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ABSTRACT

Effective adaptation of Vision–Language Models (VLMs) to biomedical tasks re-
mains challenging due to a substantial semantic gap between general knowledge
and domain-specific expertise. Domain-specific models such as BiomedCLIP nar-
row this gap; however, prevailing prompt-learning methods collapse diverse text
embeddings into a single prototype, discarding distributional information. We in-
troduce vMF Distribution Semantic Alignment (VDSA), which models each class
with a von Mises–Fisher distribution on the unit hypersphere and aligns images to
the entire distribution rather than a single prototype. We further derive a closed-
form upper bound to the expected contrastive loss, yielding a sampling-free ob-
jective that is implicitly equivalent to aligning against an infinite prompt ensemble
with minimal overhead. Experiments on multiple biomedical benchmarks show
that VDSA consistently improves few-shot adaptation and generalization to un-
seen classes, providing a robust recipe for adapting specialized VLMs.

1 INTRODUCTION

Vision–Language Models (VLMs), such as CLIP (Radford et al., 2021) and Align (Jia et al., 2021),
have established a powerful paradigm for learning unified image–text representations. By leverag-
ing large-scale image–text training, they achieve robust semantic alignment and impressive zero-
shot transfer, motivating extensive research on their adaptation to diverse downstream tasks (Zhang
et al., 2021; Zhou et al., 2022b;a). However, transferring this success to highly specialized domains
such as biomedicine reveals a fundamental challenge: a substantial semantic gap between gen-
eral world knowledge and domain-specific biomedical expertise (Zhang et al., 2023; Eslami et al.,
2021). This gap spans both visual and textual modalities. Unlike natural images, the visual lan-
guage of biomedical imaging (e.g., X-rays, MRIs) is abstract and non-intuitive, characterized not
by common semantic categories but by subtle, intricate patterns of texture, intensity, and anatomical
structure that require specialized training to interpret (Koleilat et al., 2025). As a result, the generic
visual concepts captured by standard VLMs often fail to align with these domain-specific patterns.
Similarly, the medical terminology used to describe such findings (e.g., “pleural effusion,” “nodular
sclerosis”) lies far beyond the common web-scale vocabulary, thereby limiting the applicability of
general-purpose text encoders (Zhang et al., 2023).

To bridge the semantic gap in biomedicine, models pre-trained on domain-specific data are indis-
pensable. Foundation models such as BiomedCLIP (Zhang et al., 2023), trained on 15 million
biomedical image–text pairs, provide a far stronger starting point for downstream medical tasks
than general-purpose VLMs. However, adapting these models through full fine-tuning is often com-
putationally prohibitive and prone to overfitting or catastrophic forgetting (Gao et al., 2024). This
challenge motivates the use of parameter-efficient adaptation strategies that update only a small sub-
set of parameters while preserving the knowledge captured during pretraining (Zhou et al., 2022b;
Bafghi et al., 2025).

Beyond the choice of adaptation mechanism, the effectiveness of VLMs depends critically on the
design of text prompts. Early approaches rely on a single handcrafted prompt (e.g., “a photo of
a [CLASS]”), which is sensitive to phrasing and limited in expressiveness (Radford et al., 2021).
Prompt ensembling alleviates this by combining multiple templates to improve robustness (Kim
et al., 2025), while recent advances leverage large language models (LLMs) to automatically gener-
ate diverse, domain-specific prompts (Pratt et al., 2023). These strategies enrich the semantic space
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available to the model and have proven to benefit prompt learning by bringing diverse text repre-
sentations (Zheng et al., 2024). Alternatively, approaches such as CoOp (Zhou et al., 2022b) and
CoCoOp (Zhou et al., 2022a) learn continuous prompt embeddings directly by treating the prompt
tokens as trainable parameters.

Despite these advances, current prompt ensembling methods share a fundamental limitation in how
they aggregate semantic diversity. A finite set of N prompt embeddings is ultimately collapsed into
a single prototype, a lossy compression that preserves only the semantic center while discarding
crucial information about the dispersion and angular structure of the distribution (Radford et al.,
2021; Allingham et al., 2023). This restricts the model to align with a narrow point estimate of class
semantics rather than the full semantic space. Moreover, the choice of N presents a costly trade-off
between semantic coverage and efficiency, with no principled way to determine an optimal value.

We attribute this limitation to representing semantic diversity as a finite set of discrete prompt em-
beddings that are merely averaged. A more principled alternative is to model the underlying contin-
uous probability distribution that the discrete prompt set approximates (Ma et al., 2023). By shifting
the alignment objective from a single prototype to the full distribution, the model can capture not
only the semantic center but also the dispersion and angular structure that encode diversity and am-
biguity. This perspective effectively enables the model to learn from the complete semantic space,
as if integrating over an unlimited ensemble of text embeddings, while avoiding the prohibitive cost
of explicitly sampling a large number of prompts.

To realize distributional alignment, we propose vMF Distribution Semantic Alignment (VDSA),
which interprets a class’s N prompts as samples from a latent semantic distribution on the unit
hypersphere and estimates its parameters by maximum likelihood. Instead of aligning image fea-
tures to a single prototype, VDSA aligns them to the entire class distribution. The exact expected
contrastive loss is analytically intractable because it involves high-dimensional surface integrals on
the hypersphere induced by class-specific vMF distributions (Mardia & Jupp, 2009) for which no
closed form exists. To address this challenge, we derive a closed-form Jensen upper bound that is
fully differentiable and free of sampling, which encourages embeddings to the high-density regions
of the semantic space. For computational efficiency, only a small subset of vision encoder weights
is updated through LoRA (Hu et al., 2022). Conceptually, VDSA can be viewed as aligning against
an infinite ensemble of prompts, providing implicit semantic augmentation that surpasses discrete
prompt ensembling. Evaluations across diverse biomedical benchmarks demonstrate that VDSA
achieves state-of-the-art performance in both few-shot adaptation and base-to-novel generalization.

2 RELATED WORK

2.1 VISION–LANGUAGE MODELS

Vision–Language Models (VLMs) such as CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) have shown that large-scale image–text pretraining yields robust representations with strong
zero-shot generalization. Recent extensions in the biomedical domain include MedCLIP (Wang
et al., 2022), PubMedCLIP (Eslami et al., 2021), and BiomedCLIP (Zhang et al., 2023). BioMed-
CLIP (Zhang et al., 2023) incorporates millions of domain-specific image–text pairs, achieving no-
table gains over general-purpose VLMs on medical benchmarks. Despite these advances, their util-
ity on specialized biomedical tasks remains limited, as capturing subtle, disease-specific semantics
often requires additional adaptation beyond pretraining. This motivates the development of meth-
ods that can more effectively tailor biomedical foundation models to the demands of target clinical
applications (Koleilat et al., 2025).

