
Published as a conference paper at ICLR 2026

THE MATTHEW EFFECT OF AI PROGRAMMING ASSIS-
TANTS: A HIDDEN BIAS IN SOFTWARE EVOLUTION

Fei Gu1∗ Zi Liang2∗ Jiahao Ma3 Hongzong Li4†
1City University of Hong Kong (Dongguan)
2The Hong Kong Polytechnic University
3The University of Hong Kong
4The Hong Kong University of Science and Technology

ABSTRACT

AI-assisted programming is rapidly reshaping software development, with large
language models (LLMs) enabling new paradigms such as vibe coding and agen-
tic coding. While prior works have focused on prompt design and code generation
quality, the broader impact of LLM-driven development on the iterative dynam-
ics of software engineering remains underexplored. In this paper, we conduct
large-scale experiments on thousands of algorithmic programming tasks and hun-
dreds of framework selection tasks to systematically investigate how AI-assisted
programming interacts with the software ecosystem. Our analysis quantifies a
substantial performance asymmetry: mainstream languages and frameworks
achieve significantly higher success rates than niche ones. This disparity
suggests a feedback loop consistent with the Matthew Effect, where data-rich
ecosystems gain superior AI support. While not the sole driver of adoption, cur-
rent models introduce a non-negligible productivity friction for niche technolo-
gies, representing a hidden bias in software evolution.

1 INTRODUCTION

Large language models (LLMs) have quickly become ubiquitous in software engineering practice,
with nearly all programmers (Daigle & Staff, 2024) utilizing AI coding tools. Tools such as GitHub
Copilot, Cursor, and integrated LLM-based coding assistants now support developers in algorithmic
problem solving (Yan et al., 2023), debugging, and even full-stack system construction. These ad-
vances introduce new coding paradigms: vibe coding, where developers iterate by prompting rather
than typing every line, and agentic coding, where autonomous agents plan and execute end-to-end
development tasks. Vibe coding democratizes software development (Gadde, 2025) by lowering
barriers to creation, translating conceptual intent into executable implementation. Agent-based code
generation highlights the transformative potential of multi-agent systems in addressing the limita-
tions of standalone LLMs. Agentic Coding effectively handles real-world coding challenges (Wu
et al., 2024) by leveraging external tools for retrieval, achieving significant improvements (Huang
et al., 2023) in pass rates across diverse benchmarks (Zhang et al., 2024). Collectively, AI Coding
could be the silver bullet for software engineering.

Prior to this empirical reality check, there was widespread optimism that LLMs would serve as a
“Great Equalizer.” Recent studies show that LLMs help narrow the skill gap for junior developers
(Noy & Zhang, 2023; Metabob, 2024). However, the belief that they also function as a language
equalizer, making specific syntax irrelevant as suggested by (Huang, 2024) , has not yet been tested
in empirical settings. We challenge this assumption and argue that instead of flattening the land-
scape, AI support introduces a critical new factor that may disproportionately disadvantage niche
ecosystems.

Long-term ecosystem-level consequences of AI programming assistance remain underexplored.
This research gap is critical because biases in training data and model behavior may systemat-

∗Co-First Authors.
†Corresponding author: lihongzong@ust.hk.

1

Published as a conference paper at ICLR 2026

LeetCode

x.cpp x.py

x.java x.js

x.go

x.erl

x.rs

x.rkt

GPT-4o-mini

Gemini-2.5-Flash

Gemini-2.0-Flash

DeepSeek-V3

Qwen3-Turbo

Crawler Algorithmic
Problems

response analysis

Cursor

Copilot

CodeBuddy

Tasks of General-
Purpose CRUD
Applications

Tasks with
Divergent

Technology
Pathways

Prompt Vibe Coding

Agentic Coding

If fail

Iterative attempts

Figure 1: Two-tier experimental pipeline combining algorithmic tasks and framework tasks.

ically influence which languages, frameworks, and paradigms thrive or decline. Several obser-
vations underscore why this matters. First, LLM performance is uneven across languages: high-
resource ecosystems such as Python achieve disproportionately strong results, while lower-resource
languages receive much weaker support. For instance, the StarCoder dataset shows Python alone ac-
counts for nearly 40% of its training corpus, while many other languages appear only marginally (Li
et al., 2023). Similarly, CodeGen explicitly notes that model quality varies substantially depending
on training data availability, with mainstream ecosystems benefiting disproportionately (Nijkamp
et al., 2022). Second, the bias extends beyond languages to frameworks and usage patterns. AI
coding assistants often over-rely on established libraries, such as NumPy, which appears in up to
48% of completions even when alternatives may be more suitable, and they also display a persistent
preference for Python, which is selected 58% of the time for performance-critical tasks where other
languages like Rust may be objectively better (Twist et al., 2025).Taken together, these patterns raise
a central question: do AI tools genuinely empower innovation by lowering entry barriers, or do they
inadvertently reinforce existing dominance hierarchies?

The hypothesis we explore is that AI programming assistants exhibit a Matthew effect: “the rich
get richer.” This effect is rooted in the operational mechanics of LLMs, which are trained on mas-
sive datasets of publicly available code. Such dynamics risk creating lock-in effects that suppress
experimentation and reduce opportunities for paradigm-shifting innovations, which is consistent
with prior observations on programming language adoption and diffusion (Meyerovich & Rabkin,
2013). Programming learners may increasingly favor languages where AI support is strongest, fur-
ther consolidating existing trends (Prather et al., 2023). The empirical research on language adoption
demonstrates that ecosystem factors (libraries, existing code, community size), rather than purely
technical merit, strongly drive which languages gain traction, implying that model-mediated pro-
ductivity gains could differentially amplify preexisting popularity patterns (Meyerovich & Rabkin,
2013). Most existing studies of AI-assisted code generation focus on short-term, micro-level eval-
uations that measure model performance on narrow benchmarks or single-language datasets, which
do not capture the multi-faceted complexity of real-world software engineering. If this impact is
overlooked, the resulting cycle, where popular languages receive more LLM support due to their
prevalence in training data, risks reducing programming ecosystem diversity. Thus, AI assistance
could simultaneously lower barriers to entry while stifling long-term innovation.

Contributions. This paper makes three main contributions:

• We construct the first large-scale benchmark combining algorithmic programming tasks
(Total 3011 × 9 × 5 = 135, 495) and complex full-stack development tasks to assess AI
programming assistants across languages and frameworks.

• We design a controlled evaluation methodology that isolates the effect of language and
framework popularity, revealing structural biases beyond aggregate accuracy metrics.

• We quantify a substantial asymmetry in AI support across languages and frameworks,
demonstrating patterns consistent with Matthew-effect dynamics. While separating AI-
specific amplification from pre-existing structural biases remains an open empirical ques-
tion, our findings reveal a measurable “AI productivity tax” that correlates with ecosystem
popularity.

Figure 1 presents a high-level overview of the two-tier experimental pipeline, illustrating both
language-level algorithmic tasks and framework tasks

2

Published as a conference paper at ICLR 2026

2 RELATED WORK

2.1 AI PROGRAMMING ASSISTANTS

Research on LLM-based programming has largely focused on improving code generation quality,
prompt engineering, and usability. Systems like Codex and Copilot have demonstrated high produc-
tivity gains in everyday development. More recent models such as GPT-4, Gemini, and DeepSeek
exhibit strong reasoning and multi-step planning abilities, further lowering the barrier to complex
programming. Recent work has examined the capabilities of AI-assisted code generation tools
across diverse benchmarks. Early evaluations using HumanEval (Chen et al., 2021) revealed that
while Copilot often produced syntactically valid code, correctness rates were low and highly cor-
related with the prevalence of languages in the training data (Yetistiren et al., 2022). Although
HumanEval became an early standard for evaluating LLM coding proficiency (Jiang et al., 2024),
its limited number of problems restricts its applicability across all research contexts. To address
this limitation, subsequent studies employed LeetCode problems. Copilot’s best accuracy in Java
(Nguyen & Nadi, 2022), subsequent analysis extended to multiple tools, reporting that Copilot ex-
celled in Java, ChatGPT maintained strong cross-language consistency (Batista et al., 2024), and
Gemini performed best in JavaScript. Larger-scale evaluations showed Copilot’s accuracy decreased
with problem difficulty and varied substantially across languages (Mo et al., 2025). The hyperscale
multilingual benchmark-XCODEEVAL (Khan et al., 2024), demonstrated persistent challenges for
program synthesis and translation, especially in less common languages, though its automatically
collected data lacks manual verification and may introduce noise. Existing benchmarks offer valu-
able insights into AI code generation, but most focus on a few popular languages. By contrast, we
use a standardized LeetCode-based dataset to examine how language popularity affects performance.

