
MOMA: A MODULAR DEEP LEARNING FRAMEWORK
FOR MATERIAL PROPERTY PREDICTION

Botian Wang1,2∗ Yawen Ouyang1∗ Yaohui Li3∗ Yiqun Wang1 Haorui Cui2
Jianbing Zhang3 Xiaonan Wang4 Wei-Ying Ma1 Hao Zhou1

1 Institute for AI Industry Research (AIR), Tsinghua University
2 Department of Computer Science and Technology, Tsinghua University
3 School of Artificial Intelligence, Nanjing University &
National Key Laboratory for Novel Software Technology, Nanjing University
4 Department of Chemical Engineering, Tsinghua University
wbt23@mails.tsinghua.edu.cn {maweiying,zhouhao}@air.tsinghua.edu

ABSTRACT

Deep learning methods for material property prediction have been widely explored
to advance materials discovery. However, the prevailing pre-train then fine-tune
paradigm often fails to address the inherent diversity and disparity of material
tasks. To overcome these challenges, we introduce MoMa, a Modular framework
for Materials that first trains specialized modules across a wide range of tasks
and then adaptively composes synergistic modules tailored to each downstream
scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with
a substantial 14% average improvement over the strongest baseline. Few-shot and
continual learning experiments further highlight MoMa’s potential for real-world
applications. Pioneering a new paradigm of modular material learning, MoMa will
be open-sourced to foster broader community collaboration.

1 INTRODUCTION

Accurate and efficient material property prediction is critical for accelerating materials discovery.
Key properties such as formation energy and band gap play fundamental roles in identifying stable
materials and functional semiconductors (Riebesell et al., 2023; Masood et al., 2023). While
traditional approaches such as density functional theory (DFT) offer high precision, their prohibitive
computational cost limits their practicality for large-scale screening (Fiedler et al., 2022).

Recently, deep learning methods have been developed to expedite traditional approaches (Xie &
Grossman, 2018; Griesemer et al., 2023). Pre-trained force field models, in particular, have shown
remarkable success in generalizing to a wide spectrum of material property prediction tasks (Yang
et al., 2024b; Barroso-Luque et al., 2024; Shoghi et al., 2023), outperforming specialized models
trained from scratch. These models are typically pre-trained on the potential energy surface (PES)
data of materials and then fine-tuned for the target downstream task.

Despite these advances, we identify two key challenges that undermine the effectiveness of current
pre-training strategies for material property prediction: diversity and disparity.

First, material tasks exhibit significant diversity (Fig. 1), which current pre-trained models fail to
adequately cover. Existing models trained on PES-derived properties (e.g., force, energy and stress)
mostly focus on crystalline materials (Yang et al., 2024b; Barroso-Luque et al., 2024). However,
material tasks span wide variety of systems (e.g., crystals, organic molecules) and properties (e.g.,
thermal stability, electronic behavior, mechanical strength), making it difficult for methods trained on
a limited set of data to generalize across the full spectrum of tasks.

Second, the disparate nature of material tasks presents huge obstacles for jointly pre-training a broad
span of tasks. Material systems vary significantly in terms of bonding, atomic composition, and
structural periodicity, while their properties are governed by distinct physical laws. For example,
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mechanical strength in metals is primarily influenced by atomic bonding and crystal structure,
whereas electronic properties like conductivity are determined by the material’s electronic structure
and quantum mechanics. Consequently, training a single model across a wide range of tasks (Shoghi
et al., 2023) may lead to knowledge conflicts, hindering the model’s ability to effectively adapt to
downstream scenarios.
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…

Organic MoleculesCrystalline Materials

…

Material Properties Material Systems

Figure 1: Illustration of the diversity of material properties (left) and systems (right). Note that
material tasks are also disparate, with different laws governing the diverse properties and systems.
These characteristics pose challenges for pre-training material property prediction models.

In this paper, we propose MoMa, a Modular deep learning framework for Material property prediction,
to address the diversity and disparity challenge. To accommodate the diversity of material tasks,
MoMa first trains on a multitude of high-resource property prediction datasets, centralizing them
into transferrable modules. Furthermore, MoMa incorporates an adaptive composition algorithm that
customizes support for diverse downstream scenarios. Recognizing the disparity among material
tasks, MoMa encapsulates each task within a specialized module, eliminating task interference of
joint training. In adapting MoMa to specific downstream tasks, its composition strategy adaptively
integrates only the most synergistic modules, mitigating knowledge conflicts and promoting positive
transfer.

Specifically, MoMa comprises two major stages: (1) Module Training & Centralization. Drawing
inspiration from modular deep learning (Pfeiffer et al., 2023), MoMa trains dedicated modules
for a broad range of material tasks, offering two versions: a full module for superior performance
and a memory-efficient adapter module. These trained modules are centralized in MoMa Hub, a
repository designed to facilitate knowledge reuse while preserving proprietary data for privacy-aware
material learning. (2) Adaptive Module Composition (AMC). MoMa introduces the data-driven AMC
algorithm that composes synergetic modules from MoMa Hub. AMC first estimates the performance
of each module on the target task in a training-free manner, then heuristically optimizes their weighted
combination. The resulting composed module is then fine-tuned for improved adaptation to the
downstream task. Together, the two stages deliver a modular solution that enables MoMa to account
for the diversity and disparity of material knowledge.

