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Abstract

Given the extreme importance in early detection of breast cancer, a compelling search for
Computer-Aided Detection (CAD) techniques drove Deep Learning (DL) researchers to
investigate potential mammography screening applications. This work proposes the use of
sophisticated and recently proposed Convolutional Neural Networks (CNNs) for classifica-
tion and segmentation of mass and Micro-Calcification (MC) lesions on the INbreast dataset
via a novel fully-automated pipeline. For segmentation, an Attention Dense U-Net model
is used to provide segmentations for masses for MCs. The classification stage is performed
via a Dense Multi-View model, receiving an enriched input with the previous predicted
segmentations, achieving performance on par with state of the art for fully-automated clas-
sification of breast screening exams (Normal, Benign, Malignant), achieving a 3-Class Mean
AUC of (0.79± 0.06).

Keywords: Deep learning, Medical Imaging, Multi-View Models, Convolutional Neural
Networks, Transfer Learning, Image Segmentation.

1. Introduction

Breast cancer is the most frequent cancer among women (Ferlay et al., 2018; Siegel et al.,
2019). However, declining breast cancer mortality trends have been reported due to the
combined effects of earlier detection and treatment (Smith et al., 2006).

Mammography is the imaging modality that contributed the most in reducing breast
cancer mortality (Kopans, 2002). Recent studies indicate that DL driven CAD systems can
improve the performance of radiologists in exam evaluation (Wu et al., 2019). There are
two distinct tasks in which these CAD systems are helpful: classification and segmentation.

Regarding classification, Multi-View assessment of Craniocaudal (CC) and Mediolateral
Oblique (MLO) views has been shown to lead to better performance (Carneiro et al., 2017;
Wu et al., 2019). Regarding segmentation, recent models are based on encoder-decoder
architectures, of which the U-Net is an example (Ronneberger et al., 2015). Following
breakthroughs in language translation (Vaswani et al., 2017), attention mechanisms have
established a dominant position in encoder-decoder mappings in medical imaging.

Despite of the promise of DL driven CAD systems, recent prominent work in the field
makes use of relatively simple models (Carneiro et al., 2017) or require abundant private
datasets to train (Wu et al., 2019). In this sense, we propose the development of a fully-
automated pipeline, based on sophisticated holistic models, capable of segmenting lesions
for an enriched interpretation of lesions in the INbreast dataset (Moreira et al., 2012).
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Regarding the segmentation of mammograms, this work contributes by extending the
work in (Li et al., 2019) by evaluating the performance of an adapted version of the Attention
Dense-U-Net to segment mass and MC lesions (see Section 2.1). Regarding classification,
the applicability of dense layers (Huang et al., 2016) was explored in the context of seg-
mented lesion interpretation (see Section 2.2). This novel combination constitutes a major
contribution, proposing a DL approach based on holistic models (i.e. single-stage classifi-
cation and segmentation) capable of producing informative lesion segmentations useful for
state of the art fully-automated mammography classification. This is more appealing than
the approach in (Carneiro et al., 2017), which made use of dedicated cascaded pipelines to
extract masses and MCs (Dhungel et al., 2015; Lu et al., 2016).

2. Proposal

The focus of this work lies in the development of a fully-automated pipeline (see Figure 1)
for classification and segmentation of potential lesions in Multi-View mammography images.
The dataset can be represented as D = {(x(p,b), c(p,b),m(p,b),y(p,b))}p∈{1,...,P},b∈{left,right},
where x = {xCC ,xMLO} denotes the CC and MLO mammography views, with xCC ,xMLO :
Ω 7→ IR (Ω represents the image lattice), m = {mCC ,mMLO} and c = {cCC , cMLO} denote
the binary mass and MC segmentation maps per view, with mCC ,mMLO, cCC , cMLO :
Ω 7→ {0, 1}, y ∈ Y = {0, 1}3 represents the labels, p ∈ {1, ..., P} indexes the patients, and
b ∈ {left, right} the indexes the left and right breasts of the patient.

Generated 
Masses

Generated 
Micro-Calcifications

Segmentation
Model

Classification 
Model

Mammography

Normal

Benign
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Figure 1: Proposed Fully-Automated Pipeline.

2.1. Segmentation Model

For our segmentation model, we adapted the Attention Dense-U-Net architecture (Li et al.,
2019) for Single-View mass and MC segmentation (producing two separately trained mod-
els). The overall architecture is reminiscent of the typical U-Net, while staying true to the
DenseNet-121-BC core (gray-colored in Figure 2(a)) in the encoder part of the network
and employing attention in the decoder blocks (red-colored in Figure 2(a)). Because of
the aggressive downsize of the first convolution and pooling in the dense core, a notable
additional convolutional path from the input is found in the last decoder skip connection
(see the top row of Figure 2(a)). Additionally, the filter size is reduced after each decoder
block by a factor of 2, inspired by the reduction of filter size seen in DenseNet-121-BC.
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Figure 2: Segmentation Model Architecture.