2.2 PROGRAMMING ECOSYSTEM EVOLUTION

The evolution of programming languages and frameworks has long been shaped by ecosystem fac-
tors such as community size, tooling, and industry adoption, often outweighing intrinsic technical
merit (Meyerovich & Rabkin, 2013). In a longitudinal study of web framework popularity, Swacha
& Kulpa (2023) demonstrated that adoption trajectories vary considerably across ecosystems. AI
as a New Adoption Factor: The emergence of AI assistants introduces a complex new variable to
this evolutionary dynamic. Recent literature presents a nuanced picture of AI-assisted development:
while studies report substantial speedups on specific tasks (Peng et al., 2023), concerns regarding
correctness, over-reliance, and workflow disruption persist (Weisz et al., 2024). This suggests that
AI is not a simple linear accelerator but a nuanced influence on developer experience. However,
recent surveys highlight a critical risk within this influence: LLM performance is uneven and heav-
ily biased toward widely used languages (Zhang et al., 2023). Human-curated benchmarks such
as CodeArena reveal persistent cross-language disparities, suggesting that LLMs may reinforce the
dominance of mainstream ecosystems like Python and JavaScript (Yang et al., 2024). Beyond lan-
guage adoption, ecosystem-level inequalities also emerge when LLMs act as autonomous coding
agents: AgentBench (Liu et al., 2023) shows that proprietary models such as GPT-4 exhibit superior
reasoning and multi-turn decision-making, while open-source models lag significantly. Together,
these findings point to a risk that AI programming assistants could entrench existing hierarchies and
amplify long-term ecosystem imbalances.

3 ENVIRONMENT AND BENCHMARK CONSTRUCTION

To evaluate AI programming assistants, we designed a benchmark focused on two core software
engineering components: languages and frameworks. Using a controlled variable method, we first
assess performance on algorithmic tasks across eight programming languages to see if popularity
impacts success. We then evaluate the AI’s ability to build real-world applications using various
frameworks, testing both its proficiency on six mainstream full-stack combinations for common
CRUD tasks and its architectural reasoning in specialized scenarios where niche technologies might
be superior to popular ones. This dual approach allows us to measure not only core coding ability but
also whether AI assistants exhibit a bias towards mainstream technologies, even when more suitable
alternatives exist.

3

Published as a conference paper at ICLR 2026

3.1 ALGORITHMIC TASKS

3.1.1 LANGUAGE SELECTION

We select nine languages guided (Table 1) by the June 2025 TIOBE Index (TIOBE Software BV,
2025): Python, C++, C, Java, JavaScript, Go, Rust, Erlang, and Racket. These cover a spectrum
from top-ranked mainstream languages to niche or emerging languages, enabling examination of
popularity effects. This design allows us to investigate whether language popularity correlates with
the performance of AI-assisted code generation and submission success.

Table 1: Programming Languages Selected for Comparative Experiments and Their Popularity

Language TIOBE Rank GitHub Repos Trend
(Jun 2025) (>100 stars) (5-yr)

Python 1 185,000 Strong Growth
C++ 2 85,000 Stable
C 3 42,000 Gradual Decline
Java 4 125,000 Gradual Decline
JavaScript 6 172,000 Stable
Go 7 45,000 Rapid Growth
Rust 13 38,000 Rapid Growth
Erlang 46 1,200 Declining
Racket N/R 450 Niche/Stable

3.1.2 TEST CASES FROM LEETCODE

To evaluate performance across these languages, we source algorithmic tasks from LeetCode (Leet-
Code, 2025), an online platform chosen for its extensive collection of problems, robust online judg-
ing system, and broad multilingual support. LeetCode accommodates nearly 20 programming lan-
guages, including both widely used ones (C++, Java, Python) and less common ones (Rust, Scala,
Elixir), making it an ideal environment for our multilingual study.

To assemble our dataset, we develop a script to systematically retrieve problem information via
paginated POST requests to LeetCode’s GraphQL endpoint. This process collects metadata such as
problem titles, difficulty ratings, and tags, which are then processed into structured JSON files for
analysis. We focus exclusively on publicly available, non-paid problems to ensure reproducibility.

Using this approach, we collect a total of 3,011 problems, comprising 765 easy, 1,526 medium,
and 720 hard problems. This dataset forms the foundation for our large-scale benchmarking. To
manage solution submission and validation, we employ a distributed submission system with 15
accounts, implementing exponential backoff and rate-limiting mechanisms to ensure scalable and
reliable data collection.

We position these algorithmic tasks as the ‘canary in the coal mine’ for linguistic competency. While
acknowledging that LeetCode does not capture the full software ecosystem, the high compile error
rates observed in niche languages expose a fundamental deficiency. If an LLM cannot generate
syntactically correct code for basic logic, this failure inherently precludes its effective application in
broader and more complex engineering contexts.

3.2 FRAMEWORK SELECTION

Our evaluation employs a two-tiered benchmark designed to systematically assess LLM capabili-
ties across different ecosystem contexts. The first tier, General-Purpose CRUD Applications, tests
core code generation proficiency using six mainstream full-stack combinations selected by industry
adoption metrics (GitHub stars, Stack Overflow activity, job postings), establishing a performance
baseline in common development scenarios. The second tier, Tasks with Divergent Technology
Pathways, examines model reasoning beyond popularity biases by presenting architectural trade-offs
(e.g., performance vs. development speed), evaluating whether LLMs can identify and implement
more suitable niche frameworks versus mainstream options. This structure enables a comprehensive
assessment of both routine coding ability and adaptive architectural discernment.

4

Published as a conference paper at ICLR 2026

Table 2: Full-stack Combinations Selected for Comparative Experiments and Their Popularity

Stack Components GitHub Stars Stack Overflow Tags Job Description
Frequency

Java Enterprise Vue + Spring Boot + Hibernate Vue: 200k+ Vue: 100k+ High
Spring Boot: 78.4k Spring Boot: 100k+

Hibernate: 460 Hibernate: 100k+

Modern JS React + Express.js + Prisma React: 223k+ React: 200k+ High
Express.js: 104k+ Express.js: 100k+

Prisma: 43.8k Prisma: Less Common

Python Full-stack Django (REST) + Django ORM Django: 85k+ Django: 100k+ High
DRF: 29.5k+ DRF: 50k+

Lightweight Go Preact + Gin + GORM Preact: 38k Preact: 10k+ Medium
Gin: 423 Gin: 1k+

GORM: 38.8k GORM: 10k+

Modern Python Svelte + FastAPI + SQLAlchemy Svelte: 84.1k Svelte: 20k+ Medium-High
FastAPI: 89.4k FastAPI: 20k+

SQLAlchemy: 10.9k SQLAlchemy: 50k+

Rust Emerging SolidJS + Actix Web + SeaORM SolidJS: 34.2k SolidJS: 5k+ Low
Actix Web: 23.3k Actix Web: 5k+

SeaORM: 8.7k SeaORM: Less Common

To systematically evaluate LLM-assisted software development, we construct a benchmark consist-
ing of five categories of tasks jointly designed by domain experts and industry practitioners. These
tasks cover both generic development scenarios and cases with clear technology route divergences,
allowing for a comprehensive evaluation of AI-assisted coding performance.

Our benchmark begins with a foundational set of (1) Generic Tasks, which includes 17 rep-
resentative application scenarios frequently encountered in practice, such as movie ticket book-
ing and library management systems. To ensure comparability across diverse ecosystems, each
task is implemented across six mainstream full-stack frameworks, ranging from popular combi-
nations like Vue with Spring Boot to emerging stacks like SolidJS with Actix, as detailed in Ta-
ble 2. Building upon this baseline, the evaluation progresses to more specialized domains. For
(2) High-Concurrency Systems, we assess tasks like real-time chat platforms, contrasting the
mainstream Node.js/Socket.IO approach with the performance-oriented solutions offered by Go/-
Gin and Rust/Actix. The framework then addresses (3) Data-Intensive Applications, using exam-
ples like log analytics to compare the dominant Python/Pandas ecosystem against enterprise-focused
Scala/Spark and the niche scientific computing paradigm of Julia. Subsequently, to gauge perfor-
mance in lower-level development, the fourth category focuses on (4) Systems Infrastructure, task-
ing the models with creating lightweight API gateways and distributed key-value stores using Go,
Elixir/Phoenix, and Rust/Axum to cover popular, fault-tolerant, and emerging systems languages,
respectively. Finally, the benchmark explores (5) Alternative Programming Paradigms by re-
quiring declarative or functional solutions for services like chatbots, thereby comparing mainstream
imperative languages with the distinct approaches of Haskell, Clojure, or F#.

The selected stacks span a wide spectrum: mainstream (Python, JavaScript, Java), emerging (Go,
Rust, Kotlin), and niche (Elixir, Haskell, Clojure, Julia). This enables analysis not only of func-
tional correctness but also of how LLMs handle underrepresented yet domain-relevant stacks. These
frameworks are well-regarded in specific communities (e.g., concurrency, functional programming,
scientific computing) but have limited adoption and significantly fewer resources in open-source
datasets. This contrast allows us to measure not only whether the generated projects are executable
but also whether LLMs disproportionately favor mainstream stacks, even when alternative stacks
may be more suitable for the given task scenario.

