
Adjoint Method: The Connection between
Analog-based Equilibrium Propagation Architectures

and Neural ODEs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Analog neural networks (ANNs) hold significant potential for substantial reduc-1

tions in power consumption in modern neural networks, particularly when em-2

ploying the increasingly popular Energy-Based Models (EBMs) in tandem with3

the local Equilibrium Propagation (EP) training algorithm. This paper analyzes4

the relationship between this family of ANNs and the concept of Neural Ordinary5

Differential Equations (Neural ODEs). Using the adjoint method, we formally6

demonstrate that ANN-EP can be derived from Neural ODEs by constraining the7

differential equations to those with a steady-state response. This finding opens8

avenues for the ANN-EP community to extend ANNs to non-steady-state scenar-9

ios. Additionally, it provides an efficient setting for NN-ODEs that significantly10

reduces the training cost.11

1 Introduction12

The aspiration to empower IoT devices at the edge with real-time adaptive learning capabilities has13

been one of the primary motivators for advancing efficient neural network training methods. This14

endeavor goes beyond merely substituting backpropagation with alternative strategies; it represents15

a shift in the computational principles underlying model design, training, and inference. Such a16

transformation requires the incorporation of innovative models like Energy-Based Models (EBMs),17

which diverge significantly from conventional paradigms. This shift is pivotal for leveraging the18

unique attributes of diverse computing paradigms, such as photonic and neuromorphic computing.19

In light of the evolving computational landscape, the advent of Neural Ordinary Differential Equa-20

tions [1] (Neural ODEs) and Equilibrium Propagation [2] (EP) have emerged as promising con-21

tenders. Neural ODEs extend neural network models into the continuous-time domain, allowing22

the incorporation of differential equations to represent the evolution of the network states. EP, in23

contrast, provides a biologically plausible learning framework that integrates the concept of a cost24

function, a notable departure from the training methodologies of conventional EBMs.25

The adjoint method serves as a pivotal link between EP and Neural ODEs, providing a framework26

that allows for the efficient computation of gradients in continuous-time models. This paper posits27

that EP can be construed as a special case of Neural ODEs, unified by the underlying adjoint method.28

This connection is not merely theoretical but has practical implications, especially in the realm of29

analog computation. By leveraging an analog circuit, we will demonstrate how the Lambda (λ)30

variable in Neural ODEs corresponds precisely to the variation of the node voltages of the circuit.31

The exploration of such connections is vital for the development of low-cost and efficient solutions32

in neural networks, aligning with the broader goals of advancing biologically plausible and energy-33

efficient machine learning models.34

Submitted to the First Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNPCP
2023). Do not distribute.



min
θ

C(y,ytrue)

s.t. y = Un(· · · (U0(x,θ) · · · ))

(a) Output defined explicitly as a
composition of functions.

min
θ

C(s, strue)

s.t. f(s,x,θ) = 0

(b) Output defined implicitly via
a nonlinear implicit equation.

min
θ

C(s, strue)

s.t.
ds

dt
= f(s(t), t,x,θ)

(c) Output defined implicitly via
a differential equation.

Figure 1: Supervised learning optimization problem definitions

2 Formulation of Training as an Optimization Task35

The goal of training any supervised machine learning model is to find the optimal parameters θ36

that associate low cost values C to input-output pairs {x,ytrue}Ni=1 from the training dataset. This37

objective is usually formulated in the form of an optimization problem, where the constraints define38

how the output is obtained.39

Figure 1 shows three classes of optimization problems in machine learning. In conventional feedfor-40

ward networks (Fig. 1a), the output y is derived explicitly through the composition of the functions41

Un through U0, where U i are usually the layers of the model. Conversely, equilibrium models42

represent y as a function of the network’s state variable s. In the case of EP (Fig. 1b), this function43

is expressed through an nonlinear implicit equation, whereas in Neural ODEs (Fig. 1c), it is defined44

through a differential equation.45

Regardless of the method employed to generate the output, the supervised learning process com-46

prises three main stages: (1) computation of y or s, (2) computation of the loss gradient dC
dy or dC

ds ,47

and (3) computation of the parameter gradient dC
dθ .48

Computing y, often referred to as the inference/forward step, is simpler in feedforward networks49

due to the explicit form of y. For equilibrium models, this necessitates the use of a nonlinear solver,50

such as the Newton-Raphson method or Euler’s method for ODEs.51

In feedforward networks, the parameter gradient dC
dθ is typically computed via the backpropagation52

algorithm, which uses the chain rule to propagate gradients from the output layer towards the input53

layer. However, when y is defined implicitly, calculating dC
dθ requires a different approach. This is54

