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ABSTRACT

We investigate off-policy evaluation (OPE), a central and fundamental problem
in reinforcement learning (RL), in the challenging setting of Partially Observable
Markov Decision Processes (POMDPs) with large observation spaces. Recent
works of Uehara et al. (2023a); Zhang & Jiang (2024) developed a model-free
framework and identified important coverage assumptions (called belief and out-
come coverage) that enable accurate OPE of memoryless policies with polynomial
sample complexities, but handling more general target policies that depend on
the entire observable history remained an open problem. In this work, we prove
information-theoretic hardness for model-free OPE of history-dependent policies in
several settings, characterized by additional assumptions imposed on the behavior
policy (memoryless vs. history-dependent) and/or the state-revealing property of
the POMDP (single-step vs. multi-step revealing). We further show that some hard-
ness can be circumvented by a natural model-based algorithm—whose analysis has
surprisingly eluded the literature despite the algorithm’s simplicity—demonstrating
provable separation between model-free and model-based OPE in POMDPs.

1 INTRODUCTION

Off-policy evaluation (OPE) aims to evaluate a target policy πe using an offline dataset collected
by a different behavior policy πb. The problem plays a crucial role in reinforcement learning (RL),
and is particularly relevant to real-world scenarios where policies need to be properly evaluated
before online deployment (Murphy, 2003; Ernst et al., 2006; Mandel et al., 2014; Bottou et al., 2013;
Chapelle et al., 2014; Theocharous et al., 2015).

Efficient OPE requires the behavior policy πb to satisfy certain coverage assumptions with respect to
the target policy πe. In the setting of Markov Decision Processes (MDPs), it is well established that
a bounded state-action density ratio between πe and πb suffices for polynomial sample-complexity
bounds; see Uehara et al. (2022b); Jiang & Xie (2024) for surveys and tutorials on the topic. However,
the Markov assumption, that the immediate observation is a sufficient statistic of history, can be
restrictive in scenarios where the state is latent and unobservable to the agent, as is often the case in
many real-world applications.

In this paper, we study OPE in non-Markov environments modelled as partially observable MDPs
(POMDPs),1 where the observation space is large and demands the use of function approximation.
In POMDPs, the agent only has access to observations rather than the latent state, and the next
observation may depend on the entire history of observation-action sequences (or simply, the history).
A common approach to apply MDP techniques is to treat the history as the state, thereby reducing
a POMDP to a history-based MDP. However, under this conversion, the state-action density ratio
becomes the density ratio of the entire observation-action sequence, which grows exponentially with
the horizon length.

1When we refer to OPE in POMDPs, we mean unconfounded POMDPs, where the behavior policy only
depends on the observable variables and not the latent state. There is also research on OPE in confounded
POMDPs, where the behavior policy πb depends on (only) the latent state (Shi et al., 2022; Bennett & Kallus,
2024); see Zhang & Jiang (2024) for further discussions on the distinction between the two settings.

1



Published as a conference paper at ICLR 2025

Table 1: Summary of whether poly(H, log(|M|/δ), ϵ, CA, C□, CH) (c.f. Theorem 1) complexity is
achievable in different settings, where C□ is either CO or CF depending on whether single-step or
multi-step revealing is assumed. “MF” and “MB” stand for model-free (Definition 2) and model-
based (Section 4), respectively. “✓” indicates positive results, and “✗” indicates information-theoretic
hardness. The setting is the easiest in the top-left corner, and becomes harder in the right or down
direction. Therefore, the hardness of MF in Row 2 automatically implies those in Row 3. The
bottom-right corner for MB is an open problem which we conjecture to be intractable.

Policy Types Single-step Revealing Multi-step Revealing
Memoryless πb & πe MF: ✓ (Zhang & Jiang, 2024), MB: ✓ (Theorem 5)

Memoryless πb & History-dependent πe MF: ✗ (Theorem 3), MB: ✓ (Theorem 5)
History-dependent πb & πe MF: ✗ , MB: ✓ (Theorem 4) MF: ✗ , MB: ?

To address this issue, a recent line of research (Uehara et al., 2023a; Zhang & Jiang, 2024) has
proposed model-free methods for OPE in POMDPs with large observation spaces. Zhang & Jiang
(2024) identify two novel coverage assumptions for OPE in POMDPs, belief and outcome coverage,
and demonstrate that their algorithm achieves polynomial sample complexity under these assumptions.
However, they focus on evaluating memoryless target policies πe, which ignore history and depend
only on the current observation. Extension to history-dependent πe exists, but the guarantees quickly
deteriorate when the history window that πe depends on has a nontrivial length (Uehara et al., 2023a,
Appendix C). This motivates us to study the following question:

When can we achieve polynomial sample complexity for OPE of history-dependent target policies?

We investigate the question in a range of concrete settings, and the answer turns out to be more
complex than a simple yes and no. These settings are defined by variations along several dimensions:

• Model-free vs. model-based algorithms The algorithms in Uehara et al. (2023a); Zhang & Jiang
(2024) are model-free, in the sense that the algorithm only queries πe on histories in the offline
dataset. Under this rather broad definition (Definition 3 in Zhang & Jiang (2024)), we show that no
model-free algorithms can handle general history-dependent target policies, even if we impose
additional assumptions to make the problem easier in other dimensions (see below). This motivates
us to also consider model-based algorithms that fit a POMDP model from data, which circumvent
the hardness as they query πe on model-generated synthetic trajectories.

• Single-step vs. multi-step (outcome) revealing The outcome coverage condition identified by
Zhang & Jiang (2024) asserts that the future observation-action sequences can probabilistically
decode the latent state (Assumption 9 in Zhang & Jiang (2024)). A stronger version of the condition
is that the immediate observation suffices, which corresponds to a standard (single-step) “revealing”
assumption commonly made in online RL for POMDPs (Liu et al., 2022a).

• Memoryless vs. history-dependent πb Another dimension is whether πb is also history dependent.
In the literature, it has been reported that a history-dependent πb often makes it difficult to infer
POMDP dynamics from data, and a memoryless πb makes it easier to do so (Kwon et al., 2024).

Our findings are summarized in Table 1. With either relaxation (single-step revealing or memoryless
πb), a simple Maximum Likelihood Estimation (MLE)-based model-based algorithm achieves desired
guarantees, where all model-free algorithms must suffer hardness. To our best knowledge, these
results are the first polynomial sample-complexity bound for evaluating history-dependent target
policies under coverage assumptions, and demonstrate a formal separation between model-based and
model-free OPE in POMDPs.

2 PRELIMINARIES

Notation. For a vector a, we use diag(a) to denote the diagonal matrix with a as the diagonal and
use [a]i to denote its i-th element. We use ei to denote the basis vector with the i-th element being
one. For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a matrix M , we use
σmin(M) and M† to denote its minimum singular value and pseudo-inverse respectively. The ij
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entry of matrix M is denoted as [M ]ij and the i-th row of M is denoted as [M ]i,:. The L1 norm of
matrix M is ∥M∥1 = supx ̸=0

∥Mx∥1

∥x∥1
.

POMDP Setup. We use tuple
〈
H,S =

⋃H
h=1 Sh,A,O =

⋃H
h=1 Oh, R,O,T, d1

〉
to specify a

finite-horizon POMDP. Here H is the length of horizon; Sh is the state space at step h; A is the action
space with |A| = A; Oh is the observation space at step h with |Oh| = O; R : O → [0, 1] is the
reward function; T = {Th}h∈[H−1] is the collection of transition dynamics where Th : Sh ×A →
Sh+1; O = {Oh}h∈[H] is the collection of emission dynamics where Oh : Sh → Oh; d1 ∈ ∆(S1)
is the distribution of initial state s1. All state, action, and observation spaces are finite and discrete.
However, since the observation space can be very rich, the cardinality O may be arbitrarily large.
Therefore, we aim to obtain sample complexity bounds that avoid any explicit dependence on O.

At the beginning of each episode in the POMDP, an initial state s1 drawn from d1. At each step h,
the decision-making agent observes oh ∼ Oh(· | sh), along with the reward rh(oh), and then takes
an action ah. After this, the environment transitions to the next state sh+1 ∼ Th(· | sh, ah), and the
episode terminates after aH . Note that the states s1:H are latent and unobservable to the agent.

History and Belief State. We use τh = (o1, a1, · · · , oh, ah) ∈ Th :=
∏h

h′=1(Oh ×A) to denote
the historical observation-action sequence up to step h. Given history τh, we define bS(τh) ∈ R|Sh+1|

as its belief state vector and [bS(τh)]i = P(sh+1 = i | τh). 2

Policies. A (history-dependent) policy π = {πh}h∈[H] where πh : Th−1 ×Oh → ∆(A) specifies
the action probability given the history τh−1 and the current observation oh. A memoryless policy
only depends on the current observation (i.e., πh : Oh → ∆(A)). We define J(π) as the expected
cumulative return under policy π: J(π) := Eπ

[∑H
h=1 R(oh)

]
. Here we use Eπ to denote the

expectations under policy π, Pπ(·) for the probability of an event under the same policy and dπh(·) for
the marginal distribution of sh, ah under π.

