
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CUPID: LEVERAGING MASKED SINGLE-LEAD ECG
MODELLING FOR ENHANCING THE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Wearable sensing devices, such as electrocardiogram (ECG) heart-rate monitors,
will play a crucial role in the future of digital health. This continuous monitor-
ing leads to massive unlabeled datasets, making the development of unsupervised
learning frameworks essential to associate these single-lead ECG signals to their
anticipated clinical outcomes. While the Masked Data Modelling (MDM) meth-
ods have enjoyed wide use, the idiosyncrasies of single-lead ECG data make its
direct application impractical. In this paper, we present Cueing the Predictor In-
crements the Detailing (CuPID), a novel Self-Supervised Learning (SSL) method
that adapts MDM methods for use on single-lead ECG data. CuPID accomplishes
this via cueing spectrogram-derived context to the predictors, thus incentivizing
the encoder to produce more detailed representations. This leads the class token
to accommodate fine-grained information. We demonstrate that CuPID outper-
forms state-of-the-art methods in a variety of downstream tasks and databases,
increasing the accuracy for each task from 3.6 % to 9.7%.

1 INTRODUCTION

The wearable sensing field has seen remarkable advancements in recent years, and is expected to
play a crucial role in the future of digital health. One widely used type of wearable health sensor is
the heart monitor that captures cardiac activity as single-lead ECG signals during free-living condi-
tions, such as in the patient’s home. Mapping these signals with significant clinical outcomes has
the potential to provide outstanding benefits such as simplifying the diagnostic process (Himmel-
reich et al., 2019) or enabling users to engage proactively in tracking their heart health (Abdou &
Krishnan, 2022). In this context, models that extract information from single-lead ECG into gen-
eralizable representations are mandated to address distinct downstream tasks. These models should
be optimized using large volumes of unlabelled data. This makes Self-Supervised Learning (SSL)
framework particularly well-suited for addressing this clinical challenge.

Recently, Masked Data Modelling (MDM) methods have been gaining attention in the SSL field (He
et al., 2021; Gupta et al., 2023; Assran et al., 2023). They rely on masking a portion of the input and
driving a transformer-based encoder, typically a Vision Transformer (ViT) (Dosovitskiy et al., 2021)
to compute detailed patch representations that enable a predictor to infer the information accommo-
dated within the unseen patches. This approach is especially effective in fields like computer vision,
where the predictor can associate unseen tokens with the object they represent by simply perceiving
a portion of the whole picture and having the spatial information of unseen patches.

However, it is impractical to directly apply these methods to single-lead ECG data. These signals
capture the sequence of activities that are executed in each beat by the heart’s different chambers
to ensure the blood reaches the entire body. Figure 1a illustrates how various cardiac activities are
represented by distinct wave morphologies in the ECG. Even though the sequence of activities
occurs periodically over time, the distance between consecutive periods varies moderately as shown
in Figure 1b and 1c, respectively. This combination of ECG idiosyncrasies leads to the following
dilemma: it is challenging for the predictor to accurately model the position of each wave for masked
inputs because of the varying distances between periods, and not inferring exactly this position has a
big impact on the loss since consecutive strips accommodate distinct waves. This dilemma leads the
predictor to be cautious when reconstructing the masked patches. As shown in Figure 2b, it prefers
to estimate a value near the average rather than trying to match precisely the signal’s morphology.
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(a) Extracted from Byjus (2023)

(b)

(c)

Figure 1: The different heart actions and their corresponding morphology in the ECG are detailed
in (a). The distance between R-R peaks in patches for a normal ECG (b) is displayed in (c)

This paper presents Cueing the Predictor Increments the Detailing (CuPID), which is a novel SSL
method that addresses the previously mentioned issue by cueing the predictor with contextual
information provided by the spectrogram of the input signal. This information is fed into the
attention mechanism of the transformer-based predictor as the Key (K) to ensure that its role is
merely informative and its value can not be used directly to reconstruct the representations. It leads
to the loss function reaching significantly lower values, as shown in Figure 2a. Therefore, the
reconstructions are more adjusted to the morphology of the original signal, as captured in Figure
2c. Although the CuPID predictor is provided with additional information, making these results
insignificant on their own, we hypothesize that: (i)The predictor’s inability to reconstruct the origi-
nal signal due to the unpredictability of the distance between periods limits the encoder’s learning
potential. (ii) By cueing the predictor with the spectrogram, we enable it to manage this delay and
drive the encoder to compute detailed token representations, which can be used to reconstruct the
original input with high precision. (iii) The more informative the patch representations are, the more
informative the class token will be, thereby enhancing the model’s performance in downstream tasks.