the subject of the next two section.55

3 Neural ODEs56

3.1 Motivation57

Neural ODEs are a family of deep neural network models that can be interpreted as a continuous58

equivalent of Residual Networks (ResNets). In ResNets, the hidden state s[t + 1] at layer t + 1 is59

derived from the hidden state s[t] at layer t according to the equation s[t+1] = s[t]+f(s[t],x,θ),60

where f(·), for many applications, is a simple feedforward network, and θ are its parameters. This61

transformation can be viewed as a discretization of a derivative s′(t) with timestep ∆t = 1. Upon62

taking ∆t to zero, this leads to an ordinary differential equation: ds(t)
dt = f(s(t), t,x,θ). The63

output layer s[T ] is then defined as the solution of this ODE, starting from an initial state s[0].64

3.2 Adjoint Method for ODEs65

Consider the optimization problem presented in Fig. 1c, where the goal is to find the parameters θ66

that minimize the cost C at the output layer s(T ). The adjoint method for ODEs provides a way to67

backpropagate through a model whose output is defined implicitly through a differential equation.68

The algorithm is provided in Alg 1. For its derivation, see [1].69

The solution of equation (2) requires knowing the value of s(t) along its entire trajectory. Stor-70

ing these evaluations in step 1 is impractical for large systems or long time spans due to memory71

2



Algorithm 1 Adjoint method for constraints
defined via ODEs

1: Solve the (forward) differential equation
for 0 ⩽ t ⩽ T to get s(t).{

ds
dt = f(s(t), t,x,θ)
s(t = 0) = s0

(1)

2: Using the s(T ) from step 1, find λ(T ).
Then solve the (backward) differential
equation from t = T to t = 0.

{ dλ
dt = −[λ(t)]T ∂f

∂s

λ(T ) =
[
∂C(s(T ),strue)

∂s

]T (2)

3: Plug λ(t) to get dC
dθ .

dC

dθ
= −

∫ 0

T

[λ(t)]T
∂f

∂θ
dt (3)

Algorithm 2 Adjoint method for constraints
defined via implicit nonlinear equations

1: Given θ, solve the nonlinear equation
given by the constraint to get s.

f(s,θ) = 0 (4)

2: Using the s from step 1, find λ.

(
∂f

∂s

)T

λ = −
(
∂C

∂s

)T

(5)

3: Plug λ in the equation below to get dL
dθ .

dC

dθ
= λT (θ)

∂f

∂θ
(6)

limitations. The authors of [1] addressed this issue by forming an augmented system of ODEs that72

recomputes s(t) concurrently with λ(t) during step 2.73

While ODE solvers can be implemented in analog hardware, it is not obvious how the second and74

third steps could be realized. However, if we make some assumptions about the nature of the ODE,75

the resulting system has a direct interpretation in analog hardware. This is discussed next.76

3.3 Bridging Neural ODEs to Physical Systems77

Neural networks are well-known as universal function approximators, traditionally expressed in78

the form y = f(x,θ). EP extends this paradigm to implicitly-defined neural networks. In such79

networks, the mapping from input to output is defined not directly but via an implicit equation,80

offering increased representational capacity.81

Neural ODEs take this notion a step further by introducing a time component into the system. A82

unique feature of Neural ODEs is the ability to define a family of mappings between inputs and83

outputs. This is achieved by choosing different initial states for the system. After a time T , different84

initial states will generally lead to different final states, further enhancing the expressiveness of the85

model. This idea is depicted in Fig. 2.86

The question arises: Can these Neural ODE systems be connected to stable physical systems, specif-87

ically analog circuits? In nonlinear resistive analog networks, for example, the system converges to88

the same stable state irrespective of the initial conditions (s) as long as conductances (θ) and input89

voltages (x) are fixed. Mathematically, this is represented by ds
dt = 0. When a Neural ODE system90

reaches steady-state, at t = ∞, the differential equation ds
dt = f(s(t), t,x,θ) effectively reduces91

to an implicit nonlinear equation f(s∞,x,θ) = 0. Furthermore, if the differential equation has92

a single equilibrium point at steady-state, then it can be represented by a nonlinear analog circuit.93

This idea is depicted in Fig. 3, which shows that for some specific ODEs, when θ and x are fixed,94

the system always converges to the same steady-state irrespective of initial state of s.95

In the next section, we develop the algorithm for solving optimization problems in which the con-96

straint is a nonlinear implicit equation, which is the steady-state solution of ODEs with one equilib-97

rium state at t = ∞.98

3



Figure 2: A example of a typical differential
equation with no constraint on the trajecto-
ries.

Figure 3: An example of a differential equa-
tion where all trajectories converge to the
same equilibrium state.

