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Abstract

We study the problem of offline imitation learning in Markov decision processes
(MDPs), where the goal is to learn a well-performing policy given a dataset of
state-action pairs generated by an expert policy. Complementing a recent line of
work on this topic that assumes that the expert policy belongs to a tractable class of
known policies, we approach this problem from a new angle and leverage another
type of structural assumption about the environment. Specifically, for the class
of linear Qπ-realizable MDPs, we introduce a new algorithm called saddle-point
offline imitation learning (SPOIL), which is guaranteed to match the performance of
any expert up to an additive error ε with access to O(ε−2) samples. Moreover, we
extend this result to possibly non-linear Qπ-realizable MDPs at the cost of a worse
sample complexity of order O(ε−4). Finally, our analysis suggests a new loss
function for training critic networks from expert data in deep imitation learning.
Empirical evaluations on standard benchmarks demonstrate that the neural net
implementation of SPOIL is superior to behavior cloning and competitive with
state-of-the-art algorithms.

1 Introduction

In imitation learning (IL), a learner observes a finite dataset of state-action pairs generated by
an expert policy interacting with an environment modeled as a Markov Decision Process (MDP;
Puterman [1994]). The learner’s objective is to find a policy that performs nearly as well as the
expert policy with respect to an unknown ground-truth reward function. This work focuses on offline
imitation learning, where the learner cannot collect new state-action sequences from the MDP used
for generating the expert’s data and proposes new algorithms for this setting under a previously
under-explored set of structural assumptions on the learning environment.

Recent years saw a quite significant surge of interest in the problem of imitation learning, not unlikely
due to its relevance to next-token prediction in generative language models [Rajaraman et al., 2020,
Foster et al., 2024, Rohatgi et al., 2025]. A common feature of these recent works is that they all
make the assumption that the expert data has been generated by a fixed policy that belongs to a
known, finite class of policies and they return policies within the same class. Several clean and
elegant results were proved under this assumption, in particular showing the existence of conceptually
simple algorithms achieving tight upper bounds on the sample complexity of finding good solutions,
and lower bounds demonstrating the near-optimality of these algorithms under said assumptions.
These bounds typically depend on a measure of complexity of the policy class (as measured by,
say, its covering number). However, further scrutiny reveals that these assumptions may not always
be verified or even reasonable: in many cases of significant practical interest, there is no reason to
believe that the expert policy may be easily modeled within a simple and tractable policy class. For
instance, in the popular use case of learning from human feedback, it is arguably quite unlikely that
data would be generated in a consistent, systematically predictable way that can be modeled as a
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simple policy mapping states to actions. Indeed, human behavior can be nonstationary, irrational, or
even be influenced by unobserved confounders not captured by the state representation. We address
these limitations by exploring an alternative framework for imitation learning, which reasons about
the structure of the value functions of the policies used by the learning algorithm itself, as opposed to
making assumptions about the structure of the policy followed by the expert.

A prevalent assumption in existing analyses of offline imitation learning algorithms [Rajaraman et al.,
2020, Foster et al., 2024, Rohatgi et al., 2025] is expert realizability.

Assumption (Expert realizability). The learner has access to a function class ΠE that contains the
unknown expert policy πE, that is, such that πE ∈ ΠE.

This assumption can be unreasonable for complex expert policies. Furthermore, the sample complexity
guarantess in Rajaraman et al. [2020], Foster et al. [2024], Rohatgi et al. [2025] scale with log |ΠE|
(assuming ΠE is finite), meaning large policy classes, potentially necessary to realize the expert, lead
to deteriorated guarantees. Additionally, the consequences of misspecification, i.e. πE /∈ ΠE, are often
severe. For instance, Rohatgi et al. [2025] demonstrated that if the policy class ΠE is misspecified,
then it is computationally intractable to learn arg minπ∈ΠE D2

H(Pπ,PπE), the best in-class policy
under the Hellinger distance, in an offline manner. However, this theoretical intractability under
misspecification seems at odds with practical scenarios, such as training large language models via
next-token prediction (a form of offline IL), which perform well despite the expert policy (derived
from human-written text) likely not belonging to any reasonable policy class ΠE.

To address this apparent discrepancy, we initiate the study of offline imitation learning by leveraging
structural assumptions about the MDP rather than relying on expert realizability. For example, in
language tasks, structural assumptions might involve deterministic, tree-shaped MDPs. In robotics,
one might assume that next states are determined by compact feature representations of current
state-action pairs. More generally, we consider MDPs where the action-value function of any policy
can be written as a linear combination of features known to the learner. Such MDPs are referred to as
linear Qπ-realizable MDPs, a class that has been central to recent works in reinforcement learning
theory [Weisz et al., 2023, Mhammedi, 2024, Tkachuk et al., 2024]. Our primary contribution is
to show that, for this class of MDPs, it is possible to develop algorithms that guarantee to output a
policy performing arbitrarily close to the expert policy without imposing expert realizability.

The algorithm is based on a simple primal-dual formulation of the problem of imitation learning,
which characterizes the solution as the saddle-point of a convex-concave objective function. The
primal variables correspond to policies in the MDP and the dual variables to Q-functions, which
motivates a very simple saddle-point optimization algorithm for imitation learning: in a sequence
of rounds, the primal player (the actor) picks a policy and the dual player (the critic) picks a Q-
function, respectively trying to minimize and maximize the objective. We accordingly call the
method SPOIL, standing for Saddle-Point Offline Imitation Learning. In the case of linear function
approximation, both update steps of SPOIL can be performed very efficiently (in time linear in the
feature dimension). For general function approximation, the Q-function updates can be performed by
solving a simple linear optimization problem, which is straightforward to solve in practical scenarios.
When instantiated with neural networks, empirical experiments show its performance is competitive
with (and in some cases superior to, e.g., behavior cloning) state-of-the-art offline imitation learning
algorithms. Interestingly, our algorithm shares a good degree of similarity with the state-of-the-art
method of Garg et al. [2021] called IQ-Learn, which is also derived from a primal-dual perspective.
We discuss these similarities in depth and argue that SPOIL provides a superior solution to the
IQ-Learn objective (at least inasmuch as it is more amenable to theoretical analysis).

To the best of our knowledge, this is the first result showing that leveraging structural assumptions
of the underlying MDP can guarantee matching the expert performance as the number of expert
transitions goes to infinity without imposing any form of expert realizability assumption. For clarity,
we compare our contribution with existing results in Table 1.

Notation. We use ∆(Z) to denote the simplex over the countable set Z . Given two proba-
bility distributions p, q ∈ ∆(Z), we denote the Kullback-Leibler divergence as DKL(p, q) =∑

z∈Z p(z) log
p(z)
q(z) . We denote ⟨·, ·⟩ the inner product between two finite-dimensional vectors, and

∥·∥ the Euclidean norm. We denote U([K]) the uniform distribution over the set [K] = {1, . . . ,K}.
The Euclidean ball of radius R > 0 centered at the origin is denoted as B(R).
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Table 1: Comparison with related algorithms to make the difference of unnormalized re-
turns of order O(ε). We denoted the class of deterministic linear experts as ΠE

det,lin ={
π : ∃θ ∈ B(Bθ), π(·) = arg maxa∈A ⟨θ, φ(·, a)⟩

}
, and an arbitrary policy class as ΠE. We also

define W = maxπ∈ΠE,(x,a)∈X×A,h∈[H]
πE,h(a|x)
πh(a|x) and ϵmiss = minπ∈ΠE D2

H(Pπ,PπE).

Algorithm Structural assumptions Avoids expert realizability Infinite horizon Expert class Expert Traj. (τE)

BC with log loss None ✗ ✗ ΠE O
(

H2 log|ΠE|
ε2

)
[Foster et al., 2024]

BC with 0 -1 loss None ✗ ✗ ΠE
det,lin Õ

(
H2d
ε

)
[Rajaraman et al., 2021]

BoostedLogLossBC None ✓ with a misspecification ✗ ΠE O
(

H2 log|ΠE|
ε2

)
[Rohatgi et al., 2025] error of Õ(H log(W )ϵmiss)

Projection Linear reward ✓ ✓ − Õ
(

d
(1−γ)2ε2

)
[Abbeel and Ng, 2004] Known transitions

MWAL Linear reward ✓ ✓ − Õ
(

log(d)
(1−γ)2ε2

)
[Syed and Schapire, 2007] Known transitions

SPOIL (Ours) Linear Qπ-realizability ✓ ✓ − Õ
(

d
(1−γ)4ε2

)
SPOIL (Ours) Qπ-realizability ✓ ✓ − Õ

(
log Cϵ(Q)

(1−γ)8ε4

)

2 Preliminaries

We begin by introducing the problem of offline imitation learning in discounted MDPs together with
the assumptions we will consider throughout the paper.