The Outcome Matrix. For any step h ∈ [H], we use fh = (oh, ah, · · · , oH−1, aH−1, oH) ∈
Fh :=

∏H−1
h′=h(Oh′ ×A)×OH to denote the future after step h. For future fh, we define u(fh) ∈

R|Sh| as its outcome vector where [u(fh)]i = Pπb(fh | sh = i). Then we define the outcome matrix
UF,h ∈ R|Fh|×|Sh| where the row indexed by fh is u(fh). Note that the outcome matrix UF,h

depends on the behavior policy πb, which we omit in the notation.

Off-policy Evaluation (OPE). In OPE, we aim to use an offline dataset collected by a behavior
policy πb to estimate the expected cumulative return of a target policy πe, which is J(πe). The
dataset D consists of n data trajectories {(o(i)1 , a

(i)
1 , r

(i)
1 , . . . , o

(i)
H , a

(i)
H , r

(i)
H ) : i ∈ [n]}. Without loss

of generality, we assume the reward function R is known and we need to learn the emission and
transition dynamics. In this paper, we focus on evaluating history-dependent πe, which is a more
general setting compared to the memoryless πe considered in previous works (Uehara et al., 2023a;
Zhang & Jiang, 2024). Therefore, the action ah depends on both the history τh−1 and the observation
oh. Throughout the paper, we make the following assumption:

Assumption A. We assume πb(ah | τh−1, oh) is known and maxh,τh−1,oh,ah

1
πb(ah|τh−1,oh)

≤ CA.

The parameter CA will not always show up in our upper bounds due to its looseness,3 but it is a
useful relaxation for making meaningful comparisons across different settings of interest in Table 1.

Learning Goal. We consider rich and large observation spaces and want to avoid paying explicit
dependence on O in the sample complexity. One way of achieving so is to use importance sampling

2The belief state is determined by the environment dynamics and is independent of the policy. Our definition
is the same as in Uehara et al. (2023a); Zhang & Jiang (2024); this is slightly different from the usual definition
that also includes oh+1 as a conditional variable.

3See discussion of uniform vs. policy-specific coverage in Section 3.1; the policy-specific counterpart of
Assumption A is to bound πe(ah | τh−1, oh)/πb(ah | τh−1, oh).
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(Precup, 2000), which avoids O but pays an exponential-in-horizon quantity O(CA
H) instead. We

follow the setting of Uehara et al. (2023a); Zhang & Jiang (2024) and use function approximation to
avoid both O and exponential-in-H , by assuming that the learner has access to a realizable model
class M.4 More formally, we make the following assumption throughout (except in Section 5):
Assumption B (Realizability). We assume that the learner is given M, a class of POMDPs with the
same S,A,O, H,R components as M⋆. Furthermore, M⋆ ∈ M.

Our goal is to achieve sample complexity bounds polynomial in log |M|, H as well as appropriate
coverage parameters introduced in the next section.

3 INFORMATION-THEORETIC HARDNESS OF MODEL-FREE ALGORITHMS

We start by introducing the key assumptions that enable efficient OPE of memoryless policies in prior
works. Then, in Section 3.2, we demonstrate via a lower bound that evaluating history-dependent πe is
information-theoretically hard for any model-free algorithm (Theorem 3), motivating the investigation
of model-based algorithms in Section 4.

3.1 KEY ASSUMPTIONS AND EXISTING RESULTS FOR MEMORYLESS πe

The prior work of Zhang & Jiang (2024) identify two key assumptions for OPE of memoryless
policies in POMDPs, as introduced below.
Assumption C (Uniform Belief Coverage). Define

ΣH,h = Eπb
[bS(τh−1)bS(τh−1)

⊤].

Assume that 1/σmin(ΣH,h) ≤ CH,∀h ∈ [H − 1] for some CH < ∞.

Assumption D (Multi-step Outcome Revealing). Define5

ΣF,h := U⊤
F,hZ

−1
h UF,h, where Zh := diag(UF,h1Sh

).

Here diag(·) is a diagonal matrix with its diagonal being the input vector, and 1Sh
is the all-1 vector

with dimension |Sh|. We assume that ∥Σ−1
F,h∥1 ≤ CF , ∀h ∈ [H − 1] for some CF < ∞.

Intuitively, Assumption C states that the belief vector bS(τh−1) spans all directions of R|Sh| when
τh−1 is generated with πb, and similar “linear coverage” conditions are also found in the linear MDP
literature (Jin et al., 2021; Xiong et al., 2022a).Assumption D is an analogous condition but stated for
the future after step h, and can be interpreted as that the future fh can nontrivially predict the latent
state sh (thus the term “revealing”). In fact, when fh can deterministically predict sh, Assumption D
holds with ΣF,h = I (the identity matrix) and CF = 1.

Uniform vs. Policy-specific Coverage Both assumptions above are only properties of the behavior
policy πb, whereas the original conditions of Zhang & Jiang (2024) are tighter versions that account
for the properties of πe as well. For example, their belief coverage does not require covering
all directions of R|Sh|, but only the direction of [dπe

h (sh = s)]s∈Sh
. We call the former uniform

coverage (since it works for all target policies) and the latter policy-specific coverage (since it is
specific to the πe under consideration). Our positive results in Section 4 also depend on policy-specific
coverage parameters, but they are different from the ones in Zhang & Jiang (2024) due to the technical
differences between model-free and model-based analyses. Moreover, some definitions (e.g., outcome
coverage in Zhang & Jiang (2024), which is the policy-specific version of our Assumption D) do not
extend to history-dependent πe. Therefore, we introduce the uniform version of the assumptions here
for a clean and fair comparison.

4The algorithms in Uehara et al. (2023a); Zhang & Jiang (2024) are model-free and require value function
and Bellman error classes; in Appendix A we show how these classes can be constructed automatically from M,
which is a common practice when comparing across model-based and model-free algorithms (Chen & Jiang,
2019; Sun et al., 2019).

5The definitions here are based on UF,h, calculated using the dynamcis of M⋆. Later we will also be
interested in variant of this assumption, where all quantities are replaced by their counterparts calculated using
the dynamics of some candidate model M ∈ M.
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We now state the result of Zhang & Jiang (2024) in our setup (see Footnote 4 for how we invoke their
model-free algorithms and analyses in our model-based setup), with proof in Appendix A.
Theorem 1 (Corollary of Theorem 7 of Zhang & Jiang (2024)). Under Assumptions C and
D, assume that πb and πe are memoryless, there exists an algorithm (see Appendix A) such
that, with probability at least 1 − δ,6 |J(πe) − Ĵ(πe)| ≤ ϵ with a sample complexity n =

poly(H, log(|M|/δ), ϵ, CA, CF , CH), where Ĵ(πe) is the algorithm’s estimation of J(πe).

3.2 HARDNESS RESULTS FOR HISTORY-DEPENDENT πe

We now show that Theorem 1 cannot hold if we make πb and πe general history-dependent policies.
In fact, the hardness is not specific to the algorithms of Uehara et al. (2023a); Zhang & Jiang (2024),
but applies generally to a broad range of model-free algorithms, as defined below.
Definition 2 (Model-free algorithm). We say that an algorithm for OPE in POMDPs is model-free, if
it only queries the action distribution of πe on trajectories observed in the offline dataset, i.e., the
only information known about πe is πe(·|o(i)1 , a

(i)
1 , . . . o

(i)
h ) for all h ∈ [H], i ∈ [n].

This definition is satisfied by the algorithms of Uehara et al. (2023a); Zhang & Jiang (2024). When
it is specialized to the MDP setting, it is also satisfied by most standard algorithms considered
model-free, such as importance sampling (Precup, 2000), Fitted-Q Evaluation (Ernst et al., 2005;
Le et al., 2019; Voloshin et al., 2019), and marginalized importance sampling Liu et al. (2018);
Uehara et al. (2020). The spirit of focusing on how algorithms access and process information in
the input is consistent with prior works that show model-free and model-based separation from a
learning-theoretic perspective (Chen & Jiang, 2019; Sun et al., 2019).

Moreover, the hardness still holds even if we make the problem easier in two aspects:

1. We keep πb memoryless (the more general setting is that πb is also history-dependent just as πe).
2. Assumption D states that (multi-step) future can reveal the latent state sh. The online POMDP

literature has a related and stronger assumption that the immediate observation oh plays the same
role (Liu et al., 2022a):

Assumption E (Single-step Outcome Revealing). Define

ΣO,h := O⊤
hW

−1
h Oh, where Wh := diag(Oh1Sh

).

We assume ∥Σ−1
O,h∥1 ≤ CO ∀h ∈ [H − 1] for some CO < ∞.

The interpretation of this assumption is similar to multi-step revealing Assumption D, but requires
that the immediate observation oh (instead of the entire future as in multi-step revealing) is sufficient
for making nontrivial predictions of sh. Therefore, the single-step outcome revealing assumption
(Assumption E) should be treated as generally stricter than its multi-step counterpart (Assumption D),
though a rigorous and quantitative comparison between CO and CF is somewhat complicated and
we defer the discussion to Appendix G. Variants of this assumption have been proposed in online
learning in POMDPs (Liu et al., 2022a), but the original version has a poor scalability w.r.t. the
number of observations, as pointed out by Chen et al. (2022) and Zhang & Jiang (2024); see Example
1 of Zhang & Jiang (2024) for further discussions. Our Assumption 4 fixes the issue by using a
similar inverse-weighting scheme as Assumption 5 and enjoys better scaling with the size of the
observation space. For example, when oh can uniquely determine sh, ΣO,h = I and is independent
of the number of observations.
Theorem 3 (Information-theoretic hardness of model-free algorithms). In the same setup as Theo-
rem 1, if we allow πe to be history-dependent (but πb is still memoryless), no model-free algorithm
can achieve the polynomial sample complexity guarantee. This still holds even if we replace CF with
the single-step revealing parameter CO.