Empirical results across 17 downstream tasks showcase the superiority of MoMa, outperforming
all baselines in 16/17 tasks, with an average improvement of 14% compared to the second-best
baseline. In few-shot settings, which are common in materials science, MoMa achieves even larger
performance gains to the conventional pre-train then fine-tune paradigm. Additionally, we show that
MoMa can expand its capability in continual learning settings by incorporating molecular tasks
into MoMa Hub. The trained modules in MoMa Hub will be open-sourced, and we envision MoMa
becoming a pivotal platform for the modularization and distribution of materials knowledge, fostering
deeper community engagement to accelerate materials discovery.

2 METHOD

MoMa is a simple modular framework targeting the diversity and disparity of material tasks. The
predominant pre-train then fine-tune strategy can only leverage a limited range of interrelated source
tasks or indiscriminately consolidating conflicting knowledge into one model, resulting in suboptimal
downstream performance. In contrast, the modular design of MoMa allows for the flexible and
scalable integration of diverse material knowledge modules, and the effective and tailored adaptation
to material property prediction tasks. Fig. 2 illustrates this comparison.
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Figure 2: A comparison between the pre-train fine-tune paradigm and MoMa’s modular framework.
(left): The prevailing scheme involves pre-training on force field data (with supervised prediction
on energy, force and stress), and then transfer to downstream tasks. (right): The modular learning
scheme in MoMa train and store a broad spectrum of material tasks as modules, and adaptively
compose them given a new material property prediction task.

2.1 OVERVIEW

MoMa involves two major stages: (1) training and centralizing modules into MoMa Hub; (2)
adaptively composing these modules to support downstream material tasks.

In the first stage (Sec. 2.2), we encompass a wide range of material properties and systems into MoMa
Hub. This accommodates the diversity of material tasks and addresses the task disparity by training
specialized module for each.

In the second stage (Sec. 2.3), we devise the Adaptive Module Composition algorithm. Given
the downstream material task, the algorithm heuristically optimizes the optimal combination of
module weights for MoMa Hub, and composes a customized module based on the weights, which is
subsequently fine-tuned on the task for better adaptation. Respecting the diverse and disparate nature
of material tasks, our adaptive approach automatically discovers synergistic modules and excludes
conflicting combinations by the data-driven assignment of module weights.

A visual overview of MoMa is provided in Figure 3.

2.2 MODULE TRAINING & CENTRALIZATION

To better exploit the transferrable knowledge of open-source material property prediction datasets,
we first train distinctive modules for each high-resource material task, and subsequently centralize
these modules to constitute MoMa Hub.

Module Training Leveraging the power of state-of-the-art material property prediction models,
we choose to employ a pre-trained backbone encoder f as the initialization for training each MoMa
module. Note that MoMa is independent of the backbone model choice, which enables smooth
integration with other pre-trained backbones.

We provide two parametrizations for the MoMa modules: the full module and the adapter module.
For the full module, we directly treat each fully fine-tuned backbone as a module. The adapter
module serves as a parameter-efficient variant where adapter layers (Houlsby et al., 2019) are inserted
between each layer of the pre-trained backbone. The adapters are updated and the rest of the backbone
is frozen. All of the adapters for each task are treated as one module. This implementation trade-offs
the downstream performance for a significantly lower GPU memory cost during training, which shall
be favorable when the computational resource is limited. When the training converges, we store the
module parameters into a centralized repository H termed MoMa Hub, formally:

H = {g1, g2, . . . , gN}, gi =

{
θif (full module)
∆i

f (adapter module)

where θif and ∆i
f denote the full and adapter module parameters related to the ith task and encoder f .
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Figure 3: The MoMa framework. (a) During the Module Training & Centralization stage (Sec. 2.2),
MoMa trains full and adapter modules for a wide spectrum of material tasks, constituting the MoMa
Hub; (b) The Adaptive Module Composition (AMC) & Fine-tuning stage (Sec. 2.3) leverages the
modules in MoMa Hub to compose a tailored module for each downstream task. The AMC algorithm
comprises three steps: 1. module prediction estimation (with kNN); 2. module weight optimization;
3. module composition. The composed module is further fine-tuned on the task for better adaptation.

Module Centralization To support a wide array of downstream tasks, it is important for MoMa
Hub to include modules trained on diverse material systems and properties. Currently, MoMa Hub
encompasses 18 material property prediction tasks selected from the Matminer datasets (Ward et al.,
2018) with over 10000 data points. These tasks span across a large range of material properties,
including thermal properties (e.g. formation energy), electronic properties (e.g. band gap), mechanical
properties (e.g. shear modulus) etc. For more details, please refer to Appendix B.1. To showcase
the effect of scaling data diversity, we present the continual learning results in Sec. 3.5 after further
incorporating molecular property prediction tasks into MoMa Hub. Note that MoMa is designed to
be task-agnostic and may readily support a larger spectrum of tasks in the future.

An important benefit of the modular design of MoMa Hub is that it preserves proprietary data,
which is prevalent in the field of materials, enabling privacy-aware contribution of new modules.
Therefore, MoMa could serve as an open platform for the modularization of materials knowledge,
which also facilitates downstream adaptation through a novel composition mechanism, as discussed
in the following section.

2.3 ADAPTIVE MODULE COMPOSITION & FINE-TUNING

Given a labeled material property prediction dataset D with m instances: D =
{(x1, y1), (x2, y2), . . . , (xm, ym)}, the second stage of MoMa customizes a task-specific model
using the modules in MoMa Hub.

To achieve this, we devise the Adaptive Module Composition (AMC) algorithm. We highlight its key
desiderata:

• Selective: Material tasks are inherently disparate. Hence only the most relevant modules shall be
selected to avoid the negative interference of materials knowledge and encourage positive transfer
to downstream tasks.

• Data-driven: As the diversity of tasks in MoMa Hub expands, it is impossible to solely rely
on human expertise for module selection. Data-driven approach is required to mine the implicit
relationships between the MoMa Hub modules and downstream tasks.