In our context, the segmentation models can be formally represented by F l
S : XS 7→ Y l

S ,
where l ∈ {Mass,MC} denotes the lesion type being segmented, XS = {xCC ,xMLO}
the mammography scans, YMass

S = {maCC ,maMLO} and YMC
S = {mcCC ,mcMLO} the

resulting mass and MC segmentations, with maCC ,maMLO,mcCC ,mcMLO : Ω 7→ [0, 1].

2.2. Classification Model

The proposed Multi-View classification model is depicted in Figure 2. For each exam, a
dual path processes each view, enriched with the corresponding segmented output masses
and MCs from the proposed segmentation model. This way, the informative features are
automatically processed and selected for an enhanced assessment of lesion interpretation.

The model can then be formally represented by FC : (XCC
C ,XMLO

C ) 7→ YC , where XCC
C =

{[xCC ,maCC ,mcCC ]} denote the 3-channel junctions of the CC view mammography scan
and corresponding mass and MC segmentations (from our proposed segmentation model),
XMLO
C = {[xMLO,maMLO,mcMLO]} the same joint channel junctions relative to the same

exam MLO view, and YC = {0, 1}3 the proposed reformulated 3-class labelling.
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Figure 3: Classification Model Architecture.

3. Experimental Setup

This section will now describe the implementation details, and used dataset to evaluate our
proposed fully-automated pipeline.
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3.1. Implementation Details

To train the segmentation model, a combined loss function of both Dice and Cross Entropy
Losses was used. This was inspired by the works (Sun et al., 2019; Zhu et al., 2019),
which state that solely using Dice Loss can lead to unstable optimization. Furthermore, the
presence of a Dice Loss component forces the model to detect the positive class (lesions).
Specifically, the loss used for the segmentation model was

LCombined(yt, ŷt) = LDice(yt, ŷt) + LBCE(yt, ŷt), (1)

where LDice(yt, ŷt) and LBCE(yt, ŷt) denote the dice and cross entropy, respectively.
To improve generalization, weight decay and data augmentation through random rota-

tion of angle θ was used. L2 weight regularization led to stabler generalization in comparison
to L1 regularization, while data augmentation helped twofold by increasing training size and
improving segmentation. Exponential weight decay was used as follows:

ηp = η0 × γp, (2)

where ηp denotes the Learning Rate (LR) at training epoch p, η0 is the initial value for the
LR, and γ the decay factor, respectively. To summarize, the hyper-parameters used were
set as follows: the compression factor and growth rate (Huang et al., 2017) were kept at
recommended values 0.5 and 32, respectively; starting LR set to η0 = 10−4; LR decay set
to γ = 0.96, to follow the otherwise step decay proposed in (Sun et al., 2019); L2 weight
regularization factor set to 10−5, rotation angle θ ∈ [−20°, 20°]; batch size set to 8; and
training was optimized with Adam using (β1 = 0.9, β2 = 0.999, ε = 10−7) for 100 epochs.

Regarding the classification model, training used cross-entropy as the loss function. L2
regularization also proved better than L1. Still facing sub-optimal generalization, dropout
proved to match closer training and testing performance. When dealing with class imbal-
ance, data augmentation through random rotation and flipping were tested. Furthermore,
class weighting (Provost, 2000) was also experimented on. The latter delivered better re-
sults, even when using data augmentation generating balanced batches. The differences in
hyper-parameters to the classification training were: Starting LR set to 10−3; LR decay
fixed to 0.95; batch size set to 32; and dropout set to 0.2.

Training was executed under the GPUs publicly available by Google Colab (Google).
Models were implemented in Python, assisted with libraries such as Keras (Chollet et al.,
2015). Transfer Learning was employed for the DenseNet-121-BC core of both models,
pre-training on Imagenet (Deng et al., 2009). Otherwise, weights were set with a normal
distribution, following Xavier initialization (Glorot and Bengio, 2010).

3.2. Dataset and Pre-Processing

The INbreast dataset consists of 410 annotated scans with precise segmentation maps of
masses and Micro-Calcification (MC) lesions. These scans have an imbalanced distribution
of 6 classes, corresponding to the Breast Imaging Report and Data System Score (BIRADS)
(Balleyguier et al., 2007), which were reformulated into 3 classes, due to low class frequency:
Normal (BIRADS = 1); Benign (BIRADS ∈ {2,3}); and Malignant (BIRADS ∈ {4,5,6}).
Both distributions are shown in Figure 4.
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Figure 4: Original and Reformulated INbreast Dataset Class Distributions.