2.2 PARAMETER-EFFICIENT ADAPTATION

Adapting large-scale foundation models to downstream tasks through full fine-tuning is often com-
putationally prohibitive and risks overfitting or catastrophic forgetting (Ding et al., 2022). To address
this, a range of parameter-efficient adaptation (PEFT) strategies has been proposed. Adapter-based
methods (Gao et al., 2024; Zhang et al., 2021) introduce lightweight modules between transformer
layers, while low-rank adaptation (LoRA) (Hu et al., 2022) injects trainable rank-decomposed ma-
trices into weight updates. Linear probing simply freezes the pretrained encoder and trains only a
linear classifier on top of the fixed feature representation (Huang et al., 2024b). These techniques
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preserve most pretrained weights, enabling efficient transfer across diverse domains. In biomedi-
cal vision–language tasks, PEFT has also shown promise in tailoring domain-specific foundation
models with limited supervision (Peng et al., 2025). However, while PEFT mitigates the cost of
adaptation, it primarily operates on the model parameters themselves and does not directly address
how semantic prompts are constructed. Since the quality of prompts critically determines the align-
ment between image and text, optimizing prompt design remains an orthogonal yet equally crucial
direction.

2.3 PROMPT ENSEMBLING AND LEARNING

The design of text prompts plays a decisive role in the effectiveness of vision–language models.
Early approaches relied on manually crafted templates, which are simple but sensitive to phrasing
and lack semantic richness (Radford et al., 2021). To improve robustness, prompt ensembling has
been widely adopted (Allingham et al., 2023; Roth et al., 2023), where multiple templates are used to
provide diverse textual descriptions. Recent work further leverages large language models (LLMs)
to automatically generate domain-specific prompt ensembles (Pratt et al., 2023; Koleilat et al., 2025),
alleviating the need for manual design.

In parallel, learnable prompt methods such as CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a) replace fixed templates with continuous embeddings that are optimized end-to-end, enabling
more flexible adaptation to downstream tasks. Building on this direction, KgCoOp (Yao et al.,
2023) and ProGrad (Zhu et al., 2023) further refine textual prompts by incorporating external knowl-
edge and gradient-based guidance, respectively, to enhance model generalizability. Building on this
line of work, BiomedCoOp (Koleilat et al., 2025) adapts prompt learning to biomedical images
by combining a BiomedCLIP backbone with joint semantic–knowledge modeling through contex-
tual mapping and selective prompt distillation, enabling more effective and robust domain-specific
prompt context learning. Despite these advances, existing prompt ensembling and learnable prompt
methods ultimately aggregate semantic information into a single prototype representation (Khattak
et al., 2025; Huang et al., 2024a). Such compression inevitably discards distributional properties of
the prompt set, including its dispersion and angular structure on the hypersphere. This limitation
motivates approaches that move beyond discrete or mean-based representations toward principled
distributional formulations of class semantics.

3 VON MISES-FISHER DISTRIBUTION SEMANTIC ALIGNMENT

In this work, we introduce vMF Distribution Semantic Alignment (VDSA), a framework that ad-
vances contrastive language–image learning by enriching the representation of class semantics.
VDSA generalizes beyond these formulations by modeling each class with a probability distribu-
tion over the hypersphere, thereby capturing its intrinsic semantic diversity. Specifically, we employ
the von Mises–Fisher (vMF) distribution Mardia & Jupp (2009) to explicitly represent the semantic
space of each class, and derive a closed-form upper bound of the expected contrastive loss under
these distributions. This enables end-to-end optimization that implicitly achieves semantic augmen-
tation and yields robust alignment.

3.1 PRELIMINARIES

Vision-Language Models CLIP (Radford et al., 2021) jointly trains an image encoder Ev and a
text encoder Et to learn a shared embedding space where paired images and texts are aligned. Given
a batch of images, the encoder produces {zi}Bi=1, with each zi ∈ RD. For a classification task with
C classes, a class-specific prompt template (e.g., “a photo of a {class name}”) is instantiated for
each class and encoded into text features {µc}Cc=1, where µc ∈ RD. All image and text features are
ℓ2-normalized to lie on the unit hypersphere.

The alignment is enforced by a contrastive loss. For zero-shot classification, the probability of
assigning image feature zi to class c is:

p(c|zi) =
es·z

⊤
i µc∑C

j=1 e
s·z⊤

i µj

, (1)
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Cyst description

Stone description
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Normal description
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𝑐=1

𝐶
𝐶𝐷 𝜅𝑐

𝐶𝐷 |𝜅𝑐𝝁𝒄 + 𝑠𝐳|2
)

−𝑠𝐴𝐷 𝜅𝑦 𝐳⊤𝝁𝒚 

Image Encoder

(LoRA)

Text Encoder

Figure 1: Overview of our VDSA framework. Our method models the semantics of each class as
a von Mises–Fisher distribution on a hyperspherical feature space. We first leverage GPT-4 to gen-
erate N diverse textual descriptions for each class, which are encoded into a set of feature vectors.
These vectors are then used to fit a class-conditional vMF distribution p(u | µc, κc) via maximum
likelihood estimation. An image encoder, fine-tuned with LoRA, is trained using our novel LVDSA
objective, which aligns image embeddings with their corresponding class distribution.

where s > 0 is a learnable temperature. The model is trained by minimizing the cross-entropy loss:

LCE = − log p(yi|zi). (2)

In this formulation, each class c is represented by a single prototype vector µc on the hypersphere.

Prompt Ensembling Method To address the limitations of a single prompt representation, Prompt
Ensembling has been shown to benefit prompt learning by incorporating diverse textual descriptions
for each class (Kim et al., 2025). By leveraging multiple prompts, ensembling provides a more
robust and comprehensive semantic representation. Recent advances employ Large Language Mod-
els (LLMs) to automatically generate high-quality, domain-specific prompt ensembles, alleviating
the need for manual template design (Khattak et al., 2025; Pratt et al., 2023). Following Biomed-
CoOp (Koleilat et al., 2025), we adopt GPT-4 (Achiam et al., 2023) to synthesize class-specific
prompts. For each dataset with C classes, we query GPT-4 (Achiam et al., 2023) with the instruc-
tion:

Give N textual descriptions of visual discriminative features for distinct medical
cases of [CLASS] found in [MODALITY].

This process yields N diverse descriptions per class that capture characteristic lesions, anatomical
patterns, and imaging cues, ensuring that the resulting prompts encode the necessary clinical seman-
tics. For each class c, we generate N diverse prompts, which are encoded by the text encoder Et into
a set of feature vectors {µ(i)

c }Ni=1, with each µ
(i)
c ∈ RD lying on the unit hypersphere.