• Efficient: Enumerating all combinations of modules is impractical. Efficient algorithms shall be
developed to return the optimal module composition using a reasonable amount of computational
resource.

To meet these requirements, AMC is designed as a fast heuristic algorithm that first estimates the
prediction of each module on the downstream task, then optimizes the module weights, and finally
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composes the selected modules to form the task-specific module. We now elaborate on the details of
AMC, with its formal formulation in Algorithm 1.

Module Prediction Estimation We begin by estimating the predictive performance of each module
in MoMa Hub H on the downstream task D. More accurate predictions indicate stronger relevance to
the task and intuitively warrant higher weights in the composition.

For each module gj in H, we first take it to encode each input materials in the train set of task
D into a set of representation X j = {xj

1,x
j
2, . . . ,x

j
m} in which xj

i = gj(xi). Then we obtain
the estimated prediction of gj on D using a leave-one-out label propagation approach (Iscen et al.,
2019). Specifically, we iteratively select one sample xj

i from X j and get the predicted label ŷij by
calculating the weighted sum of its K nearest neighbors’ labels within X j :

ŷi
j =

K∑
k=1

fd(x
j
i ,x

j
k)

Z
yk, (1)

where xj
k denotes the k-th nearest neighbors of xj

i . The distance function fd for calculating kNN is
the exponential of cosine similarity between each pair of xj

i and xj
k. Z =

∑K
k=1 fd(x

j
i ,x

j
k) is the

normalizing term.

While other predictors are viable, we choose kNN due to its good trade-off in efficiency and accuracy.
Also its training-free nature enhances its flexibility in real-world scenarios, where the downstream
data may be subject to updates.

Module Weight Optimization After estimating each module’s prediction, we now have to select
the optimal combination of modules tailored for the downstream task D. To achieve this, the
most straightforward approach is to compare the prediction error obtained after fine-tuning each
combination of modules. However, this is infeasible due to the combinatorial explosion. Therefore,
we reformulate the task as an optimization problem, using the prediction error before fine-tuning as a
proxy metric (later referred to as proxy error). By optimizing the proxy error, we could obtain the
optimal combination of weights.

Specifically, inspired by ensemble learning (Zhou et al., 2002; Zhou, 2016), we assign a weight wj

for each module gj and calculate the output of the ensemble:
∑NT

j=1 wj ŷi
j . We then estimate the

proxy error on the train set of D for this weighted ensemble:

ED =
1

m

m∑
i=1

(

N∑
j=1

wj ŷ
j
i − yi)

2 (2)

To minimize the proxy error ED, we then utilize the open source cvxpy package (Diamond et al.,
2014) to optimize the module weights. The objective is:

argmin
wj

ED, s.t.
N∑
j=1

wj = 1, wj ≥ 0 (3)

Module Composition After the optimization converges, we can use the learned weights to compose
a single customized module for the specific task. It is intuitive to retain the knowledge for modules
with high weights, as they are more relevant to the downstream task, while discarding the modules
with zero weights, as they do not contribute in lowering the proxy error.

Inspired by the recent success of model merging in NLP and CV (Wortsman et al., 2022; Ilharco
et al., 2022; Yu et al., 2024; Li et al., 2024; Yang et al., 2024a), we adopt a simple yet surprisingly
effective method by weighted averaging the parameters of the selected modules:

gD =

N∑
j=1

w∗
j gj , (4)

where w∗
j represents the optimized weight for the j-th module in Eq. (3). Here, the weights underscore

the relevance of each selected module to the downstream task.
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Opting for a weighted average over a simple average allows the composed module to focus on
exploiting the most relevant aspects of materials knowledge, delivering empirical benefits as evidenced
by our ablation study (Sec. 3.3). For the full module parametrization, all modules share the same
architecture with the pre-trained backbone and have identical initializations, so it paves way for the
successful composition of module knowledge (Zhou et al., 2024).

Table 1: Main results for 17 material property prediction tasks. The best MAE for each task is
highlighted in bold and the second best result is underlined. Lower values indicate better performance.
The results presented for each task are the average of five data splits, reported to three significant
digits. For each method, the standard deviation of the test MAE across five random seeds is shown
in parentheses. Additionally, the average rank and its standard deviation across the 17 datasets are
provided to reflect the consistency of each method.

Datasets CGCNN MoE-(18) JMP-MT JMP-FT MoMa (Adapter) MoMa (Full)
Experimental Band Gap (eV) 0.471 (0.008) 0.374 (0.008) 0.377 (0.005) 0.358 (0.014) 0.359 (0.009) 0.305 (0.006)

Formation Enthalpy (eV/atom) 0.193 (0.015) 0.0949 (0.0016) 0.134 (0.001) 0.168 (0.007) 0.158 (0.009) 0.0839 (0.0013)

2D Dielectric Constant 2.90 (0.12) 2.29 (0.01) 2.25 (0.06) 2.35 (0.07) 2.31 (0.04) 1.89 (0.03)

2D Formation Energy (eV/atom) 0.169 (0.006) 0.106 (0.005) 0.140 (0.004) 0.125 (0.006) 0.112 (0.002) 0.0495 (0.0015)

Exfoliation Energy (meV/atom) 59.7 (1.5) 52.5 (0.8) 42.3 (0.5) 35.4 (2.0) 35.4 (0.9) 36.3 (0.2)

2D Band Gap (eV) 0.686 (0.034) 0.532 (0.008) 0.546 (0.020) 0.582 (0.018) 0.552 (0.014) 0.375 (0.006)