Markov decision processes. We formalize the learning problem in a discounted MDP M =
(X ,A, r, P, γ, ν0), where X is the state space which we assume finite but too large to be enumerated,
A is a finite action space with A actions, r : X × A → [0, 1] is the unknown reward function,
P : X×A → ∆(X ) is the unknown transition kernel, γ ∈ [0, 1) is the discount factor, and ν0 ∈ ∆(X )
is the initial state distribution. For any state-action-state triplet (x, a, x′), P (x′ |x, a) denotes the
probability of landing in state x′ after taking action a in state x. A stationary policy (or simply policy)
π : X → ∆(A) is a mapping from states to distributions over actions. The interaction of a policy π
with the environment M unfolds as follows: an initial stateX0 ∼ ν0 is drawn, and for each subsequent
time step h ≥ 0, an action Ah ∼ π(· |Xh) is taken, a reward r(Xh, Ah) is received, and the agent
transitions to a new state Xh+1 ∼ P (· |Xh, Ah). We denote Pπ the resulting probability distribution
over trajectories, and Eπ the corresponding expectation operator. For any state x ∈ X , we define the
state value function of the policy π as V π(x) = Eπ

[∑∞
h=0 γ

hr(Xh, Ah)
∣∣X0 = x

]
. Analogously,

we define the state-action value function as Qπ(x, a) = Eπ
[∑∞

h=0 γ
hr(Xh, Ah)

∣∣X0 = x,A0 = a
]
.

The value functions are tied together via the Bellman equations

V π(x) =
∑
a∈A

π(a |x)Qπ(x, a) , and Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ |x, a)V π(x′) .

Additionally, we will sometimes use the notation Q(x, π) to denote
∑

a π(a|x)Q(x, a) for any policy
π and any function Q : X ×A → R. Note that this notation allows us to write V π(x) = Qπ(x, π).
Any policy π induces an occupancy measure µπ ∈ ∆(X ×A) over state-action pairs, defined as the
discounted total expected times that each state-action pair is visited by policy π. The same quantity
defined for states is called the state-occupancy measure and is denoted as νπ ∈ ∆(X ). For any
state-action pair (x, a) ∈ X ×A, they are respectively defined as

νπ(x) = (1− γ)
∞∑
h=0

γhPπ[Xh = x] , and µπ(x, a) = (1− γ)
∞∑
h=0

γhPπ[Xh = x,Ah = a] ,

and they are related to each other by the flow conditions (sometimes called “Bellman flow conditions”)

νπ(x) = γ
∑
x′,a′

P (x|x′, a′)µπ(x′, a′) + (1− γ)ν0(x). (1)
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Notably, these definitions and the flow conditions remain valid for general history-dependent policies
π that may take the entire history of state-action pairs (X1, A1, . . . , Xh) into account when selecting
each action Ah. Finally, we let ρπ = (1− γ)Eπ

[∑∞
h=0 γ

hr(Xh, Ah)
]

stand for the total expected
normalized return of a (potentially nonstationary) policy π. The following useful result, commonly
called the performance-difference lemma (Kakade and Langford 2002, see also Eq. 7.14 in Howard
1960), gives a useful expression for the performance gap between two policies.
Lemma 1. Let π be a stationary policy and π′ be any policy. Then,

ρπ
′ − ρπ = E(X,A)∼µπ′ [Qπ(X,A)− V π(X)] .

Note that this lemma is generally stated for stationary policies, but we will find it useful later to use it
with general history-dependent policies. We provide the straightforward proof in Appendix B.

Imitation Learning. We consider the problem of offline imitation learning. Given a dataset
DπE =

{
Xi

E , A
i
E

}τE
i=1

of state-action pairs sampled from an expert policy’s occupancy measure µπE ,
our objective is to design an algorithm, Alg, that produces a policy πout satisfying

E
[
ρπE − ρπ

out
]
≤ ε . (2)

The algorithm is not allowed any further interaction with the expert policy or the MDP M and only
has to work with the record of state-action pairs contained in the data set. As stated in the introduction,
we aim to achieve this without imposing expert realizability. Instead, we consider the following
structural assumption on the environment.
Assumption 1 (Linear Qπ-realizability). The action value function of any policy π can be written as
a linear combination of known features. That is, there exists a known mapping φ : X × A → Rd

such that for any policy π, there exists a vector θπ ∈ Rd such that for any state-action pair (x, a),
Qπ(x, a) = ⟨φ(x, a), θπ⟩. Moreover, we assume ∥θπ∥ ≤ Bθ for all π, and supx,a ∥φ(x, a)∥ ≤ Bφ.

We will also consider the general function approximation setting, where the action value function of
any policy π can be represented by some function class Q ⊂ RX×A.
Assumption 2 (Qπ-realizability). An MDP is said Qπ-realizable if there exists a function class
Q ⊂ RX×A such that for any policy π, it holds that Qπ ∈ Q, and for any Q ∈ Q, ∥Q∥∞ ≤ 1

1−γ .

For this assumption to make sense, we typically require the function class Q to have bounded capacity.
We formalize this via covering numbers, defined as follows.
Definition 1 (Covering number). Let (M,d) be a metric space, K be a subset of M , and ϵ > 0. A
set Cϵ(K, d) is an ϵ-covering of K if for any x ∈ K, there exists y ∈ Cϵ(K, d) such that d(x, y) ≤ ϵ.
The covering number of K, Nϵ(K, d), is the minimum cardinality of any such covering of K.

3 Primal-dual offline imitation learning

In order to introduce our main algorithmic idea, we define the following objective function:

L(π;Q) = E(X,A)∼µπE [Q(X,A)−Q(X,π)] ,

where we denotedQ(X,π) = EA′∼π(·|X)[Q(X,A′)]. Our main observation is that the main objective
function we consider can be rewritten in terms of this function as follows:

ρπE − ρπ = L(π;Qπ) ≤ supQ∈Q L(π;Q).

This suggests that a good policy πout may be found by solving the saddle-point prob-
lem minπ supQ∈Q L(π;Q). Indeed, if one is able to produce a policy πout that satisfies
supQ∈Q L(πout;Q) ≤ ε, then the above inequality implies that the suboptimality of πout as com-
pared to πE will also be at most ε.

Inspired by this observation, we set out to design an incremental primal-dual optimization algorithm
to approximate the saddle point of the function L. In each iteration k = 1, 2, . . . ,K, the algorithm
performs two updates: a primal update that corresponds to policy updates aiming to minimize L, and
a dual update that computes action-value function estimates and aims to maximize L. Following a
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common terminology in reinforcement learning, we will sometimes refer to the primal updates as
actor updates and the dual updates as critic updates.

In order to turn these insights into a practical algorithm, we define the following empirical estimate
of the objective function L:

L̂(π;Q) =
1

τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−Q

(
Xi

E , π
))
.

For a fixed Q and π, this is clearly an unbiased estimator of L. In line with the derivations above, we
choose our critic and actor updates respectively as

Qk ∈ arg max
Q∈Q

L̂(πk;Q), and πk+1(a|x) =
πk(a|x)eηQk(x,a)∑
a′ πk(a′|x)eηQk(x,a′)

,

where η > 0 is a learning-rate (or stepsize) parameter that modulates the strength of the policy
updates. After performing K updates, the algorithm chooses a random index I uniformly on the
integers in [[1,K]], and returns πout = πI . We refer to this algorithm as Saddle-Point Offline Imitation
Learning (SPOIL). This algorithm design is justified by the following simple error decomposition
that lies at the heart of our main results.
Proposition 1. Let ∆(π) = E

[
supQ∈Q

∣∣∣L(π;Q)− L̂(π;Q)
∣∣∣]. The output of SPOIL satisfies

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E [L(πk;Qk)] +
2

K

K∑
k=1

E [∆(πk)] .

Proof. The proof simply follows by noticing

E
[
ρπE − ρπ

out
]
=

1

K

K∑
k=1

E [L(πk;Qπk)] ≤ 1

K

K∑
k=1

E
[
L̂(πk;Qπk)

]
+

1

K

K∑
k=1

E [∆(πk)]

≤ 1

K

K∑
k=1

E
[
L̂(πk;Qk)

]
+

1

K

K∑
k=1

E [∆(πk)] ≤
1

K

K∑
k=1

E [L(πk;Qk)] +
2

K

K∑
k=1

E [∆(πk)] ,

where we have used the definitions of ∆ and Qk in the first and second lines, respectively.

The first term in this decomposition corresponds to the regret of the policy player π against the
comparator strategy πE and can be controlled with probability 1 via standard tools of online learning
(as found in the excellent books of Cesa-Bianchi and Lugosi 2006 and Orabona 2023). The second
term measures the estimation error of the objective function L uniformly over the space of action-
value functions Q and along the policies played by the algorithm, and can be controlled via standard
concentration arguments. Altogether, the proposition suggests that SPOIL will return a good policy if
these estimation errors can be bounded reasonably—a fact we will formally show in the next section.

Before stating our performance guarantees for the concrete settings we consider in this paper, we
pause to point out a peculiar connection between the algorithm described above and the inverse
Q-learning (IQ-Learn) algorithm of Garg et al. [2021]. While motivated using completely different
arguments, the saddle-point objective function optimized by IQ-Learn is nearly identical to our
function L: after removing entropy-regularization and setting their reward regularizer ψ to zero, one
can verify using the flow constraint (Eq. 1) that their function J is identical to our L. Ultimately,
Garg et al. [2021] draw different conclusions from this saddle-point formulation, and propose to solve
it by computing πQ = arg minπ J (Q) and optimize the dual function g(Q) = minπ L(π;Q). This
function, however, can be highly nonsmooth and difficult to optimize, which is why IQ-Learn needs
to heavily rely on regularization both in π and Q. In contrast, our algorithm can be seen as trying to
optimize the primal function f(π) = maxQ L(π;Q) in terms of the policy π, which can be done in a
stable way by incremental policy updates. Additionally, as Proposition 1 clearly reveals, optimizing
the primal objective allows us to directly reason about the performance of the output policy. In
contrast, we do not see a clear way to do this for the dual objective optimized by IQ-Learn.