Following standard practice, these features are aggregated into a single prototype by computing their
mean and subsequently re-normalizing to unit length:

µ̄c =
1
N

∑N
i=1 µ

(i)
c∥∥∥ 1

N

∑N
i=1 µ

(i)
c

∥∥∥
2

. (3)

This ensemble prototype µ̄c then replaces the single-prompt feature µc in the contrastive loss (Eq. 1)
for model adaptation.

As discussed earlier, the simple aggregation collapses N prompt embeddings into prototypes; we
instead model each class as a probability distribution on the unit hypersphere.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 DISTRIBUTIONAL CLASS REPRESENTATION WITH VMF

To overcome the limitations of discrete prototypes, we lift the semantic representation of each class
from a finite set of prompt embeddings to a continuous probability distribution, denoted p(u | θc),
where u ∈ SD−1 and θc = (µc, κc). Here SD−1 = {u ∈ RD : ∥u∥2 = 1}. This formulation
provides a richer characterization of class semantics by capturing inherent diversity and ambiguity.
Since CLIP features are ℓ2-normalized and thus lie on the unit hypersphere SD−1, the von Mises–
Fisher (vMF) distribution is a natural choice, playing a role analogous to the Gaussian distribution
in Euclidean space. See Appendix E for why Gaussian-based alternatives are unsuitable here.

The vMF distribution is parameterized by a mean direction µc ∈ SD−1 and a concentration param-
eter κc ≥ 0. The mean direction µc captures the semantic center of a class, while κc controls its
dispersion: larger κc corresponds to a narrower, more coherent concept, whereas smaller κc reflects
broader variability.

Formally, the density for a random unit vector u is

p(u | µc, κc) = CD(κc) e
κc µ⊤

c u (4)

with normalization constant

CD(κc) =
κ
D
2 −1
c

(2π)
D
2 ID

2 −1
(κc)

, (5)

where Iν(·) is the modified Bessel function of the first kind. Here CD(κ) is fixed by the normal-
ization

∫
SD−1 p(u | µ, κ) dσ(u) = 1, where dσ denotes the uniform surface-area measure on the

sphere; evaluating this surface integral yields as shown in Equation 5. For efficiency, we compute
logCD(·) via a numerically stable asymptotic approximation to log Iν(·) (rather than explicit Bessel
evaluations).

Given N unit-normalized prompt embeddings {u(i)
c }Ni=1 for a class c, we estimate its von Mises-

Fisher (vMF) distribution parameters (µc, κc) via Maximum Likelihood Estimation (MLE). The
detailed derivation is provided in Appendix F.

• MLE of Mean Direction (µ̂c): The estimate is the normalized direction of the sum of the
embedding vectors.

µ̂c =

∑N
i=1 u

(i)
c∥∥∑N

i=1 u
(i)
c

∥∥
2

. (6)

• MLE of Concentration (κ̂c): The estimate is obtained by computing the empirical mean
resultant length, R̄c, which serves as a sufficient statistic for the concentration parameter.

R̄c =
∥∥∥ 1

N

N∑
i=1

u(i)
c

∥∥∥
2
∈ [0, 1).

The estimate κ̂c is then the unique solution to the equation:

AD(κ̂c) = R̄c, where AD(κ) =
ID/2(κ)

ID/2−1(κ)
.

Since AD(κ) is a strictly increasing function on [0,∞) with range [0, 1), the inverse A−1
D is well-

defined, yielding a unique solution κ̂c = A−1
D (R̄c). For simplicity, we replace the true parameters

with their MLE and continue to denote them as (µc, κc).

3.3 THE VDSA OPTIMIZATION OBJECTIVE

We represent each class c by a vMF distribution p(uc | µc, κc) on the unit hypersphere and define
the stochastic logit

Sc = s z⊤uc, uc ∼ vMF(µc, κc), ∥z∥2 = ∥µc∥2 = 1.

5
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The ideal learning objective, therefore, is to optimize the expected cross entropy over the joint
distribution of all random prototypes:

Lideal = E

log
C∑

c=1

eSc

︸ ︷︷ ︸
(A)

− Sy︸︷︷︸
(B)

 . (7)

A Jensen upper bound. Directly computing the expectation of term (A) is intractable, as it
involves the expectation of a logarithm over a sum of exponentials, for which no closed form
solution exists. We therefore derive a tractable upper bound using Jensen’s inequality. Let
Y :=

∑C
c=1 e

Sc > 0. Since log(·) is a concave function,

E

[
log
∑
c

eSc

]
= E[log Y ] ≤ logE[Y ] = log

(∑
c

E
[
eSc
])

. (8)

Applying this bound to term (A), while noting that the expectation of term (B) can be computed
directly, yields an upper bound on the ideal objective:

Lideal ≤ log

C∑
c=1

E
[
eSc
]

︸ ︷︷ ︸
(I)

− E[Sy]︸ ︷︷ ︸
(II)

.

Closed forms under vMF. We derive closed forms for (I) and (II) by viewing vMF as an expo-
nential family. With natural parameter θc = κcµc, the partition function is

Z(θ) :=

∫
SD−1

exp(θ⊤u) dσ(u) =
1

CD(∥θ∥2)
,

where CD(·) is the vMF normalizer.

To evaluate the sum inside term (I), we use the moment generating function identity. For any
h ∈ RD, Eu∼p(·|θ)

[
eh

⊤u
]
= Z(θ + h)/Z(θ). Setting h = sz gives the expectation of each

exponentiated logit:

E
[
eSc
]
= E

[
es z

⊤uc

]
=

CD(κc)

CD(∥κcµc + sz∥2)
. (9)

For term (II), we compute the expectation of the logit for the ground-truth class y. This corresponds
to the mean of the vMF distribution scaled by sz⊤:

E[Sy] = s z⊤E[uy] = sAD(κy) z
⊤µy,

where AD(κ) = ID/2(κ)/ID/2−1(κ) is the ratio of modified Bessel functions of the first kind.

Objective. Substituting the closed-form results for terms (I) and (II) into our upper bound yields
the final Von Mises–Fisher Distributional Semantic Alignment (VDSA) training objective:

LVDSA = log

(
C∑

c=1

CD(κc)

CD(∥κcµc + sz∥2)

)
− sAD(κy) z

⊤µy. (10)

This loss is a differentiable upper bound to the ideal objective in equation 7 that requires no sampling.
In the limits, as κc →∞ for all c, it recovers the standard cross-entropy loss, while for κc = 0 (or
s=0), it yields the constant logC.