Besides being public, a reason for adopting this dataset lies in its limited sample size.
Having a small training dataset constitutes a major roadblock for DL based techniques.
Herein, we aim to show that our proposal overcomes this limitation with the aid of tech-
niques like Transfer Learning (TL) on the Imagenet dataset (Deng et al., 2009), as in
(Carneiro et al., 2017). The data dependence was further relieved by data augmentation
and class weighting in lesion segmentation and classification, respectively.

The pre-processing followed the same methodology as in (Carneiro et al., 2017), where
mammograms were enhanced via local contrast normalization, followed by Otsu’s segmen-
tation (Otsu, 1979) to select a tight bounding box containing the breast region, and flipping,
so that the pectoral muscle was always located on the right-hand side. To relieve computa-
tional and memory costs, images were then downsized via bi-cubic interpolation to 264x264
resolutions. The data then was normalized to have zero-mean and unit standard deviation.

Given the small size of the INbreast dataset, validation through stratified k-fold cross-
validation (with k = 5) was used, and metrics were averaged between splits to provide a
more meaningful model evaluation.

3.3. Evaluation

The performance of the segmentations was evaluated using Dice Coefficient, and relative
area difference, ∆A, given by

∆A =
|AGT −APred|

AGT
=
|(TP + FN)− (TP + FP )|

TP + FN
, (3)

where AGT and APred represent the ground truth and predicted lesion area, respectively.
The proposed classification model was evaluated using metrics of Lesion Classification

AUC (2-Class AUC of ”Benign vs Malignant”, where it is assumed that all cases contain
at least one mass or MC), Breast Screening AUC (2-Class AUC of ”Normal/Benign” vs
”Malignant”), Mean AUC (2-Class AUC mean, where each class is considered positive and
the remainder negative, sequentially), Sensitivity, and Specificity.
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4. Results

4.1. Segmentation Results

Our proposed model achieves a dice performance (0.71 ± 0.08), and ∆A score of (0.35 ±
0.11) in mass segmentation. These results are comparable to the state of the art (Sun
et al., 2019), which reports a dice coefficient of (0.79 ± 0.06) and ∆A of (0.38 ± 0.15).
Regarding MC segmentation, our proposed model achieves good ∆A performance (0.26 ±
0.04), in comparison to the mass segmentation. No additional suitable comparison could
be made, due to lack of records concerning similar approaches (i.e. single-stage model
segmentation) on the INbreast dataset. The segmentation performance is crucial to the
objective of this work, which lies in the fully-automated classification of mammography
images (see Section 4.2).

Some samples of predicted lesions by our proposed model are depicted in Figure 5. It is
to note that, while the representation overlaps mass and MC lesions and joins both views
for each exam, the segmentations were separately produced by the respective Single-View
model for each lesion type. The outlines in red and orange depict ground truth masses and
MCs, while blue and cyan outline the segmentation prediction of masses and MCs.

CC MLO CC MLO CC MLO CC MLO

CC MLO CC MLO CC MLO CC MLO

Figure 5: Proposed Model Lesion Segmentation of Test Samples.

As a preliminary conclusion to these results, we can note that TL helped model initial-
ization, leading to better overall performance. However, while the TL improvements using
ImageNet were substantial, they did not significantly surpass the performance of (Sun et al.,
2019), which pre-trained on CBIS-DDSM (Lee et al., 2017). This goes according to the fact
that not only the INbreast and CBIS-DDSM datasets share similar domains (mammogra-
phy images), but also due to the experiment in (Sun et al., 2019) sharing pre-trained and
fine-tuned model tasks (mass segmentation). Furthermore, their experiment only trained
and tested on INbreast cases containing mass lesions, whereas our proposed model trained
on the entire dataset, having no bias towards the presence of lesions.

4.2. Classification Results

Our proposed fully-automated classification pipeline achieves better than state of the art
performance (namely, a mean AUC of 0.79 ± 0.06). Comparisons to state of the art are
presented in Table 1, where the column ’LC AUC’ and ’BS AUC’ denote the Lesion Classifi-
cation AUC and Breast Screening AUC metrics found in (Carneiro et al., 2017), respectively.
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Table 1: Fully-Automated Classification Comparison to State of the Art.

