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Abstract

Building robust and general reasoning ability is a central goal in the development
of large language models (LLMs). Recent efforts increasingly turn to code as
a rich training source, given its inherent logical structure and diverse reasoning
paradigms—such as divide-and-conquer, topological ordering, and enumeration.
However, reasoning in code is often expressed implicitly and entangled with syn-
tactic or implementation noise, making direct training on raw code suboptimal.
To address this, we introduce TracePile, a large-scale corpus of 2.6 million sam-
ples that transforms code execution into explicit, step-by-step chain-of-thought
style rationales, which we call Chain of Execution (CoE). The corpus spans do-
mains including mathematics, classical algorithms and algorithmic competition,
and is enriched with variable-tracing questions and code rewritings to enhance
logical granularity and code diversity. We evaluate TracePile using three train-
ing setups—continue-pretraining, instruction tuning after pretraining, and two-
stage finetuning. Experiments across four base models (LLaMA 3, LLaMA 3.1,
Qwen-2.5, and Qwen-2.5 Coder) and 20 benchmarks covering math, code, logic,
and algorithms demonstrate consistent improvements. Notably, TracePile boosts
LLaMA3.1-8B by 7.1% on average across nine math datasets and delivers clear
gains on LiveCodeBench, CRUX, and MMLU under two-stage finetuning.

1 Introduction

Reasoning ability—a fundamental and foundational competence of large language models
(LLMs)—is a key indicator determining whether these models can effectively progress toward
artificial general intelligence (AGI). While LLMs have shown remarkable success in language
understanding and generation, it is their capacity for complex reasoning—such as mathemati-
cal reasoning and code generation—that remains the most critical and challenging benchmark
[24, 40, 53, 7, 56, 49, 47, 42]. Recent works have increasingly focused on boosting these reasoning
abilities, with one of the most widely adopted approaches being the large-scale collection or synthesis
of high-quality, task-specific reasoning data. Training on large volumes of carefully curated or syn-
thetically generated reasoning data systematically strengthens the model’s capacity for mathematical
reasoning, code generation, and multi-step problem-solving [39, 2, 52, 50, 48, 17, 31]. However,
despite these advances, current data-driven methods primarily enhance performance within specific
reasoning domains rather than achieving broad, generalizable reasoning capabilities. Developing
a corpus that incorporates diverse reasoning patterns and paradigms represents a promising and
important direction for advancing models toward more robust and transferable reasoning abilities.
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Code corpora hold significant potential for advancing general reasoning abilities, as they inherently
encapsulate a diverse range of logical problem-solving techniques and reasoning patterns [45, 22, 27].
Mathematical code often encodes rich mathematical properties and symbolic operations, while
classical algorithmic code—for example, in graph theory—embeds essential algorithmic ideas such
as divide-and-conquer (e.g., merge sort), topological reasoning (e.g., topological sort in directed
acyclic graphs), and enumeration strategies (e.g., combinatorial generation or backtracking) [44, 34].
However, simply training models directly on raw code is suboptimal because the relevant reasoning
signals are often implicit, buried within syntactic details, or entangled with noisy implementation
artifacts, making it difficult for models to extract the underlying reasoning patterns effectively. To
address this, CodeI/O [27] has sought to transform raw code files into structured code functions paired
with corresponding questions, enabling the model to treat the code as a reference when generating
chain-of-thought (CoT) solutions. Yet, such datasets still overlook fine-grained information embedded
in the execution process itself. We argue that converting each step of code execution into a CoT-style
natural language narration would produce data that is not only logically rigorous and well-structured
but also offers clearer, more interpretable reasoning traces. Training LLMs in such a step-by-step
code execution corpus has the potential to enhance their general reasoning capabilities significantly.

To this end, we construct a large-scale step-by-step code execution corpus, which we name Tra-
cePile —a richly diverse dataset designed to capture fine-grained diverse reasoning signals across a
variety of domains. We refer to this CoT-style step-by-step code execution as Chain of Execution
(CoE). Specifically, we collect a broad range of queries and associated code snippets from multiple
sources, including mathematical problems, algorithmic competition datasets, and classical algorithms.
Frontier LLMs are prompted in a few-shot setting to generate detailed CoE solutions that follow the
execution trace of the code, transforming each computational step into a structured and interpretable
reasoning narration. To further enrich the corpus and improve logical granularity, we introduce
two key augmentation strategies. First, we generate additional fine-grained questions for certain
algorithmic functions, such as asking the model to trace the state changes of specific variables
throughout execution. These targeted questions lead to more localized and logically dense CoE narra-
tions, helping models internalize detailed procedural reasoning. Second, we apply systematic code
rewritings to introduce variants—for instance, through structural refactoring or alternate algorithm
implementations. This not only diversifies the syntactic surface of the training data but also promotes
the model’s robustness in understanding semantically equivalent yet stylistically different codes,
encouraging broader generalization across reasoning tasks.

As a result, we collect 2.6 million high-quality CoE samples in TracePile. To comprehensively
evaluate the utility of this corpus, we design three experimental settings: 1) We perform continue-
pretraining on TracePile, serving as an intermediate step to enhance the reasoning abilities of the base
model by exposing it to fine-grained, step-by-step execution patterns. 2) We apply general instruction
tuning after continue-pretraining, allowing the model to retain broad instruction-following abilities
while leveraging the specialized reasoning improvements gained from TracePile. 3) We adopt a
two-stage finetuning approach, where the model is first tuned on TracePile and then on general
instruction datasets, serving as a structured adaptation path that integrates specialized reasoning gains
while maintaining strong general alignment across diverse tasks.

We demonstrate the effectiveness of TracePile across four different base models: LLaMA 3 &
3.1 [15], Qwen-2.5 [38], and Qwen-2.5 Coder [21]. We conduct comprehensive evaluations on as
many as 20 datasets, covering four major reasoning domains: mathematical reasoning, coding,
logical reasoning, and algorithmic problem solving. Across these benchmarks, models trained
with TracePile consistently achieve superior performance. For example, after continue-pretraining,
TracePile boosts LLaMA3.1-8B-Base by an average of 7.1% improvement across nine mathematical
reasoning datasets. Moreover, following two-stage finetuning, models show clear gains on datasets
such as LiveCodeBench [22], CRUX [16], and Zebra Logic [29], demonstrating TracePile’s ability to
enhance both domain-specific and general reasoning capabilities.

2 TracePile

In this section, we introduce TracePile. We begin with collecting data sources and extracting raw
queries and code corpus. Then we enrich the data diversity with query and code diversification.
Subsequently, we review the process of obtaining the chain of execution data and filtering strategies.
Finally, the statistics of TracePile are presented. Figure 1 shows the overview of TracePile.
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Figure 1: The curation process of TracePile and training pipelines. The left part indicates the sources
of Tracepile include algorithmic competition, classical algorithm and mathematical code. The middle
part shows the strategies to enrich the data diversity and CoE-style data generation. The right part
includes the three different training paradigm in this work.

2.1 Data Sources

To build TracePile, we curate step-by-step execution data from three primary code sources, each
designed to capture diverse and fine-grained reasoning patterns.

Algorithmic Competition Code. We collect code from algorithmic competition problems, pri-
marily using open-source Codeforces submissions 2. However, raw competition data often contains
noisy, monolithic scripts with unclear function boundaries and hardcoded I/O. To address this, we
leverage Qwen-2.5-72B-Instruct to accurately extract clean code functions along with corresponding
input-output pairs (Prompts are in Appendix A). We further validate correctness by executing the code
and checking whether the generated output matches the extracted reference output—only retaining
samples that pass this consistency check. This ensures both syntactic validity and semantic fidelity.

