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Abstract

In order to fully utilise the potential throughput of automated synthesis and charac-
terisation data collection, data analysis capabilities must have matching throughput,
which consumes excessive (human) expert time even for small datasets. One such
analysis task is unmixing; being able to generally separate, from a sample consist-
ing of multiple components, the individual patterns characteristic of the constituent
parts. Such tasks are often complicated by variation of the basis patterns (e.g. peak
shifting and broadening in PXRD). Conventional approaches focus on fitting a pa-
rameterised subset of transformations or utilising phase space relationships, and so
one tuned for PXRD may require extensive modification or retraining before being
suitable for another modality. This work aims to build a more robust foundation
for unmixing, not specific to a particular spectral modality. A more robust optimi-
sation can be achieved through a more robust cost, and distance/comparison is a
vital component of such costs. We construct a non-regressive, distance geometry
based framework, in this presentation leveraging Optimal Transport (OT) with a
Euclidean ground cost, but lending itself to modification through the use of differ-
ent distances. This provides a non-parametric approach that allows for arbitrary
variation. We show through numerical experiments that our approach can handle
fully blind basis discovery despite independent random peak shifting/broadening
at various intensities, where matrix factorisation frameworks break down. We
also showcase use in smaller data regimes through a laboratory discovery mockup,
where our method can flag compositions containing an unknown trace component.

1 Introduction

While characterisation instruments, robotics and expert time can be scarce for all but the largest of
labs, compute (in the form of consumer hardware) is universally abundant. Not only that, but full use
of the former hinges on sufficiently powerful, robust and algorithmically efficient methods for the
latter. There is much to still be discovered in the materials realm, so there is much to be gained from
democratisation of the endeavour, towards this goal, it is therefore paramount to get the most out of
such scarcity. Regardless, the analysis challenge will grow even further with increased availability of
spectral instruments and robotics. In particular, quick and reliable unmixing is important both for
fraction estimation/component extraction for further characterisation, and for identification of trace
components corresponding to new materials.

A classic approach to unmixing, at least in the setting of non-varying bases, is non-negative matrix
factorisation (NMF) (1). This arises from the fact that linear combination c =

∑
k akb

k can be
written as matrix-vector product c = Ba and indeed multiple such products as a matrix-matrix
product C = BA. The NMF method performs a (regression) fit for this matrix relation. Going
further, overlapping NMF (oNMF) allows each basis to be varied by convolution, with variations
b̃k = λk∗bk composing c =

∑
k akb̃

k (2; 3). Agile Factor Decomposition, a method tuned for
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PXRD, constrains this to shifts only, e.g. λk = (0, 1, 0, . . . , 0), and enforces phase map constraints
(4; 5). The topic of unmixing is explored extensively in the signal processing literature (6; 7; 8; 9).
Generally such models are fit through regression, often in terms of a pointwise distances. Note,
regression in these only corresponds to a maximum likelihood estimate for pointwise independent
noise (10). As difference drives the fitting process, an appropriate notion of difference can make sure
we are driven the right way.
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Figure 1: Top: A pattern (blue) and progressive variations of it (green,orange,red). Bottom: False
alignments of a pointwise distance vs convexity of a Wasserstein distance (w.r.t. shift).

In the context of PXRD, a small change in a crystal or measurement conditions (e.g. temperature)
ought to result in a small change in lattice planes, therefore a small change in Bragg angle. This
should mean that an interference spike that otherwise occurs at 2θ, occurs at 2θ +∆; this is more so
a domain-wise perturbation (side-to-side), than a pointwise independent change in intensity.

2 Our methodology

Here we will showcase a high level overview of our work, a more detailed presentation and analysis
will be provided in an upcoming paper. While in EMD-NMF (11), OT is essentially used to compare
already combined patterns, and while in Wasserstein dictionary learning (12) OT averaging is used as
a combination mechanism, in our work we will seek to use OT to describe how each basis pattern
transforms.

Let variation of a basis pattern merely rearrange its mass/intensity distribution, for instance shifting
by ∆ merely takes mass from x and deposits it at x+∆. Then even after superposition, a mixture
consists of these rearranged basis parts. These parts can be arbitrarily small and their movements
need not be assumed correlated. We can attempt to trace back these parts, by considering all possible
origins and a proposed likelihood for each. We require two simple principles; a closer origin is likelier
than further, and all available mass must be accounted for.