Proof. Consider the following POMDP: for 1 ≤ h ≤ H − 1, there is only one state sh,1 (thus
transition before h = H − 1 is a trivial chain), and CH = 1. At the last step H , there are two states

6Here we assume that the algorithm has knowledge of the value of CF and CH. The analyses can be easily
adapted to the case where the precise value of CF (or CH) is unknown but a nontrivial upper bound (e.g., a
constant multiple of the value) is known.

5



Published as a conference paper at ICLR 2025

sH,L and sH,R. The emission is identity, i.e., oh = sh, meaning that the POMDP is also a MDP and
CO = CF = 1. There are two actions, L and R. At step H − 1, taking L and R transitions to sH,L

and sH,R, respectively. The agent only receives a reward of 1 upon reaching state sH,L. The model
is known so |M| = 1. The behavior policy πb is uniformly random, implying CA = 2. Consider
two target policies, π1 and π2. Both policies take action L if historical actions do not include R for
1 ≤ h ≤ H − 2. At step H − 1, π1 takes action L if all previous actions are L, while π2 takes action
R if all previous actions are L. Under any history that includes at least one R action, both policies
yield the same action, and the concrete choice does not matter.7

J(π1) = 1 and J(π2) = 0, as running π1 produces an all-L sequence, and running π2 produces
L, . . . , L,R. However, since the two policies have identical action choices under all other action
sequences, a model-free algorithm can only tell them apart if the sequence L, . . . , L of length H − 1
is observed in the offline data, which only happens with a negligible O(1/2H) probability. With
overwhelming probability, π1 and π2 will look identical to the algorithm but their J(·) differs by a
constant of 1, so no algorithm can predict them well simultaneously up to ϵ = 1/2 accuracy, unless it
is given Ω(2H) samples to observe the L, . . . , L sequence with nontrivial probability. However, in
this problem, CO, CF , CH, CA, ϵ, |M| are all constants, so the sample complexity in Theorem 1 is
poly(H), which cannot explain away the exponential in Ω(2H). Thus we conclude that no model-free
algorithm can achieve Theorem 1’s guarantee when πe is allowed to be history dependent.

The counter-intuitive part of the construction is that the model is fully known (M = {M⋆}), and the
hardness comes merely from the fact that model-free algorithms have limited access to πe and cannot
distinguish between two history-dependent policies with very different returns from data. In fact,
if we remove the model-free restriction, the problem instance is trivial to solve as we can calculate
JM⋆(πe) by rolling out πe in M⋆.

4 POSITIVE RESULTS FOR MODEL-BASED ALGORITHMS

The negative result from the previous section naturally motivates the investigation of model-based
algorithms, i.e., those that do not respect the restriction of Definition 2. Model-based algorithms fit
the POMDP dynamics from data and use the learned model to evaluate πe; the latter step can often
be achieved by rolling out trajectories in the learned model, where we need to query πe on synthetic
trajectories generated by the learned model, thus violating Definition 2 and potentially circumventing
the hardness in Theorem 3.

Concretely, we consider a very natural algorithm based on Maximum Likelihood Estimation (MLE).
It is, in fact, quite surprising that such a simple algorithm has not been analyzed under relatively
general assumptions for OPE in POMDPs. The algorithm is as follows:

• Pre-filtering: We construct M′ ⊂ M where all models that violate Assumption E (for Section 4.1
where we assume single-step revealing in the guarantee) or D (for Section 4.2 where we assume
multi-step revealing) are excluded from M′.8 Such a filtering step is common in the POMDP
learning literature (Liu et al., 2022a), and in Section 5 we show why MLE estimation requires this
as a pre-processing step and will fail otherwise.

• MLE: Let Pπ
M stands for the probabilities under policy π and model M . The model is learned as

M̂ = maxM∈M′
∑n

i=1 logP
πb

M (τ
(i)
H ). (1)

• Prediction: We use the expected return of πe in M̂ , J
M̂
(πe), as our estimation for J(πe).

4.1 GUARANTEE UNDER SINGLE-STEP OUTCOME REVEALING

We first show that the model-based algorithm enjoys a polynomial guarantee when we assume the
stronger single-step outcome revealing (Assumption E) instead of its multi-step version (Assump-

7Rolling out π1 and π2 leads to deterministic outcomes, which are characteristics of open-loop policies
(i.e., action only depends on h and is independent of (τh−1, oh)). However, π1 and π2 cannot be open-loop
simultaneously, otherwise they cannot have identical action choices on histories that include R.

8This requires the algorithm to have knowledge of the value or some nontrivial upper bound of CO (or CF ).
Such knowledge is also required for Theorem 1.
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tion D). Recall that even with this stronger revealing assumption the model-free algorithms still
cannot provide polynomial guarantees.

Theorem 4. Given a realizable model class M, let model M̂ be the MLE within M′ using the
dataset D. Under Assumption E, with probability at least 1− δ, we have

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ O

H2C2
OCeff,1

√
log |M|

δ

n

 .

where

Ceff,1 := max
h∈[H−1]

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

] ,
Here Bh = Bh(oh, ah) is the observable-operator parameterization of M⋆ under single-step
revealing (see Appendix C), and B̂h is defined similarly for M̂ . Furthermore, when Assumptions A
and C hold, we have

Ceff,1 ≤ CACH.

The proof is deferred to Appendix D.1. To the best of our knowledge, this is the first polynomial
sample-complexity bound for model-based OPE of history-dependent target policies in POMDPs with
large observation spaces. In addition to the quantities that have already been introduced, the bound
depends on a new coverage parameter, Ceff,1, which we show can be upper bounded by CACH. With
this relaxation, Theorem 4 implies a formal poly(H, log(|M|/δ), ϵ, CA, CF , CH) sample complexity,
in a setting where model-free OPE provably cannot handle (Theorem 3).

However, as mentioned in Section 3.2, the CACH bound is relaxing Ceff,1 to a “uniform coverage”
parameter, whereas Ceff,1 itself is policy-sepcific (note the dependence on πe on the numerator) and
can be much tighter. For starters, when πe = πb, it is obvious that Ceff,1 = 1. More generally, Ceff,1
captures the discrepancy between the model estimation error under the distributions induced by πe

and πb. Unlike the commonly used L2 norm of Bellman error in offline MDPs (Xie et al., 2021), we
use the L1 norm of the estimation error, which better leverages the property of the belief state vector
(∥bS(τh)∥1 = 1). The advantage of L1 over L2 is also discussed in Zhang & Jiang (2024), where
they note that L1/L∞ Hölder’s inequality can help reduce the dependence on S in the analysis. In
the special case of the MDP setting (i.e., sh = oh and Oh ≡ I), we have (see Appendix B)

Ceff,1 ≤ max
h

max
sh,ah

dπe

h (sh, ah)

dπb

h (sh, ah)
.

This recovers a coverage coefficient in the form of state-action density ratio, which is commonly used
in the offline MDP literature (Munos, 2007; Antos et al., 2008; Chen & Jiang, 2019; Jiang & Xie,
2024).

4.2 GUARANTEE UNDER MULTI-STEP OUTCOME REVEALING

Theorem 4 relies on Assumption E, which requires that the observation reveals sufficient information
about the latent state. However, this assumption may not hold in more complex partially observable
environments. We now show that the model-based algorithm can also enjoy polynomial guarantees
under the weaker multi-step revealing condition (Assumption D), if we impose that the behavior
policy πb is memoryless (the target policy πe is still history dependent).

Theorem 5. Given a realizable model class M, let model M̂ be the MLE within M′ using dataset
D. Suppose πb is memoryless and Assumption D hold, with probability at least 1− δ, we have

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ O

H2C2
FCeff,m

√
log |M|

δ

n

 .
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where

Ceff,m := max
h∈[H−1]

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] , (2)

where Bh = Bh(oh, ah) is the observable-operator parameterization of M⋆ under multi-step
revealing (Appendix C). Furthermore, similar to the single-step case, when Assumption C holds we
can upper bound Ceff,m as

Ceff,m ≤ CACH.

The proof is deferred to Appendix D.2. Our theorem shows that when the behavior policy πb is
memoryless, only polynomial samples are required to evaluate the target policy πe under Assumption
D. The structure of the bound is similar to that of Theorem 4, except that it replaces CO with its
multi-step counterpart CF .

Interestingly, our results reveal that a memoryless behavior policy can accurately evaluate history-
dependent target policies when certain coverage conditions are satisfied. This is somewhat counter-
intuitive, as one might expect that only history-dependent behavior policies could evaluate history-
dependent target policies. However, this conclusion aligns with findings in latent MDPs (Kwon
et al., 2024), which are a special case of POMDPs. This insight encourages the use of memoryless
policies with good coverage for online exploration, consistent with many online algorithms that
employ uniform exploration policies (Efroni et al., 2022; Liu et al., 2022a; Uehara et al., 2022a; Guo
et al., 2023b).