(a)

(b)

(c)

Figure 2: (a) Represents the evolution of the loss across the training procedure. (b) and (c) show that
more accurate reconstructions are computed by the predictor when the spectrogram is incorporated.
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To assess our hypothesis, we have conducted an extensive evaluation where CuPID is com-
pared against the existing state-of-the-art (SOTA) SSL methods tailored for single-lead ECG
analysis. In the proposed evaluation, up to three distinct noisy databases; MIT-BIH Atrial Fibril-
lation (MIT-AFIB) (Moody & Mark, 1983), MIT-BIH Supraventricular Arrhythmia (MIT-SVA)
Greenwald et al. (1990), and Long Term AF (LT-AF) (Petrutiu et al., 2007), are considered.
Additionally, CuPID has been evaluated on widely-used benchmarks, i.e., PTB-XL (Wagner et al.,
2020), and CPSC2018 (Alday et al., 2021) against the SOTA MDM methods tailored for 12-lead
ECG processing. Remarkably, CuPID achieves significantly superior performance when compared
with single-lead ECG methods. Additionally, it shows competitive performance compared to
12-lead ECG models, despite CuPID using a significantly smaller model and only one lead sampled
at a lower resolution for inference. Finally, the benefit of incorporating the spectrogram has been
assessed for different pre-training databases and different configurations.

In summary, the contributions of this paper are:

• We have discussed the limitations of applying MDM techniques directly to single-lead ECG
signals due to the idiosyncrasy of this kind of data.

• We introduce CuPID, a novel SSL method that addresses these limitations by helping the
predictor during the pre-training. This is made by incorporating the spectrogram of the in-
put signal to the attention mechanism as the Key, limiting its role to be merely informative.

• We provide a model that achieves markedly enhanced results in a variety of downstream
tasks that are relevant for cardiovascular remote monitoring.

2 RELATED WORK

2.1 MASKED DATA MODELLING (MDM)

Masked Data Modelling (MDM) has been a commonly used technique in the Natural Language
Processing (NLP) field. Methods such as Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) that rely on hiding a series of words within a sentence and opti-
mizing a predictor to infer these words have proven to be the most effective pre-training method
in the field. In recent times, this pre-training mechanism has been adapted in the field of com-
puter vision. Existing methods, such as, Masked Autoencoders (MAE) (He et al., 2021) or Siamese
Masked Autoencoders (SiamMAE) (Gupta et al., 2023) incorporate a predictor trained to reconstruct
masked patches from the original input. Alternatively, Image-based Joint-Embedding Predictive Ar-
chitecture (I-JEPA) (Assran et al., 2023) reconstructs the representations computed by a teacher
network instead of the input itself. The weights of this teacher network are not optimized using
the gradients but by an exponential moving average (EMA) of the weights of the student network.
Both approaches have shown promising results in the field of computer vision, outperforming gold-
standard Energy-Based Modelling (EBM) methods such as Variance-Invariance-Covariance Regu-
larization (VIC-REG) (Bardes et al., 2022), Self-Distillation with no Labels (DINO) (Caron et al.,
2021), or Bootstrap Your Own Latent (BYOL) (Grill et al., 2020).

Given the idiosyncrasies of ECG data, we consider a more suitable to reconstruct the original input
rather than the teacher representations. This is due to the fact that the critical information in ECG
data resides in the morphology of each heartbeat. Reconstructing the original input ensures that
these waves are given greater importance since the amplitude values are greater than strips with
no waves. This interesting property does not occur when reconstructing the representations from
the teacher network, since they are expected to lie with the same range of values. This is reflected
in better-performing models by optimizing them to reconstruct the original input (See Section A).
However, the effect of incorporating the spectrogram into the predictor has also been studied for the
two approaches (See Section 5).