Classical Algorithm Code. We include classical algorithm implementations, inspired by prior
works such as CLRS [34] and GraphInstruct [32]. We incorporate 30 classical algorithms drawn from
Cormen [10], spanning a broad spectrum of algorithmic paradigms, including sorting, searching,
divide-and-conquer, greedy strategies, dynamic programming, graph traversal, string manipulation,
and geometric computations. Using the official CLRS-text generator, we synthesize high-quality
inputs, outputs, and intermediate execution traces. For graph theory-related problems, we utilize
official generator from [32]. However, such traces from the above generator are typically presented
as symbolic states or graphs rather than natural, interpretable CoT-style narratives. They will be used
to check CoE’s intermediate results.

Mathematical Code. We incorporate mathematical code, which often involves multi-step decom-
position, symbolic manipulation, and numerical reasoning—making it ideal for training models on
compositional thinking. We adopt OpenMath [43], a large-scale synthetic dataset of math problems
paired with solver code. To increase the difficulty and reasoning richness, we apply a model-based
filtering strategy: for each problem, we sample three independent responses using LLaMA3-8B. If
the model answers correctly in all three attempts, we consider the problem too simple and discard it.

2.2 Enriching Diversity

While TracePile covers a broad range of code sources, the original code and query distributions still
exhibit notable limitations. For instance, classical algorithm implementations often follow highly
standardized coding styles, such as fixed loop structures, hardcoded base cases, or commonly reused
recursion patterns. This lack of structural diversity can limit the variety of reasoning challenges
presented to the model. To further improve the reasoning generalization potential of the dataset, we
introduce two augmentation strategies aimed at enriching both the query and code.

2https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions?row=0
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Given the code, trace the changes of specified variables 
pi during code execution. Explain the whole execution 
process in natural language.

A: [[1 1 1 1], [0 1 0 1], [1 0 1 1], [1 1 0 0]]

We'll follow the execution step-by-step, highlighting when and how the pi array is updated.
1. Initialization:
pi = [0, 1, 2, 3]
color = [0, 0, 0, 0] (all nodes are initially unvisited)
time = 0
2. Starting the DFS Loop (u = 0):
Node 0 is unvisited (color[0] == 0), so dfs_visit(0) is called.
3. Entering dfs_visit(0):
……

Exploring Neighbors of Node 0:
Neighbor v = 0:

A[0, 0] = 1 (self-loop), but color[0] == 1 (already visiting). No change to pi.
Neighbor v = 1:

A[0, 1] = 1 and color[1] == 0 (unvisited).
Update: pi[1] is set to 0.
pi Changes to: [0, 0, 2, 3]
dfs_visit(1) is called.

4. Entering dfs_visit(1)
……
10. Continuing the DFS Loop:

u = 1: color[1] == 2 (finished). No action taken.
u = 2: color[2] == 2 (finished). No action taken.
u = 3: color[3] == 2 (finished). No action taken.

Summary of pi Changes: Trace | pi: [0, 1, 2, 3] -> [0, 0, 2, 3] -> [0, 0, 2, 1] -> [0, 0, 0, 1]

def dfs(A: np.ndarray) -> np.ndarray:
assert A.ndim == 2

n = A.shape[0]
color = np.zeros(n, dtype=np.int32)
pi = np.arange(n)
time = 0
def dfs_visit(u):

nonlocal time
color[u] = 1
time += 1
d[u] = time
for v in range(n):

if A[u, v] != 0 and color[v] == 0:
pi[v] = u
dfs_visit(v)

……
……
return pi

CoE

Code

Chain-of-Execution

Query

Figure 2: A classical DFS algorithm example of CoE in TracePile. More cases are in Appendix C.

Query Diversification. To move beyond the standard function-level input/output prediction tasks,
we leverage Qwen-2.5-72B-Instruct to generate alternative queries for a given code snippet. Tra-
ditional algorithmic queries typically ask for the function’s return value. To increase reasoning
granularity, we prompt the model to generate questions targeting internal execution states. For
instance, in a DFS implementation, the model might be asked to predict the stack contents after a
specific backtracking step or trace the change in a visited-node array. These questions compel the
model to understand intermediate logic and control flow, promoting deeper procedural reasoning. We
apply this strategy to algorithmic and graph problems but not to mathematical code, which often has
a single well-defined objective and is less amenable to meaningful query variation.

Code Diversification. To increase structural variety, we also instruct Qwen-2.5-72B-Instruct to
rewrite the original code implementations. For example, a recursive DFS might be rephrased into an
iterative version using an explicit stack, or a dynamic programming solution might be restructured
to vary loop orders or base case initialization. Such rewrites preserve semantics while introducing
syntactic and structural variation, helping the model generalize beyond rigid code templates and
better handle real-world coding diversity. See related prompts in Appendix A.

While rejection sampling is a common method for increasing solution diversity, we choose not to
apply it in the main TracePile construction for two reasons. First, our query and code augmentations
already induce diverse CoE samples implicitly. Second, given the wide coverage of mathematical
topics in our dataset, CoE formats significantly, making it difficult to apply rejection filtering in a
scalable and reliable manner. Nonetheless, we explore rejection sampling as a potential enhancement
in later experiments and discuss its effects in Section 4.

2.3 Chain of Execution Generation

Once we obtain the curated query-code pairs, we generate detailed CoE data using Qwen-2.5-
72B-Instruct under carefully designed prompting strategies. Our goal is to convert these execution
behaviors into coherent, step-by-step explanations in natural language that reflect fine-grained
procedural reasoning.

The prompting format is tailored slightly based on the data source and task type, but generally follows
patterns such as: “Answer the question by tracing the code execution step by step.” “Trace the
changes of variable X during execution and explain each step.”

To ensure the generated CoE outputs are logically consistent and sufficiently detailed, we employ two
key strategies: (1) Few-shot Prompting. We provide two human-written in-context examples within
each prompt, showcasing complete step-by-step CoE narrations for similar tasks. These exemplars
guide the model in understanding both the structure and the level of granularity expected in the
reasoning process. (2) Intermediate result verification. For tasks requiring variable tracking or control-
flow interpretation, we require the model to output structured json results. For mathematical problems,
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Table 1: Model performances under continue-pretraining. L.C.Bench-O refers to the test-output
subset of LiveCodeBench. The best results are in purple.

Type Datasets Llama-3-8B Llama-3.1-8B Qwen-2.5-7B Qwen-2.5-Coder
Base Ours Base Ours Base Ours Base Ours

Math

GSM8K 54.2 74.3 54.4 74.7 85.7 84.9 77.9 83.5
MATH 16.5 31.7 17.7 29.3 50.9 44.8 47.2 52.3
GSM-H 26.1 36.2 27.1 36.9 63.3 63.1 55.1 59.8
SVAMP 68.8 81.2 71.0 81.1 89.4 89.6 87.8 89.0
ASDIV 73.1 82.7 74.3 83.8 91.0 91.3 89.0 89.2

MAWPS 90.9 92.2 92.0 93.7 97.0 97.1 93.5 94.9
STEM 49.7 56.3 57.0 57.1 68.0 72.6 67.2 68.3

TABMWP 57.9 55.0 63.6 57.4 73.0 72.3 56.9 66.2
SAT 56.2 59.4 59.4 68.8 80.0 93.8 81.2 84.4

Average 54.8 63.4 57.4 64.8 77.6 78.8 72.9 76.4
Code L.C.Bench-O 2.0 30.5 1.6 11.8 40.3 49.8 14.0 44.8

