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ABSTRACT

Model merging aggregates Large Language Models (LLMs) finetuned on different
tasks into a stronger one. However, parameter conflicts between models leads to
performance degradation in averaging. While model routing addresses this issue
by selecting individual models during inference, it imposes excessive storage and
compute costs, and fails to leverage the common knowledge from different models.
In this work, we observe that different layers exhibit varying levels of parameter
conflicts. Building on this insight, we average layers with minimal parameter con-
flicts and use a novel task-level expert routing for layers with significant conflicts.
To further reduce storage costs, inspired by task arithmetic sparsity, we decouple
multiple fine-tuned experts into a dense expert and several sparse experts. Con-
sidering the out-of-distribution samples, we select and merge appropriate experts
based on the task uncertainty of the input data. We conduct extensive experiments
on both LLaMA and Qwen with varying parameter scales, and evaluate on real-
world reasoning tasks. Results demonstrate that our method consistently achieves
significant performance improvements while requiring less system cost.

1 INTRODUCTION

Parameter conflicts with the base model
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Figure 1: Knowledge conflict across finetuned LLMs
and math and code dataset. Deeper color means larger
parameter conflicts. And it is difficult for the linear
averaged model to achieve low loss of both tasks.

Finetuning Large Language Models (LLMs) en-
ables them to adapt to downstream applications
including sentiment analysis (Sun et al., 2023),
text summarization (Fang et al., 2024), mathe-
matical reasoning (Ruis et al., 2024), code writ-
ing (Jiang et al., 2024a), roleplay chatting (Chen
et al., 2025) so on. Open-source platforms such
as Huggingface (Wolf et al., 2019) facilitate ac-
cess to a diverse array of highly trained expert
models with varying capabilities. Considering
the computational resources are scarce and im-
plementing green computing (Stojkovic et al.,
2024), the community is increasingly interested
in how to merge these models to create a supe-
rior LLM that retains the strengths of finetuned ones without retraining (Yang et al., 2024a).

One predominant merging strategy is model averaging (Yang et al., 2024a; Thennal et al., 2024),
which computes weighted averages of parameters to synthesize collective knowledge (Yadav et al.,
2023a). However, model averaging faces challenges from parameter conflicts arising from diverse
finetuning tasks, leading to performance degradation as shown in Figure 1. Another direction is
model routing (Lu et al., 2024a; Muqeeth et al., 2024; He et al., 2024a; Wei et al., 2024a), which
aggregates models and performs model selection during inference. This method avoids parameter
conflicts but incurs significant computing and storage (system) costs due to maintaining all finetuned
models. This motivates us to rethink the following questions:

How to merge common and unique knowledge from various finetuned models while simultaneously
avoiding parameter conflicts and minimizing system costs?
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We firstly quantify the conflicts between finetuned LLMs. We employ sign consistency between
different task arithmetics to measure the conflicts to avoid the noise influences. We find that the
front and last layers tend to exhibit the highest levels of conflict, suggesting that these layers are
particularly sensitive to averaging. In contrast, the central layers demonstrate comparatively lower
levels of conflict, indicating that they retain more common knowledge.

Then, we introduce Mediator as an adaptive model merging framework to enhance LLM merging with
little storage and computation costs. Inspired by the varying degrees of layer-wise parameter conflicts,
we propose adaptive merging that averages layers with lower conflict levels, thereby capturing the
common knowledge (He et al., 2024b) shared among LLMs while minimizing conflicts (Yadav et al.,
2023a). Concurrently, layers with significant conflicts are regarded as experts to be routed during
inference, preserving unique task-specific knowledge without dilution (He et al., 2024b).

While direct compression of finetuned LLMs results in significant information loss (Dong et al.),
we leverage both layer-wise model merging and the high sparsity of task arithmetics (Yadav et al.,
2023a) to decompose models into base and task-specific components (Ilharco et al., 2023; Tang et al.,
2024a). By integrating these two techniques, our approach reduces storage from 50% to 7% while
preserving layer-specific knowledge.

Observing that LLMs are finetuned on the complete sentences of their downstream tasks instead
of the splited sub-sequences, to better preserve task-specific knowledge and improve overall model
performance, we propose task-level expert routing instead of token-level routing (Sukhbaatar et al.,
2024a; Jiang et al., 2024b). With these designs, our merged LLM achieves high efficiency with
minimal performance degradation (0.06% ∼ 0.3%). Our evaluations show that we can effectively run
a model comparable to a 7B × 4 LLM ensemble on a single RTX 4090 GPU, making high-performance
LLM more accessible in resource-constrained environments(Appendix I.4).

Considering the out-of-distribution (OOD) samples, we select and merge appropriate experts based
on the task uncertainty of the input data. Thus, the unified model can select appropriate experts based
on the characteristics of the input data. We finetune pretrained LLMs with Chain-of-thoughts (Wei
et al., 2022) enhanced datasets, showing that the model merge of Mediator can successfully preserve
the reasoning ability (Guo et al., 2025). Our main contributions can be summarized as follows:

• We investigate and demonstrate that different layers of fine-tuned models exhibit varying levels of
parameter conflicts (Section 3). Then we propose Mediator, an adaptive layer-wise model merging
approach to average layers with minimal conflicts (Section 4.1).

• We decouple fine-tuned experts into one dense expert and several sparse experts (Section 4.2) in
Mediator, achieving high compression ratio while maintaining accuracy. For layers with significant
conflicts, Mediator enables dynamic expert selection based on task uncertainty (Section 4.3),
effectively handling task composition and OOD data.

• We conduct experiments based on modern LLMs including LLaMA and Qwen with CoT enhanced
finetuning the real-world cutting-edge LLM evaluation tasks. Results show that Mediator achieves
performance improvements and less system cost compared to existing methods. (Section 5).

2 PRELIMINARY AND RELATED WORKS

2.1 LANGUAGE MODELING AND LLM FINETUNING

Task Data Distribution. Given a set of different downstream tasks T , based on the sampling
task τ ∈ T , the pretraining data sample is a sequence x1:T of tokens with the maximum length
T generated from a distribution pτ = p(x1:T |τ) = p(o1, . . . , oT |τ) (Xie et al., 2022; Wies et al.,
2023; Hahn and Goyal, 2023; Li et al., 2024a). We define the pretraining data is sampled from
p(x|T ⋆) =

∫
τ⋆∈T ⋆ p(o1, . . . , oT |τ)p(τ⋆)dτ⋆. Each token o is sampled from a vocabulary O. And

both (T and T ⋆ belong to a large task family Ω, i.e. T , T ⋆ ⊂ Ω.

Language Modeling. Current LLMs (Brown et al., 2020; Touvron et al., 2023; Xie et al., 2022)
usually utilize the next word prediction as the language modelling, which predicts the next token
xt given the previous tokens x1:t−1 for all t = 1, . . . , T . Formally, a LLM parameterized by θ is
a distribution fθ(xt|x1:t−1). And it is pretrained on a huge corpus sampled from the pretraining
distribution p(x|T ⋆) (Xie et al., 2022).
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Finetuning LLM. Normally, for each downstream task τ ∈ T , finetuning LLM is to minimize
the cross-entropy loss function as LCE(θ, τ) = −

∑T
t=1 E[pτ (xt|x1:t−1) · log fθ(xt|x1:t−1)]. After

finetuning, the model parameters θ are updated to θτ .

2.2 MODEL MERGING

Given finetuned task-specific LLMs {θ1, θ2, . . . , θnτ
} finetuned on task set T , where nτ = |T |,

model merge aims to find a unified model parameterized by ϕ that can achieve the low loss on all
tasks T as following

min
ϕ

LCE(ϕ, T ) =
1

nτ

∑
τ∈T

LCE(ϕ, τ). (1)

Different from training ϕ that can be optimized towards any direction, model merging aims to
exploit combining {θ, θ1, θ2, . . . , θnτ

} to obtain the ϕ. The current model merging methods include
following two categories.

Model Averaging. Averaging parameters to fuse the knowledge from different finetuned models is
straightforward. Mathematically, averaged model is ϕ =

∑
τ∈T wτθτ , in which wτ is the averaging

weight and
∑

τ∈T wτ = 1. Considering different model parameters have different importance on
downstream tasks (Kirkpatrick et al., 2017; Sun et al., 2024; Dong et al.), assigning larger weights
to more important parameters. Current methods usually utilize Taylor expansion (Lee et al., 2019;
Matena and Raffel, 2022) to measure the importance of the parameters. However, the knowledge
conflicts still exist for parameters that have high importance simultaneously.

Model Routing. To completely avoid conflicts, another way is to select the most relevant model
for each task. This approach typically employs a selection mechanism to activate the most relevant
model based on the input task τ (Yang et al., 2024b) or sequence x1:t at t-th token like the Mixture
of Experts (MoE) (Tang et al., 2024b). Current methods propose different routing and re-training
mechanisms to improve the performance (He et al., 2024a; Wei et al., 2024a; Sukhbaatar et al.,
2024b). However, these methods fail to consider merging parameters to find the common knowledge
that can be shared across different tasks, and cause large memory and computational costs. We leave
detailed discussions about related works in Appendix C).

Out-of-distribution Data. In real-world deployment, the test data x may come from other distribu-
tions instead of the p(x|τ)τ∈T . To this end, we need to consider how to handle OOD data x within
merging LLMs. In this work, we mainly consider two OOD cases and tackle them in Section 4.

3 UNDERSTANDING CONFLICT BETWEEN LLMS

Table 1: Accuracy of finetuning Llama 3.2 3B.
Model GSM8K Math TriviaQA H.Eval Code All tasks

θ (Pretrained) 27.52 57.71 22.56 35.93
θ1 (Math SFT) 46.47 54.59 25.00 42.02
θ2 (QA SFT) 32.75 61.45 28.05 40.75

θ3 (Coding SFT) 33.13 57.71 40.85 43.90
ϕAVG 42.61 60.99 31.30 44.97
ϕSEL 46.47 61.45 40.85 49.59

Preliminary Experiments. We finetune Llama-
3.2-3B on three datasets and evaluation with
according tasks (details in Section 5). Table 1
shows the performance of the merged model and
individual finetuned models. We use P (θ, τ) to
represent the performance of the θ on τ .

Comparing Performance on All Tasks. We
write PORI = P (θ, T ) as the performance of the
original model θ on all tasks T , the PAVG = P (ϕAVG, T ) as the performance of the averaged model
ϕAVG on all tasks T . We write the PSEL = 1

nτ

∑
τ∈T P (ϕSEL, τ) as the performance of the selection

based model ϕSEL on all tasks T . The results show that the

PORI < PAVG < PSEL, (2)

which means that finetuning and averaging can successfully increase the model performance. However,
simply averaged model cannot recover the task performance of the corresponding finetuned models.

Comparing Performance on Individual Models. Table 1 shows that while the model θτ has the
best performance on its according task τ , its performance on other tasks T \ τ is lower than ϕAVG.

Table 1 indicates that the averaged model can still benefit from merging knowledge from different
finetuned models. Thus, a better merging strategy should be able to average the parameters that have

3
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Figure 2: The framework of Mediator.

less parameter conflict to find the common knowledge that can be shared across different tasks and
avoid the parameter conflict that degrades the performance of the finetuned model.
Definition 3.1 (Task Arithmetic). A task arithmetic on task τ is the parameter difference between the
finetuned LLM θτ and the pre-trained LLM θ, i.e., ∆τ = θτ − θ.
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Figure 3: Parameter conflict distribution across
different layers of finetuned models (Qwen 2.5
7B).

Denoising Parameters. Due to the stochastic
optimization process in finetuning, some ele-
ments in ∆τ are noisy and do not influence
the performance (Yadav et al., 2023a; He et al.,
2024b). Thus, before measuring the parameter
conflicts (Yadav et al., 2023a; He et al., 2024b),
we firstly denoise the parameters by removing
the elements in ∆τ that have have small mag-
nitude. To this end, we model the update di-
rections of different elements as the Gaussian
distribution NUPD(µUPD, σ

2
UPD), where µUPD is

the mean of the update direction and σ2
UPD is the

variance. Then, we denoise the parameters by re-
moving the elements within range (µUPD−σUPD,
µUPD+σUPD) and obtain the new parameter arith-
metic θ̂τ = θ + ∆̂τ (details in Appendix F.1).

Measuring Parameter Conflict. Follow-
ing (Yadav et al., 2023a), we measure the parameter conflict between different finetuned models
using a sign-based approach. For layer l ∈ L, given parameters wl

i ∈ θlτi and wl
j ∈ θlτj from two

different models, we consider them conflicting if they have opposite signs, i.e., sgn(wl
iw

l
j) = −1.

We define the conflict ratio of layer l as the proportion of conflicting parameters in that layer:

dl = (
∑
i,j

I(sgn(wl
iw

l
j) = −1))/|θl|, (3)

where |θl| is the total number of parameters in layer l, and I(·) is the indicator function.

Figure 3 shows that the parameter conflict is higher in the front and last layers, and lower in the
central layers. This phenomenon indicates that central layers share more common knowledge, while
the front and last layers capture more task-specific knowledge.

4 THE DESIGN OF MEDIATOR

The high-level idea of Mediator is to hybridly combine averaging and routing to preserve the
downstream knowledge and avoid the parameter conflict (Sectino 4.1) according to parameter conflict
distribution across different layers. We decompose the downstream models as the base model and
experts of task arithmetics, which brings into the opportunity to sparsify the task arithmetics to
prune out the noisy parameters to reduce the memory costs (Section 4.2). Lastly, considering the
OOD inputs, we propose a Bayesian expert routing (Section 4.3) to better combine knowledge from
different experts.

4
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4.1 ADAPTIVE LAYER-WISE MODEL AVERAGING AND ROUTING

Algorithm 1 Adaptive Merging and Routing with
Sparsified Expert Decomposition in Mediator
Input: Different finetuned models
θ1, θ2, . . . , θnτ

.
Output: The merged layers Φ.

1: Calculate the conflict distribution
{dl}l=1,··· ,|L|;

2: Estimate µ, σ based on {dl}l=1,··· ,|L|;
3: for layer l = 1, · · · , |L| do
4: if dl < µ+ σ then
5: ϕl

AVG = M(θl1, θ
l
2, . . . , θ

l
nτ
);

6: else
7: θ̄l = 1/nτ

∑
τ∈T θlτ ;

8: ∆l
τ = θlτ − θ̄l, ∆l

⋆ = θl − θ̄l;
9: ∆̂l

τ = Denoise(∆l
τ );

10: ϕl
UP =

{
θ̄l, ∆̂l

1, ∆̂
l
2, . . . , ∆̂

l
nτ
, ∆̂l

⋆

}
;

11: end if
12: Insert ϕl

AVG or ϕl
UP into ΦAVG and ΦUP;

13: end for
14: Return Φ = {ΦAVG,ΦUP}. =0

Inspired by the empirical observation in Fig-
ure 3, Mediator averages layers with less param-
eter conflicts, and route layers with more param-
eter conflicts. As shown in Figure 2, Mediator
calculates the conflicts dl across different layers.
Then, Mediator models the layer-wise conflicts
as a Gaussian distribution dl ∼ N (µ, σ).

Then, for each layer index l, Mediator average
layer parameters if the conflict dl is less than the
µ+ σ, otherwise routing this layer. We denote
the averaged layer parameters as ϕl

AVG and the
routing layer parameters as ϕl

UP. Algorithm 1
shows this detailed process. The average opera-
tion M can be any averaging operation, such as
the unified average, importance based (Matena
and Raffel, 2022), or subspace based (Yadav
et al., 2023a). In our experiments, we mainly
use the denoised parameters θ̂τ defined in Sec-
tion 3 to conduct averaging like TIES (Yadav
et al., 2023a) (details of averaging operations in
Appendix F.3). Note that all attention layers are
averaged, because they are found to save non-
specific domain knowledge (Sukhbaatar et al.,
2024a).

4.2 EXPERT DECOMPOSITION

The routing layer occupies nτ × Ml memory,
where nτ = |T | and Ml is the memory of each
layer in original model. Large nτ significanly increases the memory cost of routing layers, thus
leading to weak scalability. Thus, we consider compressing the routing layers to reduce the memory
cost.
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Figure 4: Comparing magnitudes of task arithmetic
and pretrained model parameters.