2.2 SSL IN SINGLE-LEAD ECG SIGNAL PROCESSING

Most-widely used single-lead ECG SSL methods follows a EBM approach; (i) Contrastive Learning
of Cardiac Signals Across Space (CLOCS) (Kiyasseh et al., 2021) utilizes two consecutive ECG
time strips as positive pairs, (ii) Mixing-Up (Wickstrøm et al., 2022) introduces a more tailored
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data augmentation product of two time series from the same recording, (iii) Patient Contrastive
Learning (PCLR) (Diamant et al., 2022) which considers two time strips from the same subject but
different recordings. While all these methods utilize the Contrastive Learning (Chen et al., 2020)
as a common framework for learning the invariant attributes considering non-overlapping inputs as
positive pairs, (iv) Distilled Embedding for Almost-Periodic Time Series (DEAPS) (Atienza et al.,
2024) drives the model to capture the also dynamic patterns of the single-lead ECGs. It follows a
non-contrastive learning approach, being built on top of BYOL (Grill et al., 2020).

All of these SSL methods will compose the set of baselines for the CuPID’s evaluation, where
the representations computed by each pre-trained model will be employed for addressing several
downstream tasks.

2.3 SSL IN 12-LEAD ECG SIGNAL PROCESSING

In the realm of 12-lead ECG signals, research has effectively utilized MDM techniques. The in-
troduction of a new spatial dimension broadens the scope for input masking, thereby aiding the
predictor in identifying the locations of various waves within the masked tokens. Techniques like
MTAE, MLAE, and MLTAE, all introduced by MAE family of ECG (MaeFE) (Zhang et al., 2023),
suggest three masking strategies: temporal masking, spatial masking across different leads, or a
combination of both. More recent approaches, such as Spatio-Temporal Masked Electrocardiogram
Modeling (ST-MEM) (Na et al., 2024), adopt this combined strategy by employing a joint predictor
that reconstructs the original input attending to each lead independently.

Among the four listed methods, only MTAE is suitable for single-lead ECG signals, as the other
three methods require multiple leads. Consequently, only MTAE has been trained to handle single-
lead signals and has been included in the main evaluation. Nevertheless, CuPID is also benchmarked
against these methods when 12-lead data is available, despite the fact that CuPID only utilizes one
lead for inference.

3 CUEING THE PREDICTOR INCREMENTS THE DETAILING (CUPID)

The core idea behind CuPID is cueing the predictor with the contextual information provided by the
spectrogram. Its workflow is illustrated in Figure 3. From left to right the original signal input is
patched and embedded using a linear layer. A portion of these tokens (Represented as gray blocks in
the figure) is randomly masked with a fixed ratio. Only the unmasked tokens are passed through the
encoder. Learnable mask tokens with their respective positional encoding are placed in the original
position of the masked segments. What sets CuPID apart is that it uses the spectrogram as the Key for
the attention mechanism, as represented in Figure 3. This predictor reconstructs the original input.
The L1 metric is computed between this reconstruction and the original input. This loss function is
only calculated on the masked patches. It is important to note that the predictor is discarded after
training, with the encoder being used for downstream tasks. Therefore, the spectrogram is only
utilized during pre-training and not during inference.

3.1 ROLE OF SPECTROGRAM IN THE PREDICTOR

The core idea behind CuPID is providing the predictor with more contextual information than the
regular positional encodings. We identify the spectrogram as a tool that has the potential to do it.
A spectrogram is a visual representation of the spectrum of frequencies in a signal as they vary
over time. They are commonly generated using the Fast Fourier Transform (FFT), which converts
a time-domain signal into its frequency components. The spectrogram is expected to provide de-
tailed contextual information to the predictor since the waves composing the R-R interval operate in
distinct frequencies. This feature is leveraged by traditional signal processing methods to perform
ECG signal delineation (Martinez et al., 2004).