In what follows, we instantiate SPOIL in two settings of particular interest, depending on the Q-
function class being used. We first provide a set of results for linear function approximation (where
the algorithm is very easy to implement and analyze) and for general function classes (where
implementation and analysis are both less straightforward).
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Algorithm 1 SPOIL with linear FA
Input: Number of expert trajectories τE , learn-
ing rate η, number of iterations K.
Initialize: θ0 = 0, uniform policy π0.
For k = 1, 2, . . . ,K:
1. πk(a |x) ∝ πk−1(a |x)eη⟨φ(x,a),θk−1⟩.

2. ĝk = τ−1
E

∑τE
i=1

(
φ
(
Xi

E , A
i
E

)
− φ

(
Xi

E , πk
))

.

3. θk = arg max
θ:∥θ∥≤Bθ

⟨θ, ĝk⟩ =
Bθ

∥ĝk∥
ĝk.

Output: πout = πI , where I ∼ U([K]).

Algorithm 2 SPOIL with general FA
Input: Number of expert trajectories τE , learn-
ing rate η, number of iterations K.
Initialize: Q0 = 0, uniform policy π0.
For k = 1, 2, . . . ,K:
1. πk(a |x) ∝ πk−1(a |x)eηQk−1(x,a).

2. Qk ∈ arg max
Q∈Q

L̂(πk, Q).

Output: πout = πI , where I ∼ U([K]).

3.1 SPOIL for linear function approximation

We first provide a set of guarantees under the assumption that the function class is linear in some
known features that realize the action-value functions of all policies π as linear combinations (see
Assumption 1). In this setting, the actor and critic updates both simplify. For the actor, notice
that the policy update can be rewritten as πk(a |x) ∝ eη

∑k−1
i=1 Qi(x,a), which only requires storing∑k−1

i=1 Qi in memory. For linear function approximation, this means that it suffices to maintain a
single d-dimensional vector θ̄k =

∑k
i=1 θi in memory and update it incrementally after each critic

update. As for the critic update itself, notice that the objective function L and its empirical counterpart
L̂ can be rewritten in terms of the gap between the feature-expectation vectors

gk = E(X,A)∼µπE [φ(X,A)− φ(X,πk)] , and ĝk =
1

τE

τE∑
i=1

(
φ(Xi

E , A
i
E)− φ(Xi

E , πk)
)
.

When considering linear functions Qθ(x, a) = ⟨φ(x, a), θ⟩, the objective can be written as

L(πk;Qθ) = ⟨θ, gk⟩ , and L̂(πk;Qθ) = ⟨θ, ĝk⟩ ,
and the critic update can be simply written as θk = arg maxθ∈B(Bθ)

⟨θ, ĝk⟩, which is trivial to
compute. All in all, both actor and critic updates can be performed efficiently while only working in
a d-dimensional Euclidean space. The following theorem provides our main result for SPOIL.

Theorem 1. Let Assumption 1 hold. Run Algorithm 1 for K = 2 log|A|
(1−γ)2ε2 iterations, with a learning

rate η = (1− γ)
√
2 log |A| /K, and τE = O

(
d

(1−γ)2ε2 log
(

BθBφ log|A|
(1−γ)ε

))
samples collected by

any expert policy πE. Then, the output satisfies E
[
ρπE − ρπ

out] ≤ 5ε.

The proof is in Appendix B. It is important to highlight that no assumptions are made concerning the
expert policy. In particular, we do not require knowledge of a class ΠE realizing the expert policy
and as a consequence the bound on τE does not scale at all with a complexity measure of ΠE. This is
in stark contrast with the theoretical guarantees for behavioural cloning (e.g., Agarwal et al., 2019,
Chapter 15, and Foster et al., 2024) which show bounds on the expert samples scaling with log |ΠE|
(or the log covering number for continuous classes). It follows that no matter how complex the expert
policy is, SPOIL suffers only the complexity of the environment (i.e., the feature dimensionality d).

3.2 SPOIL for general function approximation

For more complex Qπ-realizable MDPs, we analyze the version of SPOIL given in Algorithm 2.
Notice that the updates can no longer use the linear structure of the value functions, and thus the
critic update cannot be computed in closed form. Nevertheless, the algorithm remains well-defined,
and satisfies the following performance guarantee.

Theorem 2. Let Assumption 2 hold. Run Algorithm 2 for K = 2 log|A|
(1−γ)2ε2 iterations, with a learning

rate η = (1− γ)
√
2 log |A| /K and τE = O

(
log|A|

(1−γ)4ε4 log
(

Nϵ′ (Q,∥·∥∞)

ε(1−γ)

))
samples collected by

any expert policy πE, where ϵ′ = (1−γ)3ε2

4 log|A| . Then, the output satisfies E
[
ρπE − ρπ

out]
= O(ε).
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There are two important remarks for the nonlinear extension. First, the maximization of L̂(πk, Q)
with respect toQ is no longer available in closed form and it might not even be a concave optimization
problem depending on the choice of the function class Q. Therefore, computational efficiency cannot
be ensured. Nevertheless, the form of the objective function remains very simple in terms of Q, and
is arguably easier to optimize than other popular objective functions that are routinely optimized
within deep RL with good empirical success (e.g., the objective functions appearing in [Mnih et al.,
2015]) and deep IL [Garg et al., 2021]. Secondly, the expert sample complexity bound degrades from
O(ε−2) achieved in the linear case to O(ε−4) in the nonlinear case due to the higher complexity of
the policies produced by the algorithm (which results in a larger covering number of the policy class
as highlighted in the proof sketch included in the next section).

4 Analysis

In this section we outline the proof of our two main results. Both proofs are based on two key steps
which are self evident from Proposition 1. The first one consists of a regret analysis to show that∑K

k=1 L(πk, Qk) is bounded sublinearly in K. At a high level, the proof makes use of a classic
technique of decomposing the “global” regret into the average of “local” regrets in each MDP state,
first proposed by Even-Dar et al., 2009] and used in numerous other works (e.g., [Abbasi-Yadkori
et al., 2019, Geist et al., 2019, Lan, 2023, Moulin and Neu, 2023]). In proving this result, a little
care is needed in handling the potentially nonstationary nature of the expert policy. We circumvent
the issue by using the performance difference lemma and controlling the regret at each state against
the stationary comparator which induces the same state-action occupancy measure of the expert.
Formally, we have the following bound, which we prove in Appendix B.
Lemma 2. For any k and any state-action pair (x, a), consider the sequence of policies starting
with π1 as the uniform policy and updated as πk+1(a |x) ∝ πk(a |x)eηQk(x,a) for some function
Qk : X ×A → R such that ∥Qk∥∞ ≤ 1

1−γ . Then,
∑K

k=1 L(πk, Qk) ≤ log|A|
η + ηK

2(1−γ)2
.

This lemma applies to both the linear and nonlinear settings. The next and final step of the analysis
is to establish concentration of the empirical objective and bound ∆(πk) for each k. The main
challenge in this step is the correlation between the iterates {πk}Kk=1 and the expert dataset. This can
be handled via a uniform bound over the policy class to which all the algorithm iterates belong to.
Importantly, this class is much smaller than the class of all policies, and allows us to make massive
sample-complexity savings as compared to methods that need to control estimation errors associated
with arbitrary policies. We provide the technical details separately for the linear and nonlinear cases.

4.1 Linear function approximation

In order to bound the estimation errors ∆(πk), we apply a covering argument over the class of linear
softmax policies. We have the following result.
Lemma 3. Let {πk}k∈[K] be the sequence of policies generated by Algorithm 1 and let ∆(πk) be
defined as in Proposition 1. Then, with probability at least 1− δ, it holds that

K∑
k=1

∆(πk) ≤ 1 + 2K

√
8d

(1− γ)2τE
log

(
2 + 16BθBφK

(1− γ)δ

)
.

We defer the proof to Appendix B. We can use the above result to sketch the proof of Theorem 1.

Proof sketch of Theorem 1. Using Lemma 2 with η = (1− γ)
√

2 log|A|
K and dividing by K, we

obtain that 1
K

∑K
k=1 L(πk, Qk) ≤

√
2 log|A|
(1−γ)2K . Therefore, setting K = 2 log|A|

(1−γ)2ε2 guarantees
1
K

∑K
k=1 L(πk, Qk) ≤ ε. Then, using the high-probability bound in Lemma 3 and the fact that

K−1
∑K

k=1 ∆(πk) is a random random variable bounded by (1− γ)
−1 almost surely, we obtain the

following expectation bound which holds for all δ > 0

1

K

K∑
k=1

E [∆(πk)] ≤
1

K
+ C

√
d

(1− γ)
2
τE

log

(
BθBφ log |A|
(1− γ)3ε2δ

)
+

δ

1− γ
,
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for some C ∈ R. Noticing that the choice of parameters ensures 1
K ≤ ε

2 and setting δ = ε(1−γ)
2

and τE ≥ C2d
(1−γ)2ε2 log

(
BθBφ log|A|
(1−γ)3ε2δ

)
, this bound implies that 2

K

∑K
k=1 E [∆k] ≤ 4ε. Invoking

Proposition 1, we conclude that E
[
ρπE − ρπ

out] ≤ 5ϵ. The full proof is in Appendix B.