However, previous LLM pruning or quantiza-
tion (Dong et al.; Sun et al., 2024) on

{
θl
}

cannot achieve high compression ratio on θτ .
Different from directly compressing the fine-
tuned model, we find that the task arithmetic
∆τ shows significantly higher sparsity due to its
noisy updates (Yadav et al., 2023a). As shown
in Figure 4, the empirical magnitudes of the
task arithmetic are significantly smaller than the
model parameters. This indicates that the ∆τ

can be sparsified with a higher degree to reduce
the memory cost.

To this end, we can decompose a finetuned LLM θτ into its base model θ and the task-specific expert
∆τ (task arithmetic in Definition 3.1). Each ∆τ will be sparsified as ∆̂τ by removing the elements
that can be seen as noise (Section 3). Thus, the memory cost is reduced from nτ ×Ml to nτ ×Ml× c,
where c is the compression ratio. When inferencing, we can use the θ+ ∆̂τ to approximately recover
the finetuned model θτ .

Out-of-distribution Data I (OOD to T but in-distribution to pretraining data p(x|T ⋆)): The finetuned
model θτ may not be able for processing some test-time questions xτ⋆ ∼ p(x|T ⋆) that sampled
from other distributions instead of p(x|τ) for any τ ∈ T . Considering the the modern LLM θ is
pretrained on the huge corpus (Brown et al., 2020), the θτ might keep the original knowledge in
xτ⋆

. However, the finetuning may cause forgetting problem (Zhu et al., 2024). Thus, to preserve

5
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pretraining knowledge, we make a calibration on task arithmetic as ∆τ = θτ − θ̄ and saves the
pretraining arithmetic as ∆⋆ = θ − θ̄, where θ̄ = 1/nτ

∑
τ∈T θτ .

4.3 EXPERT ROUTING

In the token-level expert routing like pretrained MoE (Jiang et al., 2024b; Sukhbaatar et al., 2024a),
there are routers for all layers trained to select the task-specific experts for each token. The token-level
routing implies that the router is designed for selecting experts at different token index. In other
words, for a same sequence x1:T sampled from p(x1:T |τ), the token-level router may select different
experts for different tokens t ∈ {1, · · · , T}.

Algorithm 2 Uncertainty based Expert Routing in
Mediator
Input: The question prompt x1:t, router πκ, ΦUP,
k, β.
Output: Reconstructed routing layers ΦUP,x.

1: T x
k = Indexes of TopK({πκ(τ |x)} , k);

2: Calculate and cache {h(τ |x)} (Equation 4);
3: for ϕl

UP ∈ ΦUP do
4: ϕl

UP,x = θ̄l +
∑

τ∈T x
k
h(τ |x)∆̂l

nτ
;

5: Insert ϕl
UP,x into ΦUP,x;

6: end for
7: Return ΦUP,x. =0

Task-level Routing. However, different from
pretrained MoE where one sequence x1:T might
be splited into different subsequences and feed-
forwarded to different experts, the finetuned
LLM θτ is trained on the complete sequence
x1:T ∼ pτ . Therefore, a subsequence x1:t ⊂
x1:T might be OOD to the another model θτ̂ .
Therefore, the most suitable experts for each
data sample might be the experts that are trained
on the task τ , i.e.

{
θlτ
}
l∈L for each subsequence

{x1:t}t=1,··· ,T in x1:T ∼ pτ .

We also provide a theoretical understanding to
understand the differences between task-level
and token-level routing following the Bayesian
inference interpretation for the in-context learn-
ing (Xie et al., 2022) in Appendix D). Moreover,
we also empirically show in Section 5 that the
trained token-level routers (Sukhbaatar et al.,
2024a) also frequently select the task-specific experts for each data sample.

Out-of-distribution Data II (OOD but close to T and Ω): Considering that τ is continuous (Xie
et al., 2022), while the test data xOOD ∼ pτ̂ (x|τ̂) (τ̂ /∈ T , T ⋆) has different distribution from pτ for
any τ ∈ T , T ⋆, the τ̂ might be close to or a linear combination of multiple τ1, τ2, . . . , τnτ

∈ T and
τ ∈ T ⋆. Any finetuned model θτ may not be able to process some test-time questions xOOD. A better
way to conduct inference on xOOD is to combine multiple experts {∆τ}τ∈T and ∆⋆ together. Thus,
we propose the Algorithm 2 and the following design.

Uncertainty-based Expert Selection. We propose the uncertainty-based expert selection to com-
bine the experts from different tasks into a new expert ∆̄ for the test data x. Thus, we need to
estimate the posterior distribution p(∆̄|x) for the test data x. We introduce a small classifier κ
use cross-entropy loss to learn the likelihood πκ(τ |x) for the training dataset including all data
pairs {(x, τ)|x ∼ pτ}τ∈T ∪{τ⋆} (details of constructing this dataset and learning πκ(τ |x) is in Ap-
pendix F.4). For the training data x ∼ pτ , we have known that its best expert is ∆τ , thus having
∆̄ = ∆τ . For a test data x, we introduce the temperature scaling to soft the logits hκ to obtain the
prediction uncertainty πκ(τ |x), like OOD detection (Guo et al., 2017) and model distillation (Hinton
et al., 2015) as follows:

h(τ |x) = eπκ(τ |x)/β∑
τ∈T eπκ(τ |x)/β

. (4)

Then, the final obtained expert is θ̄l +
∑

τ∈T x
k
h(τ |x)∆̂l

nτ
as shown in Algorithm 2. Then the whole

feed-forward process is as same as the original model. We further provide system optimization in the
real-world serving as follows.

4.4 SYSTEM-LEVEL OPTIMIZATION

We compare the inference times of Mediator with those of existing LLMs. The incremental time
overhead primarily arises from expert routing and the loading of expert parameters. Fortunately,
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by using task-level routing, we only run a small classifier κ and load the expert parameters once
per sample. To accelerate inference, we explore two methods for optimizing the loading of expert
parameters. For sparse expert parameters, we store them in the CPU and prefetch the parameters
of the upcoming layer while simultaneously performing computations in the current layer. This
approach masks the long loading times associated with expert uploads. Additionally, we accelerate
the integration of sparse experts (i.e., Algorithm 2) into the dense backbone by using CUDA’s
atomicAdd for parallel processing. For non-sparse expert parameters, we store them on disk and
utilize ZipNN (Hershcovitch et al., 2024) to accelerate the loading of parameters from disk to CPU.
Our results show that the optimized inference time of Mediator remains between 0.2s and 0.4s longer
than that of existing LLMs per sample (details in Appendix G).

5 EXPERIMENTS

Models and Evaluation Tasks. We conduct comprehensive experiments on cutting-edge LLMs
including Qwen-1.5-4B, Qwen-2.5-7B (Yang et al., 2024c), LLaMA-3.1-3B, and LLaMA-3.2-
8B (Dubey et al., 2024). We select different evaluation tasks to effectively demonstrate model
capability in resolving parameter conflicts during model merging, including GSM8K of mathematical
question-answering (Cobbe et al., 2021), TriviaQA (Joshi et al., 2017) of a large-scale Wikipedia-
based question answering dataset, HumanEval (Chen et al., 2021) of Python programming tasks,
WinoGrande (Sakaguchi et al., 2019) of logical reasoning, MMLU (Hendrycks et al., 2021) of vertical
domain knowledge (as OOD to the finetuned models).

Finetuning Settings. The finetuning datasets are constructed by augmenting some publicly datasets
(task related but without overlap) with GPT-4o (Gilardi et al., 2023) and Chain-of-Thoughts (Wei
et al., 2022). For each finetuning process, we use at least 180K training samples to ensure sufficient
performance improvement on the corresponding task, which helps validate the effectiveness of our
experiments (Details of constructing finetuning datasets in Appendix H and hyperparameters in
Appendix E). To the best of our knowledge, this is the first LLM merging study with CoT enhanced
finetuning and evaluated with generative tasks.

Table 2: Comparing performance of model merging methods on Llama 3.1 3B and Llama-3.2 8B.
Model Llama 3.1 3B Llama-3.2 8B

Alg./Tasks GSM. TrA. Wino. H.Eval MMLU AVG. GSM. TrA. Wino. H.Eval MMLU AVG.

Base 27.52 57.71 69.69 22.56 54.08 46.31 56.33 72.39 73.64 27.44 67.99 59.56
Math 46.47 54.59 69.06 25.00 52.73 49.57 77.18 73.99 74.98 20.12 62.10 61.67
QA 32.75 61.45 69.69 28.05 54.17 49.22 69.60 74.14 75.45 31.71 62.21 62.43

Code 33.13 57.71 68.59 40.85 53.09 50.67 61.41 73.94 74.59 62.80 62.73 67.09
All data 44.12 47.74 69.21 34.76 53.75 49.92 70.89 69.77 75.06 48.17 62.94 65.37

TIES 42.61 60.99 71.11 31.30 54.32 51.27 76.04 76.78 74.19 53.05 62.36 68.48
PCB 46.02 60.39 71.27 29.88 54.21 52.35 76.04 76.89 74.35 53.66 62.42 68.67
Twin 39.04 52.45 69.27 29.94 53.91 48.11 76.80 72.71 74.49 59.14 64.43 69.51
BTX 45.19 62.05 71.87 28.05 54.44 52.33 76.72 73.99 75.22 60.98 65.68 70.52

Mediator 46.47 61.02 72.03 40.42 54.91 54.97 76.95 76.70 75.69 62.80 67.87 71.80

Table 3: Comparing performance of model merging methods on Qwen 1.5 4B and Qwen 2.5 7B.
Models Qwen 1.5 4B Qwen 2.5 7B

Alg./Tasks GSM. TrA. Wino. H.Eval MMLU AVG. GSM. TrA. Wino. H.Eval MMLU AVG.

base 47.16 44.54 56.75 41.46 54.45 48.87 83.41 51.67 67.68 67.68 67.70 67.63
Math 51.00 46.95 54.62 26.83 53.54 46.79 85.14 51.67 65.75 61.59 67.27 66.27
Code 43.29 46.39 54.14 43.29 54.82 48.39 52.31 49.47 64.64 71.95 72.30 62.13
QA 45.56 48.02 57.93 39.02 52.32 48.57 84.62 55.58 62.83 43.29 71.51 63.57

all-sft 48.52 47.73 55.88 39.14 53.93 49.04 64.90 52.98 69.30 65.85 69.66 64.59

TIES 47.76 46.59 54.14 44.51 54.58 49.5 84.76 54.46 66.46 65.85 71.55 68.62
PCB-merging 47.83 47.60 56.75 43.90 54.58 49.93 73.46 53.90 69.53 60.98 71.41 65.86
Twin-merging 47.99 44.63 57.54 40.85 52.98 48.80 83.46 54.64 66.37 69.51 70.56 68.91

BTX 48.44 46.94 57.77 42.68 53.88 49.94 84.46 55.89 67.72 67.68 72.30 69.61
Mediator 50.94 48.20 57.85 45.12 54.87 51.40 85.14 56.06 69.30 71.95 72.56 71.00

Baselines. We compare pretrained, finetuned models, and the state-of-the-art static and dynamic
merging methods with Mediator. The static merging methods include TIES (Yadav et al., 2023b) and
PCB-merging (Du et al., 2024) achieve the best performance in weighted average method and do
not require calibration data, and also partly consider OOD evaluation tasks. The dynamic merging
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methods include BTX (Sukhbaatar et al., 2024b) with token-level routing and the twin-merge (Lu
et al., 2024b) with task-level routing and SVD decomposition (Details of hyperparameters and
optimization of these baselines in Appendix E).

5.1 MAIN RESULTS

Fine-grained Comparison on All Tasks. Table 2 and 3 show the fine-grained performance on each
tasks and their overall averaged one of different methods and algorithms. In most of time, the finetuned
LLM can achieve the best performance across all single and merged models on its specialized domain,
like Math finetuned models on GSM8K and Code finetuned models on HumanEval. While merged
LLMs can generally outperform single models on the averaged performance, their specialized domain
performance is weaker. However, Mediator can catch up the domain performance of specialized
models, and almost always outperform other merged models. Also, the overall performance on all
tasks of Mediator is consistently better than other methods. Expert routing methods includes BTX
and Mediator generally improve performance. This aligns with findings in TIES (Yadav et al., 2023b)
and Twin-merging (Lu et al., 2024a). As model scale increases, the improvement of all merging
algorithms decrease, which may be attributed to enhanced comprehensive capabilities of individual
finetuned models.

Table 4: Overall Performance on all tasks.
Model/Algo. Qwen-4B Llama-3B Qwen-7B Llama-8B

base model 48.87 46.31 67.63 59.56
all data sft 49.04 49.92 64.59 65.37
TIES 49.50 51.27 68.62 68.48
Twin 48.80 48.11 68.91 69.51
PCB 49.93 52.35 65.86 68.67
BTX 49.94 52.33 69.61 70.52
Mediator 51.40 (↑2.9%) 54.97(↑5.0%) 71.00 (↑2.0%) 71.80 (↑1.8%)

Overall Comparison. As shown in Table 4,
the advantages of PCB over TIES become less
pronounced at larger model scales, and even
shows performance degradation on Qwen-7B,
which demonstrates PCB’s instability. Dynamic
routing approaches include BTX and Mediator
show stable performance improvements. Our
method demonstrates consistent improvements
across different models.

Table 5: Post Training Time (Hours).
Model/Algo LlaMA-3B LlaMA-8B Qwen-4B Qwen-7B

Twin 1.33 1.87 1.60 1.80
PCB 3.42 5.75 5.73 5.80
BTX 7.55 12.52 8.83 12.18
Mediator 1.35 2.03 1.57 1.78

Post-Training Time After Merging. As many model
merging methods like Twin, PCB and BTX require post-
training, it is critical to compare the extra training time.
Table 5 shows the post-training time of different methods.
PCB merging require weight exploration thus leads to
higher time. The BTX with token-level routing needs to
completely train the layer-wise routers for each token, thus,
the post-training time of them is significantly high. In contrast, for task-level routing approaches like
Twin-merging and Mediator, taking the lowest time.

Inference Time. Table 6 shows the inference time of different methods. As the token-level routing
methods need to load and compute the layer-wise routers for each token, the inference time of them
is significantly higher (more than 2x) than our method. We have detailed our inference acceleration
process in Section 4.4 and Appendix G.

Table 6: Inference time per sample (seconds).
Model/Algo LlaMA-3B LlaMA-8B Qwen-4B Qwen-7B

32 layers 32 layers 40 layers 28 layers

Base model 1.452 3.600 3.112 3.057
Twin 1.725 4.151 3.792 3.648
BTX 3.237 8.68 7.082 7.153

Mediator 1.609 4.053 3.674 3.489

Table 7: Comparing memory costs.
Model/Algo LLaMA-3B LLaMA-8B Qwen-4B Qwen-7B

Base model 9G 33G 11G 31G

Twin-merging 10G 35G 13G 32G
BTX (MOE) 37G 80G 40G 78G
Mediator 10G 35G 13G 33G

Memory Cost. Table 7 shows the memory costs of different methods. Our method significantly
reduces the memory costs compared to saving all finetuned models because there is only one router
for all experts, and the sparsified experts saving, and the layer-wise merging strategy (Details of
formally comparing memory costs of merging methods in Appendix C).

5.2 ABLATION STUDIES

Scalability of Finetuned Models. To verify the scalability of Mediator, we finetune another 4
LLMs according to the following 4 extra evaluation tasks including: (1) Instruction Following
with IFEval. (Zhou et al., 2023) which assess models ability to accurately interpret and execute
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natural language instructions; (2-4) Medicine, College Economics and Law from CEval. (Huang
et al., 2023a) which assess knowledge and capabilities across various academic and professional
domains. We utilize four accordingly domain datasets for finetuning including Magpie (Xu et al.,
2024), IndustryInstruction (Ind), DISC-Med (Bao et al., 2023), DISC-Law (Yue et al., 2023a) without
overlap with IFEval and CEval (Details in Appendix H).

Table 8: Performance of scaling up finetuned models.
Alg./Tasks GSM. TrA. Wino. H.Eval MMLU I.Eval C.Eco C.Med C.law AVG.