3.3 EXPERIMENTAL INFRASTRUCTURE

For both types of tasks, the same core methodology is applied. The variation in implementation
arises merely from modifying the technology stack or paradigm specified in the prompt, while the
functional requirements remain consistent. For the algorithmic tasks, the proprietary LLM APIs
used are summarized in Appendix A.4. For the framework selection tasks, all work is performed

5

Published as a conference paper at ICLR 2026

using three AI programming tools directly: Cursor Pro (using Claude-4-Sonnet), CodeBuddy (using
Claude-4-Sonnet), and Visual Studio Code with GitHub Copilot (using GPT-5).

4 PROGRAMMING LANGUAGE ANALYSIS

4.1 AI CODING

For each of the 3,011 problems crawled from LeetCode, we apply a standardized procedure wherein
the problem statement and constraints are formatted into a consistent prompt template (for each of
the nine selected programming languages). In total, this process results in over 135,495 individual
code generation requests (3,011 problems × 9 languages × 5 models), by calling the APIs of these
five models: GPT-4o-mini (Hurst et al., 2024), DeepSeek-V3 (Liu et al., 2024), Gemini-2.0-Flash
(Google, 2025), Gemini-2.5-Flash (Comanici et al., 2025), Qwen3-Turbo (Yang et al., 2025). This
prompt is then submitted to each commercial closed-source LLM ’s API to generate solutions.

Although we request that the AI generate pure code, its responses occasionally contained natural
language text or other non-executable content. We specifically design the process to extract pure,
executable code from mixed-text responses. This systematic approach ensures that the final output
consists merely of functional code that can be directly submitted to LeetCode without any addi-
tional modifications, addressing the common challenge of irrelevant natural language explanations
and cross-language code snippets in AI-generated content. By implementing a multi-stage cleaning
process, the tool first identifies and extracts code blocks from potential Markdown formatting, then
applies language-specific regular expression patterns to remove all forms of comments and non-
code elements. The technical implementation employs targeted regular expression patterns tailored
to each programming language’s syntax characteristics, including ‘//.’ and ‘/*.?*/’ for C-style lan-
guages, ‘ˆ#.\n?’ for Python, ‘ˆ%.\n?’ for Erlang, and ‘ˆ;.*\n?’ for Racket. This language-aware
approach effectively removes both single-line and multi-line comments while preserving code func-
tionality. The refinement process additionally incorporates whitespace normalization and explana-
tory text filtration, resulting in clean, production-ready code that maintains the algorithmic integrity
of the original AI-generated solution while eliminating all non-essential elements that would prevent
immediate platform execution.

4.2 SOLUTION JUDGING

Each AI-generated solution is submitted without modifications to LeetCode’s online judging system,
with results systematically recorded for subsequent analysis. The platform categorizes submission
outcomes into six distinct status types: Accepted, Compile Error, Wrong Answer, Runtime Error,
Time Limit Exceeded and Memory Limit Exceeded. The primary evaluation metric is the Pass@1
accuracy, defined as the fraction of solutions accepted on their first submission attempt.

To support this large-scale evaluation while respecting LeetCode’s operational policies, we imple-
ment a distributed submission system utilizing multiple accounts with proper authentication mecha-
nisms, including CSRF tokens and session cookies. The system incorporates an exponential backoff
strategy with an initial 2-second delay and a maximum of 32 seconds for retries to gracefully man-
age HTTP 429 and other transient errors. Additionally, request throttling is enforced at a rate of
10 submissions per minute per account to prevent detection, avoid service disruption, and ensure
ethical use of LeetCode’s platform resources.

4.3 RESULTS

Our large-scale evaluation reveals a pronounced performance gap between popular and less popular
programming languages, a disparity that is substantial and consistent across all five state-of-the-art
models tested. As shown in Table 3, mainstream languages including Python, JavaScript, Java, C
and C++ achieve Pass@1 rates exceeding 60% in top-performing models. In stark contrast, less pop-
ular languages such as Erlang and Racket struggle dramatically, with success rates often below 25%
and sometimes approaching zero. For instance, the best-performing model (DeepSeek-V3) achieves
79.81% Pass@1 for Python but only 24.31% for Erlang and 20.82% for Racket. This pattern con-
firms that language popularity is a stronger predictor of AI coding success than model capability
alone. This phenomenon, a pronounced Matthew effect in AI-assisted programming, becomes even

6

Published as a conference paper at ICLR 2026

Table 3: Experimental Results across five LLMs and eight programming languages. Pass@1 denotes
first-attempt success rate; error categories are reported as raw counts.

Model Lang Pass@1 Accepted Wrong Ans. Compile Err. Runtime Err. Other Err. Easy Medium Hard
G

em
in

i-
2.

5-
Fl

as
h Python 67.92% 2045 217 0 726 23 609 1104 331

C++ 68.65% 2067 164 744 13 23 617 1103 347
C 58.59% 1764 170 1007 52 18 572 925 267

Java 68.65% 2067 157 739 39 9 612 1106 349
JavaScript 64.50% 1942 275 0 781 13 592 1053 297

Go 50.22% 1512 105 1377 7 10 544 751 216
Rust 51.81% 1560 115 1311 17 82 507 837 216

Erlang 1.26% 38 4 2824 145 33 22 14 2
Racket 17.10% 515 94 2184 200 18 235 237 43

G
em

in
i-

2.
0-

Fl
as

h Python 62.94% 1895 268 0 787 61 594 1025 275
C++ 64.26% 1935 249 718 34 75 609 1048 278

C 47.09% 1418 304 1044 127 116 519 723 176
Java 65.86% 1983 273 652 42 61 603 1077 303

JavaScript 64.40% 1939 357 0 618 97 607 1057 275
Go 55.90% 1683 237 1088 17 66 527 907 249

Rust 50.38% 1517 267 1144 44 71 501 793 223
Erlang 0% 0 0 2918 93 0 0 0 0
Racket 11.06% 333 281 1995 350 52 180 139 14

G
PT

-4
o-

m
in

i

Python 41.98% 1265 444 0 1265 38 387 714 162
C++ 41.68% 1255 416 1234 72 34 428 683 144

C 38.43% 1157 460 1169 191 34 474 518 165
Java 45.50% 1370 452 1055 99 35 476 746 148

JavaScript 45.57% 1372 564 0 1031 44 495 738 139
Go 39.22% 1181 405 1375 18 32 451 622 108

Rust 24.05% 724 322 1915 29 21 308 359 57
Erlang 1.16% 35 77 2701 195 6 27 6 2
Racket 1.99% 60 147 2661 131 12 37 22 1

Q
w

en
3-

Tu
rb

o

Python 37.00% 1114 401 0 1117 54 405 610 99
C++ 30.22% 910 411 1608 68 14 367 462 81

C 21.65% 652 439 1758 141 21 310 306 36
Java 32.55% 980 118 1886 19 8 337 491 151

JavaScript 38.63% 1163 618 0 1196 34 450 616 97
Go 33.15% 998 403 1566 26 18 388 533 77

Rust 2.19% 66 22 2915 7 1 29 33 4
Erlang 0% 0 0 2873 138 0 0 0 0
Racket 3.25% 98 201 2505 176 31 59 38 1

D
ee

pS
ee

k-
v3

Python 79.81% 2403 0 162 418 28 683 1294 426
C++ 78.81% 2373 450 133 28 27 674 1279 420

C 67.78% 2041 268 497 122 83 668 1071 302
Java 79.38% 2390 412 152 29 28 681 1288 421

JavaScript 75.69% 2279 0 230 469 33 671 1227 381
Go 76.82% 2313 497 150 16 35 673 1249 391

Rust 71.24% 2145 625 199 22 20 644 1161 340
Erlang 24.31% 732 1445 373 396 65 378 321 33
Racket 20.82% 627 1805 287 197 95 326 268 33

more dramatic when stratified by problem difficulty. As illustrated in Figure 2, the performance gap
widens substantially as complexity increases. For Easy problems, the difference between popular
and niche languages ranges from 45 to 82 percentage points. This gap expands significantly to 58 to
95 points on Hard problems, indicating that the advantage of data-rich languages scales non-linearly
with reasoning complexity. On these Hard tasks, top models achieve 50 to 63% success with popu-
lar languages but only 0 to 6% with less popular ones, demonstrating that superior model capability
cannot compensate for the disadvantage of language unpopularity.

Pyth
on C++ C

Ja
va

Ja
va

Scri
pt Go

Rust

Erla
ng

Rac
ket

Programming Language

0

20

40

60

80

100

Pa
ss

 R
at

e
(%

)

Gemini-2.5-Flash

Easy
Medium
Hard

Pyth
on C++ C

Ja
va

Ja
va

Scri
pt Go

Rust

Erla
ng

Rac
ket

Programming Language

0

20

40

60

80

100

Pa
ss

 R
at

e
(%

)

GPT-4o-mini

Pyth
on C++ C

Ja
va

Ja
va

Scri
pt Go

Rust

Erla
ng

Rac
ket

Programming Language

0

20

40

60

80

100

Pa
ss

 R
at

e
(%

)

DeepSeek-V3

Figure 2: Pass rates across difficulty levels for top LLMs on eight programming languages.