4.2 General function approximation

The proof for the nonlinear setup follows the same conceptual steps but requires a more general
concentration result for the objective function. Namely, the following lemma is the general counterpart
of Lemma 3. The feature dimension d appearing in the linear case is replaced by the complexity (as
measured by the covering number) of the policy and value function classes containing the iterates.

Lemma 4. Let ΠQ denote the policy class containing the iterates {πk}Kk=1 produced by Algorithm 2,
then with probability at least 1− δ, for all k ∈ [K] it holds that

∆(πk) = sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ 1

2K
+

√
2(K + 1) log

(
2N(1−γ)/8K(Q, ∥·∥∞)/δ

)
(1− γ)2τE

.

The proof is in Appendix B. Note that in the nonlinear case, the complexity of the policy class
increases linearly with the number of iterations K (see Lemma 7). On the contrary, in the linear case,
the policies generated by Algorithm 1 are parameterized by d parameters and only the magnitude of
these parameters increases with K. With this lemma, we present the proof sketch of Theorem 2.

Proof sketch of Theorem 2. Applying the decomposition in Proposition 1, the regret bound in

Lemma 2, the concentration in Lemma 4, we obtain E
[
ρπE − ρπ

out]
= Õ

(
1√
K

+
√

K
τE

)
. Setting

K = Õ(ε−2), and τE = Õ(ε−4), we get E
[
ρπE − ρπ

out]
= ε. The full proof is in Appendix B.

5 Numerical experiments

We run experiments to verify that we can imitate efficiently complex experts in linearQπ environment,
and may achieve massive improvements over behavioral cloning with large policy classes.

0 250 500 750 1000
Epochs

55
60
65
70

R
et

u
rn

πE ∈ ΠE
lin

SPOIL

BC

Expert

0 250 500 750 1000
Epochs

52
56
60
64
68

R
et

u
rn

πE ∈ ΠE
NN

Figure 1: Experiments with simple and
complex experts. Curves are averaged
across 10 seeds.

To investigate this, we consider a randomly generated
large linear MDP (a particular case of linear Qπ-realizable
MDP) with |X | = 500 and |A| = 1000 but with a small
feature dimension d = 7. We instantiate two experts. A
first expert is trained to be the soft optimal policy in this
environment which is parametrized by only d parameters
and it can be realized by the following policy class ΠE

lin ={
π(a|x) = exp(⟨φ(x,a),θ⟩)∑

b∈A exp(⟨φ(x,b),θ⟩) , θ ∈ Rd, ∥θ∥ ≤ Bθ

}
. In

addition, we consider a second expert belonging to the
class of three-layer neural networks denoted by ΠE

NN. This
expert was trained to minimize the KL divergence with
respect to the linear expert. As evident from Figure 1, our
algorithm SPOIL performs well for both experts. This is in
perfect agreement with the theory which provides a sam-
ple complexity bound which is independent of the expert
policy class. On the other hand, behavioural cloning (BC)
struggles with the complexity of neural network expert
policy class, and performs much worse. This is despite
the fact that the data sets perfectly satisfy the realizability
condition required by BC. This clearly demonstrates that
complex behavior policies may indeed be problematic for
BC to deal with, and we expect that such issues may cause
real performance drops in practical applications as well.
Notice that in this experiments SPOIL outperforms BC be-
cause the environment complexity is much lower than the
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policy class. For fairness, we point out that the opposite situation is not unusual in RL and IL. In that
case, it is reasonable to expect BC to be superior to SPOIL.

5.1 Continuous states experiments

We run the general function approximation version of our algorithm in continuous states environmnets
from the gym library. In particular, we consider the environments CartPole-v1, Acrobot-v1
and LunarLander-v2 where the expert is trained via Soft DQN. In particular, we use the expert
data provided in the code base of Garg et al. [2021]. The learner aims at imitating the expert
performance given as input a variable number of expert trajectories. In order to make the task
more challenging the trajectories are subsampled each 20 steps in CartPole-v1, Acrobot-v1 and
each 5 in LunarLander-v2.1 We compare the performance of the best policy found by each of
these algorithms as a function of the number of expert trajectories given as input. In practice the
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Figure 2: Experiments in continuous states domains. Curves are averaged across 10 seeds.

maximization arg maxQ∈Q L̂(πk, Q) is performed only approximately by performing a gradient
ascent step. On the other hand, the actor update is approximated via Soft DQN Haarnoja et al. [2017].
In Figure 2, we can see that SPOIL compares comparably to the state of the art algorithm IQ-Learn
Garg et al. [2021] and improves upon BC Pomerleau [1991], Foster et al. [2024] and P2IL Viano et al.
[2022].

6 Conclusions

In this work, we proposed analyses that leverages structural assumptions on the MDP without
requiring trajectory access. This is made possible thanks to a novel regret decomposition that shifts
the focus from updating a reward sequence based on expert data to updating a sequence of state-action
value functions. To the best of our knowledge, these are the first rigorous theoretical guarantees for IL
methods that learn state-action value functions from expert data, a technique popularized in practice
by Garg et al. [2021]. Among the many potential ways to improve extend and improve our work, we
highlight a handful of directions in Appendix F.

All previous theory work has focused either on imitation learning with additional trajectory access
to the environment, both in tabular MDPs [Shani et al., 2021, Xu et al., 2023] and with additional
structural assumptions [Liu et al., 2022, Viano et al., 2022, 2024, Moulin et al., 2025], or learning
based on offline data only but under structural assumptions about the policy class used by the expert
[Rajaraman et al., 2021, Swamy et al., 2022, Foster et al., 2024, Rohatgi et al., 2025]. The first of
these assumptions is clearly more restrictive than what we have considered in this work, and we have
pointed out potential issues with the second set of methods when the policy class is exceedingly
complex. This is not to say though that we consider our approach strictly superior to policy-based
IL methods: as is often the case in RL, there is no single approach that dominates all others in all
problems, and sometimes policy-based methods are more suitable for the job than value-based ones.
Thus, even if our approach is not the ultimate answer to all questions in imitation learning, our results
show that it is one potential alternative to consider in situations where other methods fail.

1This is common practice in IL experiments (see, e.g., Garg et al., 2021).
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A Additional related works

Classical analyses by Ross and Bagnell [2010], Ross et al. [2011] on behavioural cloning (BC)
established an error propagation framework relating the suboptimality of the learned policy to
the worst-case generalization error incurred in predicting the expert policy. They proved that this
suboptimality gap is upper-bounded by the generalization error up to a multiplicative factor H2

(where H is the horizon), a factor that is unavoidable when using the 0-1 loss for supervised learning.
However, these results do not quantify the expert sample complexity, or the number of samples
required to make the generalization error small.

A recent line of work has begun to investigate the expert sample complexity assuming knowledge of
a policy class ΠE that realizes (or nearly realizes) the expert policy. For instance, Rajaraman et al.
[2021] assume that the expert is deterministic and belongs to the class of deterministic linear policies
Πdet,lin (defined in the caption of Table 1). They prove a bound on the required number of expert
samples of order Õ

((
H2d

)
/ε
)
, where d is the feature dimension in the definition of Πdet,lin. Their

technique is a reduction to the problem of multiclass classification in supervised learning, but their
result is not informative for settings with general stochastic expert policies.

Further contributions to understanding the sample complexity of IL under policy class assumptions
were made by Foster et al. [2024]. Specifically, assuming the expert is included within a known
class, πE ∈ ΠE, they showed that one can learn an ε-optimal policy (as defined in Equation (2)) after
observing O

((
H2 log |ΠE|

)
/ε
)

samples for a deterministic expert or O
((
H2 log |ΠE|

)
/ε2
)

samples
for a stochastic one (we report the dense reward case for brevity, though their bounds improve for
sparse rewards). Addressing scenarios where the expert policy might only be almost well-specified,
Rohatgi et al. [2025] demonstrate that there exists a computationally efficient algorithm that outputs
an ε-optimal policy up to an additional approximation error of H log(W )minπ∈ΠE D2

H(Pπ,PπE). In
this context, Pπ is the trajectory distribution induced by π, W is a density ratio defined as

W = max
π∈ΠE

max
(x,a)∈X×A

max
h∈[H]

πE,h(a |x)
πh(a |x)

.