5 STATE-SPACE MISMATCH AND MODEL MISSPECIFICATION

So far we assume the agent is given a realizable model class with the ground-truth latent-state space
size |S|. Although the knowledge of |S| is commonly assumed in both OPE in POMDPs (Uehara
et al., 2023a; Zhang & Jiang, 2024) and online learning for POMDPs (Jin et al., 2020; Liu et al.,
2022a), obtaining this information in practice can be challenging, as the latent state space is an
ungrounded object. A natural concern is that of state-space misspecification (Kulesza et al., 2014;
2015): what if the state space of models in M (denoted as Ŝ in this section) is different from that of
M⋆? This question has largely eluded the recent literature on RL in POMDPs, and below we show
that taking it seriously reveals interesting insights.

One immediate consequence of |Ŝ| ≠ |S| is that the model realizability assumption M⋆ ∈ M no
longer makes any sense. A natural rescue is to note that it is still possible to have models in M
that induce the same observable process as M⋆, that is, they always generate the same distribution
of observation-action sequences given any policy. For example, if |Ŝ| > |S|, we can still hope
this weaker notion of realizability (based on observable equivalence) holds, since one can simply
add dummy latent states to M⋆ to create an equivalent model with larger latent-state spaces. More
concretely:
Definition 6. We say that M satisfies observable-equivalent realizability, if there exists M ∈ M,
such that PM (oh+1|o1, a1, . . . , oh, ah) is the same as PM⋆(oh+1|o1, a1, . . . , oh, ah) for all h and
o1, a1, . . . , oh+1.

We now show a somewhat counter-intuitive result: replacing M⋆ ∈ M with observable-equivalent
realizability will break the previous guarantee (e.g., Theorem 4).
Theorem 7. Take the same setting as Theorem 4, with model realizability (Assumption B) replaced by
the weaker observable-equivalent realizability (Definition 6). The model-based algorithm, either with
or without the pre-filtering step (Section 4), cannot achieve the polynomial guarantee in Theorem 4.

Proof. The action space is {L,R} and rewards are only received at final step H . M = {M1,M2},
i.e., there are only two candidate models in M. All the models including M⋆ share the same
observation space, which contains only one observation for h ∈ [H − 1] and two observations at
step H . M1 and M2 have the same state space as M⋆ at the final step H: sgood and sbad, state sgood
always generates ogood with reward 1 and state sbad always generates obad with reward 0. In M1,

8
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the state space at step h ∈ [H − 1] is {L,R}h−1. For h ∈ [H − 2], any state-action pair (sh, ah)
deterministically transitions to the next state sh+1 = (sh, ah), where ah is appended to sh. At step
H − 1, all states transition to sgood when action L is taken; otherwise, they transition to sbad. M2

shares the same state space and dynamics as M1, except that at step H − 1, the all-R state will
transition to sgood if action R is taken. The ground-truth model M⋆ has only one state at each step
h ∈ [H − 1]. At step H − 1, it transitions to sgood if action L is taken; otherwise, it transitions to sbad.
We can verify that M1 produces the same observable process as M⋆. For M⋆, since there is only
one state and one observation for h ∈ [H − 1], we have CO = CH = 1. The behavior policy πb is
uniformly random with CA = 2, while the target policy πe always takes action R.

We first consider the case where the pre-filtering step is skipped, so both M1 and M2 are considered
for MLE. To estimate πe accurately, the algorithm needs to output M̂ = M1 (M2’s prediction is
wrong by a constant), but the empirical MLE losses (Eq.(1)) of M1 and M2 are always identical
unless the all-R action sequence is contained in the dataset . Since πb is uniformly random, Ω(2H)
samples are needed to include this sequence with nontrivial probability. Therefore, with only poly(H)
samples, MLE cannot distinguish between M1 and M2, and hence cannot accurately estimate J(πe).

If the algorithm does perform the pre-filtering step, note that CO = ∞ for both models as |Sh| > |Oh|
for h > 1 and ΣO,h is non-invertible, so both models will be eliminated and the algorithm cannot be
executed.

In the model-based algorithm in Section 4, we assume revealing assumptions (Assumptions E or
D) on M⋆ and perform pre-filtering. The negative result here sheds light on this and reveals the
underlying reason: what we really need is not M⋆, but the learned model M̂ to satisfy revealing
properties. In the proof of Theorem 7, no models in M satisfy single-step revealing (Assumption E)
which leads to poor sample efficiency. Inspired by this observation, we present the following result
that handles state-space mismatch properly. We assume |Ŝ| can be either smaller or greater than |S|,
and an approximate version of observable-equivalent realizability.

Theorem 8. Given a model class M such that each M ∈ M satisfies Assumption D. Let model M̂
be the MLE within M using dataset D. Suppose πb is memoryless, with probability at least 1− δ,

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ O

H2C2
FCeff,m

√
log |M|

δ

n
+ εapprox

 ,

where Ceff,m is defined in Eq. (2) and εapprox is the approximation error of M:

εapprox := min
M∈M

1

n

n∑
i=1

(
logPπ

M⋆(τ
(i)
H )− logPπ

M (τ
(i)
H )
)
.

The proof is deferred to Appendix E. Here we assume that all M ∈ M satisfies Assumption D. It
is actually fine if M⋆ itself does not satisfy the assumption, as long as one of models M ∈ M is
observable-equivalent to M⋆ up to approximation error εapprox.

6 RELATED WORKS

OPE in POMDPs. There are two main directions in the study of OPE in POMDPs: OPE in
confounded POMDPs and OPE in unconfounded POMDPs. OPE in confounded POMDPs (Zhang &
Bareinboim, 2016; Namkoong et al., 2020; Tennenholtz et al., 2020; Nair & Jiang, 2021; Shi et al.,
2022; Xu et al., 2023; Bennett & Kallus, 2024) assume that the actions from the behavior policy
depend only on the latent state. As a result, these methods are inapplicable to our unconfounded
setting, where the latent state is unobservable, and the behavior policy depends solely on the obser-
vations and actions. A line of research (Hu & Wager, 2023; Uehara et al., 2023a; Zhang & Jiang,
2024) investigates the same unconfounded setting as ours. Hu & Wager (2023) employ multi-step
importance sampling, which leads to an exponential dependence on the horizon length. Uehara et al.
(2023a); Zhang & Jiang (2024) use model-free methods that estimate the future-dependent value
functions of the target policy, but their approaches focus on memoryless target policies or policies
with limited memory. In this paper, we leverage model-based methods and provide polynomial
sample complexity bounds for history-dependent target policies.
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OPE in MDPs. OPE is an important problem in MDPs and many works have studied it, including
importance sampling methods (Precup, 2000; Li et al., 2011), marginalized importance sampling
approaches (Liu et al., 2018; Xie et al., 2019; Kallus & Uehara, 2020; Katdare et al., 2023), doubly
robust estimators (Dudı́k et al., 2011; Thomas & Brunskill, 2016; Jiang & Li, 2016; Farajtabar et al.,
2018; Xu et al., 2021) and model-based methods (Eysenbach et al., 2020; Voloshin et al., 2021;
Yin et al., 2021). However, most of these methods (except for importance sampling) require the
Markovian property of the environment. Applying these techniques to POMDPs either does not work
or results in an exponential dependence on the horizon length. Xie et al. (2019) demonstrated that
state-action coverage is sufficient to achieve polynomial sample complexity in MDPs. However, as
shown by Kwon et al. (2024), latent state coverage is insufficient in POMDPs due to their partial
observability. In this paper, we consider coverage conditions for both histories and outcomes, a
direction that is also explored in Zhang & Jiang (2024) for model-free methods.

Online Learning in POMDPs. Online learning algorithms in POMDPs have been extensively
studied. Krishnamurthy et al. (2016) show that the lower bound on the sample complexity of learning
general POMDPs is exponential in the horizon, and later works have focused on circumventing the
hardness with additional assumptions. Uehara et al. (2023b) propose provably efficient algorithms for
POMDPs with deterministic transition dynamics. Guo et al. (2016); Azizzadenesheli et al. (2016);
Xiong et al. (2022b) assume the environment satisfies the reachability assumption or that exploratory
data is available. There are also many works studying sub-classes of POMDPs, including latent
MDPs (Kwon et al., 2021; 2024), decodable POMDPs (Krishnamurthy et al., 2016; Jiang et al., 2017;
Du et al., 2019; Efroni et al., 2022), weakly revealing POMDPs (Jin et al., 2020; Liu et al., 2022a;b),
low-rank POMDPs (Wang et al., 2022; Guo et al., 2023b), POMDPs with hindsight observability (Lee
et al., 2023; Guo et al., 2023a) and observable POMDPs (Golowich et al., 2022a;b), except for
the model-free algorithm of Uehara et al. (2022a) based on the future-dependent value function
framework (Uehara et al., 2023a).

7 CONCLUSION

We studied OPE of history-dependent target policies in POMDPs with large observation spaces,
and showed provable separation between model-free and model-based methods in several settings.
A major open problem is whether model-based algorithm can handle history-dependent πb and
multi-step revealing (the “?” mark in Table 1), and resolving this question will provide a more
comprehensive picture of the landscape of OPE in POMDPs.
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A PROOF OF THEOREM 1

Proof. We use the algorithm described in Section 3 of Zhang & Jiang (2024). Given the model
class M, we construct the function classes V and Ξ needed by their algorithm. First, we apply the
same pre-filtering as in the model-based algorithm to obtain M′. For each M ∈ M′, we include
the corresponding future-dependent value function (FDVF) VF (their Definition 3) in V . For each
model pair M1,M2 ∈ M′, we include BH

M1
VF,M2

(their Definition 4) in Ξ, where VF,M2
is the

FDVF in model M2 and BH
M1

is the Bellman residual operator under model M1. Hence, we have
|V| ≤ |M| and |Ξ| ≤ |M|2. Meanwhile, their Assumptions 5 and 6 are naturally satisfied. From our
Assumption C, their Assumption 11 is also satisfied with CH,2 ≤ C2

H. According to their Lemma 5,
we have ∥VF∥∞ ≤ HCF . Then, we invoke their Theorem 7 and obtain that w.p. 1− δ,

|J(πe)− Ĵ(πe)| ≤ O

(
H2CFCH

√
CA log(|M|/δ)

n

)
.