Limiting the Information Provided by the Spectrogram: Just as the time domain input is trans-
formed into the frequency domain when computing the spectrogram, it can also be converted back
to the time domain. It means that the predictor could potentially reconstruct the original input with-
out using the encoder’s representations. To prevent this, the spectrogram is used just as the K in the
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Figure 3: CuPID architecture. The proposed method mirrors the standard framework for MDM
approaches. The incorporation of the spectrogram into the predictor’s attention mechanism sets
CuPID apart. The encoder is the model used to address the downstream tasks, while the predictor is
discarded after the pre-training. Therefore, this spectrogram is not provided during the evaluation.

attention mechanism when fed into the predictor. This transformer-based predictor relies on the stan-
dard attention mechanism formulated on Vaswani et al. (2017). It is composed of three components,
i.e., query (Q), key (K), and value (V ) and it is expressed as the following:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where the query (Q) refers to the token that is attending the others for information, the key (K)
represents what information can be found in the specific token, and the value (V ) accommodates
the information. It is worth highlighting that the K only has the potential of informing what kind
of information it could be found in the respective token, but not providing information by itself.
This information is provided by the corresponding V . In other words, even though the spectrogram
gathers all the information needed for reconstructing the input, this information can not be applied
directly.

Challenges of Using the Spectrogram as the Key: A primary issue arises when using the spec-
trogram as the key instead of the standard concatenation of encoder representations and mask tokens.
The predictor cannot distinguish between informative tokens and mask tokens, as this distinction is
not present in the spectrogram. It is important to note that CuPID, in accordance with standard prac-
tices, permits mask tokens to interact with each other, ensuring the spectrogram remains unmasked.
Consequently, a token might incorrectly focus on another due to its spectrogram key, even if that
token is merely a mask and contains no actual information. To overcome this issue, CuPID delays
incorporating the spectrogram into the predictor’s second block. The regular concatenation of en-
coder representations and mask tokens is used as the K in the first block. This approach ensures
that each mask token retains some information after the initial block, which can then be distilled in
subsequent blocks with the context information provided by the spectrogram as K.

Considering these two crucial aspects, Figure 4 depicts the CuPID predictor. In the initial block,
the inference follows a conventional approach, while the spectrogram is integrated into subsequent
blocks as the K in the attention mechanism. This predictor computes the single-lead ECG recon-
struction, which is compared to its corresponding original input using the L1 metric. This metric
serves as the sole loss function of the model and is represented by the following formula:
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Figure 4: Diagram of CuPID’s Predictor. Due to the challenges of using the spectrogram as a Key,
the spectrogram is incorporated from the second block of the predictor. Its first block mirrors the
standard predictor block for MDM framework.

L1(X, Ŷ ,M) =
1

sum(M)
·

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ · Mi, (2)

where X , Ŷ ,M, and n represent the original input, the predictor reconstruction, the mask, and the
number of patches, respectively.

3.2 IMPLEMENTATION DETAILS

To ensure the replication of the method, we meticulously outline the hyperparameter settings and
the model architecture.

Model Architecture: The ViT model proposed by CuPID for processing the single-lead ECG
signals counts with four regular transformer blocks with four heads each and a dimension of 128.
The input consists of a one-dimensional 10-second signal sampled at 100 Hz. This signal is split
into patches with a length of 10 samples.

CuPID Implementation and Optimization: The predictor consists of a ViT model with two blocks
and a dimension of 128. The training procedure consists of 40,000 iterations. We use a batch size
of 256, AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e− 3. The masking
ratio is set to 0.5. To achieve the patch-wise spectrogram consistent with the dimensions of the
predictor, the number of coefficient bins is set to 255, and the window length to 20. CuPID has been
trained on publicly available Sleep Heart Health Study (SHHS) database (Zhang et al., 2018; Quan
et al., 1998). The training procedure and the evaluations are performed on a desktop computer, with
a Nvidia GeForce RTX 3070 GPU.

The influence of the masking ratio parameter as well as the influence of incorporation of the spec-
trogram for different values of it has been evaluated (See Section 5). In addition, the effect of
incorporating the spectrogram has also been studied in the Icentia (Tan et al., 2019) database.
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4 EVALUATION