Base 47.16 44.54 56.75 41.46 54.45 30.70 49.09 55.10 41.67 46.77

Math 50.95 46.95 54.62 26.83 53.54 34.05 45.45 55.10 45.83 45.92
QA 45.56 48.02 57.93 39.02 52.32 31.65 43.64 59.18 45.83 47.02
code 43.29 46.39 54.14 43.29 54.82 31.65 43.64 59.18 45.83 46.91
Instruct. 47.54 40.96 55.09 37.80 54.88 38.37 52.73 59.18 50.00 48.51
Economy 45.56 46.24 57.93 28.86 54.21 32.13 56.36 55.10 45.83 46.78
medicine 39.12 44.50 56.67 1.83 54.63 28.30 50.09 61.22 41.66 42.00
Law 40.64 46.64 56.59 0.61 54.61 27.94 41.82 57.14 58.33 47.15
All Data 43.75 46.25 56.43 40.85 54.60 35.37 49.09 55.10 41.67 46.90

TIES 47.38 47.19 55.80 36.59 55.38 34.17 40.00 57.14 50.00 47.07
PCB 47.38 47.19 55.80 36.59 55.45 34.29 41.82 57.14 50.80 47.38
Twin 47.91 44.78 57.54 40.85 53.01 37.53 53.32 59.56 50.00 49.38
BTX 48.44 46.94 57.85 42.68 54.93 36.93 54.40 60.36 58.33 51.18
Mediator 50.64 48.04 57.93 44.51 55.12 38.50 56.01 61.17 58.33 52.25

Table 8 demonstrate several key find-
ings: 1) Static merging methods like
PCB and TIES show diminished per-
formance improvements after task
expansion, performing even worse
than instruction-following finetuned
models in overall scores. The simi-
lar performance between PCB merg-
ing and TIES aligns with findings
from the TIES paper, which noted de-
graded model capabilities when merg-
ing more than three tasks; 2) Dynamic
merging approaches like BTX, Twin and Mediator maintain relatively stable performance after task
expansion; 3) Mediator consistently outperforms BTX by a margin of 2.09% and achieves the best
scores across all individual tasks, showing its good scalability.

Table 9: Model Performance w/o layer-wise merg-
ing.

Model scale with averaging w/o averaging perf. gap

Qwen-1.5 51.40 51.43 -0.06%
Qwen-2.5 71.00 71.29 -0.27%

Layer-wise Merging. Layers with low conflicts
are averaged thus reducing nτ× memory occu-
pation. Table 9 averaging or not on Qwen-1.5
with 4 and 8 experts show almost no perfor-
mance loss of the parameter averaging. Given
the significant compression ratios achieved (3.5x
for 4 experts, 7x for 8 experts), this minor per-
formance trade-off is acceptable.

Comparison between Task-level routing and Token-level routing. Fig. 7 in Appendix demonstrates
the expert selection probabilities of the BTX model across different tasks (MMLU, math, coding, and
QA). The results indicate that 1) bottom and upper layers show obvious task preference; 2) middle
layers suggesting some shared logical processing across tasks in these layers, which explains why
averaging middle layers that have less conflicts in Mediator results in small performance loss.

Table 10: Performance under Different Tempera-
ture β.

Temperature 0.1 0.5 1.0 1.25 1.50 1.75 2.0

Mediator 50.31 50.35 50.64 51.02 51.40 50.84 50.92

Different Temperatures. In the routing process,
the hyperparameter temperature β is a key factor.
Table 10 shows performance change of Mediator
with different temperatures. Results show that
only around 2.2% score variation, the β = 1.5
achieves the highest performance, β = 0.1 al-
most equals to the Top-1 routing, results in the lowest performance.

6 CONCLUSION

We propose Mediator, a framework for merging LLMs that addresses parameter conflicts through
adaptive layer-wise strategies, which average low-conflict layers and routing high-conflict ones via
task-specific experts. This preserves individual model strengths while integrating shared knowledge,
improving performance and reducing system costs.

By decomposing experts into a dense core and sparse components, Mediator minimizes storage
without sacrificing efficacy. Dynamic expert selection via task uncertainty enhances adaptability
across diverse inputs. Experiments on LLaMA and Qwen demonstrate significant performance gains
over existing methods, with CoT enhanced datasets further enhancing reasoning capabilities.

Mediator advances efficient LLM merging methods, balancing resource constraints with practical
versatility. Future work should explore theoretical foundations of parameter conflicts, large-scale
deployment optimizations, and faster expert loading mechanisms.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely for grammar and wording improvements. It did not generate ideas, analyses, or
results. No additional or undisclosed LLM use occurred.

B BROADER IMPACT

Societal Impacts. Our approach demonstrates significant effectiveness by enabling the deployment
of merging 7B x 4 LLMs with only 24GB VRAM. Compared to ensemble learning with these models,
our method not only maintains better accuracy but also requires significantly less computational
resources and demonstrates superior performance. This breakthrough in resource efficiency makes
advanced language models more accessible and cost-effective.

Potential Applications. The technology may have significant potential across specialized vertical
domains. Considering that many vertical domains, personalized LLM agents (Li et al., 2024b), LLM
applications like roleplay chatting (Chan et al., 2024; Yu et al., 2024a) and professional domain-
specific writing (Gómez-Rodríguez and Williams, 2023), an LLM service provider may need to
simultaneously deploy different finetuned LLMs. Our technology enables efficient and effective
serving multiple popular LLM applications, and merging knowledge from different LLMs together.

C MORE RELATED WORKS

We introduce more related works about model merging and routing in this section. Current common
methods include: (1) Averaging based merging. This direction combines multiple models into a
single model while preserving their capabilities with minimal or no additional training; (2) Routing
based merging. It considers to route inputs to specialized expert modules like mixture-of-experts
(MoE) approaches but completely different.

Table 11 provides an overview of comparing different model merging methods and our framework.
Given nτ different finetuned models, averaging based methods do not completely address the
parameter conflicts, thus having higher parameter conficts than routing based merging. The weighted
averaging requires calibration data to compute the importance metrics. The token-level routing
requires routing for each layer, thus having totally nL routers. Our framework Mediator exploits
layer-wise characteristics to both reduce parameter conflict and improve common knowledge fusion.
And Mediator utilizes compression to further reduce the memory costs. To the best of our knowledge,
the most of previous model merging works focus on experiments on traditional CV and NLP
tasks (Matena and Raffel, 2022), while Mediator conducts experiments on modern LLMs and
real-world experiments.

Table 12 provides the system performance comparison. Because token-level routing like MoE
requires to route each token towards different (possibly) experts, its inference cost is significantly
large as more than T × nL times than task-level routing, where T is the sequence length. Besides,
the token-level routing requires more than nL times routers in memory costs. With the layer-wise
adaptive averaging and Routing, Mediator significantly reduce the memory costs of from Mθ × nτ to
Mθ × (cavg + croute × nτ × c) 1. The experimental memory reduction and the system performance
comparisons are shown in the Section 5.1. We also provide system optimization to accelerate
the inference during the deployment of Mediator in Section 4.4 and Appendix H. And the hyper-
parameters cavg and croute are adaptively decided by the parameter conflict estimation.

Besideds, we also review some highly related works include following directions that are closely
related to our framework. Insights from these directions have provided valuable guidance for our
framework.

1. Layer-wise training dynamics and optimization. This direction discusses the layer-wise training
dynamics to help shed some light on the paramter conflicts and the layer-wise adaptivity.

1Normally, each transformer layer occupies the same memory.
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Table 11: Demystifying different merging methods. The nτ represents the number of finetuning tasks,
nL the number of layers in the model.

Method Type Parameter
Conlict Level

Merging
Common Knowledge

Require
Calibration Data

Routing
Type

Considering
Layer-wise Characteristics

Considering
Compression

Considering
OOD Samples

Experimental
Scanario

Basic Averaging High ✓ ✗ NA ✗ ✗ ✗ Traditional CV, NLP
Weighted Averaging Middle ✓ ✓ NA ✗ ✗ ✗ Traditional CV, NLP
Subspace Averaging Middle ✓ ✗ NA ✗ ✗ ✗ Traditional CV, NLP
Token-Level Routing Low ✗ ✗ Token-level ✗ ✗ ✗ Traditional CV, NLP
Task-Level Routing Low ✗ ✗ Task-level ✗ ✗ ✗ Traditional CV, NLP

Mediator Low ✓ ✗ Task-level ✓ ✓ ✓ Generative LLMs

Table 12: Demystifying different merging methods in system performance costs. Considering the
memory costs of the base model and one router are Mθ and Mh, each layer occupies the same
memory Ml, compression ratio c, the ratio of selected layers for averaging is cavg, for routing is croute,
FPθ and BPθ are the forward time and backward time of the model. FPh and BPh are the forward
time and backward time of the router.

Method Type Requiring
# of routers

Costs of
Trainig Routers

Memory Costs
After Merging

Inference
Cost

Basic Averaging NA NA Mθ FPθ

Weighted Averaging NA NA Mθ FPθ

Subspace Averaging NA NA Mθ FPθ

Token-Level Routing nL × nτ High Mθ × nτ +Mh × nL FPθ + FPh × T × nL × nτ

Task-Level Routing nτ Middle Mθ × nτ +Mh FPθ + FPh × nτ

Mediator nτ Low Mθ × (cavg + croute × nτ × c) +Mh FPθ + FPh × nτ

2. Bayesian deep learning. This direction reviews some works of the Bayesian deep learning,
discussing the uncertainty and Bayesian model averaging.

3. OOD Detection & Generalization. This direction reviews some works of the OOD Detection
and Generalization, shedding light on deployment of the model merging on the out-of-distribution
data.

4. Model compression. This direction shortly review some works about the model compression, in
which many methods can be directly applied into our framework to further reduce the memory
costs. Note that in our paper we propose a general framework instead of a new model compression
method. Different model compression methods can be combined into our framework.

5. Data Synthesis. This direction reviews some works about how to generate new synthetic data to
improve the model merging performance. In our framework, we exploit the CoT to generate new
synthetic data to improve the finetuning performance on downstream tasks, which is a real-world
downstream task instead of traditional model fine-tuning using the in-domain training and testing
data.

C.1 AVERAGING-BASED MODEL MERGING

Model merging, also known as model fusion, combines the parameters of multiple separate models
with different capabilities to create a universal model. In this paper, we temporarily focus on models
that have the same architecture but different parameters that are finetuned on different downstream
tasks.

Basic Averaging. The traditional approach to merge different trained or finetuned models is to evenly
average the parameters of different models (Utans, 1996; Shoemake, 1985). This process does not
require access to the original training data and allows for enhanced performance without the need
for expensive computation. However, the performance of these simply weight averaging is generally
unsatisfactory.

Some related directions of model averaging also include Federated learning (FL) (McMahan et al.,
2017; Tang et al., 2020). In FL, the model averaging is performed on the server side to reduce
the communication costs after the local training. Many methods have been proposed to stable and
smooth the model averaging process (Wang et al., 2020a; Jhunjhunwala et al., 2024a; Yurochkin
et al., 2019a; Singh and Jaggi, 2020; Wang et al., 2020b; Tang et al., 2024c; 2022) to enhance the
averaging performance. Different from the multi-rounds FL, the model merging is performed in a
single round, which is more similar to the one-shot FL (Guha et al., 2019; Tang et al., 2024d).

Weighted Averaging. Rethinking the cause of the poor performance of the basic averaging method,
many works propose to use the weighted averaging method to improve the merging performance.
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Intuitively, different model parameters have different importance on downstream tasks. Such a
heterogeneity of the parameter importance motivates other research directions including model
sparsification (Sun et al., 2024; Dong et al.; 2024; Tang et al., 2020), continual learning (Robins,
1995; Kirkpatrick et al., 2017; Zhu et al., 2024; Marczak et al., 2024) and FL (Jhunjhunwala et al.,
2024a; Yurochkin et al., 2019a; Singh and Jaggi, 2020). Thus, to avoid the important parameters being
overwhelmed by the unimportant parameters, during averaging, we can assign large weights to those
important parameters. To this end, the importance measurement is crucial. Many works propose to
use fisrt or second orders of Taylor expansion to measure the importance of the parameters (Lee et al.,
2019; Jhunjhunwala et al., 2023; Qu et al., 2022). Some works employ local linearization and task
vectors to measure the importance of the parameters (Zhou et al., 2024). The fisher information also
a kind of importance measurement (Matena and Raffel, 2022; Jhunjhunwala et al., 2024b; Thennal
et al., 2024; Jhunjhunwala et al., 2024a; Thennal et al., 2024; Daheim et al., 2024).

While these importance measurement methods can improve the merging performance than the basic
averaging method, they still face some typical challenges.

1. Require Calibration Dataset. The importance measurement is based on the calibration dataset.
In the LLM era, the pretrained dataset is significantly large, it is difficult to collect the complete
pretrained dataset and measure the importance of the parameters on it.

2. Computation Costs. Because that the importance measurement is based on the calibration dataset,
the computation costs is almost similar to conduct the complete forward process of the different
models. In traditional small models, such a computaton cost is acceptable. However, in the LLM
era, the model size is significantly large, such a computation cost is unbearable.

3. Unaddressed Parameter Conflicts. While methods in these importance based weighted averaging
methods can improve the merging performance, they still face the parameter conflicts between
different models. Because of the highly non-convex structure of the LLMs, it is difficult to find a
optimal merging method based on averaging the parameters of different models.

Subspace Averaging. Considering that the neural networks are over-parameterized, removing most
of the parameters from the model barely affects its accuracy (He and Xiao, 2023; Choudhary et al.,
2020). Besides, during the training or finetuning, some parameters might be optimized towards a
random direction which has small impact on the model performance (Yadav et al., 2023b). Thus,
works propose to firstly process different models in a subspace manner. Then, the parameter conflicts
can be mitigated by the subspace averaging methods (Deep et al., 2024; He et al., 2024b).

DARE (Drop and Rescale) (Yu et al., 2024b;c) introduces a parameter pruning and rescaling strat-
egy that significantly reduces the number of parameters in SFT models while preserving their
performance, thereby serving as an effective preprocessing step for model merging. Similarly,
Model Breadcrumbs (Davari and Belilovsky, 2023) enhances sparsification by eliminating both
low-magnitude parameters and outlier parameters with exceptionally high weights, thereby reducing
noise and improving the generalization of hyperparameters during model merging.

TALL-masks (Wang et al., 2024) creates task-specific mask matrices based on predefined thresholds
tailored to individual models, while Model Tailor (Zhu et al., 2024) further refines this approach
by masking parameters according to their sensitivity to loss changes and deviations from pre-
trained values. APL (Kong et al., 2024) advances parameter importance estimation through causal
interventions, providing a robust metric for selective parameter retention.

EMR-Merging (Huang et al., 2024) departs from traditional model merging by maintaining a shared
model across multiple tasks alongside sparse task-specific models, where each shared parameter is
determined by the maximum value among corresponding parameters from all models. Concrete (Tang
et al., 2023) further innovates by framing mask construction and model merging as a learnable bi-level
optimization problem, with the outer level optimizing the mask matrix and the inner level performing
model merging and optimization utilizing unlabeled test samples.

Task Arithmetic (Ilharco et al., 2022) exploits parameter-space arithmetic operations, treating model
parameters as vectors and employing addition and subtraction to synthesize new model capabilities.
However, many of these approaches, including DARE and Task Arithmetic, heavily rely on hyper-
parameters for parameter fusion, which can negatively impact the performance of model merging.
Additionally, as highlighted in studies such as TIES (Yadav et al., 2023a) and Crisostomi (Crisostomi
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et al., 2024), model merging often encounters parameter conflicts that degrade performance when
integrating multiple models.

Addressing these challenges, TIES (Trim, Elect, and Disjoint Merge) (Yadav et al., 2023a) implements
a comprehensive approach by trimming parameters based on magnitude, selecting relevant weights,
and disjointly merging weights using outcomes from task arithmetic operations. This methodology
mitigates parameter conflicts and enhances the overall performance of the merged model, positioning
TIES as a robust solution in the domain of model merging.

C.2 ROUTING-BASED MODEL MERGING.

Average-based methods primarily aim to enhance the averaging process of client models. However,
the inherently non-linear architecture of deep neural networks complicates the derivation of a globally
comparable model through simple averaging.