B CALCULATION OF THE MDP CASE

For MDP, we have oh = sh and Oh ≡ I . Hence, given τh−1, sh, ah,

πe(ah | τh−1, sh)
∥∥∥(Bh(sh, ah)− B̂h(sh, ah)

)
OhbS(τh−1)

∥∥∥
1

= πe(ah | τh−1, sh)
∥∥∥(Th,ah

− T̂h,ah
)diag(Oh(sh | ·))bS(τh−1)

∥∥∥
1

= πe(ah | τh−1, sh)
∑
s′

PM⋆(sh | τh−1)
∣∣P

M̂
(s′ | sh, ah)− PM⋆(s′ | sh, ah)

∣∣
= Pπe

M⋆(sh, ah | τh−1)
∥∥P

M̂
(· | sh, ah)− PM⋆(· | sh, ah)

∥∥
1
.

Fix step h, the numerator in Ceff,1 becomes∑
sh,ah

dπe

h (sh, ah)
∥∥P

M̂
(· | sh, ah)− PM⋆(· | sh, ah)

∥∥
1
.

Similarly, the denominator is∑
sh,ah

dπb

h (sh, ah)
∥∥P

M̂
(· | sh, ah)− PM⋆(· | sh, ah)

∥∥
1
.

Then we have

Ceff,1 ≤ max
h

max
sh,ah

dπe

h (sh, ah)

dπb

h (sh, ah)
.

C OBSERVABLE OPERATOR MODELS

We introduce the observable operator models (OOMs) (Jaeger, 2000), which (for our purposes) can be
viewed as a reparameterization of POMDPs. OOMs have seen wide use in recent POMDP literature
(especially in the online setting (Liu et al., 2022a)), and play a crucial role in our model-based
analyses.

Single-step Revealing. We first introduce the OOM used in environments satisfying single-step
revealing condition. Given model parameters M⋆ = (T,O, d1), we write the initial observation
distribution b0 and observable operators B as

b0 = O1d1 ∈ RO,

Bh(o, a) = Oh+1Th,adiag(Oh(o | ·))O†,w
h ∈ RO×O,

where Th,a ∈ R|Sh+1|×|Sh| with [Th,a]ij = Th(sh+1 = i | sh = j, ah = a). Different from the
pseudo-inverse in Liu et al. (2022a), we use the weighted version (Zhang & Jiang, 2024) defined as
follows:

O†,w
h = Σ−1

O,hO
⊤
hW

−1
h ,
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where ΣO,h and Wh are defined in Assumption E. With the OOM representaion, for any trajectory
τh = (o1, a1, · · · , oh, ah), the probability of generating τh with policy π can be written as

Pπ
M⋆(τh) = π(τh) ·

(
e⊤ohBh−1(oh−1, ah−1) · · ·B1(o1, a1)b0

)
,

where π(τh) =
∏h

h′=1 π(ah | oh, τh−1) is the action probability of generating τh given policy π.

Moreover, let b(τh) =
(∏h

h′=1 Bh′(oh′ , ah′)
)
b0, we have the following observation:

b(τh) = PM⋆(τh)Oh+1bS(τh),

where PM⋆(τh) = e⊤ohBh−1(oh−1, ah−1) · · ·B1(o1, a1)b0 is the environment probability of gener-
ating τh. The relationship between b(τh) and belief state vector bS(τh) is crucial for developing
coverage conditions on the belief state.

Multi-step Revealing. Next, we introduce the OOM in the multi-step revealing setting. Recall that
fh denotes the future after step h, and UF,h is the outcome matrix, where the row indexed by fh
represents its corresponding outcome vector. The observable operators are defined as

b0 = UF,1d1 ∈ R|F1|,

Bh(o, a) = UF,h+1Th,adiag(Oh(o | ·))U†,w
F,h ∈ R|Fh+1|×|Fh|.

Here U†,w
F,h = Σ−1

F,hU
⊤
F,hZ

−1
h is the weighted pseudo-inverse and ΣF,h, Zh are defined in Assumption

D. For any history τh−1 and future fh, the probability of generating (τh−1, fh) with policy π is
written as

Pπ
M⋆(τh−1, fh) = π(τh−1) ·

(
e⊤fhBh−1(oh−1, ah−1) · · ·B1(o1, a1)b0

)
,

Similar to the single-step case, we also have the following relation between b(τh) and bS(τh):

b(τh) = PM⋆(τh)UF,h+1bS(τh),

D PROOFS FOR SECTION 4

We first provide a lemma showing that a model can have accurate probability estimation of trajectories
when it estimates the historical data well. The proof can be found in Appendix B of Liu et al. (2022a).

Lemma 9 (Restatement of Proposition 14 of Liu et al. (2022a)). There exists a universal constant c
such that for any δ ∈ (0, 1], with probability at least 1− δ, for all M ∈ M, it holds that

 ∑
τ∈

∏H
h=1(Oh×A)

|Pπb

M (τ)− Pπb

M⋆(τ)|

2

≤
c

(∑n
i=1 log

Pπb
M⋆ (τ

(i))

Pπb
M (τ(i))

+ log |M|
δ

)
n

Since the ground-truth M⋆ ∈ M, for the MLE M̂ , we further have

∑
τ∈

∏H
h=1(Oh×A)

∣∣∣Pπb

M̂
(τ)− Pπb

M⋆(τ)
∣∣∣ ≤
√

c log |M|
δ

n
:= εMLE.

In addition, marginalizing two distributions will not increase the TV distance, for any h ∈ [H − 1],
the following inequalities hold,∑

τh,oh+1

∣∣∣Pπb

M̂
(τh, oh+1)− Pπb

M∗(τh, oh+1)
∣∣∣ ≤ εMLE, (3)

∑
τh,fh+1

∣∣∣Pπb

M̂
(τh, fh+1)− Pπb

M∗(τh, fh+1)
∣∣∣ ≤ εMLE. (4)
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D.1 PROOF OF THEOREM 4

To begin with, we first state the following lemma for our operators B, which is adapted from Lemma
32 of Liu et al. (2022a). We use Bh:j+1 to denote

∏h
h′=j+1 Bh′(oh′ , ah′).

Lemma 10. For any index 0 ≤ j < h ≤ H − 1, trajectory τj ∈
∏j

h′=1(Oh′ ×A), vector x ∈ RO,
policy π, and operator B satisfying Assumption E, we have∑

τh:j+1

∥Bh:j+1x∥1 × π(τh:j+1 | τj) ≤ CO∥x∥1.

Proof. From the definition of Bh:j+1, we have

Bh:j+1x = Bh:j+1Oj+1O†,w
j+1x.

Then, for any standard basis ei ∈ RS , we obtain∑
τh:j+1

∥Bh:j+1Oj+1ei∥1 × π(τh:j+1 | τj)

=
∑
o

∑
τh:j+1

PM (oh+1 = o, τh:j+1 | sj+1 = i) · π(τh:j+1 | τj)

=
∑
o

∑
τh:j+1

Pπ
M (oh+1 = o, τh:j+1 | τj , sj+1 = i) = 1.

Therefore, ∑
τh:j+1

∥Bh:j+1x∥1 × π(τh:j+1 | τj)

≤
∑

τh:j+1

∥Bh:j+1Oj+1∥1∥O†,w
j+1x∥1 × π(τh:j+1 | τj)

≤ ∥O†,w
j+1x∥1 ≤ CO∥x∥1.

The last step is from Assumption E and ∥O†,w
j+1∥1 ≤ ∥Σ−1

O,h∥1∥O⊤
hW

−1
h ∥1 ≤ CO.

Then, we prove Theorem 4. When the context is clear, we omit the (oh, ah) in Bh(oh, ah).