To begin with, consider a single mixture c and a fully known set of basis patterns bk. Then, let pkij be
the amount of mass in c at position j that originates from position i of bk (see Fig. 2 - middle), then
applying a penalty dij for movement from position i to j, for instance dij = (xi − xj)

2 as we use
here, we define the total cost of the separation that this pkij suggests∑

ijk

dijp
k
ij . (1)

For mass conservation, we require
∑

ik p
k
ij = cj and

∑
j p

k
ij = akb

k
i where ak =

∑
ij p

k
ij and∑

i b
k
i =

∑
j cj = 1. We call minimisation of cost 1 with these constraints the separation problem.

In this, one may observe multiple coupled transport costs (see Supplementary material C), between
original bases bk and the varied counterparts b̃k that constitute c =

∑
k akb̃

k. This is a (well
defined) linear problem in pkij , which has a unique solution. Further, in 1D with certain dij , there is a
unique feasible (overall) plan which can be constructed in linear time with no minimisation, at least
for given abundances ak. If we take advantage of this, we need only optimise for ak.

During (partially or fully) blind unmixing, some or all of the basis patterns may be unknown, and
must be inferred from multiple mixed examples. While reasoning how variations due to shifted
bases may be distributed in Eucliden space is difficult due to coordinate permutation, i.e. we might
have (b1b2 . . . bN ) → (0b1b2 . . . bN−1) for b → b̃, the convexity of the Wasserstein distance to this
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Figure 2: Left: Corresponding parts of the compared patterns according to; a pointwise distance
such as ∥b− b̃∥2 (top), and Wasserstein (bottom). Middle: Visualisation of the flexible parts-based
representation that the separation program gives. Right: Metric view of basis variation and mixing,
with dark grey representing possible basis variations, lighter representing possible combinations and
lightest - the whole space of patterns.

operation and more (13; 14; 15), keeps variations local, giving us clear geometry in Wasserstein space
(see Fig. 2 - right). Just as simplex structure can be exploited in linear mixing (6; 7), the structure
present here can be exploited by looking for joint decompositions that have good clustering (in terms
of Fréchet variance). See also methods considering basis distributions (16; 17; 18). This optimisation
can be broken into alternating between solving for variations given a basis (separation) and solving
for the basis given variations (OT Fréchet averages). We might intuit that, just as an ordinary sample
mean converges to the distribution mean with increasing samples, that in order for this aggregate
to sufficiently reflect a true basis pattern, a sufficient amount of varied examples are required (i.e.
mixtures in which the basis appears in non-trivial amount).

By definition, trace components are not significantly represented and cannot be deduced through
averages, however, we can still detect their presence. We need only watch out for uncharacteristically
high separation costs, indicating that our basis has subpar explanatory power in a given mixture,
and that some mass may in fact be transported from a distribution not included in our basis. With a
modification to the separation problem, where we allow for a residual, this anomaly can be estimated
and illustrated. This may be done on demand, after detection through the aformentioned means.

3 Experimental results

Here we share a preview of our results in applying our approach on both synthetic patterns and
laboratory PXRD data. As part of other work, we have successfully applied our methods to Raman,
XPS and even hyperspectral remote sensing data.

3.1 Synthetic stress test

In order to illustrate the advantage over classical approaches, we generate many mixed spectra
datasets with large and complex variation (of bases) prior to basis combination. With some abuse of
notation, our bases can be expressed as bi =

∑NG

k=1 I
i
kN (µi

k, σ
i
k). Basis variations follow a similar

format, with the same peak intensities Iik, however the bases of each mixture cj will use independently
perturbed parameters µij

k , σ
ij
k (see Supplementary material A for specifics). Mixtures themselves

are then generated by combining these randomly varied bases in random proportions. We generate
3 bases and 800 mixtures per dataset, and 400 datasets per variability preset (see supplementary
B for a visualised example). We include the usual root mean square error (RMSE) metrics, as
well as the average absolute difference in percentage abundances (AADPA) which may be more
interpretable. Between inferred abundances A and ground truth abundances At, this is calculated as
100
KM

∑K
i=1

∑M
j=1 |a

j
i − (at)

j
i |.

For each generated dataset, we attempt to derive both the abundances and the basis itself (blind
unmixing), each tested method is run eight times and the best result is recorded. We can see that
for the medium and high presets NMF and oNMF begin to break down, while the accuracy of our
method is less impacted.
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Variability Approach Metric
AADPA(A,At) RMSE(A,At)× 100 RMSE(B,Bt)

NMF 5.921± 2.539 8.040± 3.546 1.793± 0.586
Low oNMF 6.813± 2.269 9.112± 2.988 2.253± 0.896

Our approach 4.289± 1.959 5.571± 2.720 1.663± 0.516
NMF 10.624± 3.873 14.623± 5.255 3.214± 0.926

Medium oNMF 10.735± 3.010 14.282± 3.881 4.292± 1.521
Our approach 5.954± 2.008 8.049± 2.819 2.564± 0.590

NMF 14.346± 3.873 19.498± 4.979 4.283± 0.944
High oNMF 13.759± 3.122 18.214± 3.894 5.788± 1.695

Our approach 8.295± 2.393 11.396± 3.310 3.628± 0.721
Table 1: Mean and standard deviation of decomposition metrics across the 400 trials.