4 EXPERIMENTS

Experimental Setup We evaluate VDSA under two standard problem settings: (i) few-shot learn-
ing with varying numbers of shots (Section 4.1), and (ii) base-to-novel generalization (Section 4.2).
All experiments are built on the open-source BiomedCLIP (Zhang et al., 2023) backbone. Below
we describe datasets, evaluation protocols, baselines, and implementation details.
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Table 1: Few-shot classification accuracy averaged over 10 biomedical datasets for different shot
numbers (K = 1∼16).

Method K=1 K=2 K=4 K=8 K=16
Zero-shot Methods

BiomedCLIP 42.38
BiomedCLIP + Ensemble 52.14

CLIP-Adapter 45.52 ± 2.28 44.70 ± 1.54 45.30 ± 1.54 46.54 ± 1.40 48.45 ± 1.32
Tip-Adapter 50.35 ± 5.03 53.50 ± 5.39 58.33 ± 4.93 62.01 ± 5.76 67.60 ± 4.44
Tip-Adapter-F 52.54 ± 7.18 54.16 ± 6.00 62.30 ± 6.30 68.11 ± 3.75 72.61 ± 2.28
Standard LP 50.72 ± 8.06 55.94 ± 7.50 62.83 ± 6.63 67.78 ± 5.04 71.22 ± 2.83
LP++ 50.27 ± 7.95 55.66 ± 6.68 61.85 ± 6.66 66.14 ± 4.82 70.52 ± 3.70
CoOp 52.59 ± 6.67 55.71 ± 4.10 61.35 ± 3.36 67.74 ± 3.18 71.48 ± 2.85
CoCoOp 50.88 ± 4.41 53.91 ± 5.30 57.63 ± 4.70 63.15 ± 3.58 67.51 ± 2.20
KgCoOp 54.31 ± 4.68 55.79 ± 5.13 60.92 ± 3.97 66.00 ± 2.42 67.71 ± 1.90
ProGrad 53.67 ± 5.77 56.42 ± 4.16 62.10 ± 3.62 67.06 ± 3.07 69.21 ± 2.69
BiomedCoOp 56.87 ± 2.53 59.32 ± 3.80 64.34 ± 2.47 68.96 ± 2.77 73.41 ± 1.68
VDSA (Ours) 60.50 ± 2.06 64.25 ± 1.75 69.48 ± 2.50 74.77 ± 1.20 79.41 ± 1.28

Datasets VDSA is assessed on ten publicly available biomedical datasets spanning ten organs
and eight imaging modalities: Computerized Tomography (CTKidney (Islam et al., 2022)), En-
doscopy (Kvasir (Pogorelov et al., 2017)), Fundus Photography (RETINA (Köhler et al., 2013;
Porwal et al., 2018)), Histopathology (LC25000 (Borkowski et al., 2019), CHMNIST (Kather et al.,
2016)), Magnetic Resonance Imaging (BTMRI (Masoud, 2021)), Optical Coherence Tomography
(OCTMNIST (Kermany et al., 2018)), Ultrasound (BUSI (Al-Dhabyani et al., 2020)), and X-Ray
(COVID-QU-Ex (Tahir et al., 2021), KneeXray (Chen, 2018)). This diverse benchmark enables a
rigorous evaluation of robustness across heterogeneous biomedical tasks and imaging conditions.
Full dataset descriptions and train/val/test splits are provided in Appendix B. Note that DermaM-
NIST (Codella et al., 2019; Tschandl et al., 2018) was excluded from the comparison due to class
imbalance, which led to BiomedCoOp achieving unnaturally high scores by predicting the dominant
class. Further discussion on this issue can be found in the Appendix C.

Evaluation Protocols We adopt two challenging protocols:

Few-shot Learning. To emulate limited data scenarios, models are trained using K ∈
{1, 2, 4, 8, 16} labeled examples per class. This directly tests the sample efficiency of the adaptation
method.

Base-to-Novel Generalization. Each dataset’s classes are partitioned into disjoint base and novel
sets. Models are trained on 16-shot samples from base classes and evaluated on both base and
unseen novel classes, measuring the ability to retain knowledge while adapting, a key indicator
against catastrophic forgetting.

Baselines We compare VDSA with three major families of lightweight adaptation approaches: (1)
Prompt learning methods: CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), ProGrad (Zhu
et al., 2023), KgCoOp (Yao et al., 2023) and BioMedCoOp (Koleilat et al., 2025); (2) Adapter-based
methods: CLIP-Adapter (Gao et al., 2024), Tip-Adapter (Zhang et al., 2021), and Tip-Adapter-
F (Zhang et al., 2021); (3) Linear probing methods: standard Linear Probing and LP++ (Huang
et al., 2024b). Zero-shot and LLM-prompted zero-shot BiomedCLIP (Zhang et al., 2023) serve as
strong reference points. All baselines share the same BiomedCLIP (Zhang et al., 2023) backbone
and comparable parameter budgets.

Implementation Details We build on the official BiomedCLIP (Zhang et al., 2023) codebase with
a ViT-B/16 vision encoder. For VDSA, class-wise semantic distributions are estimated from N = 50
GPT-4 (Achiam et al., 2023) generated prompts and kept fixed during training. Only the LoRA
modules in the vision encoder are optimized using SGD with a learning rate of 1×10−4 and a batch
size of 4. Few-shot experiments run for 100 epochs and base-to-novel for 50 epochs. Results are
averaged over three random seeds. All experiments are performed on a single NVIDIA RTX 4090
GPU (24 GB VRAM).

7
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Table 2: Performance comparison on 9 biomedical datasets. Bold indicates the best in each row.
Dataset BiomedCLIP CoOp CoCoOp KgCoOp ProGrad BiomedCoOp VDSA (Ours)

Average on
9 datasets

Base 49.27 76.71 75.52 71.91 75.69 78.60 82.48
Novel 67.17 65.34 67.74 65.94 67.33 73.90 80.12
HM 55.23 68.80 69.11 67.22 69.86 74.04 78.55

BTMRI
Base 40.88 82.25 77.88 78.03 82.13 82.42 86.25
Novel 96.18 94.51 94.84 95.05 94.98 96.84 94.66
HM 57.37 87.95 85.53 85.70 88.09 89.05 90.26

COVID-QU-Ex
Base 53.96 75.92 77.28 75.42 75.19 75.91 76.57
Novel 89.43 90.07 87.61 89.61 90.34 91.63 91.57
HM 67.31 82.39 82.12 81.90 82.07 83.03 83.40

CTKIDNEY
Base 38.55 82.24 81.96 81.67 83.86 86.93 89.73
Novel 52.99 67.92 56.56 58.45 63.01 78.94 85.79
HM 44.63 74.40 66.93 68.14 71.96 82.74 87.72