Proof. We first bound the single-step estimation error of πb. For any h ∈ [H − 1], we have∑
τh

πb(τh)×
∥∥∥(B̂h(oh, ah)−Bh(oh, ah)

)
b(τh−1)

∥∥∥
1

≤
∑
τh

πb(τh)×
∥∥∥B̂h(oh, ah)b̂(τh−1)−Bh(oh, ah)b(τh−1)

∥∥∥
1

+
∑
τh

πb(τh)×
∥∥∥B̂h(oh, ah)

(
b̂(τh−1)− b(τh−1)

)∥∥∥
1

≤2COεMLE. (5)

For the last step, the first term is bounded by εMLE due to Eq. (3). The second term is from∑
τh

πb(τh)×
∥∥∥B̂h(oh, ah)

(
b̂(τh−1)− b(τh−1)

)∥∥∥
1

=
∑
τh−1

πb(τh−1)
∑
oh,ah

πb(ah | τh−1, oh)
∥∥∥B̂h(oh, ah)

(
b̂(τh−1)− b(τh−1)

)∥∥∥
1

≤ CO
∑
τh−1

πb(τh−1)
∥∥∥b̂(τh−1)− b(τh−1)

∥∥∥
1

(Lemma 10)

≤ COεMLE. (Eq. (3))
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Then we consider the evaluation error of πe. We decompose the evaluation error into single-step error

∣∣J(πe)− J
M̂
(πe)

∣∣ = H∑
h=1

∣∣∣∣∣∑
oh

(Pπe

M̂
(oh)− Pπe

M∗(oh))r(oh)

∣∣∣∣∣
≤

H∑
h=1

∑
oh

∣∣∣Pπe

M̂
(oh)− Pπe

M∗(oh)
∣∣∣

=

H∑
h=1

∑
oh

∣∣∣∣∣∣
∑
τh−1

(Pπe

M̂
(oh, τh−1)− Pπe

M∗(oh, τh−1))

∣∣∣∣∣∣
=

H∑
h=1

∑
oh

∣∣∣∣∣∣e⊤oh
∑

τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∣∣∣∣∣∣
=

H∑
h=1

∥∥∥∥∥∥
∑
τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∥∥∥∥∥∥
1

.

For the case h = 1, according to Eq. (3), we have
∑

o1

∣∣∣Pπe

M̂
(o1)− Pπe

M∗(o1)
∣∣∣ ≤ εMLE. For 2 ≤ h ≤

H , we use the telescoping and obtain the following equality for any τh−1.

B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0 =

h−1∑
j=1

B̂h−1:j+1(B̂j −Bj)b(τj−1) + B̂h−1:1(b̂0 − b0). (6)

Therefore, for a fixed step 2 ≤ h ≤ H , we have∥∥∥∥∥∥
∑
τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∥∥∥∥∥∥
1

.

≤

∥∥∥∥∥∥
∑
τh−1

πe(τh−1)B̂h−1:1(b̂0 − b0)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
τh−1

πe(τh−1)

h−1∑
j=1

B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

.

For the first term, we have∥∥∥∥∥∥
∑
τh−1

πe(τh−1)B̂h−1:1(b̂0 − b0)

∥∥∥∥∥∥
1

≤
∑
τh−1

∥∥∥B̂h−1:1(b̂0 − b0)
∥∥∥
1
× πe(τh−1)

≤ CO∥b̂0 − b0∥1 (Lemma 10)
≤ COεMLE. (Eq. (3))

For the second term, we have∥∥∥∥∥∥
∑
τh−1

πe(τh−1)

h−1∑
j=1

B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
h−1∑
j=1

∑
τj

πe(τj)
∑

τh−1:j+1

πe(τh−1:j+1 | τj)× B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
h−1∑
j=1

∑
τj

πe(τj)Pτj Ô
†,w
j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

, (7)

where
Pτj =

∑
τh−1:j+1

πe(τh−1:j+1 | τj)× B̂h−1:j+1Ôj+1
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and we observe that

[Pτj ]ik =
∑

τh−1:j+1

πe(τh−1:j+1 | τj)PM̂
(oh = i, oh−1:j+1 | sj+1 = k, ah:j+1)

= Pπe

M̂
(oh = i | sj+1 = k, τj).

Therefore ∥Pτj∥1 = 1. Since ∥Ô†,w
j+1∥1 ≤ CO, we further upper bound Eq. (7) as∥∥∥∥∥∥

h−1∑
j=1

∑
τj

πe(τj)Pτj Ô
†,w
j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

≤ CO

h−1∑
j=1

∑
τj

πe(τj)
∥∥∥(B̂j −Bj)b(τj−1)

∥∥∥
1
.

Taking summation over h from 1 to H , we obtain

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ HCOεMLE +HCO

H−1∑
j=1

∑
τj

πe(τj)
∥∥∥(B̂j −Bj)b(τj−1)

∥∥∥
1
. (8)

From Eq. (5), we know that
∑

τh
πb(τh)×

∥∥∥(B̂h −Bh

)
b(τh−1)

∥∥∥
1
≤ 2COεMLE. Therefore, we

consider the ratio between estimation error of πe and estimation error of πb for step h ∈ [H − 1].∑
τh

πe(τh)×
∥∥∥(B̂h −Bh)b(τh−1)

∥∥∥
1∑

τh
πb(τh)×

∥∥∥(B̂h −Bh

)
b(τh−1)

∥∥∥
1

=

∑
τh

πe(τh)PM∗(τh−1)×
∥∥∥(B̂h −Bh)OhbS(τh−1)

∥∥∥
1∑

τh
πb(τh)PM∗(τh−1)×

∥∥∥(B̂h −Bh)OhbS(τh−1)
∥∥∥
1

=

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

] .
In the first step, we use the relation b(τh) = PM⋆(τh)Oh+1bS(τh). Combining it with Eq. (8), we
have ∣∣J(πe)− J

M̂
(πe)

∣∣ ≤ HCOεMLE + 2H2C2
OCeff,1εMLE,

where

Ceff,1 := max
h∈[H−1]

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)OhbS(τh−1)∥1

] .
We have proved the first part of the theorem. Next, we need to upper bound Ceff,1. Let xl(oh, ah) ∈
R|Sh| be the l-th row of

[
(B̂h(oh, ah)−Bh(oh, ah)Oh

]
, then we have

Ceff,1 ≤ max
h∈[H−1]

max
oh,ah,l

Eπe

[
πe(ah | τh−1, oh)|xl(oh, ah)

⊤bS(τh−1)|
]

Eπb
[πb(ah | τh−1, oh)|xl(oh, ah)⊤bS(τh−1)|]

≤ max
h∈[H−1]

max
oh,ah,l

CA
Eπe

|xl(oh, ah)
⊤bS(τh−1)|

Eπb
|xl(oh, ah)⊤bS(τh−1)|

.

To lower bound the denominator, we have

Eπb

∣∣xl(oh, ah)
⊤bS(τh−1)

∣∣ = Eπb

(
xl(oh, ah)

⊤bS(τh−1)
)2

|xl(oh, ah)⊤bS(τh−1)|
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≥ Eπb

(
xl(oh, ah)

⊤bS(τh−1)
)2

∥xl(oh, ah)∥2∥bS(τh−1)∥2
.

≥ σmin(ΣH,h)∥xl(oh, ah)∥22
∥xl(oh, ah)∥2∥bS(τh−1)∥2

≥ σmin(ΣH,h)∥xl(oh, ah)∥2. (9)

Here ΣH,h = Eπb

[
bS(τh−1)bS(τh−1)

⊤]. The first inequality is from Cauchy-Schwarz inequality
and the last inequality is because ∥bS(τh−1)∥2 ≤ 1. The numerator is upper bounded by∣∣Eπe

[
xl(oh, ah)

⊤bS(τh−1)
]∣∣ ≤ ∥xl(oh, ah)∥2∥Eπe

bS(τh−1)∥2. (10)

Combining Eq. (9) and Eq. (10),

Ceff,1 ≤ CACH.

The proof is completed.

D.2 PROOF OF THEOREM 5

As in Appendix D.1, we first show a lemma for the operators B in the multi-step outcome scenario.

Lemma 11. For any index 0 ≤ j < h ≤ H−1, trajectory τj ∈
∏j

h′=1(Oh′×A), vector x ∈ R|Fj+1|,
policy π, and operator B satisfying Assumption D, we have∑

τh:j+1

∥Bh:j+1x∥1 × π(τh:j+1 | τj) ≤ CF∥x∥1.

Proof. From the definition of Bh:j+1, we have

Bh:j+1x = Bh:j+1UF,j+1U
†,w
F,j+1x.

Then, for any standard basis ei ∈ RS , we obtain∑
τh:j+1

∥Bh:j+1UF,j+1ei∥1 × π(τh:j+1 | τj)

=
∑

τh:j+1

∑
fh+1

Pπb

M (fh+1, oh:j+1 | sj+1 = i, ah:j+1) · π(τh:j+1 | τj)

=
∑

τh:j+1

∑
fh+1

Pah:j+1∼π,ah+1:∼πb

M (fh+1, τh:j+1 | τj , sj+1 = i) = 1.

Therefore ∑
τh:j+1

∥Bh:j+1x∥1 × π(τh:j+1 | τj)

≤
∑

τh:j+1

∥Bh:j+1UF,j+1∥1∥U†,w
F,j+1x∥1 × π(τh:j+1 | τj)

≤ CF∥x∥1.

The last step is from Assumption D and ∥U†,w
F,j+1∥1 ≤ ∥Σ−1

F,j+1∥1∥U⊤
F,j+1Z

−1
j+1∥1 = CF .

Then, we prove Theorem 5.