Logical
Zebra Puzzle 0.1 7.4 2.3 7.4 2.9 2.0 3.0 4.0
KORBench 21.8 21.8 21.9 20.6 33.4 35.4 32.0 30.0
Ruletaker 2.8 42.4 5.3 45.6 61.2 63.5 46.1 60.2

Algorithm Graphwiz 4.5 46.0 1.9 33.9 36.6 50.5 38.5 43.8
GraphInstruct 35.2 73.5 33.0 69.2 33.1 33.5 33.8 53.7

the final computed result is reported in json to simplify correctness checking. For algorithmic tasks,
the json includes both the final output and intermediate variable states (e.g., array contents, stack
traces) across execution steps—formatted as “state1 -> state2 -> ...staten”—to facilitate automatic
comparison with execution logs. We validate correctness by comparing these outputs to ground-truth
traces generated via code instrumentation or symbolic tools, discarding samples that fail consistency
checks. We showcase an example of CoE in Figure 2. In the final version of our dataset, we convert
the json outputs back into natural language format. This adjustment was made after observing that
retaining structured json caused the model to produce inconsistent or malformed outputs on some
downstream datasets after continued pretraining.

To improve coverage on harder problems, we sample each CoE rationale five times independently.
Some tasks are too challenging for the model to solve correctly in a single attempt, so multiple
samples increase the chance of getting a valid solution.

Finally, we control for CoE complexity. As input size increases—particularly in graph algo-
rithms—the reasoning path and solution length often grow rapidly. For example, denser or larger
graphs lead to execution traces that scale combinatorially, often resulting in CoE outputs exceeding
tens of thousands of tokens. Since such long outputs are prone to generation errors and misalignment,
we impose a strict 8k-token limit, consistent with the context length used during continue-pretraining.
Any sample exceeding this limit is discarded to maintain training efficiency and consistency.

2.4 Statistics

Table 2: Statistics of TracePile.
Components Size Tokens

Algorithmic Competition 480,782 3,891,991,488
Classical Algorithm 949,088 7,024,210,656
Mathematical 1,170,836 7,105,488,512

Total 2,600,706 19,380,461,000

We summarize the composition of Tra-
cePile in Table 2, which includes three
primary components: algorithmic compe-
tition data, classical algorithm implementa-
tions, and mathematical code. In total, Tra-
cePile contains over 2.6 million CoE sam-
ples comprising approximately 19 billion
tokens. The algorithmic competition sub-
set contributes 480K samples sourced from
Codeforces, covering diverse real-world
problem-solving code. The classical algorithm subset includes 949K structured samples based
on 30 canonical algorithms. The mathematical subset consists of 1.17M samples drawn from
OpenMath, emphasizing multi-step symbolic computation. Notably, the classical algorithm and
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Table 3: Model performances under two-stage fine-tuning. The base models are trained solely on
TuluSFT datasets. L.C.Bench refers to LiveCodeBench. The best results are in purple.

Type Datasets Llama-3-8B Llama-3.1-8B Qwen-2.5-7B Qwen-2.5-Coder
Base Ours Base Ours Base Ours Base Ours

Math

GSM8K 70.7 74.0 73.8 76.1 76.9 77.0 74.3 80.8
MinMath 28.8 33.8 30.2 33.2 47.2 51.8 47.6 48.2
MATH 28.6 30.6 30.8 34.2 49.6 51.5 45.0 50.8
GSM-H 35.0 35.6 39.3 35.3 55.0 55.6 55.4 59.8
SVAMP 83.0 79.4 79.6 83.4 79.7 83.6 81.1 85.3
ASDIV 81.4 81.9 82.3 85.7 86.5 86.3 86.9 88.9

MAWPS 93.9 93.5 94.3 93.1 95.6 95.9 95.4 96.6
STEM 42.8 52.9 50.2 58.9 70.1 71.9 69.3 66.2

TABMWP 65.8 67.1 69.6 57.2 77.3 78.9 80.5 78.3
MATHQA 37.7 54.7 44.7 60.2 80.7 80.2 75.3 77.2

SAT 40.6 75.0 65.6 68.8 90.6 96.9 87.5 84.4

Average 55.3 61.7 60.0 62.4 73.6 75.4 72.6 74.2

Code CRUX 32.9 42.1 33.5 49.9 46.5 49.4 52.8 56.4
L.C.Bench 9.8 14.2 7.6 11.3 25.8 23.5 27.2 29.9

Logical

Zebra Logic 7.7 10.5 8.1 9.4 9.4 8.8 9.2 10.8
KORBench 27.0 27.2 27.0 24.7 40.4 41.0 34.6 39.4

Mmlu-Redux 51.8 56.3 53.8 54.3 64.2 69.7 66.5 64.2
Ruletaker 60.4 66.2 61.5 67.0 73.2 74.4 73.1 73.9

Algorithm
Graphwiz 44.0 39.6 44.5 39.2 29.0 33.2 33.9 35.4

GraphInstruct 27.5 36.0 29.8 55.9 32.4 35.8 31.5 40.9
CLRS 17.2 24.5 16.8 25.8 36.0 43.6 42.2 49.4

algorithmic competition portion contribute the largest share of tokens, reflecting the high density
of intermediate reasoning in those samples. This large and diverse corpus forms the foundation for
studying general-purpose reasoning enhancement through code execution supervision.

3 Experiments

In this section, we first introduce the experimental settings, including training setup, and evaluation
datasets. Then, we evaluate the effectiveness of TracePile in 20 datasets under three training setups.

3.1 Experimental Settings

Training Setups. Our goal is to investigate whether fine-grained, step-by-step execution data can
serve as an effective intermediate training signal to enhance multi-domain reasoning performance. To
this end, we design three complementary training settings: (1) Continue-pretraining on TracePile,
which introduces structured reasoning patterns into the base model and strengthens its ability to
perform logical, step-by-step inference. (2) Instruction tuning after pretraining, which ensures
that the model retains broad instruction-following capabilities while benefiting from the reasoning
skills acquired during TracePile continue-pretraining checkpoints. (3) Two-stage instruction-tuning,
where the model is first trained on TracePile and then further tuned on general instruction datasets.
This staged adaptation enables the integration of specialized reasoning without compromising general
alignment, resulting in a more balanced and capable model across tasks.

To ensure the generality and robustness of our findings, we select four representative base mod-
els for evaluation: LLaMA 3-8B, LLaMA 3.1-8B, Qwen-2.5-7B, and Qwen-2.5 Coder-7B. These
models span both general-purpose and code-oriented architectures, allowing us to assess the ef-
fectiveness of TracePile across diverse model families and training paradigms. For all training
experiments—including both continue-pretraining and instruction tuning—we use 16 H800-80GB
GPUs with a batch size of 512, a maximum sequence length of 8192 tokens, and 3 training epochs.
The learning rate is set to 1e-5, and all training is conducted using the LLaMA-Factory framework.
For the general instruction tuning phase, we adopt the widely used Tulu3-SFT [26] dataset to ensure
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broad instruction coverage and compatibility with existing evaluation standards. This consistent and
scalable setup enables controlled comparisons across models and training strategies.