Kvasir
Base 75.00 86.22 85.94 81.56 82.89 86.50 88.00
Novel 60.50 58.06 53.95 59.00 60.45 61.83 69.50
HM 66.97 69.39 66.29 68.47 69.91 72.11 77.66

CHMNIST
Base 37.63 89.41 87.77 75.45 82.98 88.87 92.42
Novel 40.69 35.11 42.51 38.70 44.19 42.73 53.06
HM 39.10 50.42 57.28 51.16 57.67 57.71 67.42

LC25000
Base 59.73 90.12 88.33 88.13 90.29 93.77 95.09
Novel 87.60 87.55 95.02 86.44 85.47 97.00 96.27
HM 71.03 88.82 91.55 87.28 87.81 95.36 95.68

RETINA
Base 45.18 70.98 66.88 60.77 68.77 68.46 80.57
Novel 55.28 56.90 65.56 54.91 58.43 67.72 74.02
HM 49.72 63.16 66.21 57.69 63.18 68.09 79.06

KneeXray
Base 35.89 38.28 34.08 37.94 40.88 44.23 48.26
Novel 71.90 47.69 63.14 61.19 59.12 78.35 81.02
HM 47.88 42.47 44.27 46.84 48.34 56.54 60.49

OCTMNIST
Base 56.60 75.00 79.60 68.20 74.20 80.33 83.40
Novel 50.00 50.23 50.47 50.13 50.02 50.07 56.20
HM 53.10 60.17 61.77 57.79 59.76 61.69 67.15

4.1 FEW-SHOT ADAPTATION

Table 1 summarizes few-shot classification accuracy averaged over 10 biomedical datasets. Our
proposed VDSA consistently achieves the highest accuracy across all shot counts. In the most
challenging 1-shot and 2-shot settings, VDSA reaches 60.50% and 64.25% accuracy, respectively,
outperforming the strongest baseline BiomedCoOp (56.87%, 59.32%) by 3.6 and 4.9 percentage
points, and surpassing other prompt-tuning methods such as CoOp (52.59%, 55.71%) and ProGrad
(53.67%, 56.42%) by even larger margins. As the number of labeled examples grows, the advantage
of VDSA remains clear: it attains 69.48%, 74.77%, and 79.41% for K = 4, 8, 16, consistently
exceeding BiomedCoOp (64.34%, 68.96%, 73.41%) and other baselines. The detailed per-dataset
performance curves are provided in Appendix D. Across 10 diverse biomedical datasets covering
eight imaging modalities, VDSA achieves the best or tied-best performance at nearly every shot
count. These strong and uniform gains highlight the robustness of VDSA to both domain variation
and data scarcity.

The key to this improvement lies in VDSA’s distributional semantic alignment. Instead of com-
pressing multiple prompts into a prototype, VDSA models the entire von Mises–Fisher distribution
of class semantics. This richer representation provides an implicit, infinite sample semantic aug-
mentation that optimize the vision–language alignment, maintaining effectiveness as supervision
increases.

4.2 BASE-TO-NOVEL GENERALIZATION

We next evaluate VDSA on the challenging Base-to-Novel Generalization protocol. Table 2 presents
base, novel, and harmonic mean (HM) accuracies across nine datasets and their overall averages,
with HM reflecting the level of balanced generalization. Note that the BUSI Al-Dhabyani et al.
(2020) dataset is excluded here since it contains only three classes, making a base–novel split infeasi-
ble. VDSA consistently ranks among the best on Base, Novel, and HM metrics, with gains exceeding
10% in HM on representative datasets such as CHMNIST Kather et al. (2016) and RETINA Köhler
et al. (2013); Porwal et al. (2018). These results demonstrate that modeling each class as a von

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of VDSA. The few-shot part reports average accuracy (%) over 10 biomedi-
cal datasets under different shots (1, 2, 4, 8, 16). The base-to-novel part reports average Base, Novel,
and their harmonic mean (HM) accuracies (%).

Method Few-shot Avg. Accuracy (%) Base-to-Novel Avg. (%)

1-shot 2-shot 4-shot 8-shot 16-shot Base Novel HM

CE (w/o VDSA) 55.77 58.72 66.50 72.37 78.19 81.26 77.50 77.51
VDSA (Ours) 60.50 64.25 69.48 74.77 79.41 82.48 80.12 78.55

Mises–Fisher semantic distribution, rather than a single prototype, mitigates overfitting to base con-
cepts and enhances transfer to unseen classes.

4.3 PARAMETERS SENSITIVITY

We analyze the impact of the number of prompts in Fig. 2. In our formulation, prompts are re-
garded as samples from the latent semantic distribution of each class, and the number of prompts
affects the reliability of the vMF parameter estimation. Increasing prompts from 1 to 20 leads to a
marked improvement in novel-class and HM accuracy. Beyond 20 prompts, performance changes
marginally: base accuracy stays around 82.5%–82.7%, and novel accuracy grows slightly to 80.12%
at 50 prompts. These results indicate that using about 30 prompts already captures most of the
achievable gains, and adding more prompts provides marginal additional benefit.

4.4 ABLATION STUDY
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Figure 2: Effect of the Number of Prompts on
base-to-novel generalization.

To evaluate the contribution of the proposed
VDSA module, we conduct an ablation study
by removing VDSA and training the model
with the conventional cross entropy classifi-
cation loss. This reduces the framework to
a prototype-based baseline, where images are
aligned only with the mean text embedding
of each class rather than with a full seman-
tic distribution. Table 3 reports the average
results for base-to-novel generalization, high-
lighting the consistent improvements brought
by VDSA. Across all shot levels from 1 to
16, VDSA consistently surpasses the CE base-
line. The improvements are most evident in the
low-shot regime, with gains of +4.7% at 1-shot
and +5.5% at 2-shot, showing that representing
each class as a von Mises–Fisher semantic dis-
tribution leads to stronger and more stable few-shot performance. Under the base-to-novel protocol,
VDSA also achieves consistent gains. The average HM rises from 77.51% to 78.55%, reflecting
better balance between base and novel classes and stronger transfer to unseen categories.

