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ABSTRACT

Existing outdoor point cloud registration methods are commonly constrained by
the pairwise input paradigm, which neglects sufficient temporal information in-
trinsically within consecutive LiDAR sequences. In this paper, we propose a novel
Multi-frame Outdoor point cloud Registration network with tEmporal memory
buffers (MORE). The key observation is that long-term temporal LiDAR se-
quences can provide rich global contextual information to complete sparse mea-
surements, filter outliers, and address low-overlap problems, which further boosts
registration performance. Specifically, two memory buffers are designed, includ-
ing both the implicit memory feature buffer and explicit memory pose buffer, to
store and dynamically update temporal pose-related features. We further leverage
a Mamba-based temporal encoding layer to effectively integrate current motion
features with history motion features. Moreover, a novel dynamic history weight-
ing module is developed to adaptively rescale current and history pose-related
features. Extensive experiments on three outdoor datasets demonstrate the superi-
ority of MORE, surpassing all previous state-of-the-art methods by 32% RTE and
17% RRE reduction on KITTI, 37% RTE and 4% RRE reduction on nuScenes,
and 29% RTE and 9% RRE reduction on Apollo-Southbay. Our method also
generalizes well to the multiview indoor point cloud registration task with rather
competitive performance on 3DMatch, 3DLoMatch, and ScanNet datasets. Codes
will be released upon publication.

1 INTRODUCTION

Point cloud registration (Besl & McKay, 1992) is a fundamental task in the computer vision field,
which aims to find the optimal transformation matrix between point cloud frames. It is widely
applied in various downstream tasks, such as autonomous driving (Lu et al.,[2021; Xue et al., 2024)
and SLAM systems (Liu et al.l 2023a; Deng et al., 2024).

Even though object-level and indoor point cloud registration have been widely explored (Huang
et al., 2021} |Qin et al.|, 2022} [Yew & Leel 2022} |Ao et al., 2023)), few works have investigated the
large-scale outdoor registration task (Lu et al.,|2021;|Liu et al.|[2023b). Challenges are mainly three-
fold: (1) Distinct from object-level point cloud, outdoor points are typically more sparse, irregular,
noisy, and have a wider spatial distribution range (Lu et al.,2023b). (2) Outliers, e.g., occlusions and
highly dynamic objects, introduce inconsistent motion patterns, undermining the final ego-motion
regression (Liu et al.,[2023b)). (3) Low-overlap point pairs pose another significant challenge (Huang
et al.,[2021)). Due to the high speed of ego vehicles in autonomous driving, consecutive LiDAR scans
often have large translational displacements, making it difficult to search for neighboring points
across frames (Xue et al., 2024). HRegNet (Lu et al., |2021) addresses mismatches and ensures
reliable correspondences caused by outliers with bilateral and neighborhood consensus in point-
matching layers. RegFormer (Liu et al.l2023b) uses a projection-aware Transformer with enlarged
receptive fields to handle the low-overlap issue. However, these prior outdoor registration methods
only use pairwise inputs, ignoring the rich temporal information in consecutive LiDAR sequences.

Inspired by recent advances in using temporal information for tasks like semantic segmentation (L1
et al., 2023} [Lao et al.| 2023} [Chen et al.| [2023)), object detection (Wang et al., |2023b; Hou et al.,
2024), and multi-object tracking (Gao & Wang| [2023)), we aim to improve registration accuracy by
extending pairwise frames to multi-frame inputs. The key motivations are: (1) Long-term temporal
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information helps complete scenes by supplementing sparse and noisy observations across consec-
utive frames. (2) Multi-frame inputs enhance temporal consistency, improving the recognition and
rejection of outliers for effective point correlation. (3) For the low-overlap problem, motion priors
from past timestamps can provide strong pose initialization and reduce the distance between initially
distant point pairs. These advantages will be proved in the experiment section.

In this paper, we propose a novel multi-frame

point cloud registration network, MORE, design- 1 t 0 1 t1 t TL T

putting multi-frame poses. Two memory buffers
are designed to store implicit temporal features
(Memory Feature Buffer) and explicit tempo- . . . L.
ral transformations (Memory Pose Buffer) with FIgPre 1:‘C0mparlson with previous pairwise
a fixed length. Specifically, when the current Tegistration methods. Previous pairwise out-
pair of frames is delivered into the network, the door registration methods often lack sufficient
Memory Feature Buffer is first updated by con- temporal exploration in LiDAR sequences. In
catenating the current motion features and pre- CONtrast, we propose a multi-frame registration
stored multi-frame history motion features. Then, network that leverages long-term temporal in-
a Mamba-based (Gu & Daol, 2023) temporal en- formation through memory buffers.

coding layer is developed to establish long-term temporal dependencies across the updated memory
features with high efficiency. Similarly, temporally stored poses from previous timestamps are pro-
cessed and correlated by another Mamba module in the Memory Pose Buffer, generating transfor-
mation features. To adaptively merge history and current pose-related features, a dynamic history
weighting module inspired by (Jia et al., [2016; |Aydemir et al., 2023)) is designed to rescale history
and current features and adaptively weight current with historical multi-frame features. Finally, the
current pose is regressed and refined, which is used to update memory buffers for the next timestamp.
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Overall, the key contributions of this paper are:

* We propose a novel outdoor point cloud registration paradigm enhanced by multi-frame
temporal motion information, which improves the robustness to challenges like outliers
and low-overlap inputs.

* Explicit and implicit memory buffers store temporal information from successive frames.
Memory Feature Buffer holds implicit pose-related features, while Memory Pose Buffer
maintains explicit history poses for enhanced pose initialization. To integrate history and
current features, a dynamic history weighting module is designed to adaptively merge fea-
tures on different scales.

* Our method achieves state-of-the-art performance on outdoor registration datasets, includ-
ing KITTTI (Geiger et al., 2012), nuScenes (Caesar et al.,|2020), and Apollo-Southbay (Lu
et al.,[2019). Furthermore, our method generalizes well to the indoor multiview registration
task on 3DMatch, 3DLoMatch (Zeng et al.,[2017), and ScanNet Dai et al.| (2017)).