Proof. We first observe that for any h ∈ [H − 1],∑
τh

πb(τh)× ∥b̂(τh)− b(τh)∥1 =
∑

τh,fh+1

∣∣∣Pπb

M̂
(τh, fh+1)− Pπb

M∗(τh, fh+1)
∣∣∣ ≤ εMLE.
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The inequality is from Eq. (4). Hence, using Lemma 11, for the estimation error of πb at step
h ∈ [H − 1], we have∑

τh

πb(τh)×
∥∥∥(B̂h(oh, ah)−Bh(oh, ah)

)
b(τh−1)

∥∥∥
1

≤
∑
τh

πb(τh)×
∥∥∥B̂h(oh, ah)b̂(τh−1)−Bh(oh, ah)b(τh−1)

∥∥∥
1

+
∑
τh

πb(τh)×
∥∥∥B̂h(oh, ah)

(
b̂(τh−1)− b(τh−1)

)∥∥∥
1

≤2CFεMLE. (11)

Next, we consider the reward of πe at each step. For step h, we construct policy µh, which follows
πe until step h− 1 and follows πb from step h. It is clear that µh has the same expected reward as πe

at step h. Let rh(fh) be the reward of fh at step h, we have

∣∣J(πe)− J
M̂
(πe)

∣∣ = H∑
h=1

∣∣∣∣∣∣
∑
fh

(Pµh

M̂
(fh)− Pµh

M∗(fh))rh(fh)

∣∣∣∣∣∣
≤

H∑
h=1

∑
fh

∣∣∣∣∣∣e⊤fh
∑

τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∣∣∣∣∣∣
=

H∑
h=1

∥∥∥∥∥∥
∑
τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∥∥∥∥∥∥
1

.

Similar to the derivation of Theorem 4, for the case h = 1, according to Eq. (4), we have∑
f1

∣∣∣Pπb

M̂
(f1)− Pπb

M∗(f1)
∣∣∣ ≤ εMLE. For 2 ≤ h ≤ H , we use the telescoping in Eq. (6) and

obtain∥∥∥∥∥∥
∑
τh−1

(
B̂h−1 · · · B̂1b̂0 −Bh−1 · · ·B1b0

)
× πe(τh−1)

∥∥∥∥∥∥
1

.

≤

∥∥∥∥∥∥
∑
τh−1

πe(τh−1)B̂h−1:1(b̂0 − b0)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
τh−1

πe(τh−1)

h−1∑
j=1

B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

.

For the first term, we have∥∥∥∥∥∥
∑
τh−1

πe(τh−1)B̂h−1:1(b̂0 − b0)

∥∥∥∥∥∥
1

≤
∑
τh−1

∥∥∥B̂h−1:1(b̂0 − b0)
∥∥∥
1
× πe(τh−1)

≤ CF∥b̂0 − b0∥1 (Lemma 11)
≤ CFεMLE. (Eq. (4))

For the second term, we have∥∥∥∥∥∥
∑
τh−1

πe(τh−1)

h−1∑
j=1

B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
h−1∑
j=1

∑
τj

πe(τj)
∑

τh−1:j+1

πe(τh−1:j+1 | τj)× B̂h−1:j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
h−1∑
j=1

∑
τj

πe(τj)Pτj Û
†,w
F,j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

, (12)
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where
Pτj =

∑
τh−1:j+1

πe(τh−1:j+1 | τj)× B̂h−1:j+1ÛF,j+1

and we observe that

[Pτj ]ik =
∑

τh−1:j+1

πe(τh−1:j+1 | τj)Pπb

M̂
(fh = i, oh−1:j+1 | sj+1 = k, ah:j+1)

= Pah−1:j+1∼πe,ah:∼πb

M̂
(fh = i | sj+1 = k, τj).

Therefore ∥Pτj∥1 = 1. Since ∥Û†,w
F,j+1∥1 ≤ CF , we further upper bound Eq. (12) as∥∥∥∥∥∥

h−1∑
j=1

∑
τj

πe(τj)Pτj Û
†,w
F,j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

≤ CF

h−1∑
j=1

∑
τj

πe(τj)
∥∥∥(B̂j −Bj)b(τj−1)

∥∥∥
1
.

Taking summation over h from 1 to H , we get

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ HCOεMLE +HCF

H−1∑
j=1

∑
τj

πe(τj)
∥∥∥(B̂j −Bj)b(τj−1)

∥∥∥
1
. (13)

According to Eq. (11), we have
∑

τh
πb(τh) ×

∥∥∥(B̂h −Bh

)
b(τh−1)

∥∥∥
1
≤ 2CFεMLE. Therefore,

the ratio between estimation error of πe and estimation error of πb for step h ∈ [H − 1] is written as:∑
τh

πe(τh)×
∥∥∥(B̂h −Bh)b(τh−1)

∥∥∥
1∑

τh
πb(τh)×

∥∥∥(B̂h −Bh

)
b(τh−1)

∥∥∥
1

=

∑
τh

πe(τh)PM∗(τh−1)×
∥∥∥(B̂h −Bh)UF,hbS(τh−1)

∥∥∥
1∑

τh
πb(τh)PM∗(τh−1)×

∥∥∥(B̂h −Bh)UF,hbS(τh−1)
∥∥∥
1

=

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] .
In the first step, we use the relation b(τh) = PM⋆(τh)UF,h+1bS(τh). Combining it with Eq. (13),
we have ∣∣J(πe)− J

M̂
(πe)

∣∣ ≤ HCFεMLE + 2H2C2
FCeff,mεMLE,

where

Ceff,m := max
h∈[H−1]

∑
oh,ah

Eπe

[
πe(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

]
∑

oh,ah
Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] .
Similar to Theorem 4, we further have Ceff,m ≤ CACH, the proof is completed.

E PROOFS FOR SECTION 5

Proof of Theorem 8. Recall that

εapprox := min
M∈M

1

n

n∑
i=1

(
logPπ

M⋆(τ
(i)
H )− logPπ

M (τ
(i)
H )
)
.
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By invoking Lemma 9, with probability at least 1− δ, we have

∑
τ∈

∏H
h=1(Oh×A)

∣∣∣Pπb

M̂
(τ)− Pπb

M⋆(τ)
∣∣∣ ≤O


√

log |M|
δ

n
+ εapprox

 := ε̃MLE.

Therefore, for any h ∈ [H − 1], the following inequality holds,∑
τh,fh+1

∣∣∣Pπb

M̂
(τh, fh+1)− Pπb

M∗(τh, fh+1)
∣∣∣ ≤ ε̃MLE.

The remaining proof is similar to the proof of Theorem 5. Finally, we get∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ HCF ε̃MLE + 2H2C2
FCeff,mε̃MLE.

Substituting ε̃MLE finishes the proof.

F TIGHER BOUND FOR MEMORYLESS πe

The paper mostly focuses on evaluation history-dependent target policies πe in the previous section.
Here, we show that we can obtain a tighter coverage coefficient for memoryless πe. We present the
results for multi-step outcome revealing, with the single-step case being similar.
Theorem 12. Under the same condition as Theorem 5, and assuming πe is memoryless, with
probability at least 1− δ, we have

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ O

H2C2
F C̃eff,m

√
log |M|

δ

n

 .

where

C̃eff,m := max
h∈[H−1]

∑
oh,ah

∑|Fh+1|
l=1

∣∣∣∣Eπe

[
πe(ah | τh−1, oh)

[
(B̂h −Bh)UF,h

]
l,:
bS(τh−1)

]∣∣∣∣∑
oh,ah

Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] .

Note that the numerator of coverage coefficient Ceff,m in Theorem 5 can be written as:

∑
oh,ah

|Fh+1|∑
l=1

Eπe

∣∣∣∣πe(ah | τh−1, oh)
[
(B̂h −Bh)UF,h

]
l,:
bS(τh−1)

∣∣∣∣ .
Compared to Ceff,m, the numerator in C̃eff,m places the absolute operator outside of the expectation,
resulting in a tighter coverage measurement. Mathematically similar tighter coverage coefficients have
also been discovered in offline linear MDPs or offline MDPs with general function approximation.
We refer readers to Jiang & Xie (2024) for more details.

Proof of Theorem 12. The proof is the same as for Theorem 5 up to bounding Eq. (12). For memo-
ryless πe, we observe that Pτj is the same across different τj . Therefore, we upper bound Eq. (12)
as ∥∥∥∥∥∥

h−1∑
j=1

∑
τj

πe(τj)Pτj Û
†,w
F,j+1(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

≤ CF

h−1∑
j=1

∥∥∥∥∥∥
∑
τj

πe(τj)(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

.

Taking summation over h from 1 to H , we get

∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ HCFεMLE +HCF

H−1∑
j=1

∥∥∥∥∥∥
∑
τj

πe(τj)(B̂j −Bj)b(τj−1)

∥∥∥∥∥∥
1

. (14)
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As before, we consider the ratio between estimation error of πe and estimation error of πb for step
h ∈ [H − 1]:∥∥∥∑τh

πe(τh)× (B̂h −Bh)b(τh−1)
∥∥∥
1∑

τh
πb(τh)×

∥∥∥(B̂h −Bh

)
b(τh−1)

∥∥∥
1

=

∥∥∥∑τh
πe(τh)PM∗(τh−1)× (B̂h −Bh)UF,hbS(τh−1)

∥∥∥
1∑

τh
πb(τh)PM∗(τh−1)×

∥∥∥(B̂h −Bh)UF,hbS(τh−1)
∥∥∥
1

=

∑
oh,ah

∑|Fh+1|
l=1

∣∣∣∣Eπe

[
πe(ah | τh−1, oh)

[
(B̂h −Bh)UF,h

]
l,:
bS(τh−1)

]∣∣∣∣∑
oh,ah

Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] .

Combining it with Eq. (14), we have∣∣J(πe)− J
M̂
(πe)

∣∣ ≤ HCFεMLE + 2H2C2
F C̃eff,mεMLE,

where

C̃eff,m := max
h∈[H−1]

∑
oh,ah

∑|Fh+1|
l=1

∣∣∣∣Eπe

[
πe(ah | τh−1, oh)

[
(B̂h −Bh)UF,h

]
l,:
bS(τh−1)

]∣∣∣∣∑
oh,ah

Eπb

[
πb(ah | τh−1, oh)∥(B̂h −Bh)UF,hbS(τh−1)∥1

] .