7

Published as a conference paper at ICLR 2026

Beyond success rates, the distribution of failure types reveals the mechanistic basis of this effect.
For popular languages, most unsuccessful submissions are Wrong Answer or Runtime Errors, sug-
gesting models generate semantically plausible but incorrect solutions. By contrast, failures in low-
resource languages are dominated by Compile Errors, indicating models struggle to produce even
syntactically valid code. This points to a deeper structural limitation: insufficient training exposure
hinders the ability of models to internalize basic coding idioms. To ensure these differences are not
due to random variation, we conducted paired t-tests comparing Pass@1 rates. As summarized in
Table 4, the differences were statistically significant across all models (p < 0.001), confirming that
the observed performance gaps reflect systematic biases.

Table 4: Statistical significance of Pass@1 differences between popular languages (Python, C++, C,
Java, JavaScript) and less popular languages (Go, Rust, Erlang, Racket). All tests used paired t-tests
across the 3,011 problems.

Model Mean Difference (%) p-value
DeepSeek-V3 +44.8 < 0.001
Gemini-2.5-Flash +42.3 < 0.001
Gemini-2.0-Flash +40.5 < 0.001
GPT-4o-mini +33.1 < 0.001
Qwen3-Turbo +28.9 < 0.001

The observed Matthew effect has profound implications for programming language ecosystems.
As AI-assisted programming becomes pervasive, the massive performance advantage for popular
languages may accelerate their dominance while marginalizing niche languages, regardless of their
technical merits. This could ultimately reduce linguistic diversity in software development. Our
study uniquely leverages “data contamination” as a direct signal of language popularity, defining
the overlap between test tasks and training data as a measure of a language’s representation in the
training corpus. This premise dictated our deliberate selection of newly released LeetCode tasks
from 2025. This choice minimizes “rote recall” from widely-circulated problems and aligns the
“contamination gap” with contemporary popularity trends, allowing us to establish a clearer causal
chain: language popularity dictates training data coverage, which in turn drives AI performance.

5 FRAMEWORK ANALYSIS

After the evaluation of programming languages, we extend our study to software frameworks, which
represent higher-level abstractions shaping developer workflows. Unlike languages, frameworks
bundle architectural choices and toolchains, making them a crucial layer where LLM biases may
influence ecosystem trajectories. Our analysis therefore examines whether a similar Matthew ef-
fect appears at the framework level, and to what extent mainstream stacks enjoy disproportionate
advantages over niche alternatives.

5.1 VIBE CODING

For each development task, the implementation process across varying technology stacks fol-
lowed a rigorously controlled VibeCoding protocol using the Cursor(Claude-4-Sonnet), CodeBuddy
(Claude-4-Sonnet), and Copilot (GPT-5) in both Agent Mode (for high-level planning and multi-file
generation) and Auto Mode (for inline code completion and contextual suggestions). The process
commenced with an initial prompt that specified the functional requirements of the task along with
the designated technology stack, no other contextual or syntactic guidance was provided. Through-
out the implementation, the experimenter abstained from any manual coding, architectural input, or
corrective intervention. The interaction was strictly limited to forwarding raw, unedited error mes-
sages, whether from dependency installation, compilation, runtime execution, or functional short-
comings, back into the chat interface as successive prompts. Each error message initiated a new,
automated debugging attempt by the agent, continuing in an iterative loop without additional human
elaboration. The procedure terminated only when all core functional requirements were satisfacto-
rily met and the application operated as intended, or when a predetermined cap on iterative attempts
was reached. This approach ensured that the observed outcomes were attributable solely to the AI’s
autonomous capacity to reason about and implement solutions within each technological context.

8

Published as a conference paper at ICLR 2026

The empirical results provide strong evidence of a Matthew Effect in programming framework adop-
tion under AI-assisted coding. Specifically, the success rate and efficiency of code generation were
strongly skewed toward a few dominant frameworks. For instance, Vue+Spring, React+Express, and
Django consistently solved the majority of the 17 benchmark tasks, often within 1–3 attempts. In
contrast, less prevalent frameworks such as Svelte+FastAPI and SolidJS+Actix exhibited far higher
failure rates; many tasks required more than five attempts or could not be completed at all.

The heatmap analysis (Figure 3) highlights this disparity. Successful completions clustered around
the established frameworks, while newer or niche stacks displayed darker regions (representing
repeated failures). Importantly, this pattern emerged across all categories of tasks, from lightweight
personal applications (e.g., a birthday reminder tool) to more complex management systems (e.g.,
library management or inventory control). This consistency suggests that the observed bias is not
task-specific but structural.

5.2 RESULTS

Vu
e+

Sp
rin

g

Re
act

+Ex
pre

ss

Djan
go

Pre
act

+Gin

Sv
elt

e+
Fas

tAPI

So
lidJ

S+
Ac

tix

Meeting Room Reservation
Pet Information Registration

Library Management System
Personal To-Do List Tool

Personal Accounting Applet
Commodity Inventory Management

Class Roll Call System
Movie Ticket Booking System

Equipment Borrowing Registration
Birthday Reminder Tool

Book Management System
Express Pickup Code Management

Course Schedule Inquiry System
Parking Lot Payment Record

Volunteer Activity Registration
E-commerce System

Fitness Center Session System

3 2 1 × × ×
1 2 2 3 1 ×
3 3 × × × ×
3 3 2 1 × ×
2 2 2 × 2 ×
3 2 2 4 5 ×
3 2 2 5 5 ×
2 2 2 2 × ×
3 2 2 2 × ×
× 2 1 5 3 ×
4 4 × × × ×
2 3 2 × 3 4
3 × 2 × 2 ×
2 3 1 × 3 ×
2 2 2 1 5 ×
4 4 5 × ×
3 3 1 4 × ×

AI Code Generation Attempts (Lower is Better)

1

2

3

4

5

6

Figure 3: performance of 17 program tasks under 6 technical frameworks

Moreover, even in tasks where less popular stacks are technically well-suited (e.g., high-concurrency
systems where Go or Rust frameworks should excel), the models still disproportionately favored
Python- and JavaScript-based solutions. This demonstrates that the disparity arises not purely from
technical merit, but from the underlying training data distribution. Frameworks with richer online
presence and broader community adoption provide significantly more exposure during model pre-
training, resulting in higher generation quality and stability.

Taken together, these findings illustrate a self-reinforcing feedback loop with significant implications
for software ecosystem diversity: popular frameworks are easier for LLMs to generate successfully,
developers relying on AI assistants are nudged toward these frameworks, and increased adoption
further amplifies their online presence, ensuring even more model exposure in future iterations.
Such dynamics exemplify the Matthew Effect in software ecosystems, where established technolo-
gies “get richer” in terms of visibility, usability, and adoption. While convenient for practitioners
using mainstream stacks, this trend risks stifling ecosystem diversity by systematically disadvantag-
ing technically promising but less popular frameworks. The findings further reveal that framework
maturity and ecosystem support significantly impact AI code generation, with emerging frameworks
lagging behind, suggesting that LLM-based assistance could exacerbate adoption gaps between es-
tablished and new technologies.

9

Published as a conference paper at ICLR 2026

2
4

6
8

10

Chat Room

Real-time Counter

Log Statistics

Recommendation

API Gateway

Distributed KV

Task Management

Chatbot

Tech A (Mainstream) Tech B (Mid) Tech C (Niche)

Figure 4: Results of Divergent Technology Path-
way Benchmarks

As shown in Figure 4, the experiments of
divergent-technology-pathway reinforce this
conclusion. In scenarios explicitly designed
to pit mainstream, middle-ground, and niche
stacks against each other, for example, API
gateways, distributed key-value stores, or chat-
bot systems, the number of required human
interventions diverged sharply. Mainstream
stacks (A) typically converged in 1–2 correc-
tion rounds, middle-ground stacks (B) required
slightly more effort (2–3 interventions), while
niche or emerging stacks (C) often demanded
5–10 rounds of guidance before producing a
runnable system. These results confirm that
even when controlling for task type, ecosystem
popularity heavily conditions the reliability of
AI-generated code.

6 CONCLUSION

This study provides the first large-scale empirical evidence of the Matthew effect in AI program-
ming assistants, demonstrating how LLMs systematically amplify existing popularity hierarchies
among programming languages and frameworks. Our findings reveal that mainstream technologies
consistently achieve higher success rates in code generation, while niche and emerging alternatives
face disproportionate failure rates that could potentially stifle innovation. We emphasize that tech-
nical decision-making is multi-dimensional; AI compatibility is not a universal veto that overrides
established factors like runtime performance. However, our results quantify a substantial ’AI Pro-
ductivity Tax’ for niche languages. This creates a hidden friction consistent with Matthew-effect
dynamics, which may disproportionately influence new projects and long-term ecosystem diversity.
Moving forward, we plan to expand our benchmarks into broader domains, investigate collaborative
multi-agent development scenarios, and develop methods to counteract ecosystem homogenization
through diversity-aware training and inference strategies.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We ensure reproducibility by releasing the complete benchmark dataset, prompt templates, and eval-
uation code. Details of the benchmark composition are given in Appendix A, prompt and code ex-
traction pipelines in Appendix B, and experimental infrastructure in Table 6. All code, prompts, and
released artifacts are available at our public repository: https://github.com/FrankGGu/The-Matthew-
Effect-of-AI-Programming-Assistants. For large files, we use GitHub Releases under the same
repository.