3D Poly Electronic 32.5 (1.1) 27.7 (0.1) 23.9 (0.2) 23.3 (0.3) 23.3 (0.2) 23.0 (0.1)

3D Band Gap (eV) 0.492 (0.008) 0.361 (0.003) 0.423 (0.004) 0.249 (0.001) 0.245 (0.002) 0.200 (0.001)

Refractive Index 0.0866 (0.0014) 0.0785 (0.0004) 0.0636 (0.0006) 0.0555 (0.0027) 0.0533 (0.0023) 0.0523 (0.0010)

Elastic Anisotropy 3.65 (0.11) 3.010 (0.03) 2.53 (0.26) 2.42 (0.36) 2.57 (0.61) 2.86 (0.28)

Electronic Dielectric Constant 0.168 (0.002) 0.157 (0.015) 0.137 (0.002) 0.108 (0.002) 0.106 (0.002) 0.0885 (0.0048)

Dielectric Constant 0.258 (0.008) 0.236 (0.002) 0.224 (0.004) 0.171 (0.002) 0.168 (0.002) 0.158 (0.002)

Phonons Mode Peak (cm−1) 0.127 (0.004) 0.0996 (0.0083) 0.0859 (0.0006) 0.0596 (0.0065) 0.0568 (0.0009) 0.0484 (0.0026)

Poisson Ratio 0.0326 (0.0001) 0.0292 (0.0001) 0.0297 (0.0003) 0.0221 (0.0004) 0.0220 (0.0003) 0.0204 (0.0002)

Poly Electronic 2.97 (0.10) 2.61 (0.13) 2.42 (0.03) 2.11 (0.04) 2.13 (0.03) 2.09 (0.03)

Poly Total 6.54 (0.24) 5.51 (0.04) 5.52 (0.03) 4.89 (0.06) 4.89 (0.04) 4.86 (0.07)

Piezoelectric Modulus 0.232 (0.004) 0.208 (0.003) 0.199 (0.002) 0.174 (0.004) 0.173 (0.003) 0.174 (0.001)

Average Rank 6.00 (0.00) 4.12 (1.17) 3.94 (0.97) 2.88 (1.27) 2.47 (0.94) 1.35 (0.86)

Downstream Fine-tuning To better adapt to the downstream task D, the composed module gD is
appended with a task-specific head and then fine-tuned on D to convergence.

3 EXPERIMENTS

In this section, we conduct comprehensive experiments to showcase the empirical effectiveness of
MoMa. The experimental setup is described in Sec. 3.1. The main results, presented in Sec. 3.2,
show that MoMa substantially outperforms baseline methods. Additionally, we perform a thorough
ablation study on the AMC algorithm as detailed in Sec. 3.3. In face of the data scarcity challenge
common in real-world materials discovery settings, we evaluate MoMa’s few-shot learning ability
in Sec. 3.4, where it achieves even larger performance gains as compared to baselines. To further
highlight the flexibility and scalability of MoMa, we extend MoMa Hub to include molecular
datasets and present the continual learning results in Sec. 3.5. Finally, we visualize the module
weights optimized by AMC in Sec. 3.6, showcasing MoMa’s potential for providing valuable
insights into material properties.

3.1 SETUP

We conduct experiments MoMa on 17 material property prediction tasks adhering to the benchmark
settings established by Chang et al. (2022). For the backbone of MoMa, we choose to employ the
JMP model (Shoghi et al., 2023). We report the mean absolute error (MAE) averaged for five random
data splits as evaluation metric.

We compare the performance of MoMa with four baseline methods: CGCNN (Xie & Grossman,
2018), MoE-(18) (Chang et al., 2022), JMP-FT (Shoghi et al., 2023), and JMP-MT (Sanyal et al.,
2018). CGCNN represents a classical method without pre-training. MoE-(18) trains separate CGCNN
models on the upstream tasks of MoMa and ensemble them as one model in a mixture-of-experts
approach for downstream fine-tuning. JMP-FT directly fine-tunes on the downstream tasks with the
JMP pre-trained checkpoint. JMP-MT trains all tasks in MoMa with a multi-task pretraining scheme
and then adapt to each downstream datasets with further fine-tuning.
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More details on datasets and implementation, as well as a thorough discussion on baselines are
included in Appendix B.

3.2 MAIN RESULTS

Performance of MoMa As shown in Tab. 1, the MoMa (Full) achieves the best performance
with the lowest average rank of 1.35 and 14/17 best results. The adapter variant of MoMa follows
with an average rank of 2.47. Together, the two variants hold 16 out of 17 best results. They also
exhibit the smallest rank deviations, indicating that MoMa consistently delivers reliable performance
across tasks. Notably, MoMa (Full) outperforms JMP-FT in 14 tasks, with an impressive average
improvement of 14.0%, demonstrating the effectiveness of MoMa Hub modules in fostering material
property prediction tasks. Moreover, MoMa (Full) surpasses JMP-MT in 16 out of 17 tasks with a
large average margin of 24.8%, underscoring the advantage of MoMa in selecting and merging the
most relevant knowledge modules.

Performance of baselines The best performing baseline is JMP-FT (average rank 2.88), followed
by JMP-MT (average rank 3.94). Though additionally trained on upstream tasks of MoMa Hub,
JMP-MT is still inferior to JMP-FT. We extrapolate that knowledge conflicts between the disparate
material tasks poses tremendous risk to the multi-task learning scheme. We also observe that methods
equipped with the JMP encoder achieve better performance than those using CGCNN encoders. This
showcases the good transferability of large force field models to material property prediction tasks.