Evalution Dataset. To comprehensively assess the reasoning capabilities of TracePile-enhanced
models and strong baselines, we evaluate across 20 benchmarks spanning four major reasoning do-
mains: logical reasoning, algorithmic reasoning, code reasoning. For mathematical reasoning, we
select 11 diverse datasets: GSM8K [8], MATH [20], GSM8K-Hard [14], SVAMP [36], ASDIV [35],
MAWPS [25], MinMATH [20], MMLU-STEM [19], TABMWP [30], MATHQA [1], and SAT [55].
For logical reasoning, we include Zebra Logic [29], RuleTaker [6], and KORBench [33]. For code
reasoning, we evaluate on LiveCodeBench [22] and CRUX [16] . For algorithmic reasoning, we adopt
GraphWiz [3], GraphInstruct [32], and CLRS [34]. We aggregate these datasets through three public
evaluation toolkits: OpenCompass[9], Qwen2.5-Math [50], and ZeroEval [28], ensuring consistency
and reproducibility across experiments. See Appendix B for details of evaluation datasets.
It is worth noting that we observe poor instruction-following behavior in some base models that
have not undergone instruction tuning. For datasets with complex or structured instructions—such as
CLRS—we exclude evaluation under the continue-pretraining-only setting, as the models are unable
to generate meaningful outputs without prior alignment.

3.2 Main Results

The experimental results in Tables 1 and 3 demonstrate the effectiveness of TracePile across both
continue-pretraining and two-stage instruction-tuning settings. Under continue-pretraining, models
consistently gain significant improvements across mathematical, logical, algorithmic, and code rea-
soning tasks. For example, LLaMA-3-8B improves by +8.4% on average over nine math benchmarks
(from 54.8% to 63.4%), with particularly large gains on GSM8K. Similarly, Qwen-2.5-Coder shows
strong improvements across domains, indicating that even code-specialized models benefit from
fine-grained execution supervision. TracePile proves especially effective on algorithmic reasoning,
with improvements exceeding +40% on tasks such as GraphWiz and GraphInstruct. When combined
with general instruction tuning in the two-stage finetuning setting, these improvements persist and
extend further. For instance, LLaMA-3-8B achieves a +6.4% average gain (from 55.3% to 61.7%)
on math datasets, and Qwen-2.5-7B improves from 73.6% to 75.4%. Due to space limitations, we
report results of continue-pretraining + instruction tuning setting in the Appendix, Table 7,
which further corroborate the value of TracePile as a general-purpose reasoning enhancement stage.

Out-of-domain (OOD) Generalization. Notably, TracePile also improves performance on bench-
marks with little direct data or no overlap, such as LiveCodeBench, CRUX, and logical reasoning
datasets like RuleTaker and Zebra Logic. The resulting models’ performances continue to improve
on these datasets. These tasks differ in format, domain, or reasoning style from TracePile’s training
sources, yet models still show consistent improvements. This suggests that the benefits of explicit,
execution-based supervision generalize beyond the original domains, helping models develop trans-
ferable reasoning skills. The ability to improve both in-domain and out-of-domain tasks highlights
TracePile’s effectiveness as a general-purpose reasoning enhancement corpus.

4 Discussion

To further understand the effectiveness and generalization behavior of TracePile, we conduct a series
of analysis experiments. These analyses aim to evaluate the contribution of key design choices
(e.g., step-by-step supervision, data diversity), the scalability of TracePile, its robustness, and its
transferability beyond code-related tasks. Below, we address several core questions that deepen our
understanding of TracePile’s impact.

RQ1: How important is the Chain of Execution (CoE) format compared to traditional I/O
or solution-style supervision? To evaluate the contribution of our step-by-step CoE supervi-
sion, we compare TracePile with several strong baselines based on Qwen-2.5-Coder under a con-
trolled two-stage finetuning setting. As shown in Table 4, we include three relevant baselines: (1)
OpenMathInstruct-1, where we replace our CoE-based math data with the original solution-style
code from OpenMath; (2) OpenMathInstruct-2, where we replace our CoE-based math data with the
pure math CoT-style solutions; (3) Webinstruct, where we replace our CoE-based math data with the
generic instruction data from WebInsrtuct; CodeI/O [27], which contains 3.5M input-output code

7



samples with final-answer supervision; and (4) CodeI/O++, a lightly augmented variant with minimal
structural enhancements.

Table 4: Comparison of TracePile with alternative supervision strategies
under two-stage fine-tuning on Qwen-2.5-Coder 7B. LC-O and Z.L denote
LiveCodeBench-Output and Zebra Logic.
Methods Stage-1 Data GSM8K MATH LC-O Z.L

Baseline – 74.3 45.0 29.8 9.2
Pure Code Solution OpenMathIns. 1 80.1 46.1 19.4 5.6
Pure Math Solution OpenMathIns. 2 82.1 51.1 17.4 6.6
Generic Instruction WebInstruct 81.3 49.0 18.8 9.1
CodeI/O CodeI/O 79.3 39.8 17.6 8.6

Ours TracePile 80.8 50.8 35.5 10.8

Despite being smaller
or equal in size, Tra-
cePile outperforms
all baselines across
both in-domain and
out-of-domain rea-
soning benchmarks.
On GSM8K, Tra-
cePile achieves 80.8%,
slightly above Open-
Math (80.1%) and
CodeI/O++ (80.5%).
On MATH, which
demands more com-
positional reasoning,
the improvement is more substantial—50.8% for TracePile versus 46.1% (OpenMath) and only
39.9% (CodeI/O++). The advantage of CoE becomes even more pronounced on out-of-domain
tasks. For example, on LiveCodeBench-Output, TracePile reaches 35.5%, far surpassing CodeI/O++
(20.6%) and OpenMath (3.4%). On Zebra Logic, TracePile scores 10.8%, outperforming all
baselines. These results confirm that the Chain of Execution format—by explicitly guiding models
through intermediate reasoning steps—offers more effective supervision than final-answer training.
TracePile’s CoE data not only enhances in-domain learning (e.g., math, algorithms) but also enables
strong generalization to unseen task formats, making it a powerful training resource for robust and
transferable reasoning.

RQ2: What components contribute most to TracePile’s effectiveness? To assess the contribution
of different components within TracePile, we conduct ablation studies on LLama-3.1-8B under the
two-stage finetuning setting. Specifically, we remove individual data sources or design features and
evaluate their impact on downstream performance across four reasoning domains: mathematical,
code, logical, and algorithmic. The results are summarized in Table 5.

Table 5: Ablation studies under two-stage fine-tuning. Average
performances of each category are reported.
Methods Mathematical Code Logical Algorithm

Ours 62.4 30.6 38.9 40.3

w/o mathematical 60.6 26.2 38.4 40.6
w/o algorithm 61.5 23.1 38.0 33.2
w/o competition 62.0 24.9 37.8 35.0

w/o diversification 61.8 27.6 38.0 37.2
w/o query 62.0 30.0 38.7 37.9
w/o code 62.2 28.2 38.3 39.5

The ablation results clearly
demonstrate that both the
multi-source composition and
the diversification strategies
within TracePile are crucial
to its effectiveness as an in-
termediate reasoning stage.
Removing any individual data
source—mathematical, algorith-
mic, or competition code—leads
to noticeable performance
degradation, not only within the
corresponding domain but also
across others, highlighting strong
cross-domain transfer. For example, excluding competition data significantly weakens code reasoning
(−5.7%), emphasizing its role in grounding execution-based understanding. Diversification strategies
further enhance generalization: eliminating both query and code augmentations reduces performance
across all categories, particularly in code (−3.0%) and algorithmic (−3.1%) reasoning. Among
them, code rewrites contribute most to structural generalization, while query diversification enhances
task-specific interpretability. These findings reinforce that TracePile’s effectiveness is not solely
due to data scale, but arises from its carefully constructed CoE supervision, domain diversity, and
reasoning-aware augmentation.