5 CONCLUSION

In this work, we identified a fundamental limitation in existing prompt ensembling methods for
Vision-Language Models: the collapse of rich semantic diversity into a single prototype. To ad-
dress this, we introduced VDSA, a novel parameter-efficient fine-tuning framework that shifts the
paradigm from prototype alignment to distributional alignment. By modeling class semantics with
the von Mises-Fisher distribution and deriving a tractable upper-bound objective, VDSA learns to
align image features with the entire semantic space of the concepts. Our extensive experiments on
10 biomedical datasets demonstrate that this principled approach yields significant improvements
in both few-shot adaptation and base-to-novel generalization, establishing a new state-of-the-art for
adapting VLMs to specialized domains.
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APPENDIX

A LLM USAGE

In this work, we use GPT-5 to assist in refining and polishing the paper. In addition, we use GPT-
4 (Achiam et al., 2023) to generate textual descriptions for each medical class in the datasets. Specif-
ically, for each dataset with C classes, we queried GPT-4 with the following instruction:

Give N textual descriptions of visual discriminative features for distinct medical
cases of [CLASS] found in [MODALITY].

These generated descriptions were then used as prompts in the subsequent model training and eval-
uation process. Here we include one representative text prompt for each class across all datasets.

BTMRI

• normal brain: A normal brain in MRI appears with clearly defined structures, no abnormal
growths, and symmetrical hemispheres.

• glioma tumor: A glioma tumor in MRI appears as an irregular, heterogeneous mass with
poorly defined borders.

• meningioma tumor: A meningioma tumor in MRI appears as a well-circumscribed, extra-
axial mass with a broad dural attachment.

• pituitary tumor: A pituitary tumor in MRI appears as a well-defined sellar mass, often with
suprasellar extension.

BUSI

• benign tumor: an ultrasound image showing well-defined, smooth margins, indicating a
benign breast tumor.

• malignant tumor: an ultrasound image showing irregular or spiculated margins, indicating
a malignant breast tumor.

• normal scan: an ultrasound image showing homogenous echotexture throughout, indicating
a normal breast ultrasound scan.

CTKidney

• cyst kidney: a CT image showing a well-circumscribed lesion with thin, smooth walls,
suggestive of a cyst kidney.

• kidney stone: a CT image showing a hyperdense focus within the renal pelvis, indicating a
kidney stone.

• kidney tumor: a CT image showing a solid mass with heterogeneous enhancement, indi-
cating a kidney tumor.

• normal kidney: a CT image showing well-defined renal contours and normal cortical thick-
ness, indicating a normal kidney.

COVID-QU-Ex

• covid lungs: an X-ray image showing bilateral ground-glass opacities, indicating covid
lungs.

• lung opacity lungs: an X-ray image showing localized ground-glass opacity, indicating
lung opacity lungs.

• normal lungs: an X-ray image showing clear lung fields, indicating normal lungs.

• viral pneumonia lungs: an X-ray image showing bilateral ground-glass opacities, indicating
viral pneumonia lungs.
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Kvasir

• dyed lifted polyps: Dyed lifted polyps appear as raised lesions with a blue or green hue,
indicating the application of dye to enhance visibility during endoscopy.

• dyed resection margins: Dyed resection margins appear as clearly delineated edges around
a resected lesion, marked by the application of dye during endoscopy.

• esophagitis: Esophagitis presents as inflamed, reddened areas of the esophageal lining,
often with visible erosions or ulcers in severe cases.

• normal cecum: The normal cecum appears as a blind-ended pouch located at the beginning
of the large intestine, with a smooth and healthy mucosal surface.

• normal pylorus: The normal pylorus appears as a circular, well-defined opening at the distal
end of the stomach, leading into the duodenum.

• normal z line: The normal Z line appears as a distinct, zigzagging line at the junction of the
esophagus and stomach during endoscopy.

• polyps: Polyps appear as protrusions or growths on the mucosal surface of the gastroin-
testinal tract during endoscopy.

• ulcerative colitis: Ulcerative colitis appears as inflammatory changes in the mucosal lining
of the colon during endoscopy.

KneeXray

• healthy knee: An X-ray image showing a knee with a clear and even joint space, no bone
spurs, indicating a healthy knee.

• doubtful osteoarthritis: An X-ray image showing a knee with slight joint space narrowing
and the beginning of osteophyte formation, indicating doubtful osteoarthritis.

• minimal osteoarthritis: An X-ray image showing a knee with definite osteophytes and slight
joint space narrowing, indicating minimal osteoarthritis.

• moderate osteoarthritis: An X-ray image showing a knee with multiple, well-defined os-
teophytes and moderate joint space narrowing, indicating moderate osteoarthritis.

• severe osteoarthritis: An X-ray image showing a knee with large osteophytes, severe joint
space narrowing, and significant sclerosis, indicating severe osteoarthritis.

RETINA

• cataract: a retina image showing opacification of the lens with loss of transparency, indica-
tive of cataract.

• diabetic retinopathy: a retina image showing microaneurysms, hemorrhages, and exudates
in the retina, indicative of diabetic retinopathy.

• glaucoma: a retina image showing optic disc cupping, neuroretinal rim thinning, and retinal
nerve fiber layer defects, indicative of glaucoma.

• normal retina: a retina image showing intact retinal layers with well-defined foveal depres-
sion and normal vasculature, indicating normal retina.

CHMNIST

• adipose tissue: Adipose tissue in histology slides appears as clusters of large, clear cells
with a thin rim of cytoplasm and a centrally located nucleus.

• complex stroma: Complex stroma in histology slides presents as a dense network of col-
lagen fibers, fibroblasts, and extracellular matrix components, providing structural support
to tissues.

• debris: Debris in histology slides often appears as irregular, darkly staining particles scat-
tered throughout the tissue section, indicating areas of cellular breakdown.
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• empty background: Empty background in histology slides appears as clear or lightly stained
areas devoid of cellular or extracellular matrix components, providing contrast for identi-
fying tissue structures.

• immune cells: Immune cells in histology slides appear as small, round cells with darkly
staining nuclei, often located within or surrounding areas of tissue inflammation.

• normal mucosal glands: Normal mucosal glands in histology slides appear as well-
organized tubular structures lined by epithelial cells, often with a central lumen.

• simple stroma: Simple stroma in histology slides consists of a loose network of connective
tissue, with sparse collagen fibers and scattered fibroblasts.

• tumour epithelium: Tumor epithelium in histology slides appears as atypical epithelial cells
with irregular nuclei, prominent nucleoli, and increased mitotic activity.

LC25000

• colon adenocarcinoma: a histopathological section showing malignant glands infiltrating
the colonic mucosa and submucosa, indicative of colon adenocarcinoma.

• colon benign tissue: a histological slide showing normal colonic mucosa with intact crypt
architecture and absence of dysplastic changes, indicating colon benign tissue.

• lung adenocarcinoma: a histopathological section showing glandular structures infiltrating
the lung parenchyma with stromal desmoplasia, indicative of lung adenocarcinoma.

• lung benign tissue: a histological slide showing normal lung parenchyma with intact alve-
olar architecture and absence of dysplastic changes, indicating lung benign tissue.