3.3 ABLATION STUDY OF ADAPTIVE MODULE COMPOSITION

Setup We conduct a fine-grained ablation study of the Adaptive Module Fusion algorithm. The
following ablated variants are tested: (1) Select average, which discards the weights optimized in
Eq. (3) and apply arithmetic averaging for the selected modules; (2) All average, which simple
averages all modules in MoMa Hub; (3) Random selection, which picks a random set of modules in
MoMa Hub with the same module number as AMC. Further analysis experiments are done using the
MoMa’s full parametrization, i.e., MoMa (Full), due to its superior performance.

Results A visualization of the ablation results on all downstream tasks are shown in Fig. 4. Select
average, all average and random selection are inferior to the main results using AMC in 13, 15 and
15 tasks, with an average increase of test MAE of 11.0%, 18.0% and 20.2%. This demonstrates the
effectiveness of both the module selection and weighted composition strategies of AMC.

7



3.4 PERFORMANCE IN FEW-SHOT SETTINGS

Motivation & Setup To better extrapolate the performance of MoMa in real-world materials
discovery scenarios, where candidates with labeled properties are costly to acquire and often excep-
tionally scarce (Abed et al., 2024), we manually construct a few-shot learning setting and compare
the performance of MoMa with JMP-FT, the strongest baseline method. For every downstream task,
we randomly down-sample N data points from the train set to construct the few-shot train set, on
which we run the AMC algorithm to select modules from MoMa Hub. Then we perform downstream
adaptation by fine-tuning on the N data points. The validation and test sets remain consistent with
those of the standard settings to ensure a robust evaluation of model performance. Experiments are
conducted with N set to 100 and 10, representing few-shot and extremely few-shot scenarios.

Results The average test losses for the 17 downstream tasks of MoMa compared to JMP-FT
across the full-data, 100-data and 10-data settings are illustrated in Fig. 5. As expected, the test loss
increases as the data size decreases, and MoMa consistently outperforms JMP-FT in all settings.
Notably, the performance advantage of MoMa is more pronounced in the few-shot settings, with the
normalized loss margin widening from 0.03 in full-data setting to 0.11 in 100-data setting and 0.15 in
10-data setting. This suggests that MoMa may offer even greater performance benefits in real-world
applications, where the availability of property labels is often limited for effectively fine-tuning large
pre-trained models. Complete results are shown in Tab. 4.

3.5 CONTINUAL LEARNING EXPERIMENTS

Motivation & Setup Continual learning refers to the ability of an intelligent system to progressively
improve by integrating new knowledge (Wang et al., 2024). We explore this capability of MoMa by
incorporating new modules into MoMa Hub. Due to its modular nature, it is expected that MoMa
will exhibit enhanced performance in tasks that are closely aligned with the new modules, while
maintaining its performance when these additions are less relevant. We expand MoMa Hub to include
the QM9 dataset (Ramakrishnan et al., 2014) and test the results on all the 17 benchmark material
property prediction tasks. For more details on the setup, please refer to Appendix B.4.

Results We draw the scatter plot of the reduction rate of test MAE wrt. the proxy error decrease in
Fig. 6 across the datasets where QM9 modules are selected. We observe that: (1) The integration
of QM9 modules leads to an average of 1.7% decrease in test set MAE; (2) a larger decrease in
the AMC optimized proxy error correlates with greater performance improvements post-fine-tuning
(with a Pearson correlation of 0.69). We highlight the task of MP Phonons prediction, which marks a
significant 11.8% drop in test set MAE after the expansion of MoMa Hub.

3.6 MATERIALS INSIGHTS MINING

Motivation We argue that the AMC weights obtained in Eq. (3) could provide interpretability for
MoMa as well as valuable insights into material properties. To explore this, we interpret the weights
as indicators for the relationships between MoMa Hub modules and downstream prediction tasks.
Following Chang et al. (2022), we present a log-normalized visualization of these weights in Fig. 7.

Results We make several interesting observations:

• The weights assigned by AMC effectively captures physically intuitive relationships between
material properties. For example, the tasks of experimental band gap (row 1) and experimental
formation energy (row 2) assign the highest weights to the computational band gap (column 2 and
14) and formation energy modules (column 1, 12 and 15) in MoMa Hub. Also, for the task of
predicting electronic dielectric constants, MoMa’s band gap modules are assigned high weights,
which is also reasonable given that the dielectric constant is inversely proportional to the square of
the band gap (Ravichandran et al., 2016).

• Some less-intuitive relationships have also emerged. For the task of experimental band gap
prediction (row 1), the formation energy module from the Materials Project (column 1) is assigned
the second-highest weight. For prediction of dielectric constant (row 9), modules related to
thermoelectric and thermal properties (column 5 and 6) are non-trivially weighted. However, the
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first-principles relationship between these tasks is indirect. We hypothesize that aside from task
relevance, other factors, such as data distribution and data size, may also influence the weight
assignments for AMC. Further investigation of these results are left for future work.

4 RELATED WORK

Material Property Prediction with Deep Learning Deep learning methods have been widely
applied for predicting material properties (De Breuck et al., 2021). One series of research (Choudhary
& DeCost, 2021; Yan et al., 2022; Das et al., 2023; Lin et al., 2023; Yan et al., 2024; Taniai
et al., 2024) have focused on improving neural network architectures to better model the inductive
biases of crystals for property prediction tasks, while another line of work develops pre-training
strategies on potential energy surface data (Merchant et al., 2023; Batatia et al., 2023; Yang et al.,
2024b; Neumann et al., 2024; Barroso-Luque et al., 2024) to facilitate material property prediction.
Extending beyond the prevailing pre-train and fine-tune paradigm, MoMa devises effective strategies
to centralize material knowledge into modules and adaptively compose the modules to achieve
superior downstream performance.