REFERENCES

Samuel Silvestre Batista, Bruno Branco, Otávio Castro, and Guilherme Avelino. Code on demand:
A comparative analysis of the efficiency understandability and self-correction capability of copilot
chatgpt and gemini. In Proceedings of the XXIII Brazilian Symposium on Software Quality, pp.
351–361, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Kyle Daigle and GitHub Staff. Survey: The ai wave continues to grow on software develop-
ment teams. GitHub Blog. Available online: https://github. blog/news-insights/research/survey-
ai-wave-grows/# key-survey-findings, 2024.

Akhilesh Gadde. Democratizing software engineering through generative ai and vibe coding: The
evolution of no-code development. Journal of Computer Science and Technology Studies, 7(4):
556–572, 2025.

Google. Gemini 2.0 Flash. https://ai.google/gemini/, 2025. Accessed: August 2025.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Jensen Huang. The programming language is human: Keynote at computex 2024. Computex 2024
Keynote, NVIDIA Corporation, 2024. https://www.nvidia.com/en-us/on-deman
d/session/computex24-keynote/.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. Xcodeeval: An execution-based large scale multilingual multitask bench-
mark for code understanding, generation, translation and retrieval. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6766–6805, 2024.

LeetCode. Leetcode online judge, 2025. URL https://leetcode.cn. Accessed: May-June
2025.

Hongzong Li and Jun Wang. Collaborative annealing power k-means++ clustering. Knowledge-
Based Systems, 255:109593, 2022.

11

https://ai.google/gemini/
https://www.nvidia.com/en-us/on-demand/session/computex24-keynote/
https://www.nvidia.com/en-us/on-demand/session/computex24-keynote/
https://leetcode.cn

Published as a conference paper at ICLR 2026

Hongzong Li and Jun Wang. CAPKM++ 2.0: An upgraded version of the collaborative annealing
power k-means++ clustering algorithm. Knowledge-Based Systems, 262:110241, 2023.

Hongzong Li and Jun Wang. From soft clustering to hard clustering: A collaborative annealing
fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 32(3):1181–1194, 2024a.

Hongzong Li and Jun Wang. Capacitated clustering via majorization-minimization and collaborative
neurodynamic optimization. IEEE Transactions on Neural Networks and Learning Systems, 35
(5):6679–6692, 2024b.

Hongzong Li and Jun Wang. A collaborative neurodynamic algorithm for quadratic unconstrained
binary optimization. IEEE Transactions on Emerging Topics in Computational Intelligence, 9(1):
228–239, 2025a.

Hongzong Li and Jun Wang. Machine-cell and part-family formation via neurodynamics-driven
constrained binary matrix factorization. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 55(12):9456–9467, 2025b.

Hongzong Li, Jun Wang, Nian Zhang, and Wei Zhang. Binary matrix factorization via collaborative
neurodynamic optimization. Neural Networks, 176:106348, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Metabob. The hidden pitfalls of using llms in software development. https://metabob.com/
blog-articles/the-hidden-pitfalls-of-using-llms-in-software-dev
elopment---why-language-models-arent-the-silver-bullet-you-mig
ht-think.html, 2024. Accessed: 2025-11-26.

Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming language adoption. In
Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented program-
ming systems languages & applications, pp. 1–18, 2013.

Ran Mo, Dongyu Wang, Wenjing Zhan, Yingjie Jiang, Yepeng Wang, Yuqi Zhao, Zengyang Li, and
Yutao Ma. Assessing and analyzing the correctness of github copilot’s code suggestions. ACM
Transactions on Software Engineering and Methodology, 34(7):1–32, 2025.

Nhan Nguyen and Sarah Nadi. An empirical evaluation of github copilot’s code suggestions. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories, pp. 1–5, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Shakked Noy and Whitney Zhang. Experimental evidence on the productivity effects of generative
artificial intelligence. Science, 381(6654):187–192, 2023.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590, 2023.

James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi, Michelle Craig, Hieke
Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-Reilly, et al. The robots are here: Navi-
gating the generative ai revolution in computing education. In Proceedings of the 2023 working
group reports on innovation and technology in computer science education, pp. 108–159. 2023.

12

https://metabob.com/blog-articles/the-hidden-pitfalls-of-using-llms-in-software-development---why-language-models-arent-the-silver-bullet-you-might-think.html
https://metabob.com/blog-articles/the-hidden-pitfalls-of-using-llms-in-software-development---why-language-models-arent-the-silver-bullet-you-might-think.html
https://metabob.com/blog-articles/the-hidden-pitfalls-of-using-llms-in-software-development---why-language-models-arent-the-silver-bullet-you-might-think.html
https://metabob.com/blog-articles/the-hidden-pitfalls-of-using-llms-in-software-development---why-language-models-arent-the-silver-bullet-you-might-think.html

Published as a conference paper at ICLR 2026

Jakub Swacha and Artur Kulpa. Evolution of popularity and multiaspectual comparison of widely
used web development frameworks. Electronics, 12(17):3563, 2023.

TIOBE Software BV. Tiobe index for june 2025, 2025. URL https://www.tiobe.com/ti
obe-index/. Accessed: June 2025.

Lukas Twist, Jie M Zhang, Mark Harman, Don Syme, Joost Noppen, and Detlef Nauck. Llms
love python: A study of llms’ bias for programming languages and libraries. arXiv preprint
arXiv:2503.17181, 2025.

Justin D. Weisz, Michael He, Michael Muller, et al. Design principles for generative ai applications.
In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI ’24). ACM,
2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

Dapeng Yan, Zhipeng Gao, and Zhiming Liu. A closer look at different difficulty levels code gen-
eration abilities of chatgpt. In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1887–1898. IEEE, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jian Yang, Jiaxi Yang, Ke Jin, Yibo Miao, Lei Zhang, Liqun Yang, Zeyu Cui, Yichang Zhang,
Binyuan Hui, and Junyang Lin. Evaluating and aligning codellms on human preference. arXiv
preprint arXiv:2412.05210, 2024.

Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. Assessing the quality of github copilot’s code genera-
tion. In Proceedings of the 18th international conference on predictive models and data analytics
in software engineering, pp. 62–71, 2022.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui
Wang. Unifying the perspectives of nlp and software engineering: A survey on language models
for code. arXiv preprint arXiv:2311.07989, 2023.

13

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Published as a conference paper at ICLR 2026

APPENDIX

LLM USAGE STATEMENT

This study used large language models (LLMs) as a core tool within the experimental process to
generate and evaluate code samples. Our experiments involved calling the APIs of multiple LLM
models (including GPT-4o-mini, DeepSeek-V3, Gemini-2.0-Flash, Gemini-2.5-Flash, and Qwen3-
Turbo), making a total of over 135,495 code generation requests. These models were used to gener-
ate solutions for thousands of algorithmic programming tasks and hundreds of framework selection
tasks, systematically investigating how AI-assisted programming impacts the software ecosystem.
We followed a strict VibeCoding protocol, where the LLMs acted as autonomous agents to produce
runnable code through iterative feedback on error messages.

To be clear, while LLMs were an integral part of the experimental process in this study, they were
not used to generate the research ideas, experimental design, or data analysis for this paper.
These aspects were performed independently by the authors.

ETHICS STATEMENT

This study relies exclusively on data from LeetCode.cn, a platform independently operated
by Lingkou Network (Shanghai) Co., Ltd. and governed by its own Terms of Service
(https://leetcode.cn/terms-c). The intellectual-property attorney confirmed that retrieving publicly
available problem metadata, without bypassing technical protection, while respecting the Robots
protocol, and for non-commercial academic research, is compliant with both Chinese law and the
LeetCode.cn Terms of Service. We additionally confirmed our access pattern and usage constraints
with LeetCode.cn staff.

All accounts used for submitting model-generated solutions were manually created, used solely for
distributing evaluation load, and operated strictly within normal rate limits. We did not attempt
to obtain platform benefits, circumvent protections, or access any non-public content. We do not
process, collect, or store personal data, user-generated content, or paid materials from LeetCode.cn.
We do not redistribute proprietary problem statements or other restricted content. Researchers with
enterprise access may further reproduce our evaluation pipeline through the official LeetCode API
endpoint (https://leet.ai), which imposes no strict rate limits and supports all languages required in
our study.

A BENCHMARK SPECIFICATIONS

A.1 LEETCODE BENCHMARK COMPOSITION

The LeetCode benchmark used in this study comprises 3,011 programming problems collected from
the platform. The dataset contains 765 Easy (25.4%), 1,526 Medium (50.7%), and 720 Hard (23.9%)
problems, providing a balanced representation across difficulty levels.

Figure 5 presents the distribution of the top 15 algorithmic topics by difficulty level. The most preva-
lent tags include Array (1,777 problems), String (737 problems), and Hash Table (638 problems).
Notably, Dynamic Programming problems are predominantly Medium (270) and Hard (287) diffi-
culty, reflecting the challenging nature of this topic. Conversely, Two Pointers and Math problems
show stronger representation in the Easy and Medium categories.