Method LC AUC BS AUC Mean AUC Sensitivity Specificity

Proposed 0.86±0.07 0.85±0.03 0.79±0.06 0.61±0.04 0.80±0.03

(Carneiro et al., 2017) 0.78±0.09 0.86±0.09 0.72±0.10 0.66±0.14 0.69±0.23

(Dhungel et al., 2017) - 0.80±0.04 - - -

(Zhu et al., 2017) - 0.86±0.03 - - -

CC MLO

Predicted: Normal
Ground Truth: Normal

CC MLO

Predicted: Benign
Ground Truth: Benign

CC MLO

Predicted: Malignant
Ground Truth: Malignant

CC MLO

Predicted: Benign
Ground Truth: Normal

CC MLO

Predicted: Normal
Ground Truth: Normal

(a) Correct Normal

CC MLO

Predicted: Benign
Ground Truth: Benign

(b) Correct Benign

CC MLO

Predicted: Malignant
Ground Truth: Malignant

(c) Correct Malignant

CC MLO

Predicted: Malignant
Ground Truth: Benign

(d) Incorrect

Figure 6: Proposed Model Correct (a-c) and Incorrect (d) Classification of Test Samples.

Some classifications of test cases by our proposed Multi-View model are depicted in
Figure 6. The first three columns present correct classifications of each class, while the last
column presents incorrect classifications. We remind that the model input leveraged auxil-
iary information channels containing lesion masks provided by our proposed segmentation
models. Again, the colours red and orange denote ground truth masses and MCs, while
blue and cyan regard the input segmentation masses and MCs, accordingly.

4.3. Ablation Studies

In order to further validate the proposed fully-automated approach, three ablation studies
were conducted (see Table 2, where the column description follows Table 1):

1. An Image-Only Classifier evaluated the performance of a model analogous to the
proposed classification model, but exclusively relying on mammography scan inputs
(i.e. no lesion mask channels were added to the input);

2. A Single-View Classifier utilized a Single-View adaptation of the proposed model for
classification (i.e. a model with only the top row of Figure 3) to verify the proposed
Multi-View topology;

3. A Semi-Automated Classifier provided an upper bound to our proposed model by
replacing the segmented lesion input of the fully-automated pipeline (see Figure 1)
with the dataset ground-truth segmentations.
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Table 2: Ablation Studies Vs. Proposed Model Performance

Method LC AUC BS AUC Mean AUC Sensitivity Specificity

Image-Only Classifier 0.65±0.05 0.64±0.09 0.65±0.05 0.50±0.09 0.75±0.04

Single-View Classifier 0.77±0.08 0.74±0.10 0.75±0.06 0.58±0.08 0.78±0.05

Semi-Automated Classifier 0.88±0.04 0.86±0.05 0.86±0.06 0.70±0.08 0.84±0.05

Proposed 0.86±0.07 0.85±0.03 0.79±0.06 0.61±0.04 0.80±0.03

To summarize the preliminary conclusions, we should highlight that the inclusion of
lesion masks substantially increased classification performance across all metrics versus the
Image-Only Classifier, validating the information gained when using this technique. It is also
worth noting that the presence of masses/MCs in the input does not discriminate between
classes Benign and Malignant, as well as a 24% frequency of Normal cases containing at least
one segmented mass or MC by our proposed model (eg. the upper exam of Figure 6(a)).
Thus, a correct classification of samples indicates that our model is robust.

Furthermore, when faced against the Single-View Classifier, the Multi-View topology of
our proposed model showed substantial increase in performance. This could be explained
by the fact that the presence or absence of lesions detected in one view produce informative
features relevant in the Multi-View classification (seen in the upper and lower exams of
Figures 6(a) and 6(c), respectively). In contrast, Figure 6(d) presents two over-sensitive
classifications of this phenomenon.

Moreover, the Semi-Automated Classifier serves as an the upper bound to this exper-
iment by having ground truth segmentations in its input. The results are, as expected,
higher than the fully-automated pipeline. An interesting observation can be made when
comparing the results of our semi-automated classifier and the results of the semi-automated
pipeline of (Carneiro et al., 2017) - LC AUC (0.94±0.05), BS AUC (0.91±0.08), Mean AUC
(0.87 ± 0.08), Sensitivity (0.69 ± .28), and Specificity(0.92 ± 0.08). Since the classification
performance is comparable, our proposed model improvements in Table 1 should lie in the
provided segmented lesions. This seems to be an indication that indeed the lesion segmen-
tations provided by our proposed segmentation model contributed to a more informative
lesion interpretation in mammography.

5. Conclusions

In an attempt to assist practitioners with CAD in the field of mammography screening,
radiologist performance has been shown to improve using novel DL model architectures. In
this work such tools were developed for the task of both classification and segmentation of
lesions in mammography exams. More concretely, this work proposed sophisticated models
that were separately capable of labelling unseen exams according to their lesion magnitude
and detecting possible suspicious lesions. Furthermore, this work proposed the use of an
holistic lesion detection DL model to provide competitive fully-automated classification
performance relative to the state of the art.
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