2 RELATED WORK

Outdoor Point Cloud Registration. Point cloud registration (Zeng et al., [2017; Deng et al., 2018}
Choy et al.} [2019; |Aoki et al., [2019; Dong et al., 2020; |Qin et al., 2022; Mu et al., |2024; Jia et al.}
2024;|Chen et al.}|[2024b; | Yuan et al.,2024; |Jiang et al.,2024; |Fu et al.,[2025) is a crucial task that tar-
gets at finding the optimal transformation matrix between point cloud frames. Recently, large-scale
outdoor registration has raised remarkable research attention, but the original sparsity, irregular-
ity, and high-dynamics characteristics of outdoor LiDAR points pose significant challenges. As a
pioneering work, HRegNet (Lu et al.,[2021)) proposes bilateral consensus and neighborhood consen-
sus to reduce mismatches. RegFormer (Liu et al., [2023b)) designs a projection-aware Transformer,
incorporating the cross-attention and all-to-all point-gathering strategy for reliable cross-frame cor-
relation. To address density disparities, GCLNet (Liu et al., 2023c) introduces a group-wise con-
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trastive learning to extract density-invariant geometric features for registration. SDMNet (Lu et al.,
2023a)) develops a sparse-to-dense registration network with a sparse matching stage and a local-
dense matching stage. Darls (Wang et al.l 2025a)) designs a density adaptive registration method
for large-scale point clouds. However, these previous works typically take pairwise-only point pairs
and neglect the inherent temporal consistency within LiDAR sequences. In this paper, we propose a
novel outdoor registration model enhanced by multi-frame temporal consistency.

Temporal Modeling with Memory. Sequential 4D point cloud streams have great potential for
boosting various dense prediction tasks (Wang & Tian, [2024)). Different from a static point cloud
with limited observations, the additional temporal dimension can supplement the incomplete mea-
surements (Li et al.| | 2023)), display consistent motion priors (Gao & Wang},2023)), and further boost
the performance of original single-frame tasks (Wang & Tianl |2024)). Recently, increasing research
has focused on storing temporal information with a memory mechanism. STMM (Xiao & Lee}[2018))
develops a recurrent unit for memory storage for object detection, modeling the long-term temporal
appearance and motion dynamics. MeMOT (Cai et al., 2022) designs a memory-based multi-object
tracking framework that utilizes a long-term spatio-temporal memory storing the identity features
of tracked objects. MemorySeg (Li et al., 2023)) proposes a 3D latent memory representation to im-
prove the current predictions with temporal information from past frames. Inspired by these works,
we design both explicit and implicit memory buffers for temporal information storage.

3 METHOD

3.1 OVERALL ARCHITECTURE

Given a stream of LiDAR point cloud sequences { PCy, PC1, ..., PCy_1} € RVXN*3 we propose
a multi-frame registration framework as described in Fig. 2] where buffers storing multiple history
memories would enhance the performance of each pairwise registration. Specifically, to correlate
current point pairs PC and PC' 1, hierarchical point features are first extracted, and then matched
in the coarsest layer following HRegNet (Lu et al.,[2023b)). Afterwards, history motion information
is read-out from memory buffers on both feature level and pose level in Sec. To dynamically
merge history and current features, we also design a dynamic history weighting module in Sec. [3.3]
Finally, the estimated poses are iteratively refined, generating the final rotation matrix R e R3<3
and translation vector t € R3*!. Memory buffers are also updated with current features and current
pose in Sec. [3.4] The network is supervised by the loss function as in Sec. [3.5]

3.2 MEMORY INITIALIZATION AND READ-OUT

Unlike pairwise inputs in previous registration works, point cloud videos are the inputs of our net-
work for long-term temporal modeling. To take advantage of temporal motion priors sufficiently,
we design two memory buffers storing both cross-frame implicit feature-level memory and explicit
pose-level memory. Our memory buffers ME € RT*Dt of features and ME € RT*Pr of poses are
initialized by empty sets, where the temporal length of the memory buffers is maintained as 7.

Memory Read-out. With motion features from the current timestamp F} and poses Ry, t; from
the coarse matching layer in HRegNet (Lu et al., |2023b), we first read-out the temporally-stored
features using a sliding window mechanism. When current features are delivered into the Memory
Feature Buffer M ,, the temporally-farthest feature in the buffer Fy_r_y is discarded. Other T'— 1

temporally-nearest features {Ft_T, . Ft_l} are concatenated with the current motion feature F}
as:

Mtlil : {E—T—la R—T+17 ceey -Fl-l} = {-Fl-Tv ceey -Ft-lv -Ft}v (l)
where {} indicates the feature concatenation along the temporal dimension. The concatenated fea-
tures formulate the input tokens of the following Mamba-based Temporal Encoding:

ME | =LNME ), 2

M, = §(DW(Linear(MF ,))), 3)
MF = §(Linear(MF ))), “4)

F = Linear(SSM(MS)) o MF +MF |, 5
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(a) Sequential Point Cloud Registration (b) Memory Read-Out and Update for Current Registration

Figure 2: The overview architecture of MORE. We leverage the long-term temporal features
from history frames to enhance the current pairwise registration performance, as in (a). During
the current registration, memory features and memory poses are first read-out and interacted with
current motion features through the Mamba-based Temporal Encoding module in (b). Then, the
current refined poses will in turn update contents in the memory buffers.

where § denotes the SiLU activation (Hendrycks & Gimpel, [2016)). DW is the depth-wise convolu-
tion (Chollet, |2017). LN indicates the Layer Normalization. SSM indicates the standard selective

state space model (Gu & Dao, 2023)). The output feature F} is the temporally encoded feature.