A.2 DATA AVAILABILITY AND REPRODUCIBILITY

We release the benchmark construction scripts, prompt templates, evaluation pipeline, and analy-
sis code at: https://github.com/FrankGGu/The-Matthew-Effect-of-AI-Programming-Assistants. The
experiment is fully reproducible using the provided codebase, though we note two practical con-
straints: (1) the evaluation requires 7–10 weeks due to rate limiting and scale (135,495 code gener-
ations), and (2) reproduction incurs significant API costs ($1800-$2,000 USD).

14

Published as a conference paper at ICLR 2026

0 20 40 60 80 100
Percentage Distribution by Difficulty (%)

Array

String

Hash Table

Dynamic Programming

Math

Sorting

Greedy

Depth-First Search

Binary Search

Matrix

Bit Manipulation

Breadth-First Search

Tree

Two Pointers

Prefix Sum

395
(22.2%)

925
(52.1%)

457
(25.7%) Total: 1777

219
(29.7%)

352
(47.8%)

166
(22.5%) Total: 737

167
(26.2%)

366
(57.4%)

105
(16.5%) Total: 638

270
(47.0%)

287
(49.9%) Total: 575

156
(28.2%)

251
(45.3%)

147
(26.5%) Total: 554

90
(21.5%)

240
(57.3%)

89
(21.2%) Total: 419

48
(12.8%)

243
(64.8%)

84
(22.4%) Total: 375

46
(15.8%)

172
(58.9%)

74
(25.3%) Total: 292

36
(12.8%)

144
(51.1%)

102
(36.2%) Total: 282

39
(16.2%)

134
(55.8%)

67
(27.9%) Total: 240

51
(21.8%)

103
(44.0%)

80
(34.2%) Total: 234

25
(10.7%)

143
(61.1%)

66
(28.2%) Total: 234

49
(21.8%)

125
(55.6%)

51
(22.7%) Total: 225

69
(34.0%)

109
(53.7%)

25
(12.3%) Total: 203

20
(10.5%)

116
(61.1%)

54
(28.4%) Total: 190

Distribution of Top Algorithmic Topics Across Difficulty Levels

Easy Medium Hard

Figure 5: Distribution of top algorithmic topics across difficulty levels, showing the number and
percentage of problems for each difficulty category

A.3 DETAILED DESCRIPTION OF THE 17 GENERAL-PURPOSE CRUD TASKS

The table 6 provides a detailed description of the 17 general-purpose application scenarios used to
evaluate framework selection in Section 5. These tasks were designed to cover a wide range of
common software development requirements while maintaining a comparable level of complexity.

A.4 PROPRIETARY LLM APIS

Table 6 summarizes the proprietary large language models used in our algorithmic task experiments.
We include details on version identifiers, release dates, and knowledge cut-off points to ensure re-
producibility and clarify the temporal alignment between training data and evaluation tasks.

B PROMPT ENGINEERING & CODE EXTRACTION METHODOLOGY

B.1 STANDARDIZED PROMPT DESIGN AND IMPLEMENTATION

B.1.1 PRIMARY PROMPT TEMPLATE STRUCTURE

def _generate_prompt(self, problem_data: Dict) -> str:
title = problem_data.get(’title’, ’’)
description = problem_data.get(’description’, ’’)

prompt = f"""
Provide a {self.language_name} solution for LeetCode problem

’{title}’.

15

Published as a conference paper at ICLR 2026

Task Name Core Functional Requirements
E-commerce System Product CRUD, recommendation logic, order creation/status workflow.
Library Management
System

Search books, track loans, calculate overdue fines, category statistics.

Personal To-Do List
Tool

Add, mark complete/delete, and filter todo items by date.

Meeting Room Reserva-
tion System

Display rooms, reserve/check availability in time slots, view bookings.

Personal Accounting
Applet

Record income/expense (amount, category, note), view monthly summary.

Commodity Inventory
Management

Add products (name, specs), update stock levels, log inbound/outbound.

Class Roll Call System Manage student list, record daily attendance (present/absent), count absences.
Pet Information Regis-
tration

Register pets (name, breed, owner), log vaccination records.

Movie Ticket Booking
System

Display movie schedules, select seats, generate and manage orders.

Equipment Borrowing
Registration

Manage equipment (name, model), record borrow/return dates and user.

Birthday Reminder Tool Add contacts and birthdays, list upcoming birthdays for the month.
Express Pickup Code
Management

Enter parcel info (tracking #, code, recipient), mark as picked up.

Course Schedule In-
quiry System

Maintain course info (name, teacher, room), display weekly/daily schedule.

Parking Lot Payment
Record

Record vehicle entry/exit timestamps, calculate fee based on duration.

Volunteer Activity Reg-
istration

Publish activities (name, time, location), register users, count participants.

Book Management Sys-
tem

Register books (title, donor, ISBN), record borrowing history.

Fitness Session Con-
sumption

Manage user membership cards, deduct sessions on check-in, check balance.

Table 5: Detailed description of the 17 General-Purpose CRUD application tasks used for framework
evaluation.

Table 6: Summary of proprietary LLM APIs used in Algorithmic tasks.

Model Version / Endpoint Release Knowledge Cut-off
GPT-4o-mini GPT-4o-mini-2024-07-18 Jul 2024 Oct 2023
DeepSeek-V3 DeepSeek-V3-0324 Mar 2025 Mar 2025
Gemini-2.0-Flash Gemini-2.0-flash-001 Feb 2025 Jun 2024
Gemini-2.5-Flash Gemini-2.5-flash Jun 2025 Jan 2025
Qwen3-Turbo Qwen-turbo-2025-04-28 Apr 2025 Apr 2025

IMPORTANT: Do not think through the problem step by step. Just
provide the code directly.

Code requirements:
1. Must compile and run on LeetCode
2. No comments or explanations
3. Only the solution code

Problem Description:
{description}

Code:
"""
return prompt

B.1.2 SYSTEM-LEVEL INSTRUCTION CONFIGURATION

16

Published as a conference paper at ICLR 2026

"systemInstruction": {
"parts": [

{"text": "You are a code generation assistant. Provide only code
without any explanations or thinking process. Do not think
through problems step by step."}

]
}

B.2 MULTI-STAGE CODE EXTRACTION PIPELINE

B.2.1 CODE BLOCK BOUNDARY IDENTIFICATION

Code block start pattern detection
start_patterns = [

r"‘‘‘\w*\n", # Standard code block markers (‘‘‘rust\n)
r"‘‘‘\n", # Generic code blocks (‘‘‘\n)
r"’’’.*?\n", # Python multiline string markers
r’""".*?\n’, # Python multiline string markers

]

Code block end pattern detection
end_patterns = [

r"\n‘‘‘\s*$", # Standard end markers
r"\n‘‘‘\s*\n", # End markers with newlines
r"\n’’’\s*$", # Python end markers
r’\n"""\s*$’, # Python end markers

]

B.2.2 LANGUAGE-SPECIFIC SYNTAX CLEANING

Python: Remove # comments
if self.language in ["python3"]:

solution = re.sub(r’ˆ#.*\n?’, ’’, solution, flags=re.MULTILINE)
C-family languages: Remove // and /* */ comments
elif self.language in ["cpp", "java", "javascript", "go", "rust"]:

solution = re.sub(r’ˆ//.*\n?’, ’’, solution, flags=re.MULTILINE)
solution = re.sub(r’/*.*?*/’, ’’, solution, flags=re.DOTALL)

Erlang: Remove % comments
elif self.language == "erlang":

solution = re.sub(r’ˆ%.*\n?’, ’’, solution, flags=re.MULTILINE)
Racket: Remove ; comments
elif self.language == "racket":

solution = re.sub(r’ˆ;.*\n?’, ’’, solution, flags=re.MULTILINE)

B.2.3 DEBUGGING ARTIFACT REMOVAL

Remove debugging statements and test code
solution = re.sub(r’console\.(log|warn|error|info)\(.*?\);?\s*’, ’’,

solution)
solution = re.sub(r’function\s+test\w*\s*\(.*?\)\s*{[\s\S]*?\n}’, ’’,

solution)
solution = re.sub(r’document\..*?;’, ’’, solution) # Remove DOM

operations

B.2.4 CODE QUALITY OPTIMIZATION

Remove excessive blank lines and explanatory text
solution = re.sub(r’\n\s*\n’, ’\n\n’, solution) # Compress blank lines
solution = re.split(r’\n(?:This code|Code

explanation|Explanation|note:|Note:)’,
solution, flags=re.IGNORECASE)[0] # Remove trailing

explanations

17

Published as a conference paper at ICLR 2026

B.3 ROBUST ERROR HANDLING FRAMEWORK

B.3.1 EXPONENTIAL BACKOFF RETRY STRATEGY

max_retries = 5
base_delay = 2
max_delay = 30

Exponential backoff + random jitter
delay = min(base_delay * (2 ** retry_count), max_delay)
jitter = random.uniform(0, 1)
sleep_time = delay + jitter

B.3.2 ERROR CLASSIFICATION AND HANDLING

if response.status_code == 200:
Success case processing
return parts[0][’text’], None

elif response.status_code == 429:
Rate limiting - retry with backoff
error_msg = f"Rate limited: {response.status_code}"

elif response.status_code >= 400 and response.status_code < 500:
Client error - do not retry
error_msg = f"Client error: {response.status_code}"

else:
Server error - retry with backoff
error_msg = f"Server error: {response.status_code}"

This comprehensive methodology framework ensured consistent, high-quality code generation
across all eight programming languages while maintaining robustness through systematic error han-
dling and validation procedures. The multi-stage extraction pipeline guaranteed that generated so-
lutions met LeetCode’s strict requirements for executable, comment-free code submissions.