• lung squamous cell carcinoma: a histopathological section showing nests of squamous cells
with keratinization and intercellular bridges infiltrating the lung tissue, indicative of lung
squamous cell carcinoma.

DermaMNIST

• actinic keratosis: Actinic keratosis presents as rough, scaly patches on sun-exposed areas
of the skin, often with a pink or red base.

• basal cell carcinoma: Basal cell carcinoma (BCC) often appears as a pearly or translucent
nodule with visible blood vessels (telangiectasia) on the surface.

• benign keratosis: Benign keratosis, such as seborrheic keratosis, presents as well-defined,
warty, or waxy growths on the skin.

• dermatofibroma: Dermatofibromas present as firm, raised nodules on the skin, typically
with a hyperpigmented surface.

• melanoma: a skin image showing an irregular, asymmetrical mole, indicating melanoma.
• melanocytic nevus: Melanocytic nevi, or moles, are common benign skin lesions resulting

from the proliferation of melanocytes.
• squamous cell carcinoma: a close-up of a lesion with irregular borders and a scaly surface,

indicating squamous cell carcinoma.
• vascular lesion: Vascular lesions include a variety of conditions such as hemangiomas,

vascular malformations, and pyogenic granulomas.

OCTMNIST

• choroidal neovascularization: OCT scan showing subretinal fluid accumulation due to ab-
normal blood vessels growth.

• diabetic macular edema: OCT image showing retinal thickening with visible cystoid
spaces.

• drusen: OCT showing small, hyperreflective deposits beneath the retinal pigment epithe-
lium.

• normal OCT scan: OCT image showing a normal, uniform retinal structure with no signs
of fluid accumulation.
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B DATASET

Datasets. We evaluate on eleven public datasets spanning nine biomedical imaging modalities and
ten organs. For each dataset, we state the modality and organ(s), list the class labels as given, and
report the train/val/test split.

• CTKidney (Islam et al., 2022). Modality: Computerized Tomography; Organ(s): Kid-
ney. Classes: Kidney Cyst, Kidney Stone, Kidney Tumor, Normal Kidney. Split:
6221/2487/3738.

• DermaMNIST (Codella et al., 2019; Tschandl et al., 2018). Modality: Dermatoscopy;
Organ(s): Skin. Classes: Actinic Keratosis, Basal Cell Carcinoma, Benign Keratosis, Der-
matofibroma, Melanocytic nevus, Melanoma, Vascular Lesion. Split: 7007/1003/2005.

• Kvasir (Pogorelov et al., 2017). Modality: Endoscopy; Organ(s): Colon. Classes: Dyed
Lifted Polyps, Normal Cecum, Esophagitis, Dyed Resection Margins, Normal Pylorus,
Normal Z Line, Polyps, Ulcerative Colitis. Split: 2000/800/1200.

• RETINA (Köhler et al., 2013; Porwal et al., 2018). Modality: Fundus Photography; Or-
gan(s): Retina. Classes: Cataract, Diabetic Retinopathy, Glaucoma, Normal Retina. Split:
2108/841/1268.

• LC25000 (Borkowski et al., 2019). Modality: Histopathology; Organ(s): Lung, Colon.
Classes: Colon Adenocarcinoma, Colon Benign Tissue, Lung Adenocarcinoma, Lung Be-
nign Tissue, Lung Squamous Cell Carcinoma. Split: 12500/5000/7500.

• CHMNIST (Kather et al., 2016). Modality: Histopathology; Organ(s): Colorectal.
Classes: Adipose Tissue, Complex Stroma, Debris, Empty Background, Immune Cells,
Normal Mucosal Glands, Simple Stroma, Tumor Epithelium. Split: 2496/1000/1504.

• BTMRI (Masoud, 2021). Modality: Magnetic Resonance Imaging; Organ(s): Brain.
Classes: Glioma Tumor, Meningioma Tumor, Normal Brain, Pituitary Tumor. Split:
2854/1141/1717.

• OCTMNIST (Kermany et al., 2018). Modality: Optical Coherence Tomography; Or-
gan(s): Retina. Classes: Choroidal Neovascularization, Drusen, Diabetic Macular Edema,
Normal. Split: 97477/10832/1000.

• BUSI (Al-Dhabyani et al., 2020). Modality: Ultrasound; Organ(s): Breast. Classes: Be-
nign Tumors, Malignant Tumors, Normal Scans. Split: 389/155/236.

• COVID-QU-Ex (Tahir et al., 2021). Modality: X-Ray; Organ(s): Chest. Classes: COVID-
19, Lung Opacity, Normal Lungs, Viral Pneumonia. Split: 10582/4232/6351.

• KneeXray (Chen, 2018). Modality: X-Ray; Organ(s): Knee. Classes: No, Doubtful,
Minimal, Moderate, and Severe Osteoarthritis. Split: 5778/826/1656.

C DERMAMNIST PERFORMANCE

Table 4 reports results on the 7-class DermaMNIST test set (2,005 images), which is highly imbal-
anced: the majority class melanocytic nevus constitutes 1,341 samples (66.9%). Under this skew,
plain accuracy is unreliable because a trivial majority class predictor already attains 66.9%.

Metrics. We report (i) Macro-Recall (balanced accuracy), (ii) Macro-F1, (iii) the Zero-Recall
(count)—the number of classes with recall exactly 0, and (iv) Minority Avg. Recall, the mean recall
over the other 6 classes. All values are shown as percentages except the count.

Findings. At 1-shot, although BiomedCoOp reaches 61.7% accuracy, it still trails the 66.9% ma-
jority baseline and exhibits poor balance (Macro-Recall 25.2%, Macro-F1 19.1%, two zero-recall
classes). Our method (1-shot) improves Macro-Recall/F1 to 30.5%/21.6%, removes zero-recall
classes, and nearly doubles minority class recall (14.6%→ 28.9%). At 16-shot, BiomedCoOp mod-
estly improves (Macro-Recall 29.7%, Macro-F1 26.5%) but still has one zero-recall class and only
21.0% minority recall. In contrast, Ours (16-shot) delivers substantially better balance (Macro-
Recall 54.6%, Macro-F1 39.1%, zero-recall count 0, minority recall 52.3%). While its accuracy
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Figure 3: Per-dataset few-shot classification performance across 10 biomedical datasets.

(59.8%) is slightly below BiomedCoOp (61.5%), both are inferior to the 66.9% majority baseline
underscoring that balanced metrics, not accuracy, reflect clinically meaningful performance under
severe imbalance.