It is worth noting that these guarantees become vacuous when the policy class ΠE is such that at least
one policy in ΠE fails to provide sufficient coverage for the expert’s actions (leading to W = +∞
as πh(a |x) gets close to zero for relevant state-action pairs and timestep where πE,h(a |x) > 0),
or if the minimum Hellinger distance minπ∈ΠE D2

H(Pπ,PπE) is large. Alternatively, Foster et al.
[2024] proved a misspecification result where the additional error is minπ∈ΠE χ2(Pπ,PπE). This
misspecification error is measured by the χ2 divergence, with a leading coefficient constant in H and
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W . However, the χ2 divergence is an upper bound on the Hellinger distance that is often way too
loose to be practical. In a similar vein, Espinosa-Dice et al. [2025] proved a benefit in terms of error
propagation for a local search algorithm over behavioural cloning in misspecified settings, under the
assumption that the learned policy is allowed to reset to states visited in the expert dataset.

Our work aligns with the recent renewed interest in proving refined expert sample complexity
guarantees for offline imitation learning but distinguishes itself by swapping out the expert realizability
assumption with a structural assumption on the environment. Early explorations for similar settings
can be found in classical works by Abbeel and Ng [2004] and Syed and Schapire [2007]. These
studies proposed offline learning algorithms for MDPs with reward functions linear in a collection of
features known to the learner, under the assumption that transition dynamics of the environment is
also known. Versions of their approaches that do not assume such knowledge typically incur a worse
sample complexity and often apply only in the tabular setting. Our work generalizes these classical
approaches by removing the need for known transitions and for rewards to be linear in the features, as
well as going beyond tabular MDPs. Notably, the linear Qπ-realizability assumption can hold even if
the reward function and the transition dynamics are nonlinear. We summarize our comparison with
these and other related works in Table 1.

Our work focuses on learning a Q-value from expert data and, in this regard, is closely related to the
practical work of Garg et al. [2021]. The novel regret decomposition employed in our analysis of
SPOIL demonstrates, we believe for the first time, that provable guarantees are achievable by directly
learning an action-value function from expert data. This contrasts with the majority of theoretical and
practical imitation learning approaches, which typically first use the expert data to learn a reward
function and subsequently use this learned reward function to infer an action-value function.

Moreover, we note that SPOIL shares similarities with the algorithm AdVIL proposed by Swamy et al.
[2021]. Specifically, both SPOIL and AdVIL consider the same objective L but the two methods differ
in their proposed algorithmic solutions and analytical approaches. Notably, Swamy et al. [2021]
employed simultaneous gradient descent-ascent updates that made little use of the specific problem
structure, whereas we consider an asymmetric scheme where the policy player uses mirror descent
and the Q-player plays the best response. As mentioned previously in relation to the work of Garg
et al. [2021], our approach is more akin to minimizing the function π 7→ maxQ∈Q L(π,Q) rather
than using a primal-dual scheme.

A key difference lies in the analysis: Swamy et al. [2021] conduct an error propagation analysis
for AdVIL. From this, they conclude that AdVIL is equivalent to BC in the sense that if the loss for
either method is at most ε in every state, then the suboptimality of the extracted policy in an episodic
setting with horizon H is of order H2ε for both. However, this type of result does not investigate the
assumptions or the number of samples needed to ensure these losses are indeed less than ε. Our work
addresses this open question, establishing a clear distinction between the sample complexities of
SPOIL and BC. Specifically, SPOIL and BC (and their respective analyses) rely on largely orthogonal
sets of assumptions, making the two approaches complementary to each other: we expect SPOIL to
be more suitable for imitation tasks with complex experts but simpler environments, while BC may
be the preferred choice when this situation is reversed. Our sample complexity analysis for SPOIL
critically relies on the Q-player using a best response strategy, and it is unlikely that equivalent results
could be achieved using a standard gradient ascent step for the Q-player instead.

Very recently, Simchowitz et al. [2025] analyzed the error propagation properties of offline imitation
learning algorithms in continuous action MDPs, showing that an exponential dependence on the
horizon of the problem is unavoidable if no structure is imposed on the environment. On the other
hand, the same authors point out that if the state-action value functions were Lipschitz in the action
space, then efficient learning would be possible. Conceptually, we believe that the SPOIL algorithm
could also be applied in the continuous action case. Such an extension would suggest that another
scenario enabling effective imitation learning in continuous action spaces arises when the learner has
access to a suitably expressive class of state-action value functions.

Following a similar line of research that studies imitation learning from a control-theoretic perspective,
Block et al. [2023] studied guarantees for generative behavioural cloning, assuming access to a
stabilizing policy dubbed a synthesis oracle. These policies can be computed exactly if the dynamics
are known, an assumption which is not imposed in our work. However, when provided with such
an oracle, Block et al. [2023] derive bounds on a stricter metric for imitation. Specifically, they
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bound the probability that expert and learner trajectories diverge at some time step, as opposed to the
difference in cumulative return that we analyze in our work.

B Omitted proofs

In this appendix, we provide the omitted proofs of the main results.

B.1 Proof of Lemma 1 (performance difference lemma)

We start presenting the performance difference lemma proven in a more general form which allows
one policy to be nonstationary.
Lemma 1. Let π be a stationary policy and π′ be any policy. Then,

ρπ
′ − ρπ = E(X,A)∼µπ′ [Qπ(X,A)− V π(X)] .

Proof. Consider the Bellman equations for the stationary policy π. For any state-action pair (x, a),
we have

Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ |x, a)V π(x′) .

Averaging both sides with the distribution µπ′
and reordering the terms, we obtain∑

x,a

µπ′
(x, a)r(x, a) =

∑
x,a

µπ′
(x, a)

(
Qπ(x, a)− γ

∑
x′∈X

P (x′ |x, a)V π(x′)

)
= (1− γ)

∑
x

ν0(x)V
π(x) +

∑
x,a

µπ′
(x, a)

(
Qπ(x, a)− V π(x)

)
,

where we used the flow condition of the occupancy measure µπ′
in the last step (see Equation 1). The

claim then follows by noticing that ρπ = (1− γ)
∑

x ν0(x)V
π(x) and ρπ

′
=
∑

x,a µ
π′
(x, a)r(x, a).

B.2 Proof of Lemma 2 (regret of the policy player)

Next, we apply Lemma 10 to the special case of the exponential weights update, where the divergence
is chosen to be the KL divergence, and use it to derive a bound on the regret of the policy player.
Lemma 2. For any k and any state-action pair (x, a), consider the sequence of policies starting
with π1 as the uniform policy and updated as πk+1(a |x) ∝ πk(a |x)eηQk(x,a) for some function
Qk : X ×A → R such that ∥Qk∥∞ ≤ 1

1−γ . Then,
∑K

k=1 L(πk, Qk) ≤ log|A|
η + ηK

2(1−γ)2
.

Proof. Let us recall that

L(πk, Qk) = E(X,A)∼µπE [Qk(X,A)−Qk(X,πk)] ,

where πE is a potentially nonstationary policy. To continue, let us consider the stationary policy
π̄E : X → ∆(A) that induces the same state-action occupancy measure of the expert, i.e., such that
µπ̄E = µπE . This equality can be guaranteed by choosing, for any (x, a) ∈ X × A, π̄E(a |x) =
µπE (x,a)
νπE (x) if νπE(x) ̸= 0 and π0(a) otherwise, where π0 ∈ ∆(A) is an arbitrary distribution. Then, we

continue as follows

L(πk, Qk) = E(X,A)∼µπE [Qk(X,A)−Qk(X,πk)]

= E(X,A)∼µπ̄E [Qk(X,A)−Qk(X,πk)]

=
∑
x∈X

νπ̄E(x)
∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) .

Summing over k ∈ [K], we obtain
K∑

k=1

L(πk, Qk) =
∑
x∈X

νπ̄E(x)

K∑
k=1

∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) .
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It remains to prove the following bound.

K∑
k=1

∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) ≤
log |A|
η

+
ηK

2(1− γ)
2 .

The result is proven as a particular case of Lemma 10. Specifically, we have that when V is the
|A|-dimensional simplex and the Bregman divergence is the KL divergence, it holds that

xk+1 = arg min
v∈V

{
⟨ℓk, v⟩+

1

η
D(v, xk)

}
=

xk ⊙ exp(−ηℓk)
⟨1, xk ⊙ exp(−ηℓk)⟩

,

where ⊙ is the elementwise product. We apply Lemma 10 for each state x ∈ X , replacing
xk = πk(· |x) and ℓk = −Qk(x, ·). We obtain that for the update πk+1(a |x) ∝ πk(a |x)eηQk(x,a),
the guarantee in Lemma 10 holds. Moreover, in this setting we have λ = 1, and ℓmax = 1

1−γ .
Given that for any state-action pair (x, a), the initial policy is π1(a |x) = 1

|A| , we have that
D(π(· |x), π1(· |x)) ≤ log |A|. Thus, we have the following bound∑

a∈A
Qk(x, a)(π̄E(a |x)− πk(a |x)) ≤

log |A|
η

+
ηK

2(1− γ)
2 ,

and the conclusion follows from νπ̄E being a probability distribution.

B.3 General concentration argument

To prove the main results of this paper, we prove a general concentration inequality that we will
use for the iterates produced by both Algorithm 1 and Algorithm 2. Specifically, when analyzing
Algorithm 1, we consider the policy class Πlin defined as follows

Πlin =

π ∈ ∆(A)
X

: ∃(θk)k∈[K] ⊂ B(Bθ), π(a |x) =
exp
(
η
∑K

k=1 ⟨φ(x, a), θk⟩
)

∑
b∈A exp

(
η
∑K

k=1 ⟨φ(x, b), θk⟩
)
 ,

(3)
while in the nonlinear case (Algorithm 2), we will consider the policy class

ΠQ =

π ∈ ∆(A)
X

: ∃(Qk)k∈[K] ⊂ Q, π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
)
 . (4)

The result is the following.