The basic, weighted-based, and subspace-based merging methods are static merging techniques. This
implies that the merged model remains consistent across all samples or tasks. Given the variability
among input samples and tasks, the model’s performance can fluctuate when processing diverse
inputs. To this end, certain studies advocate for the dynamic merging of models (or subsets of layers)
tailored to specific samples or tasks (Li et al., 2024c; Muqeeth et al., 2024; Tang et al., 2024b; Lu
et al., 2024a; Kang et al., 2024; Tang et al., 2024d; Shen et al., 2024) during the inference phase.

For each input instance, SMEAR (Muqeeth et al., 2024) initially computes a weighted average of the
parameters from each expert by leveraging the distribution of router inputs to the expert modules.
This approach maintains a computational cost comparable to that of a single expert. Similarly, Twin-
Merging (Lu et al., 2024a) adaptively integrates task-shared and task-specific knowledge based on
routing mechanisms during inference. In the same vein, Weight-Ensembling MoE (Tang et al., 2024b)
introduces a dynamic merging Transformer architecture. This method identifies that the parameters of
the linear layer in the fine-tuned model undergo more significant changes compared to the nonlinear
layers, which adversely affects merging performance. Consequently, Weight-Ensembling MoE
employs a standard weighted average for all modules except the linear layer, which is dynamically
weighted and merged based on the routing network (utilizing sample features as input and merging
coefficients as output) during inference. PWE MoE (Tang et al., 2024e) extends Weight-Ensembling
MoE to a multi-objective optimization framework, incorporating the preference vector as an input for
routing.

AdaMerging (Yang et al., 2024b) adaptively learns merging coefficients in a task-aware or layer-wise
manner, offering an automated and unsupervised approach to task arithmetic. While this method
significantly enhances performance, it incurs high computational costs. PCB Merge (Du et al., 2024)
introduces a parameter importance detection mechanism that accounts for parameter conflicts and
employs heuristic algorithms to explore model fusion parameters, thereby achieving superior results.
TwinMerge (Lu et al., 2024b) utilizes LoRA or SVD techniques in conjunction with supervised
training for parameter fusion, resulting in improved performance.

Nevertheless, these methods encounter inherent limitations. Both AdaMerging and PCB Merge
utilize static fusion approaches, which can lead to performance degradation when the actual sample
distribution varies during runtime. Meanwhile, TwinMerge performs parameter fusion at the task
level; however, the application of LoRA and SVD matrix decomposition markedly reduces model
accuracy and introduces substantial online computational overhead. Besides, the code implementation
of the TwinMerge actually exploits the LoRA finetuning to replace SVD decomposition. Using SVD
decomposition in compressing model parameters leads to disturbed LLMs and significantly degraded
model performance.

Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) is a foundational model
concatenation and routing strategy comprising multiple expert networks and a router that dynamically
selects relevant experts based on the input. This methodology has been extensively adopted in large
language models, offering significant reductions in computational costs while preserving model
performance. Recent studies, particularly sparse gated MoE (Shazeer et al., 2017) in transformer-
based large language models (Lepikhin et al., 2020), have concentrated on maintaining load balancing
among experts during training (Zhou et al., 2022; Jiang et al., 2024b), reducing training costs (Dai
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et al., 2024), and mitigating performance degradation due to uncoordinated expert training (Chi et al.,
2022).

Upcycling Methods have been developed to alleviate the high computational demands of training MoE
models from scratch by initializing experts from existing dense models. These methods encompass
copying existing dense models as experts (He et al., 2024a; Wei et al., 2024a), introducing noise
to the MLP layers of dense models to create experts (Noise upcycling) (Chen et al., 2024), and
drop upcycling (Anonymous, 2024), which combines parameter dropout with expert copying during
training to enhance model robustness, reduce overfitting, and improve performance.

Branch-Train-Merge (BTM) (Li et al., 2022) and Branch-Train-Mix (BTX) (Sukhbaatar et al., 2024b)
are methodologies aimed at further optimizing model training efficiency. These approaches employ
different SFT-trained dense models derived from the same base LLM as MoE experts. The experts are
interconnected via a router without necessitating additional training, while non-expert components
are amalgamated through model merging techniques such as parameter averaging. Only the router
undergoes training, thereby substantially reducing overall training costs. Although these methods
achieve lower training expenses and marginally outperform traditional model merging approaches,
our research indicates that token-level routing can partially degrade model performance. Additionally,
maintaining all experts in GPU memory leads to significant parameter redundancy and escalates
inference costs, which motivates our ongoing research endeavors.

However, the token-level routing methods are not suitable for model merging. We have provided
detailed discussions in the main text Section 4.1 and Appendix D. The token-level routing methods
after merging normally require re-training based on all training datasets to obtian a better token-level
router, which significantly increases the computational costs, which is discussed in the main text
Section 4.4 and Appendix G.

LoRA based Routing. Routing samples to different LoRA experts is a promising direction to dynam-
ically route the input to different LoRA experts. This direction includes the LoraHub (Huang et al.,
2023b) and sLora (Babakniya et al., 2023), which explore serving multiple LoRA adapters through
techniques like unified paging and tensor parallelism. However, these methods do not consider
the better dynamic expert merging method to further improve the model merging performance. In
real-world applications, the input distribution is dynamic and the input samples are diverse, which
motivates our ongoing research endeavors. Besides, their reliance on LoRA matrix decomposition
significantly degrades model serving performance. Additionally, they do not consider model com-
pression opportunities or the potential to average similar layers between models, which could further
optimize storage and computation costs while maintaining model capabilities.

C.3 LAYER-WISE TRAINING DYNAMICS AND OPTIMIZATION

Layer-wise training was initially explored to achieve effective initialization (Hinton et al., 2006; Ben-
gio et al., 2006). From the perspective of the information propagation (Tishby et al., 2000; Mahabadi
et al., 2021; Tishby and Zaslavsky, 2015), the fundamental issue with layer-wise training is that each
layer is unable to access information from the layers that precede it. Some works (Xiong et al., 2020)
proposed a method that permits backpropagation within a local block, allowing information from
subsequent layers to progressively influence earlier layers by training them sequentially. Further-
more, (Gomez et al., 2022) builds upon the concept of “overlapping local updates”, introducing a
learning strategy that harmonizes the high parallelism characteristic of layer-wise training with the
superior predictive accuracy associated with end-to-end (E2E) learning. Besides, classification-based
loss functions are employed at each layer (Mostafa et al., 2018; Belilovsky et al., 2019; 2020),
whereas similarity-based loss functions are utilized in other scenarios (Kulkarni and Karande, 2017;
Nøkland and Eidnes, 2019; Siddiqui et al., 2023). Additionally, (Wang et al., 2020c) incorporates a
reconstruction error term into the local objective function, drawing from an information-theoretic
perspective.

Some works find that different layers have different convergence rates during the whole training
process (Raghu et al., 2017). This property can be used to freeze front layers and only train the later
layers, thus reducing the training costs. The PipeTransformer (He et al., 2021) utlizes this property to
reduce the training costs of transformer models.
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LISA (Pan et al., 2024) discovered that the weight norm distributions across layers in LoRA and full
parameter fine-tuning are skewed, indicating varying layer importance in large-scale LLM training.
Based on this observation, LISA applies importance sampling to different layers in LLMs, randomly
freezing most intermediate layers during optimization. It periodically samples Transformer layers
from the model, randomly selecting r layers for fine-tuning while keeping others frozen. The initial
word/position embeddings (wte/wpe) and final language modeling head (lm_head) are consistently
fine-tuned. This aligns with our observations regarding layer merging.

Layer-wise model training and merging approaches have also provided inspiration for our research
direction. (Li et al., 2024d) discovered that in the field of large language models, the effectiveness
of deeper layers gradually diminishes, with many studies showing that deeper layers can be pruned
without significantly affecting model performance - a phenomenon often viewed as an opportunity for
model compression. To address this, they proposed a novel normalization technique called Mix-LN,
which combines pre-LN and post-LN within the same model. Specifically, Mix-LN applies post-LN
to earlier layers and pre-LN to deeper layers, ensuring more uniform gradients across all layers.

Different from these methods that focus on improving the layer-wise training and optimization, we
focus on improving merging LLMs inspired from the layer-wise training dynamics.

C.4 BAYESIAN DEEP LEARNING

Bayesian Neural Networks. Considering the uncertainty of the model parameters, sampling bias in
the training datasets, predictive uncertainty to domain shift (also referred to as out-of-distribution
examples) (Lakshminarayanan et al., 2016; Blundell et al., 2015; Hendrycks and Gimpel, 2016),
Bayesian Neural Networks (BNNs) view the model parameters as a random variable. Then, optimizing
the model parameters is equivalent to optimizing the posterior distribution of the model parameters
conditioned on the training datasets) (Blundell et al., 2015). However, the training costs of BNNs
are significantly higher than the non-Bayesian neural networks (Lakshminarayanan et al., 2016).
A proper scoring creterion for training non-Bayesian NN (Lakshminarayanan et al., 2016), model
ensemble (Guo et al., 2017) and adversarial training (Goodfellow et al., 2014) are found to be a good
way to improve the robustness of neural networks as an alternative to BNNs.

Bayesian Model Averaging (BMA). Except for the static importance measurement mentioned in
previous section, Bayesian model averaging is another promising direction to improve the model
merging performance based on the Bayesian inference. The deep model ensemble and Stochastic
Weight Averaging (Izmailov et al., 2018; Maddox et al., 2019) are actually a compelling approach
to BMA (Wilson and Izmailov, 2020). The Bayesian marginalization can particularly improve the
accuracy and calibration of modern deep neural networks (Wilson and Izmailov, 2020).

However, the previous works in BNN and BMA consider the model parameters trained with the same
datasets. How to merge models trained with different datasets is a new open problem which also
emerges in FL (Tang et al., 2024d; Liu et al., 2024a; 2021; Al-Shedivat et al., 2020; Yurochkin et al.,
2019b; Wang et al., 2020d) and merging LLM models in pretraining (Liu et al., 2024b).

C.5 OOD DETECTION AND GENERALIZATION

The input test samples in the real-world deployment are usually diverse and the distribution of the
input test samples is dynamic. Normally, these samples are not shown in the training datasets, and their
distribution might be different from the training distribution, which is call out-of-distribution (OOD)
data. It is important to detect the OOD data (OOD Detection) (Liu et al., 2020; Hendrycks and Gimpel,
2016) and improve the model generalization on the OOD data (OOD Generalization) (Ovadia et al.,
2019; Kendall and Gal, 2017; Lakshminarayanan et al., 2016). When confronted with distributional
shifts, models optimized purely based on average training errors lead to poor performance (Duchi
and Namkoong, 2018; Arjovsky et al., 2019; Creager et al., 2021).

OOD Generalization. Some methods seek to find better invariant representations in neural net-
works (Bengio et al., 2013; Locatello et al., 2019), which means the representations are invariant to
the distribution shift. From the causal perspective, the invariant representations are the representations
that are invariant to the causal factors (Yang et al., 2021). Causal learning methods aim to learn the
underlying causal structure of the data and to predict the outcome variable based on the identified
causal variables. By correctly identifying the cause-effect relationships, these methods are expected
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to perform well even when the data distribution changes, as the underlying causal structure is often as-
sumed to remain invariant across different environments or domains (Bühlmann, 2018). The invariant
learning is to learn an invariant representation or model across environments leveraging contextual
information such as domain labels (Muandet et al., 2013; Arjovsky et al., 2019; Albuquerque et al.,
2020), where methods can be mainly divided into invariant risk minimization (Arjovsky et al., 2019)
and domain-irrelevant representation learning (Li et al., 2018; Gong et al., 2019; Sicilia et al., 2021).

OOD Detection. Some methods assume access to extensive OOD data alongside in-distribution (ID)
data during training, formulating OOD detection as a discriminative classification task by allocating a
special label for OOD samples (Fei and Liu, 2016; Larson et al., 2019; Kamath et al., 2020; Kim
and Kim, 2018). Another approach optimizes outlier exposure regularization terms on OOD samples
to refine the representations and OOD scores, such as the generalized outlier exposure (OE) loss
introduced by (Hendrycks et al., 2019), which pushes the predicted distribution of OOD samples
toward uniformity (Hendrycks et al., 2019; Lee et al., 2018), and entropy regularization objectives
employed by (Zeng et al., 2021a) to enforce high entropy predictions for OOD samples. Additionally,
leveraging contrastive learning techniques (Zeng et al., 2021b; Zhou et al., 2021; Cho et al., 2022;
Mou et al., 2022) to increase inter-class discrepancies and enhance discriminative features for ID and
OOD samples has been demonstrated to improve OOD detection performance.

Previous works have found that the softmax outputs from models can be used as a measurement of the
uncertainty of model predictions (Guo et al., 2017; Hinton et al., 2015). And the early work in model
distillation utilizes the softmax outputs as a kind of soft labels to guide the model training (Hinton
et al., 2015). Some works propose to scale the logits with the temperature scaling (Liang et al., 2017),
thus the ID and OOD samples are more distinguishable based on the scaled softmax scores.

Our work proposes dynamically merging task arithmetics from the Bayesian perspective to improve
the OOD generalization. Inspired by the temperature scaling and the uncertainty measurement,
we propose to scale the logits with the temperature scaling and to use the softmax outputs as an
adjustment factor to estimating the likelihood of the task arithmetics conditioned on the input.

C.6 MODEL COMPRESSION

Pruning. Unstructured pruning (Frantar and Alistarh, 2023; Sun et al., 2024; Shao et al., 2024;
Zhang et al., 2024; Dong et al.; Tang et al., 2020) effectively maintains LLM performance without
requiring retraining, but leads to irregular structures that necessitate specialized optimizations for
inference. SparseGPT (Frantar and Alistarh, 2023) offers a novel one-shot pruning strategy by
framing it as a sparse regression problem, achieving over 50% sparsity with minimal perplexity
increase. Wanda (Sun et al., 2024) reduces weight update costs by pruning low-magnitude weights
scaled by input activations, while SAMSP (Shao et al., 2024) adjusts sparsity based on weight
sensitivity using the Hessian matrix. DSnoT (Zhang et al., 2024) iteratively prunes and grows weights
to minimize reconstruction error in sparse models.

Structured pruning is hardware-agnostic, facilitating accelerated inference but may degrade per-
formance due to the removal of critical components, often necessitating fine-tuning. Loss-based
Pruning (Molchanov et al., 2019) measures the impact of unit removal on loss. LLM-Pruner (Ma et al.,
2023) uses gradient information to identify dependent structures for optimal pruning. In contrast,
Shortened LLaMA (Kim et al., 2024) focuses on depth pruning of Transformer blocks based on
loss derivatives, employing LoRA to quickly recover performance post-pruning. Magnitude-based
Pruning (Han et al., 2015) assesses pruning unit importance based on their magnitudes, pruning those
below a set threshold. Regularization-based Pruning (Wen et al., 2016) incorporates regularization
terms to induce sparsity.

Different from these pruning methods which focus on the weight pruning, our method is inspired
from the sparse property of the task arithmetics to reduce the expert memory occupation (He et al.,
2025; Tang et al., 2020). We sparsity the task arithmetics based on denoising and the magnitudes
in our work. Note that our framework is a general framework, any other sparsity method can be
combined with our framework.

Quantization. Weight-only quantization is the most conventional and widespread method. For
example, LUT-GEMM (Park et al., 2024) uses binary-coding quantization (BCQ) (Rastegari et al.,
2016) format, which factorizes the parameters of LLMs into binary parameters and a set of scaling
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factors, to accelerate quantized matrix multiplications in weight-only quantization. GPTQ (Frantar
et al., 2023) proposes a layer-wise quantization method based on Optimal Brain Quantization
(OBQ) (Frantar and Alistarh, 2022), which updates weights with inverse Hessian information, and
quantizes LLMs into 3/4-bit. QuIP (Chee et al., 2023) optimally adjusts weights by utilizing the
LDL decomposition of the Hessian matrix derived from vectors drawn uniformly at random from
a calibration set, and multiplies weight and Hessian matrices with a Kronecker product of random
orthogonal matrices to ensure incoherence between weight and Hessian matrices. Combining these
two steps, QuIP successfully quantizes LLMs into 2-bits with minimal performance loss.