Despite having more freedom, oNMF sometimes performs worse than NMF, this illustrates that
residual minimisation may not be sufficient as a driving force for good decompositions. A closer
fit of the overall sum, does not require good components. After all, one could arbitrarily divide a
mixture into irrelevant components and have no residual. In contrast our method can express more
subtle changes, and is able to look for the least changes required, yet is capable of describing more if
necessary. A smaller standard deviation in our metrics also suggests more consistent decompositions.

3.2 Prototypical discovery problem

As a proof of concept, a laboratory dataset was made to test whether we could blindly identify an
unknown component. Four substances were chosen, mixed in different amounts, then the PXRD
spectra of the mixtures as well as those of three of the four basis substances were shared, the mixing
ratios and the fourth were not initially shared. A total of 16 mixtures were made, 6 of which contained

b1j

b2j

b3j

anom

Figure 3: Summary of high level search for unknown, augmented through our tool. Note the variation
in peak positions and that not all anomalous area is due to the unknown. Top: Commonality across
anomalies, betraying the unknown. Bottom: true initially unknown PXRD pattern.

small amounts of the unknown substance (11.5%, 9.9%, 8.3%, 6.5%, 4.7% and 2.9% by mass).

We applied our modified separation approach to this, and used it to organise the mixtures from most
to least anomalous. Looking at the most anomalous, our computed anomalies highlighted peaks
which likely belonged to a non-basis pattern, as they were common across the anomalies (which can
also contain preprocessing artefacts or occasional misassignments), we later linked this to the true
hidden PXRD pattern (see Fig. 3). Note, this process of extracting further commonality from the
most anomalous area, though in this instance manual, could be further automated.
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Supplementary material A

For bases, peak parameters are drawn

Iik ∼ |N (1, 0.25)|, µi
k ∼ U(0.2, 0.8) and σi

k ∼ 0.02 · 2N (0,0.5),

while for their variations in mixture j

µij
k = µi

k +∆µij
k , σij

k = σi
k · γij

k .

with
∆µij

k ∼ N (0, σ∆µ) and γij
k ∼ 2N (0,σp),

according to variation presets (Table 2).

Preset σ∆µ σp 95% of ∆µij
k are in 95% of σij

k are in
Low 0.015 0.15 [−0.03,+0.03] [0.81σi

k, 1.23σ
i
k]

Medium 0.025 0.3 [−0.05,+0.05] [0.66σi
k, 1.52σ

i
k]

High 0.035 0.5 [−0.07,+0.07] [0.50σi
k, 2.00σ

i
k]

Table 2: Basis variation strength presets used, where two variations of the same peak can be found as
far as 14% of the domain width apart.
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Supplementary material B

Visualised decompositions of a random dataset generated with the high preset. Each row corresponds
to a different general unmixing method. Top: Bases (one per column, true in red). Bottom: Basis
separation different mixtures (columns).

Supplementary material C

Taking normalised transport plans akp̄kij = pkij we can express Eq. (1) as∑
k

ak⟨D, P̄k⟩. (2)

For mass conservation, we require
∑

k akb̃
k = c, b̃k = 1T P̄k and P̄k1 = bk (with bk and c

normalised as before). Where
min
P̄k

s.t. b̃k=1T P̄k,P̄k1=bk

⟨D, P̄k⟩ = W2(b̃
k,bk)2, (3)

hence the minimisation of Eq. (1) is equivalent to

min
ak,b̃

k ∀k

s.t.
∑

k akb̃
k = c

∑
k

akW2(b̃
k,bk)2. (4)

Note, though written as histograms here, discrete distributions with non-matching supports can be
used through separate (squared) distance matrices Dk. Alternatively, with concatenations of Dk,Pk

and supports it can also be shown that

min
ak

W2

(
c =

∑
k

akb̃
k,
∑
k

akb
k

)2

(5)

is equivalent. It would be tempting to think of this as a fit of the linear superposition of untransformed
bases, but note that computing/keeping the transport map so that b̃k may be recovered is important
here. Non-matching supports are also important here, as it helps us separate b̃k.
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