Table 4: DermaMNIST under severe class imbalance (values in %).
Majority BiomedCoOp Ours

Metric – 1-shot 16-shot 1-shot 16-shot
Accuracy (%) 66.9 61.7 61.5 36.3 59.8
Macro-Recall (%) – 25.2 29.7 30.5 54.6
Macro-F1 (%) – 19.1 26.5 21.6 39.1
Zero-Recall (count) – 2 1 0 0
Minority Avg. Recall (%) – 14.6 21.0 28.9 52.3

D PER-DATASET FEW-SHOT PERFORMANCE

Figure 3 reports the per-dataset few-shot classification performance across 10 biomedical datasets
under different shot numbers (K = 1 ∼ 16). Consistent with the averaged results in the main
text, VDSA attains the best or tied-best accuracy across nearly all datasets and shot counts, further
confirming its robustness to diverse imaging modalities and limited-data settings.

E LIMITATION OF GAUSSIAN-BASED DISTRIBUTION

Setup. Let image features be ℓ2-normalized, ∥z∥2 = 1, and each class c be represented by a
random prototype uc. We compare (i) an Euclidean Gaussian model uc ∼ N (µc,Σc) in RD with
(ii) an on-sphere model. We study the Jensen upper bound

L = log

C∑
c=1

E
[
e s z⊤uc

]
− E

[
s z⊤uy

]
, s > 0.

A. EUCLIDEAN GAUSSIAN VIOLATES THE UNIT-SPHERE COSINE GEOMETRY

Closed form under Gaussian. If uc ∼ N (µc,Σc) in RD, then z⊤uc ∼ N (z⊤µc, z
⊤Σcz).

Hence

E
[
e s z⊤uc

]
= e s z⊤µc+

s2

2 z⊤Σcz, E
[
s z⊤uy

]
= s z⊤µy,

and therefore

LGauss = log

C∑
c=1

e s z⊤µc+
s2

2 z⊤Σcz − s z⊤µy. (11)
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Geometric mismatch. Differentiating equation 11 w.r.t. z gives

∇zLGauss =

C∑
c=1

wc

(
sµc + s2 Σcz

)
− sµy, wc =

e ac∑
j e

aj
, ac = s z⊤µc +

s2

2 z⊤Σcz.

Compared with the cosine geometry objective (which depends only on angles z⊤µc), the Gaussian
bound introduces the variance driven term s2 Σcz. It biases z toward directions of small z⊤Σcz
(low variance axes), making optimization depend on scale/variance in RD rather than purely on
directions on the unit sphere. This contradicts CLIP’s spherical cosine geometry.

B. PROJECTED GAUSSIAN ON THE SPHERE IS NOT AN EXPONENTIAL FAMILY

Projected (normalized) Gaussian. An on-sphere alternative is to sample g ∼ N (µ,Σ) and
project u = g/∥g∥ ∈ SD−1. The induced density on the sphere (with respect to surface mea-
sure dσ) is

pPN(u | µ,Σ) ∝
∫ ∞

0

rD−1 e−
1
2 (ru−µ)⊤Σ−1(ru−µ) dr. (12)

Expanding the quadratic form inside the integral yields dependence on both u⊤Σ−1u and u⊤Σ−1µ
in a nonlinear fashion after integrating out r.

Consequence for the Jensen bound. The vMF density is an exponential family on SD−1:
pvMF(u | θ) ∝ e θ⊤u, which implies the key identity

EvMF(θ)

[
eh⊤u

]
=

Z(θ + h)

Z(θ)
.

In contrast, equation 12 cannot be written in the form p(u | θ) = e θ⊤u−A(θ) with respect to dσ for
general (µ,Σ). Therefore the above identity is unavailable, and the expectation E

[
e s z⊤u

]
under

the projected Gaussian does not reduce to a tractable ratio of normalizers as in vMF. Hence one
cannot obtain an analytic Jensen-type upper bound of the same closed form used in our method.

Summary. Euclidean Gaussians introduce variance sensitive terms that break spherical cosine ge-
ometry; projected Gaussians live on the sphere but lack the exponential-family structure needed to
turn E

[
e s z⊤u

]
into a closed-form expression. The vMF model satisfies both requirements simulta-

neously.

F DERIVATION OF VMF MAXIMUM LIKELIHOOD ESTIMATORS

Here, we derive the maximum likelihood estimators (MLE) for the parameters of the von Mises-
Fisher (vMF) distribution, given N i.i.d. samples {ui}Ni=1 from vMF(µ, κ). The probability density
function is:

p(u | µ, κ) = CD(κ) exp(κµ⊤u),

where CD(κ) is the normalization constant. The log-likelihood function L for the N samples is:

logL(µ, κ) = log

N∏
i=1

p(ui | µ, κ) (13)

=

N∑
i=1

log
[
CD(κ) exp(κµ⊤ui)

]
(14)

= N logCD(κ) + κ

N∑
i=1

µ⊤ui (15)

= N logCD(κ) + κµ⊤

(
N∑
i=1

ui

)
. (16)
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Estimating Mean Direction µ̂. To maximize the log-likelihood, we first focus on the term in-
volving µ, which is κµ⊤

(∑N
i=1 ui

)
. Let the resultant vector be R =

∑N
i=1 ui. Since κ ≥ 0,

maximizing this term is equivalent to maximizing the dot product µ⊤R. By the Cauchy-Schwarz
inequality, this dot product is maximized when the unit vector µ is aligned with the vector R. There-
fore, the MLE for the mean direction is the normalized resultant vector:

µ̂ =
R

∥R∥2
=

∑N
i=1 ui∥∥∑N
i=1 ui

∥∥
2

.

Estimating Concentration κ̂. We substitute the MLE µ̂ back into the log-likelihood function
(Eq. 16). The second term becomes:

κµ̂⊤R = κ
R⊤

∥R∥2
R = κ

∥R∥22
∥R∥2

= κ∥R∥2.

The log-likelihood is now a function of κ alone:

logL(κ) = N logCD(κ) + κ∥R∥2.

To find the maximum, we differentiate with respect to κ and set the result to zero:

∂ logL
∂κ

= N
C ′

D(κ)

CD(κ)
+ ∥R∥2 = 0.

Using the known identity for vMF distributions, AD(κ) = − d
dκ logCD(κ) = −C′

D(κ)
CD(κ) , we have:

N(−AD(κ)) + ∥R∥2 = 0.

Rearranging gives the final equation for the MLE κ̂:

AD(κ̂) =
∥R∥2
N

=

∥∥∑N
i=1 ui

∥∥
2

N
=
∥∥∥ 1

N

N∑
i=1

ui

∥∥∥
2
.

This shows that the MLE for the concentration κ̂ is the solution to AD(κ̂) = R̄, where R̄ is the
empirical mean resultant length.
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