4.1 COMPARISON AGAINST SOTA

To assess the ability of the method to generalize different classes within the same record, given a
limited number of labeled noisy recordings from Holter monitors, CuPID has been evaluated against
the following methods that compel the set of baselines for the evaluation; CLOCS (Kiyasseh et al.,
2021), PCLR (Diamant et al., 2022), Masked Time Autoencoder (MTAE), from Zhang et al. (2023);
DEAPS (Atienza et al., 2024); and Mix-up (Wickstrøm et al., 2022). In addition, a version of Image-
based Joint-Embedding Predictive Architecture (I-JEPA) tailored for processing 1-D ECG input has
been included. To ensure fairness in the evaluation, all the methods have been trained using the
same training configuration, encoder, and dataset as CuPID. The objective is to develop a generic
model whose representations can be directly used on multiple downstream tasks. Therefore, our
experiments are focused on linear evaluation. We have carried out the following experiments on the
following databases; MIT-AFIB (Moody & Mark, 1983); LT-AF (Petrutiu et al., 2007) and MIT-SVA
(Greenwald et al., 1990). More details for each particular dataset are provided in the Appendix (See
Section B). All these databases are publicly available on Physionet (Goldberger et al., 2000). The
specifics of each experiment are detailed as the following:

Atrial Fibrillation (AFib) Identification on MIT-BIH Atrial Fibrillation (MIT-AFIB): This
dataset accommodates long-term recordings of 23 subjects transitioning between Normal Sinus
Rhythm (NSR) to paroxysmal AFib episodes and vice versa. We have conducted a Leave-One-
Out (LOO) cross-validation across the 23 MIT-AFIB subjects, where a Support Vector Classifi-
catier (SVC) (Platt, 2000) is fitted on top of the representations. We want to highlight that CuPID
outperforms significantly all the baselines, as reflected in Table 1.

Cardiovascular Arrhythmias Detection on Long Term AF (LT-AF): This dataset compels
long-term recordings of 84 subjects. It is composed of subjects suffering spontaneous bradycar-
dia episodes and subjects with sustained AFib in addition to subjects suffering paroxysmal AFib
episodes that are also contained in the previous dataset. We have repeated 10 times a 10-fold cross-
validation across the 84 LT-AF subjects, where a Logistic-Regression model is fitted on top of the
representations. Table 1 reflects that CuPID remarkably outperforms all the baselines.

Abnormal Beat Identification on MIT-BIH Supraventricular Arrhythmia (MIT-SVA): This
database contains beat-wise annotators for Normal, Ventricular or Supraventricular beats. Since
all methods used for this evaluation are optimized for processing 10 seconds of single-lead ECG
signals, each strip has been labeled regarding the presence/absence of any abnormal beat within the
time strip. We have repeated 10 times a 10-fold cross-validation across the 78 recordings, where
a SVC is fitted on top of the representations. CuPID performs significantly better compared to the
baselines as shown in Table 1.

Table 1: Performance metrics for the different downstream tasks. Bold and underline values repre-
sent the best and the second-best performances, respectively.

MIT-AFIB LT-AF SVT

Accuracy F1 Accuracy AUROC Accuracy AUROC

PCLR 0.752 0.738 0.808 ± 0.003 0.801 ± 0.006 0.493 ± 0.014 0.586 ± 0.010

CLOCS 0.664 0.590 0.678 ± 0.010 0.766 ± 0.014 0.520 ± 0.008 0.561 ± 0.011

DEAPS 0.763 0.747 0.843 ± 0.005 0.882 ± 0.007 0.483 ± 0.014 0.578 ± 0.010

Mix-Up 0.619 0.569 0.610 ± 0.008 0.648 ± 0.017 0.526 ± 0.011 0.612 ± 0.010

MTAE 0.766 0.73 0.805 ± 0.006 0.884 ± 0.006 0.512 ± 0.006 0.603 ± 0.009

Jepa 0.751 0.705 0.781 ± 0.005 0.868 ± 0.004 0.523 ± 0.006 0.621 ± 0.007

CuPID 0.863 0.843 0.879 ± 0.003 0.934 ± 0.002 0.580 ± 0.0122 0.660 ± 0.005
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It is important to note that MTAE is essentially CuPID without the spectrogram, thus this evaluation
indirectly demonstrates the enhancement brought by incorporating the spectrogram. However, this
effect will be examined in greater detail in the ablation studies (see Section 5).