Modular Deep Learning Modular deep learning (Pfeiffer et al., 2023) represents a promising
paradigm in deep learning, where parameterized modules are composed, selected, and aggregated
during the network training process. Examples of modular networks include mixture-of-experts (Ja-
cobs et al., 1991), adapters (Houlsby et al., 2019) and LoRA (Hu et al., 2021). Recently, we have
seen an increasing number of successful applications of modular deep learning across domains such
as NLP and CV (Puigcerver et al., 2020; Huang et al., 2023; Zhang et al., 2023; Pham et al., 2024),
where its strengths in flexibility and minimizing negative interference have been demonstrated. In the
field of material property prediction, the idea of modular deep learning is still under-explored, and
MoMa marks the first systematic effort to devise modular deep learning framework for materials.

5 CONCLUSION AND OUTLOOK

In this paper, we present MoMa, a modular deep learning framework for material property prediction.
Motivated by the challenges of diversity and disparity, MoMa first trains specialized modules
across a wide spectrum of material tasks, constituting MoMa Hub. We then introduce the Adaptive
Module Composition algorithm, which facilitates tailored adaptation from MoMa Hub to each
downstream task by adaptively composing synergistic modules. Experimental results across 17
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datasets demonstrate the superiority of MoMa, with few-shot and continual learning experiments
further highlighting its data-efficiency and scalability.

Finally, we discuss the prospects of MoMa in driving practical advancements in materials discovery.
As an open-source platform enabling materials knowledge modularization and distribution, MoMa
offers several key advantages: (1) secure, flexible upload of material modules to MoMa Hub without
compromising proprietary data; (2) efficient customization of modules for downstream tasks; (3)
enhanced property prediction accuracies, even in low-data scenarios. We envision MoMa facilitating
a new paradigm of modular material learning and fostering broader community collaboration toward
accelerated materials discovery.
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A ALGORITHM FOR ADAPTIVE MODULE COMPOSITION

The formal description of the Adaptive Module Composition algorithm is included in Algorithm 1.

Algorithm 1 Adaptive Module Composition

1: Input: MoMa Hub H = {g1, g2, . . . , gN}, Downstream Task D.
2: Output: adaptive module gD for D.
3: for each module gj ∈ H do
4: Encode the input materials in the training set of D using gj to obtain X j = {xj

1,x
j
2, . . . ,x

j
m}.

5: for each sample xj
i ∈ X j do

6: Compute the predicted label ŷij for xj
i using kNN following Eq. (1).

7: end for
8: end for
9: Optimize the module weights wj using cvxpy to minimize the proxy error defined in Eq. (2),

subject to:∑N
j=1 wj = 1 and wj ≥ 0. Denote the optimized weights for the j-th module as w∗

j .
10: Compose the final adaptive module gD by weighted averaging the parameters of the MoMa Hub

modules:
gD =

∑N
j=1 w

∗
j gj

11: Return: The composed module gD.

B EXPERIMENTAL DETAILS

In this section, we provide more experimental details of MoMa regarding the datasets, implementation,
baselines and the continual learning setting.

B.1 DATASET DETAILS

We primarily adopt the dataset setup proposed by Chang et al. (2022). Specifically, we select 35
datasets from Matminer (Ward et al., 2018) for our study, categorizing them into 18 high-resource
material tasks, with sample sizes ranging from 10,000 to 132,000 (an average of 35,000 samples),
and 17 low-data tasks, with sample sizes ranging from 522 to 8,043 (an average of 2,111 samples).

The high-resource tasks are utilized for training the MoMa Hub modules, as their larger data volumes
are likely to encompass a wealth of transferrable material knowledge. A detailed introduction of
these MoMa Hub datasets is included in Tab. 2.

The low-data tasks serve as downstream datasets to evaluate the effectiveness of MoMa and its
baselines. This setup mimics real-world materials discovery scenarios, where downstream data are
often scarce. To ensure robust and reliable comparison results, we exclude two downstream datasets
with exceptionally small data sizes (fewer than 20 testing samples) from our experiments, as their
limited data could lead to unreliable conclusions. Detailed introduction is included in Tab. 3.

Following Chang et al. (2022), all datasets are split into training, validation, and test sets with a ratio
of 7:1.5:1.5. For the downstream low-data tasks, the splitting is performed randomly for 5 times to
ensure the stability of evaluation.

B.2 IMPLEMENTATION DETAILS OF MOMA

Network Architecture We now introduce the network architecture of MoMa modules. The
JMP (Shoghi et al., 2023) backbone is directly taken as the full module parametrization. JMP is
pre-trained on ∼ 120 million DFT-generated force-field data across large scale datasets on catalyst
and small molecules. JMP is a 6-layer GNN model with around 160M parameters which is based on
the GemNet-OC architecture (Gasteiger et al., 2022). Note that MoMa is backbone-agnostic. JMP is
selected due to its comprehensive strength across a wide range of molecular and crystal tasks, which
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Table 2: Datasets for training MoMa Hub modules.

Datasets Num Description

MP Ef 132752 The energy change during the formation of a compound from its elements. Data
from Jain et al. (2013).

MP Eg 106113 The PBE band gaps, calculated using the Perdew-Burke-Ernzerhof (PBE) func-
tional, represent the energy difference between the valence and conduction
bands in a material. Data from Jain et al. (2013).

MP GV RH 10987 VRH-average shear modulus, an approximate value obtained by averaging the
shear modulus of polycrystalline materials. Data from Jain et al. (2013).