To further minimize quantization errors in the weight-only quantization of LLMs, lots of works
identify sensitive weights, which have an important effect on LLMs’ quantization performance, and
store these sensitive weights in high precision. For example, AWQ (Lin et al., 2023) stores the top
1% of weights that have the most significant impact on LLM performance in high-precision, and
integrates a per-channel scaling method to identify optimal scaling factors. Here, "channel" denotes
individual dimensions or feature maps within the model. Similar with AWQ, OWQ (Lee et al., 2024)
store weights sensitive to activation outliers in high-precision, and quantizes other non-sensitive
weights. Different from OWQ, SpQR (Dettmers et al., 2024) employs the L2 error between the
original and quantized predictions as a weight sensitivity metric. Furthermore, SqueezeLLM (Kim
et al., 2023) introduces a weights clusters algorithm based on sensitivity, using k-means centroids as
quantized weight values, to identify sensitive weights.

C.7 DATA SYNTHESIS

Data Labeling. The data labeling process utilizes the advanced language comprehension capabilities
of large language models (LLMs) to annotate extensive unlabeled datasets, proving particularly
beneficial in areas like cross-lingual processing and multimodal learning (Zhu et al., 2023; Gilardi
et al., 2023; Alizadeh et al., 2023). Automating this process enhances data preparation efficiency.
Recent studies have investigated the zero-shot potential of models like GPT-4 for annotating political
discourse on platforms like Twitter (Törnberg, 2023). Some works consider constructing a preference
tree (Zeng et al., 2024; Yuan et al., 2024) from LLM responses to refine incorrect responses based on
feedback from models like GPT-4, creating more diverse and robust preference data.

Data Reformation. Data reformation aims to transform existing datasets into diverse variations
to improve data augmentation (Dixit et al., 2022; Dunlap et al., 2023). This enriches the train-
ing set with varied examples, enhancing model robustness and generalization. Novel approaches
leveraging LLMs have emerged, such as Disco by Chen et al. (Chen et al., 2022), which generates
large-scale, high-quality counterfactual datasets. A prominent method in this area is in-context
learning (Dong et al., 2022), where examples embedded in prompts guide LLMs to generate re-
sponses that reflect the provided patterns. Early works, such as Self-Instruct (Wang et al., 2023) and
Unnatural Instructions (Honovich et al., 2022), utilized task pools with hand-crafted seed examples.
In contrast, LaMini-LM (Wu et al., 2023) built on this foundation by leveraging extensive data
from Wikipedia to generate a wider range of instructions. Auto Evol-Instruct (Zeng et al., 2024),
originally designed to evolve instructions, automates the optimization of evolution rules through an
Optimizer LLM that iteratively refines these rules based on evolving feedback data. Furthermore,
Instruction Backtranslation (Li et al., 2023a) enhances instruction-following capabilities by creating
instruction-response pairs from unannotated data, thus minimizing the need for manual annotation.
This ongoing refinement of data reformation is essential for enhancing performance across various
tasks.

Generation from LLMs. Model generation utilizes powerful models—such as ChatGPT, StableVi-
cuna, and GPT-4—to create datasets that enhance the performance of weaker models. Techniques
include generating concise narratives through templates (Eldan and Li, 2023) and assessing dataset
quality with LLMs. Research by Phi-1 and its subsequent studies (Gunasekar et al., 2023; Li et al.,
2023b) indicates that even a small volume of high-quality data can effectively train models via
generated textbooks and exercises using GPT-3.5. Additionally, performance has been improved by
developing instructional datasets and fine-tuning models to enhance dataset quality (Honovich et al.,
2022; Taori et al., 2023a; Chen et al., 2023). Domain model generation concentrates on the use of
specialized models to produce domain-specific data. For example, domain generation can provide
instructional materials for specific programming tasks in coding (Wei et al., 2024b; Luo et al., 2024).
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In mathematics, initiatives like Minerva (Lewkowycz et al., 2022) and DeepSeekMath (Xin et al.,
2024) focus on generating accurate solutions.

Synthetic Multi-step Reasoning. To enhance reasoning in LLMs, additional reasoning steps are
incorporated into data synthesis. The MMIQC framework (Liu et al., 2024c) iteratively creates
synthetic question-response pairs by expanding problems and integrating reasoning steps while
preserving logical structure. A complementary strategy involves generating chain-of-thought (CoT)
answers based on questions (Li et al., 2024e). Building on question-CoT pairs through Self-Instruct,
MathInstruct (Yue et al., 2023b) introduces the Program-of-Thought (PoT) rationale to streamline
mathematical problem-solving.

In this work, we utilize the stronger LLM to generate CoT based domain training data to enhance the
reasoning performance of the downstream tasks. As far as we know, this work is the first to explore
whether the model merging influences the CoT based reasoning performance.

D THEORETICAL UNDERSTANDING

In this section, we provide the theoretical interpretation from the perspective from the In-context
learning (ICL) to further understand why routing finetuned models with task-level router instead of
token-level ones might be better. Note that here the different finetuned models have been trained
on individual tasks and never see other tasks. We re-write the preliminary in Section 2 here for
convenience of reading.

Task Data Distribution. Given a set of different downstream tasks T , based on the sampling task
τ ∈ T , the pretraining document (data sample) is a sequence o1:T of tokens with the maximum
length T generated from a distribution pτ = p(x1:T |τ) = p(o1, . . . , oT |τ) (Xie et al., 2022; Wies
et al., 2023; Hahn and Goyal, 2023; Li et al., 2024a).

Pretraining Data Distribution. And we define the pretraining data is sampled from p(o|T ⋆) =∫
τ⋆∈T ⋆ p(o1, . . . , oT |τ)p(τ⋆)dτ⋆. Each token o is sampled from a vocabulary O. p(τ⋆) is a prior

distribution about τ⋆. And both (T and T ⋆ belong to a large task family Ω, i.e. T , T ⋆ ⊂ Ω.

Language Modeling. Current LLMs (Brown et al., 2020; Touvron et al., 2023; Xie et al., 2022)
usually utilize the next word prediction as the language modelling, which predicts the next token
ot given the previous tokens o1:t−1 for all t = 1, . . . , T . Formally, a LLM parameterized by θ is
a distribution fθ(ot|o1:t−1). And it is pretrained on a huge corpus sampled from the pretraining
distribution p(o1:T |T ⋆) (Xie et al., 2022).

Finetuning LLM. Normally, for each downstream task τ ∈ T , finetuning LLM is to minimize the
cross-entropy loss function as below:

LCE(θ, τ) = −
T∑

t=1

E[pτ (xt|x1:t−1) · log fθ(xt|x1:t−1)].

After finetuning, the model parameters θ are updated to θτ for each task τ .

Prompt distribution in Pretraining & Finetuing. Following (Xie et al., 2022), a prompt is
composed of an input token sequence o1:T followed by an output token y. Then, the i-th training
example 2 that can appear in any place in the whole prompt o1:T is defined as Oi consisting of an
input si = Oi [1 : k − 1] (the first k− 1 tokens) followed by the output yi = Oi [k] at the end, where
the length k is fixed for simplicity.

The i-th training example is independently generated as follows: 1) Generate a start hidden state hstart
i

from a prompt start distribution pprompt; 2) Given hstart
i , generate the example sequence Oi = [si, yi]

from p(Oi|hstart
i , τ⊥). The test input xtest = sn+1 is sampled similarly. Between each example, a

special delimiter token odelim “reset” the transition between examples (Xie et al., 2022). Then, the
prompt consists of a sequence of training examples (Sn) followed by the example xtest:

[Sn, xtest] = [s1, y1, o
delim, s2, y2, o

delim, . . . , sn, yn, o
delim, xtest] ∼ pprompt. (5)

2Here, training example in prompts means happens during the prompt learning, instead of the pretraining or
the finetuning.
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Different from (Xie et al., 2022), here we distinguish the pretraining tasks (concepts) T ⋆ and the
finetuning tasks (concepts) T = {τ1, τ2, ..., τnτ

}, from which the prompts might be sampled. We
mainly consider τ⊥ ∈ T .

In-context learning setups and Assumptions. We follow other settings and assumptions in (Xie
et al., 2022). With the greedy decoding (Fu et al.), sampling the next token from the language modeling
fθ(ot|o1:t−1) becomes the predictor as y = argmaxot fθ(ot|o1:t−1). For simplicity, following (Xie
et al., 2022), we consider that the finetuned LLMs have been aligned with its pretraining and finetuning
data distribution, i.e. pT ⋆∪τ = p(o1:T |T ⋆ ∪ τ) for any task τ ∈ T . For convenience, we write
pAτ = pT ⋆∪τ which means that the T ⋆ is augmented with τ .

Thus, for [Sn, xtest], the in-context learning predictor can be written as fn
θτ
(xtest) :=

argmaxy pAτ (y|Sn, xtest), which outputs the most likely prediction over the pretraining dis-
tribution conditioned on the prompt distribution. Its expected 0-1 error with n examples is
L0-1(f

n
θτ
) = Extest,ytest∼pprompt [1[f

n
θτ
(xtest) ̸= ytest]].

We define piτ (o) := p(O[i] = o|O[1 : i − 1], τ) of the i-th token with previous tokens and the
analogous distribution piprompt := pprompt(O[i] = o|O[1 : i − 1]) under the prompt distribution.
Following (Xie et al., 2022), there is a distinguishability condition formalizes when in-context
learning occurs giving the downstream task τ .

The distinguishability condition is dependent on a KL divergence between the previous two distribu-
tions and the error terms ϵτ resulting from the distribution mismatch between the prompt and the
pertaining distributions for each example. Letting piτ (o) and piprompt correspond to the task τ and
and τ⊥.
Condition D.1 (distinguishability (Xie et al., 2022)). The τ⊥ is distinguishable if for all τ ∈ Ω,
τ ̸= τ⊥,

k∑
i=1

KLi(τ
⊥||τ) > ϵτ , (6)

where the KLi(τ
⊥||τ) := EO[1:i−1]∼pprompt

[KL(piprompt||piτ )].
Lemma D.2. (Xie et al., 2022) let B denotes the set of τ which does not satisfy Condition D.1. We
assume that KL(pprompt(ytest|xtest))||p(ytest|xtest, τ) is bounded for all τ and that τ⊥ minimizes the
multi-class logistic risk as,

LCE(τ) = −Extest∼pprompt
[pprompt(ytest|xtest) · log p(ytest|xtest, τ)]. (7)

If
Extest∼pprompt [KL(pprompt(ytest|xtest)||p(ytest|xtest, τ))] ≤ ϵτ , ∀ τ ∈ B, (8)

then

lim
n→∞

L0−1(f
n
θτ ) ≤ inf

f
L0−1(f) + g−1

(
sup
τ∈B

(ϵτ )

)
, (9)

where g(ν) = 1
2

(
(1 − ν) log(1 − ν) + (1 + ν) log(1 + ν)

)
is the calibration function (Steinwart,

2007; Pires and Szepesvári, 2016) for the multiclass logistic loss for ν ∈ [0, 1].

Following (Kleijn and der Vaart, 2012; Xie et al., 2022), the task parameter τ is assumed to have the
continuity, where the KL divergence is assumed to haver the 2nd-order Taylor expansion. Then, we
have the following theorem and proof.
Theorem D.3. (Xie et al., 2022) Let the set of τ which does not satisfy Equation 6 in Condition D.1
to be B. Assume that KL divergences have a 2nd-order Taylor expansion around τ⊥:

∀j > 1, KLi(τ
⊥||τ) = 1

2
(τ − τ⊥)⊤Ij,τ⊥(τ − τ⊥) +O(∥τ − τ⊥∥3) (10)

where Ij,τ⊥ is the Fisher information matrix of the j-th token distribution with respect to τ⊥. Let

γτ⊥ =
maxj λmax(Ij,τ⊥ )

min jλmin(Ij,τ⊥ ) where λmax, λmin return the largest and smallest eigenvalues. Then for k ≥ 2

and as n → ∞, the 0-1 risk of the in-context learning predictor fn
θτ

is bounded as

lim
n→∞

L0-1(f
n
θτ ) ≤ inf

f
L0-1(f) + g−1

(
O

(
γτ⊥ supτ∈B(ϵ

θ
start + ϵθdelim)

k − 1

))
(11)
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Proof. (Xie et al., 2022) By the continuity assumption, we have for any τ in B that

k∑
j=2

KLi(τ
⊥||τ) ≥ 1

2

k∑
j=2

(τ − τ⊥)⊤Ij,τ⊥(τ − τ⊥) + (k − 1)O(∥τ − τ⊥∥3) (12)

≥ 1

2
(k − 1)λmin(Ij,τ⊥)∥τ − τ⊥∥2 (13)

=⇒ ∥τ − τ⊥∥2 ≤ ϵθstart + ϵθdelim
1
2 (k − 1)(minj λmin(Ij,τ⊥))

. (14)

Using the above term to bound the last KL term (k-th token), we have:

KLk(τ
⊥||τ) = 1

2
(τ − τ⊥)⊤Ik,τ⊥(τ − τ⊥) +O(∥τ − τ⊥∥3) (15)

≤ 1

2
(max

j
λmax(Ij,τ⊥))∥τ − τ⊥∥2 +O(∥τ − τ⊥∥2) (16)

≤
(ϵθstart + ϵθdelim)(maxj λmax(Ij,τ⊥) +O(1))

(k − 1)minj λmin(Ij,τ⊥)
. (17)

Rearranging above equation, and with the defintion that KLk(τ
⊥||τ) =

Extest∼pprompt [KL(pprompt(ytest|xtest)∥p(ytest|xtest, τ))], we have

Extest∼pprompt [KL(pprompt(ytest|xtest)∥p(ytest|xtest, τ))] ≤
(ϵθstart + ϵθdelim)(maxj λmax(Ij,τ⊥) +O(1))

(k − 1)minj λmin(Ij,τ⊥)
(18)

Combining Equation 18 with Equation 8 into Lemma D.2 completes the proof.

Task-level Routing. Observing the Equation 7 in Lemma D.2, the LCE(τ
⊥) is the optimal risk over

τ ∈ Ω. The τ ∈ B which does not satisfy Condition D.1 means that the τ ∈ B should be close to
τ⊥ enough. Thus, we can have L0−1(f

n
θτ
) converges with n → ∞ as in Lemma D.2. The task-level

routing means to route τ⊥ to the finetuned LLM that has been trained on p(o1:T |τ⊥). Thus, the
task-level routing can satisfy the requirement of τ ∈ B.

Token-level Routing. The core motivation of using token-level routing is that different tokens
prefer different routers. Here, inspired by the distinguishability condition D.1, we can interpret the
token-level router which dynamically finds the expert model i⋆ for i-th token that satistifies:

k∑
i

argmin
i⋆

KLi(τ
⊥||τi⋆). (19)

However, there is distribution shift between the τ⊥ and different τi⋆ . Revisiting the prompt sequence
sampled as [Sn, xtest] = [s1, y1, o

delim, s2, y2, o
delim, . . . , sn, yn, o

delim, xtest] ∼ pprompt, each pair
Oi = [si, yi] is sampled from p(Oi|hstart

i , τ⊥). If the τi⋆ is choosed as different from τ⊥, the
distribution shift implies that the KLi cannot be minimized.

Out-of-distribution Cases. While the above intuition illustrates that the task-level routing might
be more suitable for the in-distribution test data xtest ∼ pprompt, we illustrate that two cases of new
prompt sampling might need need combination of different LLM experts.

• OOD task. Considering that the τ⊥ is different from all τ ∈ T , there might be needs to process
different tokens with different experts following equation 19.

• Compositional task. Considering that Oi = [si, yi] might be sampled from p(Oi|hstart
i , τi), and

each τi is different from others, the Equation 19 may helps to find the suitable experts.

However, the theoretical analysis of how Equation 19 benefits ICL is difficult and we left it as the
future work, which might also be beneficial to analyse the MoE models (Dai et al., 2024). Currently,
we utilize the uncertainty-based model task-level routing and merging to address the OOD problem.
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E DETAILED EXPERIMENT SETTIGNS

E.1 DETAILED EXPERIMENTAL SETUP

Hardware. All experiments were conducted on an A800 GPU with 80GB VRAM, Intel Xeon 6348
CPU, and 100GB RAM.