4.2 BENCHMARKING CUPID IN PTB-XL AND CPSC-2018

The aim of CuPID is to generate meaningful representations of single-lead ECG data. Consequently,
the primary experiment was conducted on databases where the signals were recorded by a Holter
monitor. Nonetheless, we have evaluated CuPID on widely-used benchmarked datasets such as
PTB-XL (Wagner et al., 2020), and CPSC2018 (Alday et al., 2021), that consist of 10 seconds
12-lead ECG signals recorded in clinical setup. The methods that compel the set of baselines for
these two experiments are the following; MoCO v3 (Chen et al., 2021); Contrastive Multi-segment
Coding (CMSC) from (Kiyasseh et al., 2021); MTAE, Masked Lead AutoEncoder (MLAE) from
(Zhang et al., 2023); and ST-MEM (Na et al., 2024) The architecture employed by these methods
consists of an encoder with 12 blocks with 768 dimensions trained on 12-Lead ECG data.

While all the baselines included in this experiment utilize the available 12 leads, CuPID only pro-
cesses the II lead, being the one closer to the signal recorded by the Holter monitor. We want to
highlight that, as shown in Table 3, CuPID achieves the second-best metrics on these two bench-
marked datasets. We consider this achievement of significant relevance considering CuPID only
uses one ECG lead sampled with a lower resolution, a significantly smaller model trained (4 blocks
and 128 dimensions) on a noisy database.

Table 2: Performance Metrics PTB-XL and CPSC2018. * means that scores are given based on the
ST-MEM (Na et al., 2024) work. Bold and underline values represent the best and the second-best
performance, respectively.

PTB-XL CPSC2018

Accuracy F1 AUROC Accuracy F1 AUROC

MoCo v3* 0.552 ± 0.000 0.142 ± 0.000 0.739 ± 0.006 0.268 ± 0.055 0.080 ± 0.038 0.712 ± 0.054

CMSC* 0.681 ± 0.032 0.441 ± 0.058 0.797 ± 0.038 0.361 ± 0.005 0.238 ± 0.022 0.724 ± 0.013

MTAE* 0.683 ± 0.008 0.437 ± 0.012 0.807 ± 0.006 0.486 ± 0.012 0.349 ± 0.034 0.818 ± 0.010

MTAE + RLM* 0.687 ± 0.006 0.444 ± 0.009 0.806 ± 0.005 0.480 ± 0.010 0.342 ± 0.022 0.824 ± 0.006

MLAE* 0.649 ± 0.008 0.382 ± 0.020 0.779 ± 0.008 0.443 ± 0.014 0.263 ± 0.021 0.794 ± 0.016

ST-MEM* 0.726 ± 0.005 0.508 ± 0.008 0.838 ± 0.011 0.723 ± 0.008 0.641 ± 0.010 0.938 ± 0.002
CuPID 0.710 ± 0.011 0.487 ± 0.011 0.800 ± 0.010 0.685 ± 0.001 0.650 ± 0.001 0.928 ± 0.000

We would like to highlight that CuPID, through the integration of the spectrogram, significantly
enhances performance compared to its counterpart, MTAE, even though it processes 12 leads while
CuPID processes only one lead. For the sake of clarity, we have not included the single-lead ECG
baselines, since the better performance of CuPID has been assessed on the previous experiments.
However, we have provided the corresponding table in the Appendix (See Section A).

4.2.1 DISCUSSION OF THE RESULTS

Throughout this comprehensive evaluation, it has been established that by cueing the predictor,
CuPID drives the learning encoder to compute more detailed patch representations. This results in
the model achieving markedly enhanced results in a variety of downstream tasks, as detailed in Table
1. These findings provide robust evidence in favor of the hypotheses posited by this study: (i) The
predictor’s inability to reconstruct the original signal due to the unpredictability of the delay limits
the learning potential of the encoder. (ii) By cueing the predictor with the spectrogram, we enable
it to deal with this delay and drive the encoder to compute detailed token representations that can
be used to reconstruct the original input with a great level of detail. (iii) The more informative the
patch representations are, the more informative the class token will be, improving the performance
of the model when addressing downstream tasks.
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5 ABLATION AND SENSITIVITY STUDIES

To assess the primary technical innovation of CuPID, specifically the integration of the spectrogram
into the predictor, a comprehensive ablation study was conducted. This study examined the model’s
performance improvements across the two most widely used benchmarks (PTB-XL and CPSC2018),
considering various masking ratios during pre-training. Figure 5 not only justifies the the choice
of 0.5 as the value for the random masking hyperparameter, more importantly, it proves that the
increase in performance when adding the spectrogram is consistent across tasks and masking ratios.