MP KV RH 10987 VRH-average bulk modulu, calculated by averaging the Voigt (upper bound)
and Reuss (lower bound) bulk moduli. Data from Jain et al. (2013).

n-type σe 37390 n-type σe measures the material’s conductivity performance when electrons are
the primary charge carriers. Data from Ricci et al. (2017).

p-type σe 37390 Similar to n-type σe, with holes as carriers. Data from Ricci et al. (2017).

n-type κe 37390 n-type κe evaluates the efficiency of n-type materials that can conduct both
electricity and heat, which is crucial for understanding its performance in
thermoelectric applications. Data from Ricci et al. (2017).

p-type κe 37390 Similar to n-type κe, with holes as carriers. Data from Ricci et al. (2017).

n-type S 37390 n-type S denotes the average conductivity eigenvalue, which measures thermo-
electric conversion efficiency in the hole-conducting state when electrons act as
the primary charge carriers. Data from Ricci et al. (2017).

p-type S 37390 Similar to n-type S, with holes as carriers. Data from Ricci et al. (2017).

n-type m∗
e 21037 n-type m∗

e denotes average eigenvalue of conductivity effective mass, which
measures the impact of the electron’s effective mass on the electrical conductiv-
ity. Data from Ricci et al. (2017).

p-type m∗
e 20270 Similar to n-type m∗

e , with holes as carriers. Data from Ricci et al. (2017).

Perovskite Ef 18928 Perovskite Ef refers to heat of formation of perovskite, the amount of heat
released or absorbed when the perovskite structure is formed from its constituent
elements. Data from Castelli et al. (2012).

JARVIS Ef 25923 Formation energy from the JARVIS dataset (Choudhary et al., 2020).

JARVIS dielectric constant (Opt) 19027 Dielectric constant measures the material’s ability to polarize in response to an
electric field in two-dimensional systems. Data from Choudhary et al. (2020).

JARVIS Eg 23455 PBE band gaps from the JARVIS dataset (Choudhary et al., 2020).

JARVIS GV RH 10855 VRH-average shear modulus from the JARVIS dataset (Choudhary et al., 2020).

JARVIS KV RH 11028 VRH-average bulk modulus from the JARVIS dataset (Choudhary et al., 2020).

allows us to seamlessly conduct the continual learning experiments. We leave the extrapolation of
MoMa to other architectures as future work.

For the adapter module, we follow the standard implementation of adapter layers (Houlsby et al.,
2019). Specifically, we insert adapter layers between each layer of the JMP backbone. Each layer
consists a downward projection to a bottleneck dimension and an upward projection back to the
original dimension.

Hyper-parameters For the training of JMP backbone, we mainly follow the hyper-parameter
configurations in Shoghi et al. (2023), with slight modifications to the learning rate and batch size.
During the module training stage of MoMa, we use a batch size of 64 and a learning rate of 5e-4 for
80 epochs. During downstream fine-tuning, we adopt a batch size of 32 and a learning rate of 8e-5.
We set the training epoch as 60, with an early stopping patience of 10 epochs to prevent over-fitting.
We adopt mean pooling of embedding for all properties since it performs better than sum pooling in
certain tasks (e.g. band gap prediction), which is consistent to findings in Shoghi et al. (2023).

For the adapter modules, we employ BERT-style initialization (Devlin, 2018), with the bottleneck
dimension set to the half of the input embedding dimension.

For the Adaptive Module Composition (AMC) algorithm, we set the number of nearest neighbors (K
in Eq. (1)) to 5. For the optimization problem formulated in Eq. (3), we utilize the CPLEX optimizer
from the cvxpy package (Diamond et al., 2014). AMC is applied separately for each random split of
the downstream tasks to avoid data leakage.
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Table 3: Downstream evaluation datasets.

Datasets Num Description

Experimental Band Gap (eV) 2481 The band gap of a material as measured through physical experiments. Data
from Ward et al. (2018).

Formation Enthalpy (eV/atom) 1709 The energy change for forming a compound from its elements, crucial for
defining Gibbs energy of formation. Data from Wang et al. (2021); Kim et al.
(2017).

2D Dielectric Constant 522 The dielectric constant of 2D materials from Choudhary et al. (2017).

2D Formation Energy (eV/atom) 633 The energy change associated with the formation of 2D materials from their
constituent elements. Data from Choudhary et al. (2017).

Exfoliation Energy (meV/atom) 636 The energy required to separate a single or few layers from a bulk materials.
Data from Choudhary et al. (2017).

2D Band Gap (eV) 522 The band gap of 2D materials from Choudhary et al. (2017).

3D Poly Electronic 8043 Poly electronic of 3D materials from Choudhary et al. (2018).

3D Band Gap (eV) 7348 The band gap of 3D materials from Choudhary et al. (2018).

Refractive Index 4764 The quantitative change of the speed of light as it passes through different media.
Data from Dunn et al. (2020); Petousis et al. (2017).

Elastic Anisotropy 1181 The directional dependence of a material’s elastic properties. Data from De Jong
et al. (2015a).

Electronic Dielectric Constant 1296 Electronic dielectric constant refers to the dielectric response caused by elec-
tronic polarization under an applied electric field. Data from Petretto et al.
(2018).

Dielectric Constant 1296 Dielectric constant of materials from Petretto et al. (2018).

Phonons Mode Peak 1265 Phonon mode peak refers to the peak in the phonon spectrum caused by specific
phonon modes. Data from Petretto et al. (2018).

Poisson Ratio 1181 Poisson Ratio quantifies the ratio of transverse strain to axial strain in a material
under uniaxial stress, reflecting its elastic deformation behavior. Data from
De Jong et al. (2015a).