Lemma 5. Let us consider a value function class Q ⊂ RX×A and the sequences of estimated

objective functions
{
L̂(πk, Q)

}K

k=1
for a policy sequence {πk}Kk=1 belonging to a policy class Π.

For any k ∈ [K], recall that for any policy π and function Q, the objective function is defined as

L(π;Q) = E(X,A)∼µπE [Q(X,A)−Q(X,π)] .

Then, with probability larger than 1− δ, it holds that for all k ∈ [K] simultaneously that

∆(πk) = sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ inf

ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√2 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

 ,

where, for any (Q, π) ∈ Q×Π, we defined the norm ∥(Q, π)∥∞,1 = ∥Q∥∞ +maxx∈X ∥π(· |x)∥1.

Proof. Let us recall that for any Q ∈ Q and any k ∈ [K], we have

L̂(πk, Q) =
1

τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−
∑
a∈A

πk
(
a
∣∣Xi

E

)
Q
(
Xi

E , a
))

,
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and notice that L̂(πk, Q) is not an unbiased estimator of L(πk, Q) since the policy πk depends on the
expert data. Therefore, we aim at establishing a uniform concentration bound over the policy class Π.
To this end, let us consider a fixed pair (Q, π) ∈ Cϵ

(
Q×Π, ∥·∥∞,1

)
, and notice that L̂(π,Q) is a

sum of random variables of the form

Wi =
1

τE

(
Q
(
Xi

E , A
i
E

)
−
∑
a∈A

π
(
a
∣∣Xi

E

)
Q
(
Xi

E , a
))

,

where i ∈ [τE ]. Each Wi an unbiased estimator of L(π,Q) since π is fixed (i.e., π is not a random
quantity depending on the expert data) and

(
Xi

E , A
i
E

)
∼ µπE for all i ∈ [τE ]. Thus, for any i ∈ [τE ],

E[Wi] = L(π,Q). Moreover, notice that for all i ∈ [τE ], − 1
τE(1−γ) ≤ Wi ≤ 1

τE(1−γ) . Therefore,
by an application of Hoeffding’s inequality (see Lemma 9), we have that for all t > 0,

P
[∣∣∣L̂(π,Q)− L(π,Q)

∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2τE(1− γ)

2

4

)
.

That is, choosing t = 2 log(2/δ)

(1−γ)2τE
guarantees that with probability at least 1− δ,

∣∣∣L̂(π,Q)− L(π,Q)
∣∣∣ ≤√ 2 log(2/δ)

(1− γ)
2
τE

.

Applying a union bound, we further have that with probability at least 1 − δ, for all (Q, π) ∈
Cϵ
(
Q×Π, ∥·∥∞,1

)
it holds that

∣∣∣L̂(π,Q)− L(π,Q)
∣∣∣ ≤

√√√√2 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

Recall that Cϵ
(
Q×Π, ∥·∥∞,1

)
is assumed to be an ϵ-covering set of the space Q × Π with

respect to the norm (Q, π) 7→ ∥(Q, π)∥∞,1 = ∥Q∥∞ + maxx∈X ∥π(· |x)∥1. For any pair

(Q, πk) ∈ Q×Π, let (Qϵ, πk,ϵ) ∈ Cϵ
(
Q×Π, ∥·∥∞,1

)
denote the element of the covering such that

∥(Q, πk)− (Qϵ, πk,ϵ)∥∞,1 ≤ ϵ. Then, we have that

∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)
∣∣∣ ≤ ∣∣∣∣∣ 1τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−Qϵ

(
Xi

E , A
i
E

))∣∣∣∣∣
+

∣∣∣∣∣ 1τE
τE∑
i=1

∑
a∈A

(
πk,ϵ

(
a
∣∣Xi

E

)
Qϵ

(
Xi

E , a
)
− πk

(
a
∣∣Xi

E

)
Q
(
Xi

E , a
))∣∣∣∣∣

≤ ∥Q−Qϵ∥∞ +

∣∣∣∣∣ 1τE
τE∑
i=1

∑
a∈A

(
πk,ϵ

(
a
∣∣Xi

E

)
− πk

(
a
∣∣Xi

E

))
Qϵ

(
Xi

E , a
)∣∣∣∣∣

+

∣∣∣∣∣ 1τE
τE∑
i=1

∑
a∈A

πk
(
a
∣∣Xi

E

)(
Q
(
Xi

E , a
)
−Qϵ

(
Xi

E , a
))∣∣∣∣∣ .

Noting that for any Q ∈ Q, ∥Q∥∞ ≤ 1
1−γ , and that for any state x, πk(· |x) ∈ ∆(A), using Hölder’s

inequality, we further have∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)
∣∣∣ ≤ ∥Q−Qϵ∥∞ +

maxx∈X ∥πk,ϵ(· |x)− πk(· |x)∥1
1− γ

+ ∥Q−Qϵ∥∞

≤ 2ϵ

1− γ
,
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where we used the definition of (πk,ϵ, Qϵ) and γ ∈ (0, 1) in the last inequality. Similarly, for the true
objective we have that

|L(πk, Q)− L(πk,ϵ, Qϵ)| ≤
∣∣E(X,A)∼µπE [Q(X,A)−Qϵ(X,A)]

∣∣
+ |EX∼νπE [Q(X,πk)−Qϵ(X,πk,ϵ)]|

≤ ∥Q−Qϵ∥∞ + |EX∼νπE [Q(X,πk)−Q(X,πk,ϵ)]|
+ |EX∼νπE [Q(X,πk,ϵ)−Qϵ(X,πk,ϵ)]|

≤ ∥Q−Qϵ∥∞ +
maxx∈X ∥πk,ϵ(· |x)− πk(· |x)∥1

1− γ
+ ∥Q−Qϵ∥∞

≤ 2ϵ

1− γ
.

Therefore, with probability at least 1− δ, it holds that for any k ∈ [K] and any Q ∈ Q,∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ ∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)

∣∣∣+ ∣∣∣L̂(πk,ϵ, Qϵ)− L(πk,ϵ, Qϵ)
∣∣∣

+ |L(πk, Q)− L(πk,ϵ, Qϵ)|

≤ 4ϵ

1− γ
+

√√√√2 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

Moreover, since the above bound holds for all Q ∈ Q, it holds for the supremum over this class. With
probability at least 1− δ, we have for any k ∈ [K] that

sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ 4ϵ

1− γ
+

√√√√2 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

The proof is concluded by noting that the above proof holds for any covering size ϵ > 0.

B.4 Proof of Lemma 3 (concentration linear case)

We now instantiate Lemma 5 in the linear Qπ-realizable setting. For this purpose, we compute a
bound on the covering number of the class Πlin, defined in Equation (3).
Lemma 6 (Covering number of Πlin). It holds that the covering number of the policy class Πlin can
be bounded as

Nϵ(Πlin, ∥·∥1) ≤
(
1 +

2KηBθBφA

ϵ

)d

,

where, with a slight abuse of notation, ∥·∥1 denotes the norm defined for any π ∈ Πlin as ∥π∥1 =
supx∈X ∥π(· |x)∥1. Moreover, let

Qlin = {Q : X ×A → R : ∃θ ∈ B(Bθ),∀(x, a) ∈ X ×A, Q(x, a) = ⟨θ, φ(x, a)⟩}
be the class of linear action-value functions. Then, it holds that

Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
≤
(
1 +

4KηBθBφA

ϵ

)2d

.

Proof. Let us consider two policies π and π′ in the class Πlin. There exist θ1, . . . , θK ∈ B(Bθ) and
θ′1, . . . , θ

′
K ∈ B(Bθ) such that for any state-action pair (x, a) ∈ X ×A, π and π′ can be written as

π(a |x) =
exp
(
η
〈
φ(x, a),

∑K
k=1 θk

〉)
∑

b∈A exp
(
η
〈
φ(x, b),

∑K
k=1 θk

〉) ,
and

π′(a |x) =
exp
(
η
〈
φ(x, a),

∑K
k=1 θ

′
k

〉)
∑

b∈A exp
(
η
〈
φ(x, b),

∑K
k=1 θ

′
k

〉) .
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In particular, let us fix a state x ∈ X , and denote θ̄K =
∑K

k=1 θk, θ̄′K =
∑K

k=1 θ
′
k. First, by

Cauchy-Schwartz’s inequality, we have

∥π(· |x)− π′(· |x)∥1 ≤
√
A ∥π(· |x)− π′(· |x)∥ .

By 1-Lipshitzness of the softmax function (Lemma 11), it holds that

∥π(· |x)− π′(· |x)∥1 ≤ η
√
A
∥∥〈φ(x, ·), θ̄K − θ̄′K

〉∥∥
= η

√
A
∑
a∈A

(〈
φ(x, a), θ̄K − θ̄′K

〉)2
≤ η

√
A
∑
a∈A

∥φ(x, a)∥2
∥∥θ̄K − θ̄′K

∥∥2 (Cauchy-Schwartz)

≤ ηBφA
∥∥θ̄K − θ̄′K

∥∥ (Assumption 1)

≤ ηBφA

K∑
k=1

∥θk − θ′k∥ (Triangle inequality)

≤ KηBφA max
k∈[K]

∥θk − θ′k∥ .