Models and Datasets. We conduct comprehensive experiments on two cutting-edge large language
model families: Qwen and LLaMA. Table 13 shows the number of parameters, memory occupation
and release data of these models. These models represent the latest advancements in language model
development. To the best of our knowledge, this is the first model merging study focusing primarily
on generative tasks, finetuning with CoT based data and cutting-edge LLM tasks.

Table 13: Backbone Models Overview

Model Number of Parameters Release Date Memory Occupation (GB)

Qwen-1.5-4B 4 Billion February 2024 15.26
Qwen-2.5-7B 7 Billion September 2024 26.00
LLaMA-3.1-3B 3 Billion April 2024 11.31
LLaMA-3.2-8B 8 Billion September 2024 30.52

Generative and Reasoning Tasks in Evaluation. In designing our evaluation tasks, we strategically
selected orthogonal benchmarks to effectively demonstrate our method’s capability in resolving
parameter conflicts during model merging. Our task selection follows these principles:

• (1) The mathematical reasoning and code generation tasks represent fundamentally different
parameter spaces. Specifically, mathematical computation requires numerical reasoning parameters,
while code generation relies on syntax and programming logic parameters, allowing us to evaluate
how well our merging approach handles potentially conflicting parameter updates.

• (2) Knowledge-based QA (TriviaQA) and concept understanding tasks (MMLU) evaluate distinct
knowledge representations. TriviaQA focusing on factual retrieval parameters and MMLU covering
broader conceptual understanding parameters across domains. This helps assess our method’s
ability to preserve different types of knowledge without interference.

• (3) The logical reasoning task (WinoGrande) may prefer to yet another independent parameter
space focused on abstract reasoning, providing insights into how well our merging technique
maintains reasoning capabilities while optimizing for other tasks.

Based on above principle, we utilize the following cutting-edge LLm evaluation tasks about math
reasoning, code generation, common sense QA, common sense logical reasoning, multi-domain
knowledge.

• Mathematical Reasoning: We evaluate mathematical question-answering capabilities using the
GSM8K dataset (Cobbe et al., 2021), which contains 8,500 high-quality elementary school math
word problems (about 7,500 training, about 1,000 test) designed to evaluate mathematical reasoning
capabilities. The problems feature diverse language styles and formats while avoiding templated
designs. They use basic arithmetic operations with natural language solutions.

• Knowledge-based QA: We utilize TriviaQA (Joshi et al., 2017), a large-scale Wikipedia-based
question answering dataset, where models are required to generate direct answers without multiple-
choice options. It contains complex questions requiring cross-sentence inference, with significant
syntactic and lexical variations between questions and answer sentences. The dataset provides
challenging evaluation scenarios that better approximate human-like question answering.

• Code Generation: The HumanEval (Chen et al., 2021) consists of human-written programming
tasks where models must complete missing Python code snippets based on provided inputs. The
problems simulate real-world programming challenges requiring context understanding, reasoning,
and multi-step operations across varying difficulty levels and abstraction layers.

• Logical Reasoning: WinoGrande (Sakaguchi et al., 2019) is a large-scale commonsense reasoning
dataset of approximately 2800 questions developed by University of Washington researchers.
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Questions are presented as fill-in-the-blank tasks with two options and correct answers, with dataset
bias reduced through the AfLite algorithm. The benchmark evaluates models’ commonsense
reasoning abilities in understanding and generating relevant text.

• Multi-domain Knowledge: We employ MMLU (Hendrycks et al., 2021) to assess knowledge
retention across diverse 57 subjects ranging from basic mathematics to US history, computer
science, law, and ethics. Using multiple-choice questions of varying difficulty levels. Notably,
we exploit the generation-based approach for multiple-choice evaluation, analyzing knowledge
preservation across base models, fine-tuned variants, and merged models. The generation-based
evaluation is better to measure the generative abilities of LLMs than choice-based evaluation.

In the experiments of evaluating the scalability of Mediator, we also finetune another 4 LLMs
according to the following 4 extra evaluation tasks.

IFEval. (Zhou et al., 2023) A comprehensive benchmark dataset designed to evaluate instruction-
following capabilities of language models. It contains carefully curated instruction-response pairs
across diverse task categories including text generation, analysis, and reasoning. The dataset aims
to assess models’ ability to accurately interpret and execute natural language instructions while
maintaining coherence and relevance in responses. The evaluation spans multiple dimensions
including instruction comprehension, output quality, and adherence to specified constraints.

CEval. (Huang et al., 2023a) A comprehensive Chinese evaluation suite designed to assess
language models’ knowledge and capabilities across various academic and professional domains.
It consists of multiple-choice questions drawn from professional qualification exams and academic
tests in China. For our evaluation, we specifically focus on three key subjects: (1) Medicine: testing
clinical knowledge, diagnosis, and treatment principles from medical licensing exams; (2) College
Economics: evaluating understanding of micro/macroeconomics concepts, market principles, and
economic theories; (3) Law: assessing comprehension of Chinese legal principles, regulations, and
judicial procedures. These subjects were chosen to evaluate models’ domain-specific expertise in
technically demanding professional fields.

Finetuning Settings. We adopt the ms-swift (Zhao et al., 2024) to finetune the given pretrained
LLM. The finetuning datasets are constructed by augmenting some publicly datasets (task related
but without overlap) with GPT-4o (Gilardi et al., 2023) and Chain-of-Thoughts (Wei et al., 2022).
For each finetuning process, we use at least 180K training samples to ensure sufficient performance
improvement on the corresponding task, which helps validate the effectiveness of our experiments.
We provide the details of how we construct the finetuning datasets in Section H.

Baselines. Following the summary of the related works in Section C, we compare methods in
following four categories:

• Pretrained model. The pretrained models are directly downloaded from its open-source
repository. These models are pretrained on the large corpus and have included enormous
knowledge about the evaluation tasks.

• Finetuned Models: We finetune the pretrained models on datasets that we construct for
each domain. Then, each finetuned model is evaluated on all tasks. The results help to show
wheter finetuning on task A enhance or decrease model performance on task B.

• Static merging methods. These methods use fixed weights to merge multiple finetuned
models. The advanced static merging methods like Fisher merging (Matena and Raffel,
2022) and RegMean (Jin et al., 2023) require extra dataset and forward process to estimate
some information like gradients, hessian, features to estimate parameter importance, which
causes significant computational costs. Furthermore, considering that LLMs need to be
deployed on various tasks, the utilized dataset actually cannot reflect the real-world data
distribution. Therefore, these methods are shown empirically to perform worse than some
calibration-less methods (Du et al., 2024). Recently, TIES (Yadav et al., 2023b) and PCB-
merging (Du et al., 2024) achieve the best performance in weighted average method and do
not require calibration data. Thus, we choose it for comparison.

• Dynamic Advanced Methods: We compare with state-of-the-art dynamic merging tech-
niques that adapt model fusion parameters based on the input data. For example, Branch-
train-mix dynamically routes different tokens to corresponding experts for generation
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through token-level routing. Similarly, the twin-merge (Lu et al., 2024b) computes merging
weights through task-level routing mechanisms and dynamically fuses SVD-decomposed
task vectors into the pretrained model in real-time.

E.2 HYPERPARAMETERS OF FINETUNING AND IMPLEMENTING BASELINES

Hyperparameters for Single-task Finetuning. For single-task finetuning, we utilize a set of
hyperparameters that remain consistent across all models and tasks. The learning rate is set at 1.2e-5,
applying a cosine decay schedule. The batch size varies, with one sequence per batch for both the
7B and 8B models, while the 3B and 4B models use two sequences per batch considering the GPU
memory limitation. The maximum sequence length is confined to 4096 tokens for both math and
QA tasks and extends to 7000 tokens for coding tasks. The training consists of two epochs, and we
employ the AdamW optimizer with parameters β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8. Additionally,
warmup steps constitute 5% of the total steps.

For all model merging baselines, the finetuned LLMs are the same. And all finetuned LLMs have
shown that they can successfully improve the performance of the pretrained model on various tasks.
The following is the details of how we tune and implement baseline methods.

Hyperparameters for PCB-merging. We follow the original paper of PCB merging and have
searched its hyperparameters. The weight clipping ratio is established at 0.1, which means weights
with magnitudes in the bottom 10% are clipped to zero, following recommendations from the original
paper concerning LLM generalization tasks. For model merging exploration, we perform 200 random
exploration steps. The initial weights for random exploration are set to (0.4, 0.4, 0.4, 0.4) for the
3B, 4B, 7B, and 8B models with four experts, while for all models with eight experts, they are set to
a repeated value of 0.2 across eight instances. The validation batch size is configured to handle 8
samples per task, and we implement early stopping with a patience of 10 steps without improvement.
The weight clipping ratio and exploration parameters are uniform across all model sizes and tasks to
facilitate fair comparison. It’s worth noting that for the 7B and 8B models, the validation batch size is
reduced to 4 due to memory limitations.

Optimizing PCB-merging. To enhance the computational speed of PCB-merging, several optimiza-
tions were introduced based on the original framework, which do not influence its task performance.
Instead of merging entire models simultaneously, we adopt a layer-wise model merging strategy. This
layer-by-layer merging approach has multiple benefits: it decreases memory overhead during the
merging process, facilitates parallel processing of different layers, and allows for the assignment
of layer-specific merging weights. Moreover, we implemented asynchronous model input/output
operations which enable overlapping of I/O with computational processes. This adjustment is instru-
mental in reducing the total merging time by as much as 40%, enabling the seamless streaming of
large models. These optimizations have significantly boosted both the efficiency and effectiveness of
PCB-merging, particularly the layer-wise method, which has lowered peak memory usage by approx-
imately 60% while maintaining or enhancing final model performance. And other hyper-parameters
and settings are completely followed as the original paper.

Hyperparameters for Twin-merging finetuning. For Twin-merging, we leverage LoRA finetuning
in lieu of SVD to attain greater precision following the original paper. The rank is set as 32, and
both the alpha and dropout parameters are also set at 32 and 0.1, respectively. The target modules
involved in this finetuning process include the query and value matrices within the attention layers.
And we also have conducted grid search for the hyper-parameters. Each task involves training over
two epochs, with a batch size set at 16; this batch size is reduced to 8 for the 7B and 8B models. The
learning rate is specified at 1.5e-4, utilizing a cosine decay schedule, and the optimizer employed is
AdamW.

Hyperparameters for Branch-train Mix (BTX). For the training of the BTX router, we follow the
original implementation of it within ms-swift and its original paper to implement it. The relevant
hyperparameters for this setup include a training duration of 2 epochs, with a batch size of 2; this is
adjusted to 1 for the 7B and 8B models. The learning rate is established at 1.5e-6, utilizing a linear
decay schedule, alongside the AdamW optimizer, which is configured with a weight decay of 0.001.
The router’s architecture consists of an input dimension derived from 2 layers of an FFN, with a
hidden dimension of 256, an output dimension corresponding to the number of experts, and a dropout
rate of 0.1. Warmup steps account for 5% of the total steps, and evaluations are conducted at every
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1000 steps. To ensure balanced representation, the router is trained on a dataset that equally samples
from all tasks, employing early stopping with a patience of 2 epochs based on validation accuracy.

Hyperparameters for Mediator. For Mediator training, we utilize the same single-task finetuned
experts as delineated in Appendix E.2. The task-level router is constructed from the first 9 layers
of the pretrained LLM (with gradients stopped) and includes 2 additional FFN layers. The router
is trained on a balanced dataset with equal samples from each task domain to ensure unbiased task
routing. We evaluate the router performance every 1000 steps and use early stopping with patience
of 2 epochs based on validation accuracy. The training process for the router involves sampling
2000 examples from each task domain, specifically in mathematics, coding, question answering, law,
economics, instruction following, and medicine. The specific hyperparameters applicable to router
training encompass a duration of 2 epochs, and a batch size of 256, which is decreased to 128 for
the 7B and 8B models. The learning rate is set to 3e-4, accompanied by a cosine decay schedule,
and the optimizer remains as AdamW. The warmup ratio is defined as 10% of the total steps. The
router’s architecture features a frozen backbone comprising the initial 9 layers from the pretrained
LLM, along with 2 trainable FFN layers. These layers have a hidden dimension of 1280, with the
output dimension reflecting the number of experts, and a dropout rate fixed at 0.05.

For router based selection, we use the temperature parameter β in Equation 4 as 1.5 to convert
the prediction rates into concrete merging parameters for each expert, which achieves the best
experimental results. This temperature scaling helps balance between being decisive in expert
selection while maintaining some degree of smoothness in the merging weights. A temperature of
1.5 empirically provides the optimal trade-off, where lower temperatures lead to more concentrated
weights but potentially miss useful signals from secondary experts, while higher temperatures result
in overly diffuse weights that don’t sufficiently leverage expert specialization.

F THE VARIATIONS AND DETAILS OF DIFFERENT PARTS OF MEDIATOR

In this section, we provide the detailed variations and implementation details of different parts of
Mediator. Some definitions and operations that appear in the main text may be re-defined in this
section for better clarity of reading.

F.1 MEASURING PARAMETER CONFLICTS

Task Arithmetics. We define the task arithmetics as the parameter difference between the finetuned
LLM θτ based on task τ and the pre-trained LLM θ, i.e., ∆τ = θτ − θ. Such a task arithmetics can
represent the update on the finetuned LLM θτ based on task τ . Given a pretrained LLM θ, one can
recover the finetuned LLM θτ = θ +∆τ .

Denoising Parameters. Because the finetuing directions on different tasks are various and stochas-
tic, there exist some elements in ∆τ that do not influence the performance on task τ . Before measuring
the parameter conflicts (Yadav et al., 2023a; He et al., 2024b), we firstly denoise the parameters by
removing the elements in ∆τ that do not influence the performance on task τ . We also model the
update directions of different elements as the Gaussian distribution NUPD(µUPD, σ

2
UPD), where µUPD

is the mean of the update direction and σ2
UPD is the variance.

Based on the estimated µUPD and σUPD, we can regard the elements within range (µUPD − σUPD,
µUPD + σUPD) as the elements that do not influence the performance on task τ . Thus, we can denoise
the parameters by removing the elements within range (µUPD − σUPD, µUPD + σUPD) (set as 0) and
obtain the new parameter arithmetic θ̂τ = θ + ∆̂τ . In the deployment, these elements are saved with
their indexes and values for realistic sparsification thus saving memory.

F.2 ADAPTIVE MERGING

Inspired by the empirical observation in Figure 3 in Section 3, we propose to leverage the parameter
conflict distribution across different finetuned LLMs to adaptively merge the finetuned models.

Practically, before merging, Mediator automatically calculates the conflicts dl across different
finetuned LLMs. Then, Mediator models the conflicts as a Gaussian distribution N (µ, σ). Then,
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for each layer index l, Mediator average layer parameters if the conflict dl is less than the µ + σ,
otherwise, Mediator Routing this layer. We denote the averaged layer parameters as ϕl

AVG and the
Routing layer parameters as ϕl

UP. Algorithm 1 shows this detailed process.

F.3 AVERAGING OPERATIONS

Naive Average Operation. The naive average operation MAVG is defined as:

MAVG(θ1, θ2, . . . , θ|T |) =
1

|T |

|T |∑
τ=1

θτ , (20)

which regards all finetuned LLMs equally and utilizes the same weight for each finetuned LLM. Such
a simple average operation is easy to implement, without fabricated procedures, thus having low
computational overhead. However, different parameters may have different sensitivities to the final
merged model, which may lead to suboptimal performance.

Taylor Expansion. The Taylor expansion is a powerful tool for approximating a function around a
specific point, and it is widely used in various fields, including model compression (Lee et al., 2019)
and previous works on model merging (Jhunjhunwala et al., 2023; Qu et al., 2022). We can utilize the
Taylor expansion to measure the sensitivity of each parameter that influences the model performance
on the downstream task τ as follows:

LCE(θ + δθ, τ) = Lτ (θ) +
∂Lτ (θ)

∂θ
θδθ +O(δ2θ). (21)

The first-order derivative ∂LCE(θ,τ)
∂θ measures the sensitivity of the loss function Lτ to the parameter

θ. Thus, we can see that utilizing the same averaging operation for all parameters may not be the
optimal choice for merging different finetuned LLMs, as it does not take into account the different
contributions of each finetuned LLM to the final merged model.