For the Memory Pose Buffer, rotation matrices MtR_ 1= {Q[_T_l , Qt_T, e Qt_l} and translation ma-
trices M} | = {ft_T_l,fl_T, e fu} from the 7T-length nearest memory pose buffer Mtpf1 are re-
spectively embedded by two separate MLP layers first for lifting their dimensions. To facilitate
regression, the rotation matrix here is represented by quaternion vectors Qt € R**L. Finally, the
embedded rotation features and translation features are fed into two Mamba blocks for the temporal
modeling, respectively:

FtQ = Mamba(MLP({Qt—T-l ) Qt—T7 eeey Qt—l }))7 (6)
F} = Mamba(MLP({t. 1.1, tor, oy i1 1)), 7

where Qt and £, respectively denote the ¢-th temporally-nearest quaternion and translation vectors es-
timated from history frames in the Memory Pose Buffer. Here, Mamba indicates the same operation
as in Memory Feature Buffer, for which we avoid detailed descriptions for simplicity.

3.3 DyNAMIC HISTORY WEIGHTING

After retrieving the history-interacted features, the key problem is how to merge the history-
interacted features with the current motion features for enhanced registration performance. Because
there may be scale gaps, the history and current poses should be re-scaled for effective information
merging. Inspired by the great success of the dynamic weighting mechanism in (Jia et al., 20165 Ay-
demir et al.}|2023)), a dynamic history weighting layer is introduced to adaptively merge the history
pose-related features, history poses, current pose-related features, and current poses.

To be specific, the inputs of our dynamic history weighting layer are composed of the history pose

At,l, t,_1 from the last previous timestamp, history pose-encoded features FQ, F!, current pose
p p Yy P t L't p

R, t;, and current pose-encoded features F;. The current rotation matrix R; is also converted to
the quaternion vector ); for consistency. Here, we only give descriptions of the quaternion vector
weighting, and the same goes for the translation matrix weighting. History and current pose-related
features are first concatenated as:

F=Q, 10 Ff0Q ok, (8)

where @ indicates concatenation along the channel dimension. Then, the dynamic weighting head
is designed as:

Wy =Wy, FP, Wy = Wy, FZ, ©)
F = ReLU(Norm(W1 FY)), Qf = WoFy, (10)
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where Wy, and Wy, are trainable parameters, and the output dimension is set to the same as the
quaternion vector. Similar processes are conducted to generate the weighted translation vector .
By providing the history pose-related features to the dynamic prediction head as inputs, the dynamic
weights enable the network to adjust to different scales dynamically and re-weight current pose
estimations with history motion priors.

3.4 MEMORY UPDATE AND POSE REFINEMENT

Our fixed-length memory buffers follow the sliding window mechanism, which is progressively
updated as consecutive point frames are delivered one by one into the network. For the Memory
Feature Buffer update, we directly concatenate the encoded current features Fy with T-1 previous
features: . o

M = {EFra, o B, B (1

For the Memory Pose Buffer update, first, the pose refinement in (Lu et al.| [2023b)) is adopted to

refine the poses Q¢ and t{ to get the final pose estimation Ry and {;. The Memory Pose Buffer is
then updated by concatenating previous 7-1 poses and the current pose estimations:

Mg{: {RK—T+17"'7Rt—l7ét}7 (12)

Mtt = {ft—T+17~'~7£t—1a£t}° (13)

3.5 Loss FUNCTION

Our network is supervised by reducing the discrepancy for each pairwise registration samples (Lu
et al.,[2023b; [Liu et al., 2023b). The rotation and translation loss functions are:

Liot = [|RTR — 1|2, Lirans = || — ]2, (14)

where R, { indicate the estimated rotation and translation matrices. R, t are the ground truth rotation
and translation matrices. I denotes the identity matrix. The overall loss function is: £ = Lyans+ Lrot-

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct the experiments on three commonly used outdoor LiDAR datasets: KITTI
odometry (Geiger et al. [2012)), nuScenes (Caesar et al., [2020), and Apollo-Southbay (Lu et al.,
2019). KITTI consists of 11 sequences with ground truth pose annotations. Following the settings
in (Lu et al.} 2021} Liu et al., 2023b)), we use sequences 00-05 for training, 06-07 for validation, and
08-10 for evaluation. To guarantee a fair comparison, we follow (Lu et al., 2021; | Xue et al., [2024)
to refine the noisy ground truth labels using the ICP algorithm (Besl & McKayl |1992) and construct
the input point pairs with an interval of 10 frames, creating more challenging registration inputs.
nuScenes is composed of 1,000 scenes: 850 scenes are leveraged for training and validation, and
the other 150 scenes are for evaluation. Apollo-Southbay dataset provides official training/ testing
splits. We follow these splits and use only valid point clouds for registration.

Evaluation Metrics. Following the protocols in previous works (Lu et al.l [2023bga; [Liu et al.,
2023b), we use three main metrics for the evaluation of our method: Relative Translation Error
(RTE), Relative Rotation Error (RRE), and Registration Recall. A successful registration is decided
only when the RTE and RRE are both within certain thresholds 6, 6. To avoid the unreliable error
metric report by minor failure samples, we follow previous works (Lu et al.| | 2021; Xue et al.,[2024;
Liu et al., [2023b) to calculate the average RTE and RRE on successful registration samples.

Implementation Details. We first voxelize the input points with a voxel size of 0.3 m. Following
(Lu et all 2021} [2023a}; [Xue et al.| 2024), down-sampling is adopted for the input points, where
16,384 points are randomly sampled for KITTI and Apollo-Southbay, and 8,192 points for nuScenes.
Experiments are conducted on a single NVIDIA RTX3090 GPU. The Adam optimizer is adopted
with 81 = 0.9, 83 = 0.999. The initial learning rate is 0.001 and exponentially decays every 200,000
steps until reaching 0.00001. The batch size is set to 8. We choose HRegNet* (Lu et al.| |2023b)
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Table 1: Outdoor point cloud registration per- Table 2: Outdoor point cloud registration per-

formance on the KITTI dataset formance on the nuScenes dataset
2012). “*’ indicates the baseline on which we [2020). ‘*’ indicates the baseline on which we

introduce multi-frame temporal information. introduce multi-frame temporal information.
Methods | KITTI Odometry Methods | nuScenes
‘ RTE (m) RRE (deg)  Recall Time (ms) ‘ RTE (m) RRE (deg)  Recall Time (ms)
ICP (P2P) 0.045 £0.054 0.112£0.093 14.25% 472.2 0.252 £0.510 0.253 +£0.502 18.78%  82.0