Therefore, the ϵ-covering number for Πlin with respect to the norm ∥·∥1, Nϵ(Πlin, ∥·∥1), is upper-
bounded by the ϵ

KηBφA -covering number of the Euclidean ball B(Bθ) with respect to the norm ∥·∥,
and

Nϵ(Πlin, ∥·∥1) ≤ N ϵ
KηBφA

(B(Bθ), ∥·∥)

≤
(
1 +

2KηBθBφA

ϵ

)d

,

where we used Lemma 12 in the last inequality. For the second part of the lemma, let us consider
Q,Q′ ∈ Qlin. By definition of Qlin, there exists θ, θ′ ∈ B(Bθ) such that for any state-action pair
(x, a), Q(x, a) = ⟨φ(x, a), θ⟩ and Q′(x, a) = ⟨φ(x, a), θ′⟩. Then,

max
x,a∈X×A

|Q(x, a)−Q′(x, a)| = max
x,a∈X×A

|⟨φ(x, a), θ − θ′⟩| ≤ Bφ ∥θ − θ′∥ .

Therefore, the ϵ-covering number of Qlin, Nϵ(Qlin, ∥·∥∞), is upper-bounded by the ϵ/Bφ-covering
number of the d-dimensional ball with radius Bθ, Nϵ/Bφ

(B(Bθ), ∥·∥). We have

Nϵ(Qlin, ∥·∥∞) ≤ Nϵ/Bφ
(B(Bθ), ∥·∥) ≤

(
1 +

2BθBφ

ϵ

)d

.

Finally, the proof is concluded by noting that

Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
≤ Nϵ/2(Πlin, ∥·∥1)Nϵ/2(Qlin, ∥·∥∞) .

Finally, the following result proves the concentration of the estimators used in Algorithm 1.

Lemma 3. Let {πk}k∈[K] be the sequence of policies generated by Algorithm 1 and let ∆(πk) be
defined as in Proposition 1. Then, with probability at least 1− δ, it holds that

K∑
k=1

∆(πk) ≤ 1 + 2K

√
8d

(1− γ)2τE
log

(
2 + 16BθBφK

(1− γ)δ

)
.

19



Proof. By Lemma 5, it holds that

K∑
k=1

∆(πk) ≤ K inf
ϵ:ϵ>0

 4ϵ

1− γ
+ 2

√√√√2 log
(
2Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE


≤ 1 + 2K

√√√√2 log
(
2N(1−γ)/4K

(
Qlin ×Πlin, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

≤ 1 + 2K

√√√√ 2

(1− γ)
2
τE

log

(
2

δ

(
1 +

16K2ηBθBφA

1− γ

)2d
)

≤ 1 + 4K

√
d

(1− γ)
2
τE

log

(
2 + 32K2ηBθBφA

(1− γ)δ

)
,

where the third inequality follows from Lemma 6.

B.5 Proof of Theorem 1 (sample complexity guarantee for linear Qπ-realizable MDPs)

Theorem 1. Let Assumption 1 hold. Run Algorithm 1 for K = 2 log|A|
(1−γ)2ε2 iterations, with a learning

rate η = (1− γ)
√
2 log |A| /K, and τE = O

(
d

(1−γ)2ε2 log
(

BθBφ log|A|
(1−γ)ε

))
samples collected by

any expert policy πE. Then, the output satisfies E
[
ρπE − ρπ

out] ≤ 5ε.

Proof. By Proposition 1, we have

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] .

Using Lemma 2 with a learning rate of η = (1− γ)
√

2 log|A|
K and dividing by K, we obtain that

1

K

K∑
k=1

L(πk;Qk) ≤
√

2 log |A|
(1− γ)

2
K
.

Therefore, setting K = 2 log|A|
(1−γ)2ε2

guarantees 1
K

∑K
k=1 L(πk;Qk) ≤ ε. Then, using the high-

probability bound in Lemma 3 and the fact that 1
K

∑K
k=1 ∆(πk) is a random random variable

bounded by 2(1− γ)
−1 almost surely, we obtain the following expectation bound which holds for all

δ > 0,

1

K

K∑
k=1

E[∆(πk)] ≤
1

K
+ C

√
d

(1− γ)
2
τE

log

(
BθBφA

(1− γ)δε

)
+

2δ

1− γ
,

for some C ∈ R. Note that the choice of parameters ensures 1
K ≤ ε

2 . Setting δ = ε(1−γ)
4 and

τE ≥ C2d

(1− γ)
2
ε2

log

(
BθBφA

(1− γ)δε

)
this bound implies that 2

K

∑K
k=1 E[∆(πk)] ≤ 4ε. Thus, we conclude that E

[
ρπE − ρπ

out] ≤ 5ε.

B.6 Proof of Lemma 4 (concentration nonlinear case)

Before presenting the proof of Theorem 2, we provide a bound on the covering number of the class
Q× ΠQ, where ΠQ is defined in Equation (4). It turns out that the covering number of this class
is exponential in K. In the linear case, the exponential dependence in K was avoided because the
state-action value class is closed under addition.
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Lemma 7 (Covering number of ΠQ). It holds that the covering number of the policy class ΠQ can
be bounded as

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞)
K
,

where, with a slight abuse of notation, ∥·∥1 denotes the norm defined for any π ∈ ΠQ as ∥π∥1 =
supx∈X ∥π(· |x)∥1. Moreover,

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ N ϵ

KηA
(Q, ∥·∥∞)

K+1
.

Proof. Let us consider two policies π and π′ in the class ΠQ. There exist Q1, . . . , QK ∈ Q and
Q′

1, . . . , Q
′
K ∈ Q such that for any state-action pair (x, a) ∈ X ×A, π and π′ can be written as

π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
) ,

and

π′(a |x) =
exp
(
η
∑K

k=1Q
′
k(x, a)

)
∑

b∈A exp
(
η
∑K

k=1Q
′
k(x, b)

) .
Let x ∈ X . Using ∥·∥1 ≤

√
A ∥·∥ in RA and by 1-Lipshitzness of the softmax function (Lemma 11),

it holds that

∥π(· |x)− π′(· |x)∥1 ≤
√
A ∥π(· |x)− π′(· |x)∥

≤ η
√
A

∥∥∥∥∥
K∑

k=1

(Qk(x, ·)−Q′
k(x, ·))

∥∥∥∥∥
≤ η

√
A

K∑
k=1

∥Qk(x, ·)−Q′
k(x, ·)∥ (Triangle inequality)

≤ ηA

K∑
k=1

sup
a∈A

|Qk(x, a)−Q′
k(x, a)| (∥·∥ ≤

√
A ∥·∥∞)

≤ ηA sup
x∈X

{
K∑

k=1

sup
a∈A

|Qk(x, a)−Q′
k(x, a)|

}

≤ ηA

K∑
k=1

∥Qk −Q′
k∥∞ (Triangle inequality) .

In particular, this implies

max
x∈X

∥π(· |x)− π′(· |x)∥1 ≤ ηA

K∑
k=1

∥Q′
k −Qk∥∞ .

Thus, the ϵ-covering number for ΠQ, Nϵ(ΠQ, ∥·∥1), is upper-bounded by the ϵ
KηA -covering number

of the class Q to the power K, i.e., N ϵ
KηA

(Q, ∥·∥∞)
K . Thus,

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞)
K
.

The proof is concluded by noting that the covering number increases with the precision (when ϵ
decreases), and therefore, we can write

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ Nϵ/2(Q, ∥·∥∞)Nϵ/2(ΠQ, ∥·∥1)

≤ Nϵ/2(Q, ∥·∥∞)N ϵ
KηA

(Q, ∥·∥∞)
K

≤ N ϵ
KηA

(Q, ∥·∥∞)
K+1

.
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Finally, the following result proves the concentration of the estimators used in Algorithm 2.
Lemma 8. Let {πk}k∈[K] be the sequence of policies generated by Algorithm 2. Then, with
probability at least 1− δ, for any k ∈ [K], it holds that

sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ 1

2K
+

√
2(K + 1) log

(
2N(1−γ)/8K(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Proof. Note that by construction, the policy sequence {πk}k∈[K] generated by Algorithm 2 belongs
to the policy class ΠQ. Therefore, invoking Lemma 5, we have that with probability at least 1− δ,
for any k ∈ [K], it holds that

∆(πk) ≤ inf
ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√2 log
(
2Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

 .

Therefore, choosing ϵ = 1−γ
8K , we get

∆(πk) ≤
1

2K
+

√√√√2 log
(
2N(1−γ)/8K

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

≤ 1

2K
+

√√√√√2(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

B.7 Proof of Theorem 2 (sample complexity guarantee for Qπ-realizable MDPs)

We are now ready for the proof of Theorem 2, which we restate for convenience.