(a) Accuracy on PTB-XL dataset (b) Accuracy on CPSC2018 dataset

Figure 5: Effect of incorporating the spectrogram for input reconstruction and different mask ratios.

This paper has validated CuPID’s decision to reconstruct the original input instead of the teacher net-
work’s representations. Additionally, the evaluation results (refer to Section 4) endorse this choice.
Nonetheless, the impact of integrating the spectrogram has also been analyzed within this alternative
framework, considering various masking ratios. Figure 6 demonstrates that adding the spectrogram
to the predictor also carries out benefits to this alternative framework.

(a) Accuracy on PTB-XL dataset (b) Accuracy on CPSC2018 dataset

Figure 6: Effect of incorporating the spectrogram for I-JEPA approach and different mask ratios.

The impact of incorporating the spectrogram during pre-training on a different database, specifically
Icentia 11K, has been assessed. Due to the higher noise levels in Icentia 11K compared to SHHS,
the results are less favorable, as illustrated in Figure 7. This figure not only supports the selection of
SHHS as the primary database for the evaluation but also demonstrates the advantages of using the
spectrogram in noisier environments.

(a) Spectrogram effect in input recons. (b) Spectrogram effect in I-JEPA.

Figure 7: Ablation study in Icentia dataset.
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6 CONCLUSION

This research provides strong evidence that directly applying the Masked Data Modelling (MDM)
framework to single-lead ECG signals is insufficient. This is due to the idiosyncrasies of ECG
data, where consecutive data chunks represent a distinct wave, and the distance between consecutive
heartbeats varies moderately. This leads the predictor to be cautious when reconstructing the masked
patches and to not drive the encoder to compute detailed patch representations that can be used for
addressing downstream tasks. To overcome this issue, we introduce CuPID, a novel SSL technique
for ECG analysis. By cueing the predictor with the contextual information given by the spectrogram
of the input signal, CuPID enforces the encoder to compute more informative representations. It
results in a significant performance improvement when addressing downstream tasks.

Limitations: CuPID has only been evaluated on a single architecture configuration. However,
the incorporation of the spectrogram in the predictor is agnostic to the ViT configuration and similar
performance improvements should be obtained .

Future Work: We were surprised to observe a decline in performance when pre-training the
model on the Icentia 11K database, despite it being theoretically more comprehensive than SHHS.
We believe this issue stems from the high level of noise present in the Icentia 11K database. Moving
forward, we aim to explore potential integrations with CuPID to address this problem and fully
leverage the database’s potential.

7 REPRODUCIBILITY STATEMENT

The attached code as a part of the supplementary material encompasses the implementation of
CuPID and several other baselines. Moreover, comprehensive details on training hyperparameters,
schemes, and hardware specifications are provided. In addition the pseudocode for the method is
provided in the Appendix. Finally, we furnish the pre-trained model’s parameters to facilitate others
in achieving reproducible results, together with the code used for processing each database.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
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A EVALUATION OF SINGLE-LEAD ECG BASELINES IN PTB-XL AND
CPSC2018

Table 3: Performance Metrics PTB-XL and CPSC2018

PTB-XL CPSC2018

Accuracy F1 AUROC Accuracy F1 AUROC

CLOCS 0.647 ± 0.012 0.385 ± 0.016 0.755 ± 0.011 0.471 ± 0.002 0.414 ± 0.001 0.827 ± 0.000

PCLR 0.679 ± 0.010 0.446 ± 0.015 0.777 ± 0.012 0.631 ± 0.002 0.594 ± 0.003 0.903 ± 0.000

DEAPS 0.7000 ± 0.011 0.476 ± 0.000 0.796± 0.001 0.667 ± 0.002 0.634 ± 0.002 0.918 ± 0.002

Mix-Up 0.660 ± 0.011 0.420 ± 0.017 0.760 ± 0.012 0.502 ± 0.002 0.451 ± 0.004 0.837 ± 0.000

MTAE 0.690 ± 0.011 0.462 ± 0.16 0.794 ± 0.012 0.593 ± 0.002 0.543 ± 0.002 0.894 ± 0.000

Jepa 0.677 ± 0.010 0.445 ± 0.017 0.774 ± 0.010 0.563 ± 0.001 0.514 ± 0.002 0.880 ± 0.000

CuPID 0.710 ± 0.011 0.487 ± 0.015 0.800 ± 0.010 0.685 ± 0.001 0.650 ± 0.001 0.928 ± 0.000

B DETAILS OF DATASETS USED FOR MAIN EVALUATION OF SINGLE-LEAD
ECG BASELINES

Table 4: MIT-BIH Atrial Fibrillation (MIT-AFIB)

Label # ECGs # Record. Count & (Ratio) Ratio #ECGs per Record.