Poly Electronic 1056 The Average eigenvalue of the dielectric tensor’s electronic component, where
the dielectric tensor links a material’s internal and external fields. Data from
Petousis et al. (2017).

Poly Total 1056 The Average dielectric tensor eigenvalue. Data from Petousis et al. (2017).

Piezoelectric Modulus 941 Piezoelectric modulus measures a material’s ability to convert mechanical stress
into electric charge or vice versa. Data from De Jong et al. (2015b).

Computational Cost Experiments are conducted on NVIDIA A100 80 GB GPUs. During the
module training stage, training time ranges from 30 to 300 GPU hours, depending on the dataset size.
While this training process is computationally expensive, it is a one-time investment, as the trained
models are stored in MoMa Hub as reusable material knowledge modules. Downstream fine-tuning
requires significantly less compute, ranging from 2 to 8 GPU hours based on dataset scale. The
full module and adapter module require similar training time; however, the adapter module greatly
reduces memory consumption during training.

B.3 BASELINE DISCUSSION

The CGCNN baseline refers to fine-tuning the CGCNN model (Xie & Grossman, 2018) separately on
17 downstream tasks. Conversely, MoE-(18) involves training individual CGCNN models for each
datasets in MoMa Hub and subsequently integrating these models using mixture-of-experts (Jacobs
et al., 1991; Shazeer et al., 2016). For the baseline results of CGCNN and MoE-(18), we adopt the
open-source codebase provided by Chang et al. (2022) and follows the exactly same parameters as
reported in their papers for the result duplication.

For JMP-FT, we use the JMP (large) checkpoint from the codebase open-sourced by Shoghi et al.
(2023) and fine-tune it directly on the downstream tasks with a batch size of 64. JMP-MT adopts a
multi-task pre-training strategy, training on all 18 MoMa Hub source tasks without addressing the
conflicts between disparate material tasks. Starting from the same pre-trained checkpoint as JMP-FT,
JMP-MT employs proportional task sampling and trains for 5 epochs across all tasks with a batch
size of 16. The convergence of multi-task pre-training is indicated by a lack of further decrease in
validation error on most tasks after 5 epochs. For downstream fine-tuning, both JMP-FT and JMP-MT
adopt the same training scheme as the fine-tuning stage in MoMa.
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Table 4: Test set MAE and average test loss of JMP-FT and MoMa under the full-data, 100-data and
10-data setting. Results are averaged over five random data splits on one random seed. Results are
preserved to the third significant digit.

Datasets JMP-FT MoMa JMP-FT (100) MoMa (100) JMP-FT (10) MoMa (10)
Experimental Band Gap 0.380 0.305 0.660 0.469 1.12 1.245
Formation Enthalpy 0.156 0.0821 0.273 0.101 0.514 0.143
2D Dielectric Constant 2.45 1.90 3.19 2.35 7.74 3.31
2D Formation Energy 0.135 0.0470 0.366 0.113 0.842 0.214
2D Exfoliation Energy 38.9 36.1 54.4 56.1 118 87.3
2D Band Gap 0.611 0.366 0.890 0.517 1.23 1.05
3D Poly Electronic 23.7 23.0 33.6 24.8 54.0 48.9
3D Band Gap 0.249 0.201 1.71 0.686 2.10 1.47
Dielectric Constant 0.0552 0.0535 0.134 0.102 0.289 0.231
Elastic Anisotropy 2.11 2.85 4.85 3.79 4.02 5.26
Electronic Dielectric Constant 0.108 0.0903 0.260 0.178 0.568 0.500
Total Dielectric Constant 0.172 0.155 0.361 0.287 0.543 0.527
Phonons Mode Peak 0.0710 0.0521 0.221 0.199 0.493 0.485
Poisson Ratio 0.0221 0.0203 0.0345 0.0317 0.0466 0.057
Poly Electronic 2.10 2.13 3.24 2.88 6.08 5.10
Total Poly 4.83 4.76 6.54 6.32 11.2 10.1
Piezoelectric Modulus 0.169 0.175 0.248 0.258 0.303 0.290

Average Test Loss 0.222 0.187 0.408 0.299 0.700 0.550

We highlight the two key differences that distinguishes MoMa from MoE-(18): (1) MoE-(18) loads all
pre-trained models indiscriminately for each downstream task, whereas MoMa adaptively composes
a subset of relevant modules to mitigate knowledge conflicts and encourage positive transfer. (2)
MoE-(18) is designed to address the data scarcity issue and is limited to the mixture-of-experts
approach, while MoMa introduces modularity to target the inherent challenges in materials science
and is not restricted to any specific modular method. Hence, MoMa marks the first systematic effort
to devise modular deep learning framework for materials.

B.4 DETAILS ON CONTINUAL LEARNING EXPERIMENTS

The QM9 dataset (Ramakrishnan et al., 2014) comprises 12 quantum chemical properties (including
geometric, electronic, energetic and thermodynamic properties) for 134,000 stable small organic
molecules composed of CHONF atoms, drawn from the GDB-17 database (Ruddigkeit et al., 2012).
It is widely served as a comprehensive benchmarking dataset for prediction methods of the structure-
property relationships in small organic molecules.

In the continual learning experiments, we expand the MoMa hub by including modules trained on
the QM9 dataset. For module training, we adopt the same training scheme as the original MoMa
modules, with the exception of using sum pooling instead of mean pooling, as it has been empirically
shown to perform better (Shoghi et al., 2023).

C MORE EXPERIMENTAL RESULTS

We report the complete few-shot learning results in Tab. 4.
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