The proof is completed.

G COMPARISON BETWEEN SINGLE-STEP AND MULTI-STEP OUTCOME
REVEALING

In the main text, we claim that multi-step outcome revealing (Assumption D) is a more lenient
assumption than its single-step counterpart (Assumption E), and provide intuitions based on the
confusion-matrix interpretation of ΣF,h and ΣO,h. However, a rigorous quantitative argument is
missing, which we discuss in this section. Ideally, what we want to show is that CF ≤ CO (assuming
both upper bounds are tight); if so, bounded CO (Assumption E) would immediately imply the same
bound on CF (Assumption D), showing that the latter is a weaker assumption.

Below we first show in Appendix G.1 that this can be proved up to a factor of |Sh| when πb is
memoryless; the additional factor is due to the use of matrix 1-norm. For the more general case
where πb can be history-dependent, the analysis for memoryless πb breaks down, which reveals some
unnaturalness in the way we define ΣF,h and ΣO,h (which are inherited from prior works). We argue
in Appendix G.2 that we can re-define ΣF,h and ΣO,h in a more natural manner that accounts for
the latent state distribution under πb, which will allow for a quantitative comparison between ΣF,h

and ΣO,h; furthermore, all the results in the main paper hold up to minor changes under the new
definitions.

G.1 MEMORYLESS πb

We first compare CF and CO quantitatively assuming memoryless πb. We can express ΣF,h as:

ΣF,h = |Sh|
∑
fh

z̄(fh)ū(fh)ū(fh)
⊤,

where z̄(fh) =
z(fh)
|Sh| is the probability of observing fh when sh is uniformly distributed. Moreover,

define Pr′πb
(·) as a joint distribution over sh and fh, where sh is uniformly sampled, and fh is rolled

out from sh using πb (note that this distribution is only well-defined for memoryless πb), and we have

[ū(fh)]i =
[u(fh)]i
z(fh)

= Pr′πb
(sh = i | fh).
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Here, ū serves as an inverse belief state vector, predicting the current state based on future trajectory
rather than the history. Similarly, ΣO,h can be written as:

ΣO,h = |Sh|
∑
oh

w̄(oh)ū(oh)ū(oh)
⊤,

where w̄(oh) =
w(oh)
|Sh| represents the probability of observing oh when sh is uniformly distributed

and [ū(oh)]i = Pr′πb
(sh = i | oh). (Note that ū(oh) has no dependence on πb since variables after

ah are not involved, but the distribution of variables is consistent with Pr′πb
.) Next, we show that

∥ΣF,h∥2 ≥ ∥ΣO,h∥2. For any vector a ∈ R|Sh|, we have

a⊤ΣO,ha = |Sh|Eoh

[
(a⊤ū(oh))

2
]

= |Sh|Eoh

[(
Efh|oh [a

⊤ū(fh)]
)2]

≤ |Sh|EohEfh|oh

[(
a⊤ū(fh)

)2]
= a⊤ΣF,ha.

The inequality is from Jensen’s inequality. Therefore, we have:

∥Σ−1
F,h∥1 ≤

√
|Sh|∥Σ−1

F,h∥2 ≤
√

|Sh|∥Σ−1
O,h∥2 ≤ |Sh|∥Σ−1

O,h∥1.

This implies whenever single-step outcome revealing assumption is satisfied with bound CO, the
multi-step revealing assumption also holds with CF ≤ maxh |Sh|CO.

G.2 HISTORY-DEPENDENT πb

Unfortunately, the above analysis only works for memoryless πb, and breaks down if πb is history-
dependent: a key step was to interpret ū(fh) as [ū(fh)]i = Pr′πb

(sh = i | fh), which is only possible
when πb is memoryless. The root problem is that we want to take [u(fh)]i = Pπb(fh | sh = i) and
use Bayes rule to convert it to the posterior over sh given fh, so that we can interpret ΣF,h as the
confusion matrix of predicting sh from fh. Since the distribution is under πb, it implicitly defines dπb

h
as the “label prior” for sh, but our previous definitions enforce an unnatural and arbitrary uniform
prior over sh (which stems from the 1Sh

in Zh = diag(UF,h1Sh
)).

To fix this, we show that we can re-define ΣF,h and ΣO,h in a way that is more natural and respects the
dπb

h prior for latent states, and all results in the main text hold up to minor changes, as will be explained.
Concretely, let ph = dπb

h for concision. We introduce a new weight matrix Zph

h := diag(UF,hph).
Under this formulation, we have Zph

h (fh) = Prπb
(fh), which corresponds to the marginal probability

of fh under πb. With this adjustment, we propose the following new assumption.
Assumption F (Multi-Step Outcome Revealing with Memory-Based Behavior Policies). Define

Σph

F,h := diag(ph)U
⊤
F,h(Z

ph

h )−1UF,h.

We assume that ∥(Σph

F,h)
−1∥1 ≤ C̃F , ∀h ∈ [H − 1] for some C̃F < ∞.

Here, Σph

F,h can be interpreted as the confusion matrix of latent states sh with respect to the following
process: we first sample fh according to its marginal probability under πb, Z

ph

h (fh) = Prπb
(fh).

Then, conditioned on fh, we independently sample two latent states, sh and s′h, both from Prπb
(· | fh).

Note that the joint distribution of (sh, fh) in this process is consistent with that under πb, so we abuse
the notation Prπb

(·) to refer to this distribution (which is augmented with a s′h variable). The (i, j)-th
entry of Σph

F,h corresponds to the probability Prπb
(s′h = i | sh = j) since

[Σph

F,h]ij =
∑
k

Prπb
(s′h = i | fh = k) Prπb

(fh = k | sh = j) = Prπb
(s′h = i | sh = j).

This holds due to the conditional independence between sh and s′h given fh, as defined by the
sampling process. Similar to the properties of ΣF,h, when fh deterministically predicts sh, we have
Σph

F,h = I. This interpretation justifies the boundedness of ∥(Σph

F,h)
−1∥1 as an assumption. In fact,

when ph is uniform, we have Σph

F,h = ΣF,h; when ph is not uniform, Σph

F,h is more natural as it does
not artificially and arbitrarily inject the uniform prior into the definition.
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Comparison between Single-step and Multi-step Revealing For the single-step outcome revealing
assumption, we can similarly replace ΣO,h with Σph

O,h := diag(ph)O⊤
h (W

ph

h )−1Oh, where Wph

h :=

diag(Ohph). The comparison between ∥(Σph

F,h)
−1∥1 and ∥(Σph

O,h)
−1∥1 follows a similar analysis as

Appendix G.1, where Pr′πb
(·) will be replaced with the more natural Prπb

(·).

Changes to the Main Analyses We now show that the main results of our work are mostly
unaffected if we switch to the new assumptions. Taking the upper-bound analysis (e.g., Theorem 5)
as an example, CF enters the analysis through bounding the norm of the OOM parameterization
of the model (see e.g., Lemma 11). With the new definition of Σph

F,h, all we need is to change the
weighted pseudo-inverse used in the OOM representation accordingly: let

U†,ph

F,h = (Σph

F,h)
−1diag(ph)U

⊤
F,h(Z

ph

h )−1,

which leads to the new operator:

B̃h(o, a) = UF,h+1Th,adiag(Oh(o | ·))U†,ph

F,h .

Since
∥U†,ph

F,h ∥1 ≤ ∥(Σph

F,h)
−1∥1∥diag(ph)U

⊤
F,h(Z

ph

h )−1∥1 ≤ C̃F ,

one can verify that Lemma 11 still holds for B̃h with CF replaced by C̃F . The rest of the analysis
follows the same as in Appendix D.

Future-dependent Value Function Construction Besides our analyses, changes in the definitions
of CF will also affect the comparison with the model-free results from Zhang & Jiang (2024) as
cited in the first row of Table 1. As it turns out, these results also hold under the new definition. In
Uehara et al. (2023a); Zhang & Jiang (2024), CF is involved in their analysis when they use ΣF,h

to construct the future-dependent value function (FDVF) (Uehara et al., 2023a) and bound it range.
Here we show that we can also use the newly defined Σph

F,h to construct FDVF, whose range depends

on C̃F , and the rest of their analyses still hold.

A FDVF VF satisfies that ∀h,
U⊤
F,h × VF,h = V πe

S,h,

where V πe

S,h is the latent-state value function of the memoryless evaluation policy πe, i.e., the expected

sum of rewards from step h onwards conditioned on a latent state. Let R+(fh) :=
∑H

h′=h R(oh′) be
the Monte-Carlo return in fh and ZR,ph

h (fh) := Zph

h (fh)/R
+(fh). We construct the FDVF as:

VF,h = (ZR,ph

h )−1UF,hdiag(ph)(Σ
R,ph

F,h )−⊤V πe

S,h, where ΣR,ph

F,h := diag(ph)U
⊤
F,h(Z

R,ph

h )−1UF,h.

We can then make a similar outcome coverage assumption as in Assumption 9 of Zhang & Jiang
(2024), ensuring the boundedness of VF,h. For the on-policy case πb = πe, one can verify that the
constructed VF exactly recovers R+, which is naturally bounded by H .
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