Normal Sinus Rhythm (NSR) 50115 21 (91.3%) 0.401 ± 0.357

Atrial Fibrillation (AFib) 33694 23 (100%) 0.656 ± 0.320

Table 5: Long Term AF (LT-AF)

Label # ECGs # Record. Count & (Ratio) Ratio #ECGs per Record.

Normal Sinus Rhythm (NSR) 270702 53 (63.1%) 0.672 ± 0.315

Atrial Fibrillation (AFib) 368272 84 (100%) 0.546 ± 0.422

Bradycardia 19197 35 (41.7) 0.072 ± 0.100

Table 6: MIT-BIH Supraventricular Arrhythmia (MIT-SVA)

Label # ECGs # Record. Count & (Ratio) Ratio #ECGs per Record.

Normal Sinus Rhythm (NSR) 6608 76 (97.4%) 0.296 ± 0.300

Ventricular Beats 2184 70 (89.7%) 0539 ± 0.316

Supraventricular Beats 2543 62 (79.5%) 0.267 ± 0.287

C DATA PREPROCESSING

To ensure the complete reproducibility of this work, this section presents a detailed description of
the preprocessing steps employed for the training and evaluation databases utilized in the proposed
method.
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C.1 SHHS DATA SELECTION

Only the subjects that appear in both recording cycles are used during the training procedure. This
leads to 2643 subjects. ECG signals are extracted from the Polysomnography (PSG) recordings.
The quality of every 10 seconds-data strips has been evaluated with the algorithm proposed by Zhao
and Zhang Zhao & Zhang (2018). We use SHHS since it contains two records belonging to the same
subject. This makes this specific database special, and this is the reason that it has been the only
database used during the optimization.

C.2 DATA CLEANING

In addition, all signals from the utilized datasets were resampled to a frequency of 100Hz. Then,
a 5th order Butterworth high-pass filter with a cutoff frequency of 0.5Hz was applied to eliminate
any DC-offset and baseline wander. Finally, each dataset underwent normalization to achieve unit
variance, ensuring that the signal samples belong to a N (0, 1) distribution. This normalization
process aimed to mitigate variations in device amplifications.
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C.3 PSEUDOCODE

Algorithm 1: Cueing the Predictor Increments the Detailing (CuPID)
Input:

K and B ▷ Number of iterations and Batch Size
F(x) and P(h, s) ▷ Encoder and Predictor
θ and ▷ Trainer Parameters and Optimizer
S(x) ▷ Spectrogram Transorm
RM(X) ▷ Random Mask Function
Rec(h,Mt) ▷ Attach Mask tokens for Predictor Input
Mt ▷ Learnable Mask Token
L1(X,Y,M) ▷ L1 Loss Functions

for k ← 0 to K do
X ← {X1 · · ·XN}Bb=0 ▷ Sample N inputs from dataset

Hm,M ← RM(X) ▷ Random Masking and get Mask Matrix
Hm ← F(hm) ▷ Encoder Representations
H ← Rec(hm,Mt) ▷ Attach mask tokens for Predictor’s input
S ← S(X) ▷ Compute the Spectrogram
Y ← P(h, s) ▷ Compute Predictor Reconstructions

l← L1(X,Y,M) ▷ L1 Loss on masked patches

∂θ ← ∂θl ▷ Compute loss gradients for θ

θ ← opt(θ, ∂θ) ▷ Update the Parameters
end

Algorithm 2: CuPID’s Predictor
Input:
P , O(H) ▷ Predictor and Final Layer
H, S ▷ Predictor Input and Spectrogram

for idx,Pl in enum(P) do
if idx = 0 then

H ← Pl(H,H,H);
else

H ← Pl(H,S,H) ▷ Fed the Sectrogram as the Key
end

end
Y ← O(H) return Y ;
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