4 Adjoint Method for Implicit Nonlinear Equations99

Let s, strue ∈ Rns and θ ∈ Rnθ . Suppose we have the function C(s, strue) : Rns ×Rns → R, where100

s(θ) is the solution of the implicit function f(s,x,θ) = 0 for a function f : Rns×nx×nθ → Rns .101

What is dC
dθ ?102

C is a function of s, which is a function of θ. Therefore:103

dĈ

dθ
=

∂C

∂s

ds

dθ
(7)

The differentiability of Ĉ with respect to θ depends on the differentiability of s with respect to θ.104

By assuming that s(θ) exists and is the solution of the implicit function f(s,x,θ) = 0, the implicit105

theorem guarantees the differentiability of s(θ) [3]. Therefore, at the points s = s(θ), the following106

relationship holds:107

df

dθ
=

∂f

∂s

ds

dθ
+

∂f

∂θ
(8)

Since f(s,θ) = 0 everywhere, df(s(θ),θ)
dθ = 0. Assuming that ∂f

∂s is a non-singular matrix, the108

equation above can be expressed as:109

ds

dθ
= −

(
∂f

∂s

)−1
∂f

∂θ
(9)

Substituting equation (9) into equation (7) yields:110

dĈ

dθ
=

[
−∂C

∂s

(
∂f

∂s

)−1
]
∂f

∂θ
(10)

Let λ(θ) ∈ Rns×1

be the solution of term inside the square brackets.111

(
∂f

∂s

)T

λ(θ) = −
(
∂C

∂s

)T

(11)

Then the gradient can be written as:112

dĈ

dθ
= λT (θ)

∂f

∂θ
(12)

4



The algorithm for solving optimization problems with implicitly-defined constraints is summarized113

in Alg. 2. It is much simpler than Alg. 1 and has a direct interpretation in analog circuits.114

5 Interpretation of the Adjoint Variable in Analog Circuits115

In the context of analog circuits, we can think of s as the voltages V in the nodes of the circuit,116

strue as the desired node voltages V true, θ as the conductance matrix G, f(s,θ) = 0 as the set of117

equations according to Kirchoff’s current law, s(θ) as the function that maps conductances to those118

voltages that satisfy Kirchoff’s current law, and Ĉ(θ, strue) = C(s(θ), strue) as the function that119

evaluates the difference between the measured and desired voltages of the circuit.120

Substituting V for s, G for θ, and I for f , the rest of the terms in Alg. 2 can be interpreted as121

follows:122

• The terms ∂I
∂V is the derivative of the current with respect to the voltage, and therefore has123

a unit of Siemens.124

• The term ∂I
∂G is the derivative of the current with respect to the conductance, and therefore125

has a unit of Volts.126

• In most cases, the cost function C is the mean-squared-error. C therefore has units of Watts127

and ∂C
∂V has a unit of Amperes.128

With the link to analog circuits established, the adjoint algorithm can be interpreted as follows.129

The first step requires the solution of a nonlinear equation. This is exactly the steady-state (or DC)130

solution of an analog circuit. Let us denote these voltages as V ⋆. The current state of the circuit131

is compared against the desired state V true. The term ∂C
∂V ⋆ measures how the node voltages should132

be modifed to reduce the discrepancy between the measured and the desired state. If we choose to133

inject a current of ∂C
∂V ⋆ externally into the circuit, then since λ = −

(
∂I

∂V ⋆

)−T (
∂C
∂V ⋆

)T
has units of134

Volts, λ is exactly the variation in the node voltages due to the injected current.135

In a nonlinear analog circuit, the calculation of λ as presented above is impossible. Because of the136

presence of nonlinear elements, the injection of current into the circuit can completely change the137

state of a circuit. For example, a diode on the verge of conduction can switch on if the voltage across138

it increases as a result of the injected current. If this diode is connected across a large computational139

block, the block will be shorted to ground when the diode turns on, significantly altering the circuit140

between the two states. Since the calculation of λ requires the evaluation of the derivative ∂I
∂V at141

exactly the steady-state V ⋆ of the circuit, we have to ensure that the injected current does not disturb142

the state of the circuit. One approach is to scale the injected current
(
∂C
∂V

)
by some factor β to ensure143

that it is sufficiently small. Voltage variations in the nodes can then be measured and divided by β144

to obtain the unscaled version.145

In summary, while the adjoint method can indeed be implemented on an analog circuit, the gradient146

calculated is an approximation since the act of injecting a current to measure the derivatives disturbs147

the circuit.148

6 Connection to EP and Verification149

To validate our analysis in the previous section, we designed a simple circuit, as an illustrative150

example, to learn the XOR dataset. The circuit has an input layer with dimensions 4 × 2, followed151

by a pair of up-down diodes to introduce nonlinearity, and an output layer with dimensions 4× 2.152