Theorem 2. Let Assumption 2 hold. Run Algorithm 2 for K = 2 log|A|
(1−γ)2ε2 iterations, with a learning

rate η = (1− γ)
√
2 log |A| /K and τE = O

(
log|A|

(1−γ)4ε4 log
(

Nϵ′ (Q,∥·∥∞)

ε(1−γ)

))
samples collected by

any expert policy πE, where ϵ′ = (1−γ)3ε2

4 log|A| . Then, the output satisfies E
[
ρπE − ρπ

out]
= O(ε).

Proof. Recall that by Proposition 1, we have

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] .

Then, by Lemma 2, it holds that

1

K

K∑
k=1

E[L(πk;Qk)] ≤
log(A)

ηK
+

η

(1− γ)
2 .

Moreover, by Lemma 8, with probability at least 1− δ, it holds that

2

K∑
k=1

∆(πk) ≤ 1 + 2K

√√√√√2(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Since 1
K

∑K
k=1 ∆(πk) is bounded almost surely by 4(1− γ)

−1, we have that for any δ > 0

2

K

K∑
k=1

E[∆(πk)] ≤
1

K
+ 2

√√√√√2(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

+
4δ

1− γ
.
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Setting η = (1− γ)
√
2 log(A)/K, we get

E
[
ρπE − ρπ

out
]
≤
√

2 log(A)

(1− γ)
2
K

+
1

K
+ 2

√
2(K + 1) log(2Nϵ′(Q, ∥·∥∞)/δ)

(1− γ)
2
τE

+
4δ

1− γ
,

where we denoted ϵ′ = 1√
28K3/2

√
log(A)A

. Setting δ = (1−γ)ε
4 and K = 2 logA

(1−γ)2ε2
, we further have

E
[
ρπE − ρπ

out
]
≤ ε+

ε

2
+ 4

√
log(A)

(1− γ)
4
ε2τE

log

(
2Nϵ′(Q, ∥·∥∞)

δ

)
.

Finally, setting

τE ≥ 16 log(A)

(1− γ)
4
ε4

log

(
2Nϵ′(Q, ∥·∥∞)

δ

)
,

we guarantee that

E
[
ρπE − ρπ

out
]
= O(ε) .

C Technical tools

Lemma 9 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that
|Xi| ≤M for all i. Then, for any ϵ > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − E(Xi))

∣∣∣∣∣ > ϵ

)
≤ 2e−

2nϵ2

M2 .

Lemma 10 (Simplified version of Orabona, 2023, Theorem 6.10). Let us consider a non-empty
closed convex set V , an arbitrary sequence of adaptively chosen loss vectors (ℓk)

K
k=1 such that

∥ℓk∥∞ ≤ ℓmax, and let D : V × int(V ) → R be a Bregman divergence induced by a λ-strongly
convex function in the ℓ1-norm. Then, for all u ∈ V , the sequence (xk)

K
k=1 generated for any k as

xk+1 = arg min
v∈V

{
⟨ℓk, v⟩+

1

η
D(v, xk)

}
for an arbitrary initial x1 satisfies

K∑
k=1

⟨ℓk, xk − u⟩ ≤ D(u, x1)

η
+
ηKℓ2max

2λ
.

Lemma 11 (Gao and Pavel, 2017, Proposition 4). For any η > 0, let the softmax function be defined
for any z ∈ Rn as

softmax(z) =

(
eηzi∑n
j=1 e

ηzj

)
i∈[n]

.

Then, the softmax function is η-Lipschitz with respect to ∥·∥2. That is, for any z, z′ ∈ Rn, we have

∥softmax(z)− softmax(z′)∥2 ≤ η ∥z − z′∥2 .

Lemma 12 (Covering number of a Euclidean ball). The covering number of the Euclidean ball of
radius R in Rd, B(R), is

Nϵ(B(R), ∥·∥) ≤
(
1 +

2R

ϵ

)d

.
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Figure 3: Comparison of linear and quadratic softmax policies with A = 5 actions and features
φ(a) = a− 3.
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D On the guarantees of misspecified BC in linear Qπ-realizable MDPs

It is natural to question whether existing bounds for behavioral cloning (BC) in misspecified settings
[e.g., Rohatgi et al., 2025, Foster et al., 2024] offer satisfactory sample complexity guarantees for
imitating an arbitrarily complex expert within a linear Qπ-realizable MDP. This section presents a
negative result, demonstrating that the approximation error incurred by BC, when restricted to a linear
softmax policy class (denoted Πlin), can be large even in a simple linear Qπ-realizable MDP.

Consider a single-state MDP defined as follows. Let A ∈ N∗ be the number of actions, with the
action space A = [[1, . . . , A]]. For each action a ∈ A, there is a scalar feature φ(a) = − |A|

2 + a ∈ R.
To ensure the MDP is linear Qπ-realizable, the true reward function is rtrue(a) = ζφ(a) for some
parameter ζ ∈ R unknown to the learner. We define a softmax quadratic expert policy πE as

πE(a) =
exp
(
φ(a)

2
)

∑
b∈A exp

(
φ(b)

2
) .

This expert policy assigns the highest probability to extremal actions (i.e., a = 1 and a = A). In
contrast, linear softmax policies π ∈ Πlin (which are commonly used for BC in feature-based settings)
are inherently designed to produce monotonic probability distributions over the action space when
features are ordered (i.e., for actions a, a′ ∈ A with a′ > a, either π(a) ≤ π(a′) or π(a) ≥ π(a′)).
Consequently, for A > 2, no policy in Πlin can achieve a small Hellinger distance to this softmax
quadratic expert. We illustrate this in Figure 3, where we compare the softmax quadratic expert
with two linear softmax policies. Due to the monotonicity constraint, the linear softmax policies are
unable to approximate the expert policy everywhere.

It remains an open question whether behavioral cloning analyses can be refined to better leverage the
underlying MDP structure in such misspecified scenarios. Specifically, for the constructed example,
it would be advantageous if the misspecification error in existing bounds were characterized in terms
of feature expectations (e.g.,

∑
a∈A π(a)φ(a)) rather than state-action distributions.

E Experimental details

For the first experiment shown in Figure 1, one may wonder if the underperformance of behavioural
cloning might be due to underoptimizing the empirical log-likehood. We have ruled out this possibility
by going into great lengths to optimize the likelihood, and in fact the log-likelihood has approached
its minimum value of zero very closely in our experiment (meaning that the probability assigned to
the actions seen in the expert dataset is almost 1). For this optimization task, we have used Adam with
default parameter settings. For the experiments in Figure 2, algorithms are implemented using a shared
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neural network architecture consisting of 3 layers with 64 neurons per layer. This architecture matches
the one used for experiments in the same environments by Garg et al. [2021]. For behavioral cloning,
we employ a separate three-layer multilayer perceptron with 128 neurons per layer. Implementations
of IQ-Learn and P2IL utilize their original hyperparameter configurations as reported in their
respective publications. All networks are optimized using the Adam optimizer [Kingma and Ba,
2014] with a learning rate of 5× 10−3 and default momentum parameters (β1 = 0.9, β2 = 0.999).
The implementations are built using PyTorch [Paszke, 2019].

For algorithms with a primal-dual structure (i.e., IQ-Learn, P2IL, and SPOIL), the policy update
is performed using a Soft DQN-style update [cf. Haarnoja et al., 2017] with a fixed temperature
parameter. These three algorithms thus only differ in terms of their Q-value updates, and thus this
experiment serves to assess the effectiveness of the novel critic loss introduced in this work.

F Future directions

Possible improvements. The most interesting immediate question that one can ask about our
result is if the O(ε−4) scaling featured in our general bound is improvable under the conditions we
assume. We believe that substantially different algorithmic and analytic ideas would be necessary to
answer this question, but we also think that our primal-dual framework provides a good starting point
towards making such improvements. Furthermore, we would be curious to investigate appropriate
notions of misspecification that our algorithm can deal with. It can be easily shown that requiring
Qπ-realizability only up to a worst-case additive error of order εapprox would incur the same additional
term in the error bounds, but we believe that this assumption is too strong to warrant interest and
we did not include an explicit statement. A much more interesting question is if this approximation
guarantee would only be required to hold locally in the state-action pairs visited by the expert, or
only for specific policies (most ideally only the expert policy). Given the numerous negative results
in RL theory about such weaker function approximators, we are not optimistic that these latter
improvements are possible, but nevertheless (and once again), we feel that our analytic framework
can provide suitable tools for analyzing such questions.

Learning from features only. In the case of linear function approximation, the current approach
critically relies on observing the expert state-action pairs to compute the vectors {ĝk}Kk=1. It would
be interesting to check if an alternative algorithm can achieve the same guarantees by only observing
the feature vectors instead. In other words, the design of an algorithm taking as input a dataset{
φ
(
Xi

E , A
i
E

)}τE
i=1

is an interesting open problem.

New efficient algorithms that learn state-action value functions from expert data. Despite
having proven successful in practice [Garg et al., 2021], the idea of learning a state-action value
function from expert data without passing through a learned reward function has not been used to
develop theoretically grounded algorithms. Our work is the first example of an algorithm enjoying
theoretical guarantees applying this principle. We expect this principle to find other applications in
imitation learning theory, for example on the open problem of learning to imitate an expert from
state-only trajectory given trajectory access to a linear-Qπ realizable MDP.
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