Besl & McKa
ICP (P2P1) (Besl & McKayl 0.044 £0.041 0.145 £ 0.153 33.56% 461.7
X B 0.126 £ 0.067 0.538 +0.396 91.94% 459.4

0.929 £ 0.592 0.963 4 0.806 39.42% 506.1

0.153 +£0.296 0.212+0.306 36.8%  44.5
0.206 £0.186 0.738 +£0.704 60.91% 187.4
0.708 £ 0.622 1.007 +0.924 32.2% 284.6

0.659 £0.483 1.057 +0.939 70.92%  33.4 DCP (Wang & Solomon 1.087 £ 0.491 2.065 £ 1.141 58.58%  45.5
0.657 £0.422 1.493 +0.847 90.57%  85.5 IDA] 1etal 0.467 £0.410 0.793 +0.783 87.98%  32.6
0.322 £0.319 0.374+0.302 98.71% 1496.6 FMR (Huang et al. {2020 0.603 £0.391 1.610 +0.974 92.06%  61.1
0.056 +£0.075 0.178 +£0.196 99.77% 106.2 DGR (Choy et al. 0.211 +£0.183 0.476 4 0.430 98.41%  523.0
0.082£0.112 0.228 £0.209 99.80%  98.3 HRegNet (Lu et al.. 0.122 £0.112 0.273 £0.197 100.0% 87.3
0.070 £0.130 0.230 + 0.220 99.22% 100.4 RegFormer (Liu et al. 3b 0.198 0.223 99.90%  85.6
0.047 £0.037 0.147 +0.120 100.0% 136.0 OKR-Net (Wang et al. C 0.140 £0.130 0.280 +0.210 99.96%  60.0
0.050 £ 0.057 0.159 + 0.152 99.85%  120.2 HRegNet* (Lu et al. 3 0.110 £ 0.096 0.285 4 0.209 100.0% 120.1
0.063 0.230 99.80% - HDMNet (Xue et al. 0.114 £0.102 0.274 +0.206 100.0% 102.9
5 0.060 £ 0.070 0.200 +0.170 99.92%  92.5 LSReg-Net {Tao et al. 0.150 £ 0.130 0.320 4+ 0.220 99.98%  81.2
Ours ‘0.032 +0.036 0.122 + 0.096 100.0% 133.0 Ours ‘0.069 +0.0550.261 £ 0.197100.0% 119.3
—e— ICP  —=— [CP(P2P) + -- HRegNet* = —— MORE

2 3 4 E 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 1 2 3 4 Dd.DD 0.25 0.50 0.75 1.00 125 150 175 2.00
RRE threshold (deg) RTE threshold (m) RRE threshold (deg) RTE threshold (m)
(a) KITTI Dataset (b) NuScenes Dataset

Figure 3: The registration recall under different RRE or RTE thresholds on the KITTI and
nuScenes datasets.

here as the baseline, where ‘*’ indicates the baseline method on which we introduce multi-frame
temporal information. Registration is successful when 7 = 5m, 0 =2 degree (deg) by default. The
temporal length in buffers 7" is set to 20 for KITTI and Apollo-Southbay, and 10 for nuScenes.

4.2 QUANTITATIVE RESULTS

To demonstrate the effectiveness of our proposed method, we compare with both optimization-based

methods (BesI & McKayl, [1992; [Zhou et all, [Fischler & Bolles, [1981)) and learning-based
methods (Wang & Solomon), [2019; ILi et al., IHuang et al., [2020; |Choy et al, 2020} [Cu et al
[2021};[2023b} Xue et al., 2024; Wang et al., 2023c) on three datasets.

Comparison Results on KITTI. As

in Table [T} our model not only out-

performs the previous optimization Table 3: Outdoor point cloud registration performance on
methods, e.g., ICP (Besl & McKay, the Apollo-Southbay dataset (Cu et alll 2019). “** indicates
1992)), RANSAC (Fischler & Bolles, the baseline method on which we introduce multi-frame
1981), by a large margin but also temporal information.

the learning-based methods. Com- | Apollo-Southbay

. Methods
pared to the previous SOTA method | RTEm) RRE(deg)  Recall Time (ms)

HRegNet* (Lu et al) [2023b), our
model achieves a 31.9% lower aver-
age RTE and a 17.0% lower average
RRE enhanced by multi-frame tem-
poral information. Also, compared
to the baseline (Cu et al, 2023b),
our method requires a slightly shorter
runtime for one inference. The ex-
periment results demonstrate both the
accuracy and efficiency of our proposed method.

0.100 £ 0.039  0.063 £ 0.305 39.93%  482.1
0.039 £0.179  0.046 £ 0.257 46.45%  470.2
0.125 +£0.114 0.361 £0.368 83.72%  552.1
0.470 £ 0.498 0.664 + 0.762 50.50%  496.0

1.174 £ 0.499 2.155 £ 1.254 28.49% 41
0.456 + 0.416  0.361 £ 0.429 74.03% 32.0
0.653 4+ 0.488  0.727 + 0.658 83.78% 834
0.132 £ 0.151  0.127 £ 0.146  99.64%  2507.0
0.034 £ 0.037 0.079 £ 0.079 99.88%  129.5

Ours ‘ 0.024 £ 0.031 0.072 £ 0.074 100.0% 127.6

Comparison Results on nuScenes. As in Table [2] our method achieves a 100% registration recall
and outperforms previous optimization-based and learning-based methods with smaller registration
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Figure 4: The visualization of point cloud registration on KITTI. Yellow and blue points indicate
input point pair frames, with green lines showing accurate correspondences (inliers) and red lines
showing inaccurate ones (outliers). This figure is best viewed in zoomed-in color mode. Compared
to HRegNet* (Lu et al., 2023b)), our method MORE estimates more accurate correspondences.

errors, pushing the limit of performance further. Compared to the recent SOTA method HRegNet*
(Lu et al., |2023b), our model results in only half of its translation errors (0.069 m) and also a much
lower rotation error (0.261 deg).