RQ3: Does performance scale with more TracePile data? To examine how performance scales
with data size, we progressively expand TracePile from 50K to 4.3M samples and evaluate model
performance using LLaMA-3.1-8B under the two-stage finetuning setup. As shown in Figure 3, we
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Figure 3: Model performances with scaling the size of CoE samples.

observe a clear upward trend across all four reasoning domains: mathematical, code, logical, and
algorithmic. This confirms that increasing the volume of CoE supervision directly contributes to
stronger reasoning capabilities, especially in domains with structured multi-step logic.

To further explore the effect of high-quality data at scale, we apply rejection sampling to augment
TracePile to 4.3M samples, denoted as TracePile++. The goal is to filter for higher-quality CoE
traces by selecting the diverse outputs from multiple samples. Interestingly, while mathematical
reasoning continues to benefit from this expansion, the improvements in code, logical, and algorithmic
reasoning plateau or slightly regress. This suggests that rejection sampling, despite improving local
coherence, may introduce distributional biases that limit broader generalization.

RQ4: What types of reasoning are improved by TracePile? Does it enhance robustness, reduce
typical reasoning errors, and generalize? To better understand the qualitative improvements
introduced by TracePile, we conduct a fine-grained analysis on several challenging reasoning subsets
from the BBH benchmark [41]. These tasks are carefully chosen to test specific dimensions of
reasoning where CoE-style supervision may offer unique advantages. We focus on the following four
subsets: Tracking Shuffled Objects: Requires precise state tracking across sequential transformations
(e.g., object swaps), a skill closely aligned with the procedural traceability in TracePile. Multi-Step
Arithmetic: Involves multi-hop numerical reasoning across chained operations. Logical Deduction:
Demands inference from spatial or relational constraints to determine object orderings—akin to
graph- or rule-based reasoning patterns. Web of Lies: Evaluates truth values from complex Boolean
logic expressed in natural language, testing abstract symbolic manipulation.

Table 6: Compare ours with Qwen-2.5-base under two-stage fine-
tuning in BBH subsets.

Modelsm Tracking Shuffled Arithmetic Logical Web of
Objects Deduction Lies

Base 68.4 72.0 78.4 87.2

Ours 87.6 82.0 83.6 92.8

As shown in Table 6, models
trained on TracePile outperform
the Qwen-2.5-base model across
all tasks. The gains are particu-
larly striking in Tracking Shuf-
fled Objects (+19.2%) and Web
of Lies (+5.6%), suggesting im-
proved robustness in stateful and
symbolic reasoning. TracePile
also boosts performance in Multi-
Step Arithmetic (+11.6%) and Logical Deduction (+3.6%), where intermediate reasoning steps are
critical. These results provide evidence that TracePile significantly enhances fine-grained reasoning
abilities. It helps models better track latent state, execute multi-step logic, and reduce common failure
cases like missing intermediate computations or making logically inconsistent predictions. More
importantly, it shows that CoE-based supervision transfers beyond code tasks, improving general
reasoning robustness across abstract formats.

5 Related Works

Reasoning in Large Language Models. Reasoning is a core capability for large language models
(LLMs) and a critical step toward achieving general intelligence. Recent work has shown that LLMs
possess some capacity for complex reasoning when prompted appropriately, leading to a surge of
interest in improving their reasoning abilities, particularly in domains such as mathematical problem
solving and code generation [48, 37, 4, 5, 1, 21]. Early efforts often relied on prompt engineering
techniques, such as chain-of-thought prompting [49], self-consistency, and tool-augmented scratchpad
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[46], to elicit multi-step reasoning behavior at inference time. More recently, the field has shifted
toward data-driven approaches, where large-scale, domain-specific reasoning corpora are collected
and used for pretraining or finetuning. Representative examples include Qwen-Math [51], Qwen-
Coder [18], DeepSeek-Math [39], and DeepSeek-Coder [21], which leverage hundreds of billions to
trillions of tokens to specialize models for mathematical or programming tasks. Compared to these
works, TracePile introduces a different perspective: rather than relying solely on final-answer or
solution-style supervision, it provides fine-grained, step-by-step execution traces in natural language
through the CoE format. This enables more explicit and interpretable reasoning supervision, bridging
the gap between task-specific pretraining and general-purpose reasoning enhancement.

Supervision through Code Execution. The idea of learning from code execution traces predates
the modern era of LLMs, with early work exploring how neural networks could simulate or reason
over program behavior [23, 54]. More recently, this line of research has been revived in the context
of LLMs, but most existing efforts focus narrowly on output prediction from code execution [13].
Other approaches aim to leverage execution in auxiliary ways—either as final feedback for reward
learning [11] or by incorporating intermediate traces to improve code generation [12]. SemCoder
[12] employs "monologue reasoning" with high-level functional descriptions and verbal reasoning
about local execution effects. However, it primarily uses synthetic data with limited real-world
complexity. Additionally, new benchmarks such as CRUXEval [16] have been introduced to test
models’ ability to simulate or predict execution dynamics. Most recently, CodeI/O [27] also proposes
code-referenced input-output pairs to enhance the models’ reasoning abilities. In contrast to these
code-centric and task-specific efforts, TracePile takes a broader view. It is the first to train LLMs on
large-scale, diverse execution traces using natural language CoE supervision.

6 Conclusion

In this work, we present TracePile, a large-scale dataset of step-by-step Chain of Execution (CoE)
traces designed to enhance the reasoning abilities of large language models, covering over 2.6 million
samples. By supervising models with fine-grained execution processes across mathematics, classical
algorithms, and competition code, TracePile provides a structured reasoning signal that extends
beyond final-answer supervision. Our experiments across multiple training strategies and 20 diverse
benchmarks demonstrate that TracePile consistently improves both in-domain and out-of-domain
reasoning, especially on tasks requiring multi-step logic and state tracking. Ablation studies further
highlight the importance of multi-source design and diversification strategies, while scaling analysis
confirms that performance improves with data volume, though with diminishing returns beyond a
certain point. Overall, TracePile offers an effective and transferable intermediate training stage that
significantly boosts the general reasoning capabilities of LLMs.

Limitation

While TracePile demonstrates strong improvements in general reasoning, it also comes with certain
limitations. First, the dataset is primarily grounded in code-based reasoning, which may limit
its applicability to tasks requiring commonsense or world knowledge that fall outside structured
procedural logic. Second, although we incorporate multiple domains, the coverage is still skewed
toward mathematical and algorithmic reasoning; expanding to domains such as law, planning, or
real-world causal inference remains future work. Third, generating high-quality CoE traces relies
heavily on large instruction-tuned models, which introduces computational costs and potential bias
from the prompting model itself. Lastly, our filtering strategy (e.g., 8k token cutoff) may discard
complex but informative reasoning traces, potentially limiting exposure to long-range dependencies.
Addressing these challenges—such as improving coverage, reducing reliance on frontier models, and
capturing longer CoE traces—will be critical for further scaling TracePile’s effectiveness.
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A Prompts

Prompts A.1: Prompt of LLM extracting clean code

You are an AI assistant responsible for providing assistance. You are provided with a problem and
examples of the input.
Your task is: (1) Write Python code to develop an input generator function capable of generating
inputs for this problem. The input generator function should include a parameter that determines
the maximum number of inputs it generates. The output of this function should be a list containing
the generated inputs, with the length of each individual input not exceeding 10. Besides, any
numbers contained in the input should not exceed 1000. Please provide the Python code without
any additional explanation. Present your output in the following format: Input_generator: <your
code>
(2) Rewrite the code to eliminate manual input and encapsulate it within a function named
’solution’. The function should accept a string input as its parameter. Provide the output in the
following format: Solution: <your code>.