B.4 EXAMPLE INITIAL PROMPTS FOR FULL-STACK TASKS

Example initial prompt for the Movie Booking System task using the Modern JS stack:

Build a complete movie ticket booking web application using React for the
frontend, Express.js for the backend, and Prisma with SQLite for the

database.
The application should allow users to browse movies, view showtimes,

select
seats, and complete a booking. Provide the complete code.

B.5 FRAMEWORK TASK PROMPT STRUCTURE WITH EXAMPLE

This section details the prompt structure used for the 17 general-purpose full-stack development
tasks evaluated in this study. All tasks followed the same prompt pattern: a detailed specification of
functional requirements and database schema, followed by instructions for the specific technology
stack to be used.

To illustrate this structure, we provide the complete prompt for the Meeting Room Booking System
as a representative example. The prompts for the other 16 tasks followed an identical format, with
their respective requirement specifications substituted accordingly.

B.5.1 EXAMPLE: MEETING ROOM BOOKING SYSTEM

Database schema:
- users: id, username, email, full_name, department, created_at
- meeting_rooms: id, name, location, capacity, amenities, is_active,

created_at

18

Published as a conference paper at ICLR 2026

- bookings: id, room_id, user_id, title, description, start_time,
end_time, status, created_at, updated_at

Requirements:
1. User Management:

- JWT-based authentication
- User profile management
- Department-based organization

2. Meeting Room Management:
- CRUD operations for meeting rooms
- Availability checking
- Filtering by various criteria

3. Booking Management:
- Create, view, update, delete bookings
- Time conflict detection
- Status management

B.5.2 TECHNOLOGY STACK VARIATIONS

For each of the six technology stacks evaluated, only the TECHNOLOGY STACK portion of the
prompt was modified while keeping the requirements identical. The specific stack instructions were:

Vue + Spring Boot + Hibernate (Java Enterprise):

Create a complete meeting room booking system using Vue 3 for frontend
and Spring Boot with Hibernate for backend. Use PostgreSQL database
with the following schema:

Technical Specifications:
- Frontend: Vue 3 with Composition API, Vue Router for navigation, Pinia

for state management
- Backend: Spring Boot with Spring Security for JWT authentication,

Hibernate for ORM
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful design with proper HTTP status codes
Generate complete, runnable code including:
- Spring Boot application with controllers, services, and repositories
- Vue 3 components for all features
- Proper error handling and validation
- Database configuration and entity classes
- Installation and setup instructions

React + Express.js + Prisma (Modern JS):

Develop a meeting room booking system using React 18 for frontend and
Express.js with Prisma for backend. Use PostgreSQL database with the
following schema:

Technical Specifications:
- Frontend: React 18 with functional components and hooks, React Router

for navigation
- Backend: Express.js with JWT authentication, Prisma as ORM
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful endpoints with proper error handling
Generate complete, runnable code including:
- Express.js server with routes, middleware, and controllers
- React components with modern hooks
- Prisma schema and migrations
- Authentication system
- Setup and deployment instructions

Django REST Framework + Django ORM (Python Full-stack):

19

Published as a conference paper at ICLR 2026

Create a meeting room booking system using Django REST Framework for
backend and a modern JavaScript framework for frontend. Use
PostgreSQL database with the following schema:

Technical Specifications:
- Backend: Django with Django REST Framework, Django ORM
- Frontend: Use a modern JavaScript framework (specify which one)
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful design with token authentication
Generate complete, runnable code including:
- Django models, serializers, views, and URLs
- Frontend components and API integration
- Authentication system
- Database migrations
- Setup and running instructions

Preact + Gin + GORM (Lightweight Go):

Build a lightweight meeting room booking system using Preact for
frontend and Gin with GORM for backend. Use PostgreSQL database with
the following schema:

Technical Specifications:
- Frontend: Preact with lightweight state management
- Backend: Gin framework with JWT authentication, GORM as ORM
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful design with minimal overhead
Generate complete, runnable code including:
- Gin server with routes, middleware, and handlers
- Preact components with minimal dependencies
- GORM models and database operations
- Authentication system
- Build and run instructions

Svelte + FastAPI + SQLAlchemy (Modern Python):

Develop a modern meeting room booking system using Svelte for frontend
and FastAPI with SQLAlchemy for backend. Use PostgreSQL database
with the following schema:

Technical Specifications:
- Frontend: Svelte with SvelteKit for routing
- Backend: FastAPI with SQLAlchemy as ORM, Pydantic for validation
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful design with OpenAPI documentation
Generate complete, runnable code including:
- FastAPI application with routes, models, and schemas
- Svelte components with reactive programming
- SQLAlchemy models and database operations
- Authentication system with JWT
- Setup and running instructions

SolidJS + Actix Web + SeaORM (Rust Emerging):

Create a meeting room booking system using the emerging Rust stack:
SolidJS for frontend and Actix Web with SeaORM for backend. Use
PostgreSQL database with the following schema:

Technical Specifications:
- Frontend: SolidJS with fine-grained reactivity
- Backend: Actix Web with JWT authentication, SeaORM as ORM
- Database: PostgreSQL with connection string:

postgresql://postgres:meetingpass@localhost:5432/meeting_booking
- API: RESTful design with focus on performance
Generate complete, runnable code including:
- Actix Web server with routes, handlers, and middleware

20

Published as a conference paper at ICLR 2026

- SolidJS components with reactive patterns
- SeaORM entities and database operations
- Authentication system with JWT
- Build and run instructions for both frontend and backend

B.6 PROMPTS FOR EXPERIMENTS WITH DIVERGENT TECHNOLOGY ROUTES

The following prompts were used to instruct the AI coding tool. Eight experiments were de-
signed to emphasize typical technical route divergences, covering scenarios such as API gateways,
chat servers, data pipelines, task queues, GraphQL services, event streaming, edge inference, and
blockchain explorers. Each task specifies three alternative stacks (A, B, C) representing distinct
trade-offs in performance, ecosystem maturity, and adoption trends.

Listing 1: Experiment 1: High-Concurrency API Gateway
Task: Build a high-concurrency API gateway that forwards requests to

backend services and supports basic rate limiting.

Technology stack (must use exactly this):
[Option A] Rust + Axum + Tokio
[Option B] Go + Gin
[Option C] Python + FastAPI + Uvicorn

Requirements:
- Accept HTTP requests on /api.
- Forward requests to a mock backend service.
- Implement simple rate limiting per client IP.

Listing 2: Experiment 2: Real-Time Chat Server
Task: Build a simple chat server where clients can connect and send

messages to each other.

Technology stack (must use exactly this):
[Option A] Elixir + Phoenix Channels
[Option B] Node.js + Socket.IO
[Option C] Go + Gorilla WebSocket

Requirements:
- Start a server.
- Support multiple clients connecting.
- Broadcast messages from one client to all others.

Listing 3: Experiment 3: Data Analytics Pipeline
Task: Build a data analytics pipeline that ingests CSV data, processes

aggregates, and exposes results through an API.

Technology stack (must use exactly this):
[Option A] Python + Pandas + FastAPI
[Option B] Java + Spring Boot + Apache Spark
[Option C] Julia + Genie.jl

Requirements:
- Load CSV data (columns: user_id, event_type, timestamp).
- Compute aggregate counts per event_type.
- Expose results at /stats endpoint.

Listing 4: Experiment 4: Scalable Task Queue System
Task: Implement a background task queue system that accepts jobs via an

API and processes them asynchronously.

Technology stack (must use exactly this):

21

Published as a conference paper at ICLR 2026

[Option A] Python + FastAPI + Celery + Redis
[Option B] Go + Asynq
[Option C] Rust + Tokio + Redis-rs

Requirements:
- Expose /submit endpoint to enqueue jobs.
- Workers pull jobs and simulate processing with sleep.
- Expose /status to query job states.

Listing 5: Experiment 5: GraphQL API Service
Task: Implement a GraphQL API for a blogging platform supporting posts

and comments.

Technology stack (must use exactly this):
[Option A] Node.js + Apollo Server
[Option B] Python + Strawberry GraphQL
[Option C] Rust + async-graphql

Requirements:
- Define schema: Post(id, title, content), Comment(id, postId, text).
- Support queries: fetch posts with comments.
- Support mutation: add post, add comment.

Listing 6: Experiment 6: Event Streaming Platform
Task: Build a simple event streaming system that publishes and consumes

messages.