Comparison on Apollo-Southbay.
As shown in Table [B] our method
achieves 100% registration recall and
significantly outperforms all previous
methods, especially in the RTE met-
ric, establishing a new SOTA in per-
formance.
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Results Under Stricter Thresholds.
Since the threshold setting in (Lu
et al., 2023b) is rather loose, reg-
istration recalls are relatively satu-
rated in these three datasets (achiev-
ing 100%). In this case, the per-
formance comparison with previous
methods is unobvious. Therefore, we
formulate a series of stricter thresh-
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Figure 5: Dynamic history weighting visualization. We
observe that similar history trajectories (upper figures)
commonly share similar weights (lower figures), such as
(a)&(b), (c)&(d). The W5 matrix is projected to a normal-
ized 3D vector via PCA.

olds as in Fig. [3] for KITTI and
nuScenes datasets, where our method
consistently outperforms previous optimization-based and learning-based methods.

4.3 QUALITATIVE RESULTS

Registration Samples. As shown in Fig. 4 compared to HRegNet* (Lu et al.,2023b), introducing
temporal information with memory buffers can significantly improve the ratio of successfully corre-
lated keypoints. This demonstrates the effectiveness of our designed temporal information encoding
for filtering outliers. More samples are visualized in the Appendix.E.

Weights in Dynamic History Weighting. We display the weights and corresponding 2D trajectories
in Fig. [I6] Similar weights are observed for similar temporal trajectories, demonstrating that our
Dynamic History Weighting module can effectively learn weights from historical trajectories.

4.4 GENERALIZE TO MULTIVIEW INDOOR REGISTRATION

To demonstrate the generalization ability of our method, we also evaluate our method MORE on
indoor-level registration datasets: 3DMatch, 3DLoMatch (Zeng et all [2017), and ScanNet (Dai
et al], 2017) in Table [] for multiview registration. Our method outperforms recent state-of-the-art
methods (Arrigoni et al.} 2016; (Chatterjee & Govindu, 2017;|Yew & Lee, 2021} Lee & Civera, 2022;
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Table 4: Generalization to multiview indoor registration on 3D(Lo)Match and ScanNet. We follow

SGHR (Wang et al.} [2023a)) with pruned pose graph, using YOHO (Wang et al.} [2022) for pairwise
registration. ‘Rot.” and ‘Trans.” indicate rotation and translation errors.

Method 3DMatch 3DLoMatch  ScanNet Rot.  ScanNet Trans.
Recall(%)1 Recall(%)1T Mean/Med (°)] Mean/Med (m)J
EIGSE3 (Arrigoni et al., 2016) 40.1 26.5 40.6/37.1 0.88/0.84
LI-IRLS (Chatterjee & Govindu, 68.6 49.0 41.8/34.0 1.05/1.01
RotAvg (Chatterjee & Govindul 772 63.0 38.5/31.6 0.96/0.83
LITS ( & 112021) 80.8 65.2 24.9/19.9 0.65/0.56
HARA (Lee & 022) 83.8 79.1 34.7/31.3 0.86/0.17
SGHR (Wang et al.}[2023a) 96.2 81.6 21.7/19.0 0.56/0.49
SMVR (Fang et al.|2024) 96.2 82.0 19.8/17.5 0.55/0.45
Ours 97.1 82.8 19.2/16.3 0.52/0.44

Input N-1

Figure 6: Multiview indoor registration on 3DMatch (Zeng et al., 2017). We adapt our model
to indoor scenes with better performance than the baseline SGHR (Wang et al.},[2023a). SGHR has
inaccurate pose estimation for areas with the red circle, while ours is more accurate.

Fang et al.,[2024), which are specially designed for the multiview indoor registration task. As in Fig.

the network inputs are a series of partial scans with overlap. Our method registers input scans
better compared to SGHR (Wang et al, [2023a)), demonstrating our method’s strong generalization
ability for diverse indoor-level scenes.

4.5 ABLATION STUDIES

In this section, we conduct comprehensive ablation studies to demonstrate the effectiveness of each
proposed novelty.

The Significance of Temporal Memory Buffers. Table [5]shows ablation studies for two memory
buffers. Without the Memory Pose Buffer (MPB), the average RTE increases by 31.3% and the
average RRE by 27.9%. Removing the Memory Feature Buffer (MFB) results in a 9.4% higher
average RTE and a 3.3% higher average RRE.

Different Temporal Lengths. Table [6] shows the comparison of different settings on temporal
lengths for memory buffers. Accuracy increases largely from 7'=5 to 20 but is saturated when 7">20.
This is because 20 frames have enough historical observations for memory read-out. Points farther
than 20 frames share less geometric and motion similarity, which may even decrease accuracy.

Dynamic History Weighting (DHW). As in Table[T4] removing DHW results in an 18.8% higher
RTE and an 11.5% higher RRE, indicating that the Dynamic History Weighting can effectively unify
the history and current pose-related features. We also compare with another pose estimator in (Liu|
2024c), which has much higher RTE and RRE. More ablation studies about various temporal
interaction methods, rotation and translation thresholds, and more visualizations are provided in the
supplementary materials.

5 DISCUSSIONS

The temporal information introduced by our designed memory buffers can address challenging cases
in which previous pairwise registration works struggle to effectively establish accurate point corre-
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Table 5: Ablation studies of the two memory Table 6: Ablation studies of different temporal

buffers on KITTIL. lengths on KITTI.
MFB MPB‘ RTE (m) RRE (deg)  Recall Time (ms)  Window lengths\ RTE (m) RRE (deg) RecallTime (ms)
0.047 £ 0.046 0.164 +£0.135 100% 126 T=5 0.037 £0.041 0.136 £0.116 100% 128
v 0.042 +0.042 0.156 £0.124 100% 130 T=10 0.033 £0.036 0.127 £0.101 100% 129
v 0.0354+0.039 0.126 +0.106 100% 132 T=20 0.032 +£0.0360.122 + 0.096100% 133
v v ]0.032+0.036 0.122 + 0.096 100% 133 T=30 0.032 £+ 0.038 0.129 £+ 0.105 100% 140

Table 8: Evaluation on low-overlap input pairs
with 20-frame and 30-frame intervals on KITTI.
Method | Intervals | RTE (m) RRE (deg) Recall

Recall Time (M) "R egNet* {Lu ot al.J20230] 0.085+0.152 0.235+0.213 96.2%
0.041 + 0.039 0.148 + 0.127 100.0%

Ours
0.123 £0.195 0.315 = 0.302 76.3%
0.046 + 0.042 0.169 + 0.141 100.0%

Table 7: Ablation studies of the Dynamic His-
tory Weighting (DHW) on KITTL.