Here is relative information:
Original Problem: {Original Problem}
Input: {Input examples}

Prompts A.2: An Example of LLM Rewrite Prompt

You are provided with Python code that solves a specific problem. Your task is to rewrite the code
while adhering to the following guidelines:
(1) Retain the original logic and functionality of the provided code.
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(2) Introduce variations in the implementation, such as using different syntax, alternative methods,
or restructuring the code for improved readability or efficiency.
(3) Ensure the rewritten code is clean, functional, and adheres to best practices.

Output only the modified code. Do not include any explanations or comments.

Here is relative information:
Code: {Code}

B Benchmark Overview

To comprehensively evaluate the reasoning capabilities of our models, we select 20 benchmark
datasets spanning four major reasoning domains: mathematical reasoning, logical reasoning, algo-
rithmic and code reasoning Below, we briefly describe each dataset:

GSM8K A collection of 1K grade school math word problems requiring multi-step arithmetic
reasoning. Designed to evaluate basic numerical reasoning skills.

MATH A large-scale dataset of 12.5K competition-style math problems covering algebra, geometry,
number theory, and combinatorics. It tests advanced symbolic and procedural reasoning.

GSM8K-Hard A harder version of GSM8K where numbers are replaced with uncommon or large
values, increasing arithmetic and symbolic complexity.

SVAMP An elementary-level math benchmark that tests a model’s sensitivity to problem structure
and its ability to reason over similar surface forms with different logical requirements.

ASDIV A diverse dataset of 2.3K elementary math word problems drawn from textbooks, focusing
on linguistic variation and real-world phrasing.

MAWPS A corpus of 3.3K math problems scraped from educational resources, covering various
question types used in real-world math education.

MINERVA_Math A curated set of 272 high-complexity math questions, emphasizing multi-step
symbolic manipulation and abstract reasoning.

MMLU-STEM A subset of the MMLU benchmark covering science, technology, engineering, and
mathematics subjects. Includes questions from high school and university-level curricula.

TABMWP A structured math word problem dataset (8.5K samples) formulated in tabular format,
designed to test abstract reasoning and table comprehension.

MATHQA A dataset of 3K math word problems annotated with symbolic program representations,
enabling reasoning over structured solution steps.

SAT-MATH A dataset mimicking standardized SAT math questions, covering algebra, geometry,
and data analysis. Designed to test broad quantitative proficiency.

Zebra Puzzle A logic puzzle dataset derived from constraint satisfaction problems. Tasks require
deducing object relationships and properties based on textual clues.

Ruletaker A benchmark that presents logical rules and facts in natural language and asks models
to infer new truths through deductive reasoning.

ProofWriter Includes small rulebases of English facts and logical rules, where models must
determine whether a hypothesis is provable, unprovable, or unknown.
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CLRS Based on the “Introduction to Algorithms” textbook, CLRS provides algorithmic tasks
where models are expected to simulate or reason about classical algorithm behavior.

GraphWiz Contains 3.6K problems across nine graph reasoning tasks (e.g., shortest path, reacha-
bility), with complexity ranging from linear to NP-complete.

GraphInstruct A synthetic benchmark consisting of 21 graph-based reasoning tasks. We evaluate
on a subset aligned with general reasoning patterns.

KorBench KorBench [33] is designed to assess a model’s intrinsic reasoning and planning
abilities while minimizing the influence of pretrained world knowledge. It introduces five cate-
gories—Operation, Logic, Cipher, Puzzle, and Counterfactual—each defined by 25 manually con-
structed, novel rules. This setup enables a more precise evaluation of a model’s ability to generalize
to unfamiliar, rule-based tasks.

CRUXEval CRUXEval evaluates a model’s capability to reason over code by predicting either
inputs or outputs of anonymized Python functions. This benchmark requires models to perform
symbolic execution and maintain intermediate state across program flow.

BBH BBH (Beyond the Imitation Game Benchmark) comprises 23 challenging reasoning tasks
originally from the BIG-Bench suite. These tasks are curated to be particularly difficult for LLMs,
covering a wide range of logical, mathematical, and procedural reasoning problems.

Together, these benchmarks provide a comprehensive and diverse testbed for evaluating general
reasoning across symbolic, procedural, logical, and open-domain tasks.

Table 7: Model performances under contiue pretraining+fine-tuning settings. The base models are
trained on the same dataset. L.C.Bench refers to livecodebench.

Type Datasets Llama-3-8B Llama-3.1-8B Qwen-2.5-7B Qwen-2.5-Coder

Base Ours Base Ours Base Ours Base Ours

Math

GSM8K 70.7 72.0 73.8 78.9 76.9 76.9 74.3 80.8
MinMath 28.8 29.8 30.2 30.0 47.2 52.8 47.6 50.4
MATH 28.6 29.1 30.8 31.9 49.6 51.6 45 50.2
GSM-H 35.0 34.0 39.3 38.2 55.0 54.1 55.4 59.8
SVAMP 83.0 79.9 79.6 83.4 79.7 81.4 81.1 83.0
ASDIV 81.4 82.2 82.3 84.7 86.5 88.3 86.9 88.2

MAWPS 93.9 94.1 94.3 94.2 95.6 95.7 95.4 95.8
STEM 42.8 52.8 50.2 58.8 70.1 71.4 69.3 67.3

TABMWP 65.8 68.0 69.6 72.0 77.3 76.5 80.5 79.5
MATHQA 37.7 49.6 44.7 59.8 80.7 80.6 75.3 78.0

SAT 40.6 62.5 65.6 65.6 90.6 87.5 87.5 90.6

Average 55.3 59.5 60.0 63.4 73.6 74.3 72.6 74.9

Code CRUX 32.9 34.4 34.0 40 46.5 49.8 52.6 58.1
L.C.Bench 9.8 10.1 7.6 14.7 25.8 23.9 27.2 29.0

Logical

Zebra Puzzle 7.7 8.9 8.1 10.7 9.4 8.9 9.2 9.6
KORBench 47.6 75.6 27.0 24.7 40.4 41.5 34.6 35.9
Ruletaker 60.4 65.4 61.5 65.1 73.2 74.7 73.1 72.4

Algorithm
Graphwiz 44.0 29.8 44.5 43.1 29.0 70.9 33.9 61.9

GraphInstruct 27.5 44.0 29.8 55.0 32.4 63.6 31.5 62.2
CLRS 17.2 32.5 16.8 38.3 36.0 52.0 41.2 58.9
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C Cases in TracePile

Prompts C.1: An Case from Classical algorithm in TracePile

Given the code, trace the changes of specified variables during code execution.

Input:
def dfs(A: np.ndarray) -> np.ndarray:

assert A.ndim == 2

n = A.shape [0]
color = np.zeros(n, dtype=np.int32)
pi = np.arange(n)
d = np.zeros(n)
f = np.zeros(n)
time = 0

def dfs_visit(u):
nonlocal time
color[u] = 1
time += 1
d[u] = time

for v in range(n):
if A[u, v] != 0 and color[v] == 0:

pi[v] = u
dfs_visit(v)

color[u] = 2
time += 1
f[u] = time

for u in range(n):
if color[u] == 0:

dfs_visit(u)

return pi

along with the input parameter: A: [[1 1 1 1], [0 1 0 1], [1 0 1 1], [1 1 0 0]] Trace the changes in
the "pi" variable throughout the program’s execution.
CoE:

We’ll follow the execution step-by-step, highlighting when and how the pi array is updated.
1. Initialization:

pi = [0, 1, 2, 3]
color = [0, 0, 0, 0] (all nodes are initially unvisited)
time = 0

2. Starting the DFS Loop (u = 0):

Node 0 is unvisited (color [0] == 0), so dfs_visit (0) is called.