Technology stack (must use exactly this):
[Option A] Java + Spring Boot + Kafka
[Option B] Go + NATS
[Option C] Python + FastAPI + RabbitMQ (aio-pika)

Requirements:
- Publisher service produces events with topic name.
- Consumer service subscribes to a topic and logs events.
- Demonstrate end-to-end event delivery.

Listing 7: Experiment 7: Edge Computing Microservice
Task: Build a lightweight edge microservice that performs real-time

image classification.

Technology stack (must use exactly this):
[Option A] Python + FastAPI + PyTorch Mobile
[Option B] Go + Tensorflow Lite C API
[Option C] Rust + tract (ONNX inference)

Requirements:
- Accept image uploads via POST.
- Run model inference and return predicted label.
- Keep runtime lightweight to simulate edge deployment.

Listing 8: Experiment 8: Blockchain Transaction Explorer
Task: Build a blockchain transaction explorer for a toy chain.

Technology stack (must use exactly this):
[Option A] JavaScript + React + Express.js + MongoDB
[Option B] Python + Django + PostgreSQL
[Option C] Rust + Actix Web + SQLite

Requirements:
- Store mock blockchain transactions (tx_id, from, to, amount).

22

Published as a conference paper at ICLR 2026

- Provide API to query transactions by address.
- Provide a web interface to display transaction history.

C EXPERIMENTAL CONFIGURATION & HYPERPARAMETERS

C.1 API CALL PARAMETERS

All API calls for code generation were made with the following parameters: temperature=0.5,
maxOutputTokens=65535, top p=0.95. Framework tasks used a higher
temperature=0.7 to encourage exploration.

C.2 DETAILED CONFIGURATION OF THE DISTRIBUTED SUBMISSION SYSTEM

The system used 15 LeetCode accounts. Exponential backoff was configured with:
initial delay=2s, max delay=32s, retry attempts=5. Throttling was set to 10
requests per minute per account.

C.3 LLM TOOL VERSIONS AND SETTINGS FOR FRAMEWORK TASK EVALUATION

Cursor Pro (v0.41.2), CodeBuddy (v1.5.0), VS Code Copilot extension (v1.20.0). All tools were
configured to use their respective default settings for agentic interactions.

D SUPPLEMENTARY RESULTS & DATA ANALYSIS

D.1 COMPLETE RESULTS TABLES STRATIFIED BY PROBLEM DIFFICULTY

Extended versions of Table 4, showing Pass@1 rates and error type counts for Easy,
Medium, and Hard problems separately for each language and model, are included in
detailed results.xlsx

D.2 ADDITIONAL MODEL RESULTS FOR FIGURE 1

Due to space constraints in the main body, the success rate (Pass@1) curves for two models (Gemini-
2.0-Flash and Qwen3-Turbo) across all difficulty levels and eight programming languages are pre-
sented here in Figure 6. The trend observed in the main text—where performance degrades sig-
nificantly for less popular languages (Erlang, Racket) especially on harder problems—is consistent
across all five evaluated models.

D.3 EXPERIMENTAL SCREENSHOTS

This section provides key screenshots of the experimental process for reference and reproducibility.
Due to the substantial size of the projects generated by the AI assistants during the Vibecoding
process with some individual task projects exceeding 1GB, it is not feasible to include all outputs
in their entirety. Therefore, we present a curated set of visual examples that best illustrate the scope
and outcomes of our experiments.

Figure 7 showcases the running user interfaces of six representative full-stack applications, demon-
strating functional completeness across diverse tasks and technology stacks. The examples include
a meeting room booking system (React + Express.js), a gym membership card system (Vue + Spring
Boot), a volunteer activity registration system (Django REST), a course selection system (Svelte +
FastAPI), a movie ticket booking system (Preact + Gin), and a pickup code management system
(SolidJS + Actix Web).

Complementing the UI examples, Figure 8 presents architecture diagrams and performance met-
rics for solutions implementing divergent technology pathways. These include high-concurrency
systems such as a chat system (Elixir + Phoenix PubSub) and real-time counters (Rust + Yjs + Ac-
tix Web; Python + Django Channels), alongside niche/extreme route task management applications

23

Published as a conference paper at ICLR 2026

Figure 6: Pass rates across difficulty levels for Gemini-2.0-Flash and Qwen3-Turbo on eight pro-
gramming languages. This figure complements Figure 1 in the main text.

built with Ruby on Rails, Clojure + Ring, and F# + Giraffe. These visuals effectively highlight the
trade-offs between mainstream, emerging, and niche technology stacks in specialized scenarios.

D.4 POTENTIAL EXTENSION: LATENT FACTOR ANALYSIS OF TASK–STACK OUTCOMES

The main text (i.e., Section 5) summarizes framework-level bias via a task×stack outcome heatmap.
A constructive next step is to decompose this binary outcome matrix so that latent factors can be
identified and interpreted, e.g., whether failure is driven more by ecosystem maturity (documen-
tation, community size) or by toolchain fragility (build systems, runtime errors)—rather than only
visualized. Constrained binary matrix factorization approximates the success/failure matrix by low-
rank binary factors, yielding interpretable clusters of tasks and stacks (Li et al., 2024; Li & Wang,
2025b). Clustering procedures discover soft or hard clusters of stacks (or tasks) that behave simi-
larly under AI assistance (Li & Wang, 2022; 2023; 2024a;b; 2025a). For this paper, such an analysis
would be directly useful: it could separate which dimensions of “popularity” (e.g., training-data
prevalence vs. documentation quality) actually drive the Matthew effect, inform where to invest in
diversity-aware tooling or benchmarking, and suggest which task–stack combinations to prioritize
when evaluating or mitigating AI programming bias.

E DATA STATEMENT & LICENSES

E.1 LEETCODE DATA USAGE STATEMENT

The LeetCode problem data used in this study is publicly available on the LeetCode website. Our
usage complies with LeetCode’s Terms of Service. The collected dataset is intended for academic
research purposes.

E.2 LICENSE FOR THE DATASET OF AUTHORED TASKS

The license is provided in our repository: https://github.com/FrankGGu/The-Matthew-Effect-of-AI-
Programming-Assistants

24

Published as a conference paper at ICLR 2026

(a) Meeting Room Booking System (React + Express.js)

(b) Gym Membership Card System (Vue + Spring Boot)

(c) Volunteer Activity Registration System (Django REST)

(d) Course Selection System (Svelte + FastAPI)

(e) Movie Ticket Booking System (Preact + Gin)

(f) Pickup Code Management System (SolidJS + Actix Web)

Figure 7: Running user interfaces of six representative full-stack applications generated by AI assistants,
demonstrating functional completeness across diverse tasks and technology stacks.

25

Published as a conference paper at ICLR 2026

(a) High-Concurrency Chat System (Elixir + Phoenix PubSub)

(b) High-Concurrency Real-time Counter (Rust + Yjs + Actix Web)

(c)High-Concurrency Real-time Counter (Python + Django Channels)

(d) Niche/Extreme Route Task Management(Ruby on Rails)

(e) Niche/Extreme Route Task Management(Clojure + Ring)

(f) Niche/Extreme Route Task Management(F# + Giraffe)

Figure 8: Architecture diagrams and performance metrics of AI-generated solutions for divergent technology
pathway tasks, highlighting the trade-offs between mainstream, emerging, and niche stacks in specialized sce-
narios.

26

	Introduction
	Related Work
	AI Programming Assistants
	Programming Ecosystem Evolution

	Environment and Benchmark Construction
	Algorithmic tasks
	Language Selection
	Test Cases from LeetCode

	Framework Selection
	Experimental Infrastructure

	Programming Language Analysis
	AI Coding
	Solution Judging
	Results

	Framework Analysis
	Vibe Coding
	Results

	Conclusion
	Appendix
	Benchmark Specifications
	LeetCode Benchmark Composition
	Data Availability and Reproducibility
	Detailed Description of the 17 General-Purpose CRUD Tasks

	Prompt Engineering & Code Extraction Methodology
	Standardized Prompt Design and Implementation
	Primary Prompt Template Structure
	System-Level Instruction Configuration

	Multi-Stage Code Extraction Pipeline
	Code Block Boundary Identification
	Language-Specific Syntax Cleaning
	Debugging Artifact Removal
	Code Quality Optimization

	Robust Error Handling Framework
	Exponential Backoff Retry Strategy
	Error Classification and Handling

	Example Initial Prompts for Full-Stack Tasks
	Framework Task Prompt Structure with Example
	Example: Meeting Room Booking System
	Technology Stack Variations

	Prompts for Experiments with Divergent Technology Routes

	Experimental Configuration & Hyperparameters
	API Call Parameters
	Detailed Configuration of the Distributed Submission System
	LLM Tool Versions and Settings for Framework Task Evaluation

	Supplementary Results & Data Analysis
	Complete Results Tables Stratified by Problem Difficulty
	Additional Model Results for Figure 1
	Experimental Screenshots
	Potential Extension: Latent Factor Analysis of Task–Stack Outcomes

	Data Statement & Licenses
	LeetCode Data Usage Statement
	License for the Dataset of Authored Tasks