Model |

RTE (m) RRE (deg) 0-frame

20-frame

w/o DHW 0.038 £0.038 0.136 +0.113 100%
with estimator in (Liu et al.[2024c]| 0.036 4+ 0.040 0.132 +0.104 100%
0.032 £+ 0.036 0.122 4 0.096 100%

138
135
133

with DHW HRegNet* (Lu et al.}2023b) ‘SO—fmme

Ours 30-frame

spondences. Here, we analyze three main challenging cases for the outdoor point cloud registration
task: low-overlap, dynamics, and occlusions.

Low-Overlap Inputs. Low-overlap registration is still an open issue (Yin et al.||[2024) because real-
world LiDAR scans may have large distances or rotations even for consecutive frames, especially for
low-frequency scanning LiDAR sensors, fast-moving cars, and street corners with large rotations.
In these cases, the classical nearest neighboring strategy, e.g., KNN, may fail to capture precise
point correspondences. In Table[8] we evaluate the low-overlap registration performance with larger
frame intervals, which demonstrates the effectiveness of our designed memory buffers compared to
the pairwise baseline method HRegNet* (Lu et al., 2023b).

Dynamics and Occlusions. Dynamic or occluded objects introducing inconsistent motion patterns
are commonly viewed as outliers in the outdoor registration task (Liu et al., |2023b), which under-
mines the accuracy of consistent pose regression. We visualize the estimated correspondences for
scenes with significant occlusions in Fig. [7]and high dynamics in Fig. [§] Our method can mitigate
their influences with fewer or even no estimated correspondences on these outlier points. Therefore,
the subsequent pose regression would be less influenced by outliers.

Imaget rC1

D gD
g,

HRegNet*

Tmage? pC2 Ours

PC2 Ours

Image2

Figure 7: Comparison on dynamics. We evalu-
ate on highway scenes, including high dynamic
cars from the opposite direction (orange circled).
HRegNet* (Lu et al., 2023b)) wrongly estimates
correspondences on dynamics, while ours can
filter influence with no correspondence estima-
tion on dynamics.

Figure 8: Comparison on scenes with signif-
icant occlusions. For scenes with large miss-
ing areas occluded by the bus (orange circled).
HRegNet* (Lu et al., |2023b) wrongly estimates
correspondences for occluded objects (purple
circled), but ours can filter their influence with
no correspondences on occlusion.

6 CONCLUSION

In this paper, we introduce a memory mechanism to enhance pairwise registration performance using
multi-frame history features for outdoor point cloud registration. Two temporal buffers are designed
to store feature-level and pose-level memories from previous timestamps, exploiting long-term his-
tory motion priors to address challenging outdoor scenes. Additionally, a Mamba-based temporal
interaction module and a dynamic history weighting module are developed to merge historical and
current features. Extensive experiments on the KITTI, nuScenes, and Apollo-Southbay datasets
demonstrate the effectiveness of our proposed method in various driving environments.
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APPENDIX

A OVERVIEW

The supplementary materials are structured as follows:

* We first provide more details about the network architecture in Sec.
* The evaluation metrics are described in Sec.

* Additional experiment results are presented in the Sec. [D]to demonstrate the superiority of
our method and the effectiveness of the proposed contributions.

* More visualizations on the KITTI, nuScenes, and Apollo-Southbay datasets are provided
in Sec. [El

* Section[Hdiscloses the limited and strictly assistive usage of a large language model (LLM)
during manuscript polishing.

* Additionally, we append the video demos of the outdoor registration performance on four
sequences of KITTI (Seq.01, Seq.08, Seq.09, Seq.10) to the supplementary materials with
the file name MORE_01 .mp4, MORE_08 .mp4, MORE_09 .mp4, MORE_10 .mp4.

B NETWORK ARCHITECTURE

B.1 FEATURE EXTRACTION AND COARSE MATCHING

We follow HRegNet (Lu et al., [2023b)) to construct the hierarchical point feature extraction and
coarse point matching layers.

Feature Extraction. Hierarchical point features are extracted as in (Lu et al.,2023b). For each layer,
Weighted Farthest Point Sampling (WFPS) (Q1 et al.| [2017) is first utilized to sample a set of center
keypoints. Around each keypoint, K Nearest Neighbor (KNN) and Shared Multi-layer Perceptron
(Shared MLP) are then used to search and aggregate the features of its k nearest neighboring points:

fi= _max KMLP((xf — ;) ® fF), (15)
where z¥ denotes the k-th nearest point and f* is the corresponding point feature. Max is the
Max-pooling operation.

Coarse Point Matching. The core issue in point cloud registration is to find precise and reliable
correspondences between two frames. At the coarsest layer, where points commonly possess the
largest receptive field, finding accurate correspondences can guarantee the generally reliable reg-
istration performance. To achieve this, we consider geometric features, descriptor features, and
similarity features from current point pairs as in HRegNet (Lu et al., | 2023b). Specifically, for each
keypoint in PC}, as the clustering center, we perform KNN to select a set of neighboring candidate
points in PCy41. The center keypoint and its K neighboring points form a cluster for feature em-
bedding. Geometric features consist of both the absolute coordinates and the relative distance of
the keypoint and its neighboring points. Descriptor features include the saliency uncertainties of
keypoints and also the local descriptors for each keypoint and its neighboring points. Similarity fea-
tures are considered in both bilateral consensus and neighborhood consensus. Bilateral consensus
ensures the bi-directional optimal matching scores in both the forward (keypoints in PC} searching
KNN in PCiy1) and the reverse (keypoints in PCy 4 searching KNN in PC}) processes. Neigh-
borhood consensus indicates that the neighboring keypoints around the correspondence keypoints
should possess similar features. The outputs of the coarse matching layer are cross-frame features
F} and initially estimated pose R;, t;. However, these features and poses contain no temporal in-
formation, which will interact with and update temporal memory buffers (Secs. 3.3-3.5 in the main

paper).
B.2 MAMBA ARCHITECTURE

Recently, a novel architecture named Mamba (Gu & Daol|2023) has shown promising effectiveness,
especially for long-sequence modeling ability (Li et al., [2025)), outperforming Transformer-based
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Figure 9: The architecture of the Mamba module. We utilize the standard Mamba (Gu & Dao,
2023)) module without any task-specific design.