3. Entering dfs_visit (0):
color [0] is set to 1 (visiting).
time increments to 1.
d[0] = 1.

Exploring Neighbors of Node 0:
Neighbor v = 0:

A[0, 0] = 1 (self -loop), but color [0] == 1 (already visiting
). No change to pi.

Neighbor v = 1:
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A[0, 1] = 1 and color [1] == 0 (unvisited).
Update: pi[1] is set to 0.
pi Changes to: [0, 0, 2, 3]
dfs_visit (1) is called.

4. Entering dfs_visit (1):

color [1] is set to 1 (visiting).
time increments to 2.
d[1] = 2.

Exploring Neighbors of Node 1:

Neighbor v = 0:
A[1, 0] = 0 (no edge). No change to pi.

Neighbor v = 1:
A[1, 1] = 1 (self -loop), but color [1] == 1 (already visiting

). No change to pi.
Neighbor v = 2:

A[1, 2] = 0 (no edge). No change to pi.
Neighbor v = 3:

A[1, 3] = 1 and color [3] == 0 (unvisited).
Update: pi[3] is set to 1.
pi Changes to: [0, 0, 2, 1]
dfs_visit (3) is called.

5. Entering dfs_visit (3):

color [3] is set to 1 (visiting).
time increments to 3.
d[3] = 3.

Exploring Neighbors of Node 3:

Neighbor v = 0:
A[3, 0] = 1 and color [0] == 1 (already visiting). No change

to pi.
Neighbor v = 1:

A[3, 1] = 1 and color [1] == 1 (already visiting). No change
to pi.

Neighbor v = 2:
A[3, 2] = 0 (no edge). No change to pi.

Neighbor v = 3:
A[3, 3] = 0 (no edge). No change to pi.
Post Exploration:
color [3] is set to 2 (finished).
time increments to 4.
f[3] = 4.
pi Remains: [0, 0, 2, 1]

6. Returning to dfs_visit (1):

Post Exploration:
color [1] is set to 2 (finished).
time increments to 5.
f[1] = 5.
pi Remains: [0, 0, 2, 1]

7. Returning to dfs_visit (0):

Neighbor v = 2:
A[0, 2] = 1 and color [2] == 0 (unvisited).
Update: pi[2] is set to 0.
pi Changes to: [0, 0, 0, 1]
dfs_visit (2) is called.

18



8. Entering dfs_visit (2):

color [2] is set to 1 (visiting).
time increments to 6.
d[2] = 6.

Exploring Neighbors of Node 2:

Neighbor v = 0:
A[2, 0] = 1 and color [0] == 2 (finished). No change to pi.

Neighbor v = 1:
A[2, 1] = 0 (no edge). No change to pi.

Neighbor v = 2:
A[2, 2] = 1 (self -loop), but color [2] == 1 (already visiting

). No change to pi.
Neighbor v = 3:

A[2, 3] = 1 and color [3] == 2 (finished). No change to pi.
Post Exploration:

color [2] is set to 2 (finished).
time increments to 7.
f[2] = 7.
pi Remains: [0, 0, 0, 1]

9. Returning to dfs_visit (0):

Neighbor v = 3:
A[0, 3] = 1 and color [3] == 2 (finished). No change to pi.

Post Exploration:
color [0] is set to 2 (finished).
time increments to 8.
f[0] = 8.
Final pi: [0, 0, 0, 1]

10. Continuing the DFS Loop:

u = 1: color [1] == 2 (finished). No action taken.
u = 2: color [2] == 2 (finished). No action taken.
u = 3: color [3] == 2 (finished). No action taken.

Summary of pi Changes:

Trace | pi: [0, 1, 2, 3] -> [0, 0, 2, 3] -> [0, 0, 2, 1] -> [0, 0,
0, 1]

So the output is:
{"output": "[[0, 1, 2, 3],[0, 0, 2, 3],[0, 0, 2, 1],[0, 0, 0, 1]]"}

Prompts C.2: An Case from Codeforce in TracePile

<Problem> Vasya is very upset that many people on the Net mix uppercase and lowercase letters
in one word. That’s why he decided to invent an extension for his favorite browser that would
change the letters’ register in every word so that it either only consisted of lowercase letters or,
vice versa, only of uppercase ones. At that as little as possible letters should be changed in the
word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP.
If a word contains an equal number of uppercase and lowercase letters, you should replace all the
letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to
use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and
possesses the length from 1 to 100.
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Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the
word written in the uppercase register, otherwise - in the lowercase one.

Demo Input:
{’HoUse’, ’ViP’, ’maTRIx’}

Demo Output:
{’house’, ’VIP’, ’matrix’}

Note:
none
<Problem>

And the input of the problem:
<Input> aOvSeu <Input>
Predict the output of the problem by tracing the code step by step:

<Code>

def solution(s):
upper = sum(1 for c in s if c.isupper ())
lower = sum(1 for c in s if c.islower ())
if lower >= upper:

return s.lower()
else:

return s.upper()

<Code>

CoE:

Let’s break down the execution of the provided code step by step for the input aOvSeu.

1. Input Processing:
The input word is aOvSeu. It includes both uppercase and

lowercase letters.

2. Counting Uppercase Letters:
Uppercase Letters Identified: O, S
Uppercase Count (upper): 2

3. Counting Lowercase Letters:
Lowercase Letters Identified: a, v, e, u
Lowercase Count (lower): 4

4. Decision Making Based on Counts:
Comparison: Is the number of lowercase letters (4) greater than or

equal to the number of uppercase letters (2)?
Evaluation: 4 >= 2 -> True

5. Transforming the String:
Since the condition lower >= upper is True , the entire string is

converted to lowercase.
Transformation:

Original String: aOvSeu
Transformed String: aovseu

6. Appending Newline Character:

Final Output: {"output": "aovseu"}.
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Prompts C.3: Case of the Biapartite Problem in TracePile

Input: Given an undirected graph with nodes [Alice Johnson, Bob Smith, Catherine Lee, David
Brown], the adjacency list is as follows: Alice Johnson: [Bob Smith, Catherine Lee, David Brown],
Bob Smith: [Alice Johnson], Catherine Lee: [Alice Johnson], David Brown: [Alice Johnson].
The code with initialized parameters is as follows:
Code:

def hungarian_algorithm_with_paths(adj_list , n_left , n_right_start):
match_right = {}
match_pairs = []

def dfs(node , visited):
for neighbor in adj_list.get(node , []):

if not visited[neighbor ]:
visited[neighbor] = True
if neighbor not in match_right:

match_right[neighbor] = node
return True

elif dfs(match_right[neighbor], visited):
match_right[neighbor] = node
return True

return False
max_matching = 0
for node in range(n_left):

visited = {key: False for key in range(n_right_start ,
n_right_start + n_left)}

if dfs(node , visited):
max_matching += 1

for right_node , left_node in match_right.items ():
match_pairs.append ((left_node , right_node))

return max_matching , match_pairs

What is the size of the maximum matching?
Please solve the problem by tracing through the code.
CoE:
Let’s run the function hungarian_algorithm_with_paths(adj_list, n_left, n_right_start).

