 48 25 10 30 47 70
ellipsis 79 64 43 23 16 30 51 72
fillergap 78 7 41 18 17 24 54 7
island 64 55 52 53 31 40 41 40
gpt-3.5-turbo-instruct argstructure 52 45 46 43 43 46 45 52
ellipsis 39 32 27 34 26 20 22 38
fillergap 43 32 44 26 40 35 26 52
island 46 45 42 51 45 44 45 42

Figure 7: Results after replacing True/False with Foo/Bar from the second scenario, which explored conflicts

between contexts, are presented in the table.
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