Table 9: Implementation details of coarse matching and pose refinement layers. In the coarse
matching and pose refinement layers, ‘N’ denotes the number of the selected neighboring points
in KNN. ‘MLP1’ and ‘MLP2’ represent the output dimension of two MLP layers, respectively, for
correspondence prediction.

Module | Layer N MLP1 MLP2
Coarse Matching \ Layer 1 8 [128, 128, 128] [128, 128, 1]
Module | Layer N MLP1 MLP2
Layer 2 8 [256,256,256] [256,256,1]
Pose Refinement Layer 3 8 [512,512,512] (512,512, 1]

counterparts in image processing (Zhu et al.|[2024; |Liu et al.,2024d), video understanding (Li et al.,
2025;|L1u et al.,20244a), and point cloud (Liang et al., 2024;|Liu et al.,[2024b)) fields. In this paper, we
adopt the vanilla Mamba architecture (Gu & Dao|[2023) in our temporal encoding layer as illustrated
in Fig. 0] Without any task-specific designs, our Mamba-based temporal encoding turns out to be
effective enough to embed long-term dependencies for history and current motion features.

B.3 POSE REFINEMENT LAYER

We adopt the same pose refinement process as in HRegNet (Lu et al., |2023b), where finer regis-
tration layers only consider the geometric features and descriptor features. Similarity features are
abandoned due to high computational costs. With the correlated features, a soft correspondence layer
is introduced to predict keypoint correspondences and their confidence scores (Lu et al., 2021). Fi-
nally, the Weighted Kabsch algorithm is applied to calculate the transformation matrices AR and
At. Without loss of generality, taking layer [ as an example, the refinement layer can be represented
by:
R' = AR x R, (16)
th = AR x t'T1 + At, (17)
where R!, ¢! indicate the refined poses at a finer layer. R'*!, #!*1 indicate the un-refined poses at a
coarser layer. More implementation details are provided in Table[9]

C EVALUATION METRICS

Here, we provide the equations to calculate RTE (Relative Translation Error) and RRE (Relative
Rotation Error). RTE is calculated by:

RTE = || — /|2 (18)

RRE is defined as: R
RRE = arccos(Tr(R'R — 1)/2), (19)
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Table 10: More comparison results on the KITTI odometry (Geiger et al., 2012).

Methods | KITTI Odometry

\ RTE (m) RRE (deg) Recall
PosDiffNet (She et al.|[2024) 0.066 0.240 99.80%
TrT-Net (Chen et al.||2024a) 0.063 0.230 99.80%
ML-SemReg (Yan et al.|[2024) 0.052 0.200 97.91%
Ours \ 0.032 0.122 100.0%

where R, t indicate the respective estimated rotation matrix and translation vector, and R, ¢ are the
ground truth rotation matrix and translation vector.

D ADDITIONAL EXPERIMENTAL RESULTS

More Comparison Results. We also supplement more comparisons with recent state-of-the-art
methods including PosDiffNet (She et al.l 2024), TrT-Net (Chen et al., [2024al), and ML-SemReg
(Yan et al., |2025). Since they only release the average rotation and translation metrics, we also
follow them for a fair comparison. As shown in Table[I0] our method has substantial performance
advantages compared to these methods, which demonstrates the superiority of our proposed tempo-
ral buffers.

Performance Under More Challenging Thresholds. We also compare with baseline HRegNet*
(Lu et al.| [2023b) in terms of different settings #7 and 6 in Table and Table From these
tables, much obviously higher recalls, lower RRE, and lower RTE can be observed compared to
HRegNet*. This demonstrates the great potential of our MORE in more challenging outdoor scenes
with larger rotations and translations.

Ablation Studies for Various Temporal Interaction Methods. For effective memory read-out,
we explore different temporal interaction methods, including GRU-based, Attention-based, and
Mamba-based approaches. As shown in Table[I3] the Mamba-based method outperforms the others,
particularly in reducing rotation errors. This improvement is due to the effectiveness of the Mamba
model in capturing long-term temporal dependencies.

Ablation Studies for Different Mamba Layers. We also vary the number of Mamba layers from
1 to 3 in Table [I4 Performance remains stable across all settings, demonstrating our model is
insensitive to the specific design choice in Mamba. Notably, we choose 1 as the layer number of the
Mamba module because increasing the number cannot bring a significant performance increase.

Ablation Studies for Learnable Parameters in DHW. Learnable weights are of great significance
to the dynamic fusion of history and current pose-related features in the Dynamic History Weighting
(DHW). To prove this, we replace the learnable weighting matrices W, Wy with fixed ones. As
shown in Table using fixed W; or Wy increases both RTE and RRE compared to the learnable
DHW, showing that dynamic weighting truly works.

E VISUALIZATION RESULTS

Outliers: Dynamic and Occlusion Cases. Dynamics and occlusions are two main challenging
outlier cases for outdoor point cloud registration (Liu et al.l 2023b). Here, in Fig. [EL we first show
one case of dynamics. As illustrated in the figure, when a dynamic car runs toward the ego-car at a
high speed, parts of the dynamic car will be unobserved. For example, given only Frame 2 and Frame
3, the registration is difficult as the head of the car is not scanned in Frame 3. However, introducing
more temporal inputs (Frame 1) will provide more geometric cues of the dynamic car and help
recognize this outlier. This case can often be seen in the highway scenario shown in MORE_01 . mp4
appended to the supplementary materials. Another common outlier is occlusion. For example, the
occluded car in Frame 2 of Fig. is often seen as an outlier with pairwise inputs (e.g., Frames
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Table 11: Comparison results with HRegNet* (Lu et al., 2023b) under different translation
thresholds 67 on the KITTI dataset. 0 is set to 1deg.