The XOR dataset has two inputs and one output. The inputs are represented by X1 and X2 and the153

output by the difference of Y1 and Y2. This is to account for the constraint that resistances cannot154

assume negative values. X3 and X4 represent the bias voltages and are of opposite polarity. We155

considered the node voltages V1, V2, Y1, Y2 as our state variables.156

As an example, consider the conductance G† (circled in the schematic). It is connected between157

nodes V1 and Y1. As a result, the voltage drop across it is V † = V1−Y1. According to equation (6),158 [
dC
dG†

]
Adjoint

= λT dI
dG† . dI

dG† , in this example, is of size 1 × 4. Since G† is connected to only V1159

5



X1

X2

X3

X4

X1

X2

X3

X4

V1

V2

X3

X4

Y1

V1

V2

X3

X4

Y1

V1

V2

Figure 4: Schematic diagram for learning the
XOR dataset.

0 100 200 300 400 500
Iteration

2

3

4

lo
g(

m
ea

n(
ab

s(
gr

ad
ie

nt
))

)

Adjoint

EP: β = 10−10

EP: β = 10−7

Figure 5: Plot of the gradients during train-
ing.

and Y1, dI
dG† will only have entries in the positions for nodes V1 and Y1, corresponding to λ1 and160

λ3, and these will be of opposite polarity. Thus, the evaluation of
[

dC
dG†

]
Adjoint

yields (λ1 − λ3)V
†.161

This shows that the update to conductance G† is the product of the voltage drop at steady-state and162

the variation due to the injected current across the two nodes it is connected to.163

Let’s now compare this result to the one from EP. In EP, the update equation for G†, as applied164

to this circuit is
[

dC
dG†

]
EP

≈ 1
2β [(V

†
β )

2 − (V †
0 )

2], where V †
0 is the voltage drop across G† before165

the current was injected, and V †
β is the voltage drop after the current was injected. If we express166

V †
β as V †

0 + ∆V , then
[

dC
dG†

]
EP

≈
(

∆V
β

)
(V †

0 ) +
1
2β (∆V )2. If the current injected is very small,167

(∆V )2 → 0, then
[

dC
dG†

]
Adjoint

≈
[

dC
dG†

]
EP

, where (λ1 − λ3) ≈ ∆V
β .168

The circuit was optimized using using both the adjoint and the EP methods [4]. A plot of the log169

of the mean absolute values of all the conductances across iterations is shown in Fig. 5. Initially,170

the gradients from both methods exhibit close proximity. Over time, however, the approximations171

inherent in the EP method introduce biases that cause its gradients to diverge from the true gradient.172

In contrast, the gradients obtained via the adjoint method continue to get smaller, indicating that the173

circuit is getting closer to the desired state.174

7 Conclusion175

A central theme of this work is the impact of constraints in optimization problems on neural network176

design and training rules. We explored two types of constraints: nonlinear implicit equations and177

differential equations. The adjoint method emerged as a unifying framework, linking Neural ODEs178

and EP and offering efficient gradient computation. This has practical implications, especially in179

analog computation, where we have interpreted the adjoint variable as the variation in node voltages180

in an analog circuit.181

Looking ahead, we aim to focus on the efficient implementation of Neural ODEs in analog hardware.182

Additional future work could explore other types of constraints constraints that are more suitable for183

hardware design in systems other than analog circuits, opening up new avenues for efficient and184

adaptable neural network training.185

References186

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary187

differential equations, 2019.188

[2] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between189

energy-based models and backpropagation, 2017.190

[3] Matthias Heinkenschloss. Implicit contraints, 2002. Available at https://www.191

cmor-faculty.rice.edu/~cox/neuro/ImplConstraints.pdf, accessed on 2023-09-29.192

[4] Ebana framework. Available at https://github.com/mawatfa/ebana.193

6

https://www.cmor-faculty.rice.edu/~ cox/neuro/ImplConstraints.pdf
https://www.cmor-faculty.rice.edu/~ cox/neuro/ImplConstraints.pdf
https://www.cmor-faculty.rice.edu/~ cox/neuro/ImplConstraints.pdf
https://github.com/mawatfa/ebana

	Introduction
	Formulation of Training as an Optimization Task
	Neural ODEs
	Motivation
	Adjoint Method for ODEs
	Bridging Neural ODEs to Physical Systems

	Adjoint Method for Implicit Nonlinear Equations
	Interpretation of the Adjoint Variable in Analog Circuits
	Connection to EP and Verification
	Conclusion