Parameter-level Importance based Model Merging. To this end, one can utilize the first-order
derivative or higher-order derivative to measure the sensitivity of the loss function Lτ to the parameter
θ, based on which, the parameter-level importance can be measured as wτ = ∂Lτ (θ)

∂θ θ. Then, the
parameter-level importance can be used as the averaging weight for each finetuned LLM like the
following:

MFO-Taylor(θ1, θ2, . . . , θ|T |) =

|T |∑
τ=1

wτθτ . (22)

Preprocessing Parameters. Considering that the finetuing directions on different tasks are various
and stochastic, some elements in θτ that are optimized stochastically and may not influence the
performance on task τ . Thus, before averaging, we can denoise the parameters by removing the
elements in θτ that do not influence the performance on task τ . Like the preprocessing the task
arithmetics and the denoising, we recover the finetuned LLM θ̂τ = θ+∆̂τ by removing the elements
in ∆τ that do not influence the performance on task τ . Then, the averaged models can be obtained by
the following equation:

Mde-noise(θ1, θ2, . . . , θ|T |) =

|T |∑
τ=1

wτ θ̂τ . (23)

F.4 DETAILS OF EXPERT ROUTING

For an input x1:t sampled from the training dataset pτ , the intuitive routing mechanism is to directly
use the finetuned LLM θτ that is trained on the training dataset pτ to generate the output xt+1:T .
However, the real-world deployment is usually different from the training distribution, which may
lead to suboptimal performance. Especially for an LLM deployment scenario, the input distribution
is various.
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Modeling the likelihood πκ(τ |x). We build a task-level deep neural network as the router. In design-
ing the router structure, we carefully balance model accuracy with additional memory requirements.
While LLMs inherently demonstrate excellent classification capabilities, we need an efficient solution
that wouldn’t significantly impact performance. After extensive experimentation, we opt to utilize
the embeddings from the first 9 layers of the base LLM combined with 2 FFN layers as our router
architecture. This design choice eliminates the need for a separate complex router structure while
maintaining high classification accuracy with minimal memory overhead and fast execution speed.
The router leverages the rich semantic understanding already present in the base model’s lower layers,
making it both resource-efficient and effective for expert selection.

Constructing training datasets for learning πκ(τ |x). For training the router, we randomly sample
2000 examples from each domain rather than using the entire finetuned dataset for efficiency. For
each task, we only extract the question part (other than the question and answer pairs) to better
simulate real-world deployment scenarios. We do not explicitly construct a training dataset for the
“others” category to consider the OOD category and the sample will be regarded as prefering the
original pretrained model. Instead, during inference, if the predicted probabilities for math, coding,
and QA tasks are all below 0.5, the input is classified as “others” and processed this question by the
base model. The training dataset can be represented as {(x, τ)|x ∼ pτ}τ∈{math,coding,QA}.

G SYSTEM OPTIMIZATION

The inference latency and memory consumption are critically important for the real-world LLM
applications. Thus, we consider to optimize the inference latency and memory consumption of
Mediator. The overall latency of Mediator is mainly affected by the routing, loading experts between
CPUs and GPUs (if required offloading), inference of the models itself.

Routing Latency. We run expert routing only once per sample because we use task-level routing.
The classifier κ consists of two FFN layers, and its input is the hidden state of the first through ninth
layers of the LLM. The total execution time of the classifier κ is between 0.2s and 0.4s.

Loading Experts. After obtaining πκ(τ |x), we compute h(τ |x) according to Equation 4. We also
load expert parameters only once. To optimize this process, we explore two methods. For sparse
expert parameters, we store all of them in the CPU and prefetch the parameters for the next layer
while performing computations in the current layer. For non-sparse expert parameters, we store them
on disk and use ZipNN (Hershcovitch et al., 2024) to accelerate loading from disk to CPU.

Inference Timeline. We present the optimized inference timeline of Mediator, as shown in Figure 5.
The additional time incurred by Mediator is fixed and relatively small(approximately 0.2s to 0.4s).
This portion of the time overhead will decrease as the model size increases or the decoding length
becomes longer.

Bubble Routing -th Decoding token Load

Comp.
Load

Timeline
Prefill Prefill Prefill 1 1 1 2 2 2

Figure 5: The inference timeline of Mediator, assuming that the number of layers is three.

G.1 CUDA KERNAL MERGING

We accelerate the integration or disintegration of sparse experts into the dense backbone by using
CUDA’s atomicAdd, which enables parallel merging of multiple experts while maintaining accuracy.
Through this approach, we can split the weights into individual elements, allowing each element to
be processed in parallel. However, we have observed that parallel merging alone is sufficient to mask
the associated costs.
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G.2 SERVING WITH BATCHED REQUESTS

The traditional LLM serving usually accepts different requests asynchronously. Then, different
requests are allocated to different batches with a predifined batch size and feed into the model. A
batch-style inference usually is faster than the single-request inference, because the computation
matrix is more dense and become GPU friendly.

However, the Mediator and many routing based merging works (Sukhbaatar et al., 2024c; Lu et al.,
2024b) require to select different experts for different requests. Thus, a batch of various requests
may lead to various experts being selected, which would disturb the regularity of the computation
matrix. To implement the batch-style serving, we implement following two new system optimization
schemes to improve Mediator.

• Clustering Serving: Since each task arithmetic expert has been compressed to a small
capacity, we can merge task arithmetics with different parameter fusions into several merged
experts. When multiple tasks begin serving, we select the merged experts with the closest
overall distance. While this batch inference approach may introduce some errors, the key
research focus lies in how to effectively cluster and construct merged experts;

• Batch arithmetic inference: This is our lossless solution for batch inference. Similarly,
due to the small size of compressed task arithmetics, we propose the following approach:
Let Θo be the parameters of the original large model, ta1, ta2, ...tan be the weighted Task
arithmetics for tasks 1,2,3...n respectively, and x1, x2, ....xn be the input parameters for
different tasks. We decompose the ideal case (Θo + taj)(xj) into Θo(xj) + taj(xj) to
achieve efficient batch inference.

H FINETUNING DATA GENERATION

H.1 TASK-RELATED TRAINING DATASETS

Following benchmark datasets are used for evaluating model performance across different domains.
The datasets used for finetuning are introduced

Math Training Data for GSM8K. For mathematical reasoning tasks, we constructed our training
dataset by combining several high-quality math-focused datasets:

• GSM8K Socratic Training Set: A subset of GSM8K training data augmented with Socratic-style
step-by-step reasoning, which helps models develop systematic problem-solving approaches. Note
that this dataset does not have overlapped question answer pairs same with the GSM8K.

• Orca-Math (Mitra et al., 2024): A comprehensive mathematics dataset that covers various mathe-
matical concepts and problem types, designed to enhance mathematical reasoning capabilities.

Example 1

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips
did Natalia sell altogether in April and May?
Answer: Natalia sold 48÷ 2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May. #### 72

Example 2

Question:Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she
earn?
Rationale: One rotates a Rubik’s Cube in 0.2 second, only needing to know how many steps it takes to solve one.
Someone solve a Rubik’s Cube requires a minimum of 50 steps. It takes 4 seconds to solve the Rubik’s Cube at the
fastest.
Answer: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she
earn? #### 10

Table 14: Examples of GSM8K Socratic Training Set. The red color represents the CoT sequences.

By combining these datasets, we created a rich and diverse training corpus that exposes models to
different mathematical reasoning patterns, problem-solving strategies, and difficulty levels. Further-
more, with the help of CoT based answers generated by the GPT-4o, this comprehensive approach
helps ensure robust mathematical reasoning capabilities across various scenarios. We assembled
approximately 200,000 training samples.
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Example 1

Question:A number divided by 10 is 6. Yoongi got the result by subtracting 15 from a certain number. What is the
result he got?
Answer: Let’s call the certain number "x". According to the information given: A number divided by 10 is 6: x / 10 = 6
Yoongi got the result by subtracting 15 from x: Result = x - 15 First, we need to find the value of x. We can do this by
solving the first equation: x / 10 = 6 x = 6 * 10 x = 60 Now that we know x is 60, we can find the result Yoongi got by
subtracting 15 from x: Result = x - 15 Result = 60 - 15 Result = 45. So, the result Yoongi got is 45.

Example 2

Question: For the natural number A, the quotient of A divided by 9 is 6 and the remainder is 5. What is the value of A?
Answer: To find the value of A, we can use the formula for division with remainder: A = (quotient × divisor) +
remainder In this case, the quotient is 6, the divisor is 9, and the remainder is 5. Plugging these values into the formula,
we get: A = (6 × 9) + 5 A = 54 + 5 A = 59. Therefore, the value of A is 59.

Table 15: Examples of orca-math Training Set. The red color represents the CoT sequences.

Example 1

Question: Who was the first person to reach the South Pole?
Answer: Norwegian explorer Roald Amundsen led the first expedition to successfully reach the South Pole on December
14, 1911. His team beat British explorer Robert Falcon Scott’s expedition by about a month. Amundsen’s careful
planning and use of dog sleds proved crucial to his success in reaching the pole first. Roald Amundsen was the first
person to reach the South Pole.

Example 2

Question: What is the capital city of Australia?
Answer: While many people think Sydney or Melbourne is Australia’s capital, Canberra is actually the capital city. It
was purpose-built as a compromise between these two rival cities and became the capital in 1927. The city is home to
Parliament House and many important government institutions. The capital city of Australia is Canberra.

Table 16: Examples of TriviaQA Training Set. The red color represents the CoT sequences.

QA Training Data for TriviaQA and WinoGrande. For question answering tasks, we constructed
our training dataset by combining and filtering several QA datasets:

• TriviaQA-Wikipedia subsets: A dataset derived from Wikipedia articles containing trivia questions
and answers, which helps train models on factual knowledge and reading comprehension.

• Alpaca QA Pairs(Taori et al., 2023b): We filtered the Alpaca dataset to extract QA pairs, specifically
excluding math and programming related questions to maintain domain focus. This dataset provides
diverse general knowledge questions and answers for training conversational capabilities.

• WebQuestions (Bordes et al., 2014): A dataset of natural language questions paired with answers,
derived from web queries.

• SQuAD v1 & v2(Rajpurkar et al., 2016): The Stanford Question Answering Dataset, both versions
1 and 2, from which we sampled question-answer pairs where explicit answers were provided.

This combined dataset provides diverse question answer pairs across different domains and formats
while maintaining high quality through careful filtering and sampling. The exclusion of math and
programming questions helps maintain clear task boundaries for our specialized models. Through
careful combination and sampling of these datasets, we assembled approximately 200,000 training
samples.

Code Training Data for HumanEval. For programming-related tasks, we constructed our training
dataset by combining several programming-focused datasets:

• MBPP (Mostly Basic Python Programming)(Austin et al., 2021): A dataset containing Python
programming problems ranging from basic to intermediate difficulty levels.

• Magicoder-Evol-Instruct(Wei et al., 2024b): A dataset of 110K high-quality programming instruc-
tions and solutions from the ise-uiuc project, covering diverse programming tasks and patterns.

• LeetCode dataset (Coignion et al., 2024): A comprehensive collection of coding problems with
varying difficulty levels, commonly used for programming practice and assessment.

• ConalaMineded (Yin et al., 2018): A curated subset of the CoNaLa dataset containing high-quality
Python programming snippets with natural language annotations, which helps models understand
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Example 1

Question: What is the primary purpose of the United Nations Security Council?
Answer: The United Nations Security Council’s primary purpose is to maintain international peace and security. It
has the power to establish peacekeeping operations, implement international sanctions, and authorize military action.
The Security Council is the only UN body that can issue binding resolutions to member states. The Security Council is
responsible for maintaining international peace and security.

Example 2

Question: How does photosynthesis work in plants?
Answer: Photosynthesis is the process by which plants convert light energy into chemical energy. Plants use sunlight,
water, and carbon dioxide to produce glucose and oxygen. The process takes place in the chloroplasts, specifically
using the green pigment chlorophyll. The glucose provides energy for the plant, while the oxygen is released into the
atmosphere as a byproduct. Plants use sunlight to convert carbon dioxide and water into glucose and oxygen.

Table 17: Examples of Alpaca QA Training Set. The red color represents the CoT sequences.

Example 1

Question: What company did Warren Buffett start his career at?
Answer: Warren Buffett began his career at Buffett-Falk & Co., an investment firm in Omaha, Nebraska. He worked
there from 1951 to 1954 after graduating from Columbia Business School. This was before he went on to form Buffett
Partnership Ltd. in 1956 and later acquire Berkshire Hathaway in 1965. Warren Buffett started his career at Buffett-Falk
& Co.

Example 2

Question: What is the longest river in Europe?
Answer: The Volga River is the longest river in Europe, flowing entirely within Russia. It stretches for approximately
3,530 kilometers (2,193 miles) and drains into the Caspian Sea. The river has played a crucial role in Russian history,
culture, and economic development. The Volga River is the longest river in Europe.

Table 18: Examples of WebQuestions Training Set. The red color represents the CoT sequences.

implementation details of specific functions and how to implement micro-level functionality,
thereby improving overall chain-of-thought capabilities.

This comprehensive dataset covers various programming concepts, difficulty levels, and coding
patterns, enabling robust evaluation of models’ programming capabilities.

In the scalability experiments, we utilize the following 4 datasets to finetune extra 4 models according
to another 4 evaluation tasks. Note that these datasets have no overlap with the evaluation tasks.

• Instruction Following. For instruction following tasks, we utilize the Magpie dataset (Xu et al.,
2024), which contains 200K high-quality English instruction-following samples. The dataset
covers diverse instruction types including writing, analysis, and problem-solving. We evaluate
the model’s instruction following capabilities on IFEval, a comprehensive benchmark containing
1,000 carefully curated instructions across multiple categories like reasoning, writing, and task
completion.

• Economics: We use the IndustryInstruction (Ind) dataset for training, which contains instruction-
response pairs focused on finance and economics concepts, analysis, and problem-solving. The
model is evaluated on CEval economics benchmark, which tests understanding of economic
principles, market analysis, and financial concepts.

• Medicine: We utilize the DISC-Med (Bao et al., 2023) Chinese medical dataset for training,
which covers various aspects of medical knowledge including diagnosis, treatment, and healthcare
concepts. Evaluation is performed on CEval physician tasks that assess medical domain knowledge
and reasoning.

• Law: Training data comes from the DISC-Law Chinese legal dataset (Yue et al., 2023a), containing
legal concepts, case analysis, and regulatory knowledge. The model’s legal capabilities are evaluated
using CEval law tasks, which test understanding of legal principles and reasoning.

H.2 COT BASED DATA AUGMENTATION

High-quality task-related training datasets are crucial for evaluating model merging algorithms
effectively. When a pretrained model achieves strong performance through single-task fine-tuning, it
creates greater headroom for different model merging approaches to demonstrate their capabilities
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Example 1

Question: Who wrote the play "Romeo and Juliet"?
Answer: William Shakespeare

Example 2

Question: What is the capital city of Japan?
Answer: Tokyo

Table 19: Examples of SQuAD Training Set.

Example 1

Question:Write a python function to find the first repeated character in a given string.
Answer:
def first_repeated_char(str1):

for index,c in enumerate(str1):
if str1[:index+1].count(c) > 1:

return c
return "None"

Example 2

Question: Write a function to reverse words in a given string..
Answer:

def reverse_words(s):
return ’ ’.join(reversed(s.split()))

Table 20: Examples of MBPP Training Set.

and differentiate themselves. The quality of task-specific datasets thus becomes a key prerequisite for
meaningful experimental comparisons.

Therefore, we carefully curated high-quality training datasets for each specialized domain to ensure
our experimental results meaningfully reflect the relative strengths of different merging strategies.
The following sections detail the specific datasets used for each task domain.

To enhance model performance through single-task fine-tuning, we constructed three Chain-of-
Thought (CoT) datasets, as CoT has been shown to significantly improve model capabilities:

H.3 COT BASED DATA AUGMENTATION

High-quality task-related training datasets are crucial for evaluating model merging algorithms
effectively. When a pretrained model achieves strong performance through single-task fine-tuning, it
creates greater headroom for different model merging approaches to demonstrate their capabilities
and differentiate themselves. The quality of task-specific datasets thus becomes a key prerequisite for
meaningful experimental comparisons.