Initial values: adj_list = {Alice Johnson: [Bob Smith , Catherine Lee
, David Brown], Bob Smith: [Alice Johnson], Catherine Lee: [
Alice Johnson], David Brown: [Alice Johnson]}, n_left = Bob
Smith , n_right_start = Bob Smith

Call hungarian_algorithm_with_paths ({ Alice Johnson: [Bob Smith ,
Catherine Lee , David Brown], Bob Smith: [Alice Johnson],
Catherine Lee: [Alice Johnson], David Brown: [Alice Johnson]},
Bob Smith ,Bob Smith)

match_right = {} and match_pairs = [].
max_matching = 0
for node: Alice Johnson
Current match_right: {}
Initialize visited = {Bob Smith: False , Catherine Lee: False , David

Brown: False }.
Call dfs(Alice Johnson ,{Bob Smith: False , Catherine Lee: False ,

David Brown: False})
for neighbor: Bob Smith
Since neighbor Bob Smith is not visited
visited[Bob Smith] = True
match_right = {}
Since neighbor Bob Smith is not in match_right
match_right[Bob Smith] = Alice Johnson
Return True
Since dfs(Alice Johnson ,{Bob Smith: True , Catherine Lee: False ,

David Brown: False}) returns True
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max_matching = maximum_mactching + 1, max_matching: 1
Iterate over match_right: right_node = Bob Smith , left_node = Alice

Johnson
Add pair (Alice Johnson ,Bob Smith) to match_pairs
All nodes in set 1 are traversed , max_matching = [(Alice Johnson ,

Bob Smith)]
So the size of the maximum matching is 1

Final Output: {" output ": "1"}.

Prompts C.4: Case of mathematical problem from TracePile

Given a mathematical problem and its solution code, please analyze the execution of the above
solution code step by step.
Provide a detailed, natural-language, step-by-step reasoning process that explains how the code
solves the given mathematical problem.
Problem:
What is the sum of all the prime numbers between 1 and 10?

Solution Code:

def is_prime(num):
if num < 2:

return False
for i in range(2, int(num **0.5) + 1):

if num % i == 0:
return False

return True

primes = [i for i in range(1, 11) if is_prime(i)]
print(sum(primes))

CoE:

1. ** Define the ‘is_prime ‘ Function :**

The function ‘is_prime ‘ is defined to check if a given number ‘
num ‘ is a prime number.

- **Check if ‘num ‘ is less than 2:**
- If ‘num ‘ is less than 2, the function returns ‘False ‘ because

0 and 1 are not prime numbers.
- **Check divisibility from 2 to the square root of ‘num ‘:**

- The function iterates through all numbers from 2 to the
integer part of the square root of ‘num ‘ (inclusive).

- For each number ‘i‘ in this range , it checks if ‘num ‘ is
divisible by ‘i‘ (i.e., ‘num % i == 0‘).

- If ‘num ‘ is divisible by any ‘i‘, it returns ‘False ‘ because
‘num ‘ is not a prime number.

- ** Return ‘True ‘ if no divisors are found :**
- If the loop completes without finding any divisors , the

function returns ‘True ‘, indicating that ‘num ‘ is a prime
number.

2. ** Generate the List of Prime Numbers :**

- A list comprehension is used to generate a list of prime
numbers between 1 and 10.

- The list comprehension iterates through each number ‘i‘ in the
range from 1 to 10 (inclusive).

- For each ‘i‘, it calls the ‘is_prime ‘ function.
- If ‘is_prime(i)‘ returns ‘True ‘, the number ‘i‘ is included in

the list ‘primes ‘.
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3. ** Calculate the Sum of Prime Numbers :**

- The ‘sum ‘ function is used to calculate the sum of all the
numbers in the list ‘primes ‘.

4. ** Output the Result :**

- The result of the ‘sum ‘ function is printed to the console.

### Detailed Execution

1. **Check if 1 is a prime number :**
- ‘is_prime (1) ‘: Since 1 is less than 2, the function returns ‘

False ‘.
- 1 is not included in the list ‘primes ‘.

2. **Check if 2 is a prime number :**
- ‘is_prime (2) ‘: 2 is not less than 2.
- The loop from 2 to the square root of 2 (which is 1.414, so the

integer part is 1) is not executed because the range is
empty.

- The function returns ‘True ‘.
- 2 is included in the list ‘primes ‘.

3. **Check if 3 is a prime number :**
- ‘is_prime (3) ‘: 3 is not less than 2.
- The loop from 2 to the square root of 3 (which is 1.732, so the

integer part is 1) is not executed because the range is
empty.

- The function returns ‘True ‘.
- 3 is included in the list ‘primes ‘.

4. **Check if 4 is a prime number :**
- ‘is_prime (4) ‘: 4 is not less than 2.
- The loop from 2 to the square root of 4 (which is 2) checks if

4 is divisible by 2.
- Since 4 is divisible by 2, the function returns ‘False ‘.
- 4 is not included in the list ‘primes ‘.

5. **Check if 5 is a prime number :**
- ‘is_prime (5) ‘: 5 is not less than 2.
- The loop from 2 to the square root of 5 (which is 2.236, so the

integer part is 2) checks if 5 is divisible by 2.
- Since 5 is not divisible by 2, the function returns ‘True ‘.
- 5 is included in the list ‘primes ‘.

6. **Check if 6 is a prime number :**
- ‘is_prime (6) ‘: 6 is not less than 2.
- The loop from 2 to the square root of 6 (which is 2.449, so the

integer part is 2) checks if 6 is divisible by 2.
- Since 6 is divisible by 2, the function returns ‘False ‘.
- 6 is not included in the list ‘primes ‘.

7. **Check if 7 is a prime number :**
- ‘is_prime (7) ‘: 7 is not less than 2.
- The loop from 2 to the square root of 7 (which is 2.646, so the

integer part is 2) checks if 7 is divisible by 2.
- Since 7 is not divisible by 2, the function returns ‘True ‘.
- 7 is included in the list ‘primes ‘.

8. **Check if 8 is a prime number :**
- ‘is_prime (8) ‘: 8 is not less than 2.
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- The loop from 2 to the square root of 8 (which is 2.828, so the
integer part is 2) checks if 8 is divisible by 2.

- Since 8 is divisible by 2, the function returns ‘False ‘.
- 8 is not included in the list ‘primes ‘.

9. **Check if 9 is a prime number :**
- ‘is_prime (9) ‘: 9 is not less than 2.
- The loop from 2 to the square root of 9 (which is 3) checks if

9 is divisible by 2 and 3.
- Since 9 is divisible by 3, the function returns ‘False ‘.
- 9 is not included in the list ‘primes ‘.

10. **Check if 10 is a prime number :**
- ‘is_prime (10) ‘: 10 is not less than 2.
- The loop from 2 to the square root of 10 (which is 3.162, so

the integer part is 3) checks if 10 is divisible by 2 and 3.
- Since 10 is divisible by 2, the function returns ‘False ‘.
- 10 is not included in the list ‘primes ‘.

### Final List of Primes

The list ‘primes ‘ contains the numbers: [2, 3, 5, 7].

### Calculate the Sum

- The sum of the list ‘primes ‘ is calculated: 2 + 3 + 5 + 7 = 17.

### Output the Result

- The final output is 17.

### Final Answer
17
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical equations or results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3.1: Experimental Settings
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 3.1: Experimental Settings and
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 3.1: Experimental Settings
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 3.1: Experimental Settings
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 3.1: Experimental Settings
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our codes are based on public llama-factory.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not include it.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not include it.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 3.1 Experimental Settings
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: Section 2

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not include it.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not include it.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We do not include it.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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