Therefore, we carefully curated high-quality training datasets for each specialized domain to ensure
our experimental results meaningfully reflect the relative strengths of different merging strategies.
The following sections detail the specific datasets used for each task domain.

To enhance model performance through single-task fine-tuning, we constructed three Chain-of-
Thought (CoT) datasets, as CoT has been shown to significantly improve model capabilities:

Math CoT. We utilized GSM8K Socratic and Orca-Math datasets for our mathematical Chain-
of-Thought training. The GSM8K Socratic dataset, containing approximately 7,500 samples, fully
exhibits step-by-step CoT reasoning characteristics. While Orca-Math does not consistently maintain
CoT patterns across all examples, the combined datasets provide about 30% of samples with clear
CoT reasoning, which we used for training. This mixed dataset approach helps balance between
high-quality CoT examples and broader mathematical coverage.

Code CoT. For coding training data, we combined multiple data sources. The MBPP dataset
provides non-CoT examples, while Magicoder-Evol-Instruct and LeetCode datasets mostly contain
CoT programming examples. Additionally, although ConalaMineded is a CoT dataset, it uniquely
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Example 1

Question: Please amend the subsequent Python script so that it includes a ’while’ loop rather than the existing ’for’
loop, which iterates through the items of an integer list. The script currently has a bug where it attempts to print an
object that is outside the bounds of the list. Fix this error and modify the script to use ’while’ instead of ’for’ loop.
Ensure your script correctly handles empty lists.
python
# Establish an integer list
arr = [1, 2, 3, 4]
# Determine the length of the list
n = len(arr)
# Traverse the list and output each individual element
for i in range(n+1):

print(arr[i])
Answer: python
# Establish an integer list
arr = [1, 2, 3, 4]
# Determine the length of the list
n = len(arr)
# Initialize index at 0
i = 0
# Traverse the list and output each individual element
while i < n:

print(arr[i]) i += 1

In the given code, it tries to access arr[n] which is out of bounds as python list indexing starts from 0 and ends at n-1 for
a list of length n. Also, I used while loop as per your request. By initializing i=0 before the loop and i += 1 within the
loop, we can iterate over the list. This iteration continues until i is less than n, the length of the list. The while loop will
not proceed if the list is empty so it correctly handles empty lists.

Example 2

Question: Create a function to search for a word in an array. The word should be searched in the lowercase version of
the array and it should return the index location of its first occurrence. word = "test" words_array = ["Hello", "World",
"Test", "Test", "me"]
Answer: Here’s how you can create the function in Python:
python
def search_word(word, words_array):

word = word.lower()
words_array = [w.lower() for w in words_array]
if word in words_array:

return words_array.index(word)
else:

return "Word not found"
word = "test"
words_array = ["Hello", "World", "Test", "Test", "me"]
print(search_word(word, words_array))

This script turns both the search term and the words in the array to lower-case to ensure the search is case-insensitive. It
checks if the word is within the array. If it is, it returns the index of the first occurrence of the word. If not, it returns a
Ẅord not foundm̈essage.

Table 21: Examples of Magicoder-Evol-Instruct Training Set. The red color represents the CoT
sequences.

explains the meaning of each small programming snippet, which helps models better understand
micro-level programming components. We sampled and integrated examples from all these sources
to create a comprehensive training set.

QA CoT. For question answering tasks, we integrated multiple data sources with varying levels of
content. We used Claude 3.5 Sonnet to augment TriviaQA-Wikipedia and WebQuestions datasets
with CoT reasoning by prompting it to "expand the QA pair with necessary background knowledge
for CoT training data". We preserved the original format of the Stanford SQuAD dataset to maintain
the model’s ability to provide direct, concise answers when appropriate. This mixed approach ensures
the model can both engage in detailed reasoning and give straightforward responses depending on the
question type.

Table 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 show examples of the final constructed datasets for
finetuning.
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Example 1

Question: Given an array of integers nums and an integer target, write a function that returns indices of the two numbers
in the array that add up to the target. You may assume that each input would have exactly one solution, and you may not
use the same element twice. nums = [2,7,11,15], target = 9
Answer:

too large, neglect the code

This solution uses a hash map approach for O(n) time complexity. As we iterate through the array, for each number, we
check if its complement (target - current number) exists in our hash map. If found, we’ve found our pair and return their
indices. If not, we add the current number and its index to the hash map.

Example 2

Question: Given the head of a linked list, reverse the nodes of the list k at a time, and return the modified
list. If the number of nodes is not a multiple of k then left-out nodes, in the end, should remain as it is.
Input: head = [1,2,3,4,5], k = 2
Answer:

too large, neglect the code

This solution first counts k nodes ahead to ensure we have enough nodes to reverse. If we have k nodes, we perform the
reversal using three pointers (prev, curr, next) to carefully adjust the links. We then recursively process the rest of the
list. If we don’t have k nodes, we leave them as is. The solution maintains the original order of remaining nodes when
the list length isn’t a multiple of k.

Table 22: Examples from LeetCode Training Set. The red color represents the CoT sequences.

Example 1

Question: converting integer to list in python
Answer:

[int(x) for x in str(num)]

Example 2

Question: How to convert a Date string to a DateTime object?
Answer:

datetime.datetime.strptime(s, ’%Y-%m-%dT%H:%M:%SZ’)

Table 23: Examples from ConalaMineded Dataset.

I MORE EXPERIMENT RESULTS

I.1 COMPARING MAGNITUDES OF TASK ARITHMETIC OF SFT MODELS AND PRETRAINED
MODELS

Figure 6 shows more comparisons on the maginitudes of task arithmetic of SFT Models and Pretrained
Models. Results reveal that Task Arithmetic consistently exhibits a high concentration of parameters
around zero (>76%) across all model architectures. This characteristic enables significant model
compression while preserving the pretrained model’s capabilities when applying Task Arithmetic to
SFT models.

I.2 DETAILED EVALUATION OF MODEL MERGING ALGORITHMS

We conduct experiments on four large language models: Qwen 1.5 4B, Qwen 2.5 7B, LLaMA 3.2 3B,
and LLaMA 3.1 8B. 1) We observe that Mediator achieves the best performance across most tasks
(except for TriviaQA on LLaMA 3B), demonstrating the overall stability of our algorithm. 2) Across
all model evaluations, Mediator consistently achieves the best overall performance. Specifically,
for Qwen 1.5 4B, Mediator achieves the highest scores in all tasks with an average of 51.40%.
On LLaMA 3.2 3B, it obtains the best performance in GSM8K (46.47%), Winogrande (72.03%),
HumanEval (40.42%), and MMLU (54.91%), leading to the highest average score of 54.97%. For
Qwen 2.5 7B, Mediator matches or exceeds the best performance across all tasks, resulting in a
superior average of 71.00%. Similarly on LLaMA 3.2 8B, it achieves the highest scores in most tasks
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(b) LLaMA 3.1 8B

Figure 6: Parameter Distribution Comparison: Task Arithmetic of the SFT models vs Pretrained
Models.

and the best overall average of 71.80%. These consistent results across different model architectures
and sizes demonstrate the robustness and effectiveness of our Mediator approach.

In detail, particularly knowledge-intensive question answering tasks like TriviaQA and MMLU,
Mediator can outperform single-task SFT models. Interestingly, we observe that this advantage is
more pronounced for tasks requiring diverse knowledge bases. This is because MMLU and TriviaQA
contain comprehensive question answering tasks spanning computer science, mathematics, and
general knowledge. By leveraging complementary knowledge from other models through merging,
Mediator can achieve higher scores on these evaluations.

Ablation study of token level routing. The two figures (Fig. 7 and Fig. 8) below compare BTX
upcycling’s token-level routing behavior on both training and test datasets (using GSM8K for math,
TriviaQA for QA, HumanEval for coding, and MMLU for other tasks). We analyze the training data
to minimize out-of-distribution (OOD) scenarios and verify whether each task optimally routes to its
corresponding expert. Meanwhile, we examine the test data to understand real-world routing patterns
when there are inherent differences between training and inference tasks. The training set analysis
helps validate the routing mechanism’s ability to match tasks with their specialized experts, while the
test set reveals how routing adapts when handling slightly different task distributions in practice.

Fig. 7 shows the routing probabilities of tokens in the training set, with the x-axis representing
different tasks and the y-axis showing different expert models. The intensity of the colors in Fig. 7
reveals several key patterns in token routing distribution: 1) For non-OOD tasks (math, coding,
and QA), tokens in both lower and higher layers are predominantly routed to their corresponding
task-specific experts, with very high probabilities. This strongly indicates that specialized experts
are indeed optimal for handling their designated tasks; 2) For these non-OOD tasks, while their
corresponding experts still maintain dominance in middle layers, the routing probabilities are more
evenly distributed. This observation helps explain why model averaging in middle layers results in
relatively minimal performance degradation; 3) For OOD tasks like MMLU, we observe a more
uniform distribution of token routing across experts, with QA experts becoming dominant in the final
layers, likely because MMLU contains numerous knowledge-based question-answering tasks.

Fig. 8 illustrates the token routing distribution on test datasets, allowing us to analyze how routing
patterns adapt when there are inherent differences between training and inference tasks. We observe
similar overall routing patterns as in the training set, with one notable distinction - the dominance of
task-specific experts in both lower and higher layers is somewhat reduced compared to the training
set distribution. While each task still predominantly routes to its corresponding expert, the routing
probabilities are less concentrated. This empirical observation helps explain why we need to use
πκ(τ |x) to further relax the discrepancy between the estimated distribution and the true distribution
when handling real-world tasks that may differ from the training distribution.

I.3 ABLATION STUDIES OF HYER-PARAMETERS

Compression Ratios of Experts. For each sparsified expert, within each routing layer, we compare
different compression ratios in Table 24. Results show that the optimal performance is obtained when
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Figure 7: Token-level routing heat map visualization from training data set. The x-axis represents
different tasks, while the y-axis shows different expert models. The intensity indicates the routing
probability of each token to different experts.
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Figure 8: Token-level routing heat map visualization from test data set. The x-axis represents different
tasks, while the y-axis shows different expert models. The intensity indicates the routing probability
of each token to different experts.

14% parameters are left. This indicates that parameters with smaller magnitudes from task arithmetic
are likely noise, which aligns with experiments from (Yadav et al., 2023b).

I.4 SYSTEM PERFORMANCE ANALYSIS ON NVIDIA RTX 4090

Compared to A800 GPU results, running on consumer-grade RTX 4090 shows notably slower
inference speeds, likely due to: 1) Limited VRAM capacity (24GB vs 80GB) 2) Lower memory
bandwidth 3) Reduced BF16 FLOPS performance

However, the system remains functional for practical deployment. Additionally, with 96GB system
RAM available, the hardware configuration supports potential scaling to 8 experts since non-active
expert models are stored in system memory rather than VRAM.

J REAL-WORLD CASE STUDIES

Real-world Case Studies Analysis. We present three representative cases comparing the perfor-
mance of Qwen1.5 4B base model, task-specific SFT model, and our Mediator across different
domains:

GSM8K Mathematics Task: In Tab. 26, all three models demonstrate chain-of-thought (COT)
reasoning capabilities and successfully arrive at correct answers. The base model exhibits basic
step-by-step reasoning, while the SFT model provides more detailed intermediate steps in its solution
process. The Mediator not only maintains this rich level of detail but also better adheres to GSM8K’s
specific formatting conventions, showing enhanced task awareness.
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Table 24: Performance with Different Compression Ratio.
Compression Ratio 10% 12% 14% 16% 18% 20%

Mediator 96.6% 97.9% 100% 97.2% 97.2% 96.6%

Table 25: System performance of Mediator (Qwen 2.5 7B × 4) on NVIDIA RTX 4090

Metric Value Unit Notes

Average Inference Time 3.571 seconds Per 200 samples
GPU Memory Usage 23.97 GB Peak usage
System Memory Usage 21.7 GB For expert storage

HumanEval Programming Task: In this domain, we observe clear performance differences. Tab. 28
shows the base model fails to generate correct solutions and suffers from repetitive output patterns.
The SFT model shows significant improvement by producing correct implementations. T he Mediator
further enhances the output quality by not only providing correct solutions but also including concise
explanations of the problem-solving approach, demonstrating a more comprehensive understanding
of programming tasks.

Question Answering Task: In Tab. 27, while the base model provides correct answers, it exhibits
hallucination by incorrectly treating questions as multiple-choice format. Both the SFT model and
Mediator show more sophisticated COT reasoning in their explanations. Notably, the Mediator’s
responses appear more focused and standardized, possibly benefiting from the integration of expertise
from multiple domains beyond pure QA capabilities.

These real-world examples illustrate the progressive enhancement in reasoning capabilities and
response quality from the base model to the SFT model, and ultimately to the Mediator, which
consistently demonstrates the most comprehensive and well-structured outputs across diverse tasks.

Example:
Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?
base: 5) Natalia sold 48 / 2 = 24 clips in May. In April, Natalia sold 48 + 24 = 72 clips. Therefore, the answer is
72.
SFT model: In May, Natalia sold half as many clips as she did in April, so she sold 1 / 2 * 48 = 24 clips. In total,
Natalia sold 48 + 24 = 72 clips in April and May. Therefore, the answer is 72.
Mediator: How many clips did Natalia sell in May? ** In May, Natalia sold 48/2=«48/2=24»24 clips. How
many clips did Natalia sell altogether in April and May? ** Natalia sold 48+24=«48+24=72»72 clips altogether
in April and May. #### 72

Table 26: Example of responses to GSM8K test cases by Qwen 1.5 4B base model, SFT model, and
Mediator. The red color represents the thinking process.
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Example:
Question: Which William wrote the novel Lord Of The Flies?
base: A. William Golding B. Philip Roth C. Ian McEwan D. Virginia Woolf. Answer: A (Note: Answer is in
Chinese)
SFT model: William Golding wrote the novel Lord Of The Flies. The main character in the novel, Jack, embodies
many of the traits that Golding identified as features of the emerging post-British Empire "yuppie" attitude:
materialism, superficiality, "superiority" over others of "lesser status", and a lack of personal responsibility.The
novel is often seen as a metaphor for the rise of authoritarianism during World WAR II by some.
Mediator: William Golding. William Golding was a British novelist, essayist, and poet best known for his novel
Lord of the Flies, first published in 1954. The story centers on a group of young boys stranded on an uninhabited
island and their disastrous attempt to govern themselves. In this novel, Golding explores the themes of guilt,
corruption, morality, and the inherent evil in humanity while portraying the boys’ struggle for survival on the
island.

Table 27: Example of Trivia QA by Qwen 1.5 4B base model, SFT model, and Mediator. The red
color represents the thinking process.

Example:
Question: from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: Check
if in given list of numbers, are any two numbers closer to each other than given threshold.
»> has_close_elements([1.0, 2.0, 3.0], 0.5) False
»> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True
base: def generate_greatest_palindrome(number: int) -> str: Generate the greatest palindrome number which is
less than given number.
»> generate_greatest_palindrome(1990) ’9999’
»> generate_greatest_palindrome(9999) ’9999’
»> generate_greatest_palindrome(10000) ’9999’
»> generate_greatest_palindrome(100000) ’999999’
SFT model:
def has_close_elements(numbers: List[float], threshold: float) -> bool:

res = False
for i in range(len(numbers) - 1):

# check i’th and j’th elements are close to each other
j = i + 1
# calculate distance
diff = abs(numbers[i] - numbers[j])
if diff + threshold <= abs(numbers[i + 1]) and diff - threshold \

>= abs(numbers[i + 1]):
res = True
break

return res

Mediator:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

# Remove duplicate numbers
unique_numbers = set(numbers)

# Sort the unique numbers
sorted_numbers = sorted(unique_numbers)

# Iterate over the sorted numbers
for i in range(1, len(sorted_numbers)):

# Compare the current number with the next number
if sorted_numbers[i] - sorted_numbers[i-1] < threshold:

return True

return False

Table 28: Example of HumanEval by Qwen 1.5 4B base model, SFT model, and Mediator.
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