O (m) |  Method | RTE (m) RRE (deg) Recall
0.05 ‘ HRegNet”* ‘ 0.0302 4+ 0.0110 0.1583 £ 0.1155 72.08%
‘ Ours ‘ 0.0243 + 0.0109 0.1175 + 0.0837 87.50%
0.1 ‘ HRegNet”* ‘ 0.0406 4+ 0.0201 0.1606 + 0.1195 95.60%
‘ Ours ‘ 0.0294 +£0.0172 0.1184 + 0.0889 97.93 %
02 ‘ HRegNet™ ‘ 0.0444 4+ 0.0271 0.1613 +£0.1192 97.62%
‘ Ours ‘ 0.0310 £ 0.0225 0.1198 + 0.0881 98.13%
03 ‘ HRegNet™ ‘ 0.0455 4+ 0.0308 0.1616 £ 0.1194 99.52%
‘ Ours ‘ 0.0318 £ 0.0259 0.1197 £ 0.0879 99.88 %

Table 12: Comparison results with HRegNet* (Lu et al.,2023b) under different rotation thresh-

olds 6 on the KITTI dataset. 6 is set to 0.05m.

Or (deg) |  Method | RTE (m) RRE (deg) Recall
0.25 ‘ HRegNet* ‘ 0.0302 £ 0.0109 0.1210 £ 0.0627 57.20%
\ Ours \ 0.0241 £ 0.0109 0.1006 4+ 0.0538 81.10%
05 \ HRegNet* \ 0.0304 £ 0.0109 0.1524 £ 0.0973 67.38%
‘ Ours ‘ 0.0242 £+ 0.0109 0.1158 +0.0781 87.12%
1 ‘ HRegNet* ‘ 0.0304 £+ 0.0109 0.1593 £ 0.1121 68.41%
‘ Ours ‘ 0.0243 +=0.0109 0.1192 + 0.0882 87.71%
2 \ HRegNet* \ 0.0304 £ 0.0109 0.599 + 0.1147 68.45%
‘ Ours ‘ 0.0243 £ 0.0109 0.1193 4+ 0.0890 87.72%
Table 13: Ablation studies of temporal encoding methods on KITTI.
Model \ RTE (m) RRE (deg) Recall Time (ms)
GRU 0.034 £0.039 0.133 £0.115 100 % 135
Attention 0.033 £ 0.039 0.138 £0.121 100 % 136
Mamba (Ours) 0.032 4+ 0.036 0.122 4+ 0.096 100 % 133
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Table 14: Ablation studies for different Mamba layers on KITTL

Mamba layers RTE (m) RRE (deg) Recall
1 0.032 +0.036 0.122 £+ 0.096 100%
2 0.032 + 0.037 0.120 £ 0.103 100%
3 0.032 £+ 0.037 0.121 + 0.092 100%

Table 15: Ablation studies of the learnable parameters (171, 1/5) in Dynamic History Weight-
ing.

Method RTE (m) RRE (deg) Recall
MORE 0.032 +0.036 0.122 + 0.096 100%
MORE w/ fixed Wy 0.036 £+ 0.039 0.131 £0.103 100%
MORE w/ fixed W5 0.037 + 0.041 0.134 +0.107 100%

1&2), reducing registration accuracy. Sequential observations help identify the occlusion, as the car
reappears in Frame 3 and can be correctly matched with Frame 1.

Registration Errors. We display the registration errors of two scenes in Fig. [[2] Compared to
HRegNet* (Lu et al., 2023b), our method MORE generates much smaller errors thanks to the suffi-
cient exploration of the temporal information.

Dynamic Weighting Visualization. We visualize the weighting matrix using PCA and its corre-
sponding 2D trajectories in Fig. [I3] From the figure, it is clear that similar historical trajectories
often share similar weights, e.g., (a, b, ¢), (d, e), (f, g, h), and (i, j). This demonstrates the ef-
fectiveness of our Dynamic History Weighting method in learning weights from historical poses to
influence the current motion features.

Registration Samples. We display more visualization about the point cloud registration perfor-
mance on three large-scale outdoor datasets: KITTI in Fig. [I4] nuScenes in Fig. [I5] and Apollo-
Southbay in Fig. From these figures, it is clear that our proposed method accurately registers
input point pairs even though there are large displacements (low-overlap problem).

F LLM USAGE STATEMENT

A large language model (ChatGPT) was used only for limited editorial assistance: (i)
spelling/grammar checks; (ii) minor wording refinements that did not alter technical content; and
(iii) occasional condensation and formatting suggestions. The LLM contributed nothing to the re-
search itself (ideation, methods, experiments, analyses, drafting, or conclusions); it is not an author
and assumes no responsibility for the content.
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e S )

Frame 1 Frame 2 Frame 3

Figure 10: A dynamic case in KITTL. In a highway scene, partial observations hinder the recogni-
tion of the highly dynamic car.

(a) Frame 1

MMERER

g fur Profis

(b) Frame 2
KAMME

Hygiene fur Profis

O

(c) Frame 3
Figure 11: An occlusion case in KITTI. A pairwise pose regression can fail in occluded scenarios,
e.g., the static car in the red circle in Frame 2, breaking the correlation in Frames 1&2 and 2&3.

20



Under review as a conference paper at ICLR 2026
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Figure 12: Registration error visualization. Our estimation (blue points) shows much smaller

errors (red line) compared to HRegNet* (Lu et al., [2023b)) (yellow points) relative to GT (green
points).
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Figure 13: The visualization of Dynamic History Weighting. We show some samples about 2D
trajectories (upper figures) and their corresponding weights (lower figures), which are generated
from the PCA analysis of the weight matrix W.

21



Under review as a conference paper at ICLR 2026

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 14: The visualization of point cloud registration on KITTI. Yellow and blue points in-
dicate input point pair frames, with green lines showing accurate correspondences (inliers) and red
lines showing inaccurate ones (outliers). This figure is best viewed in zoomed-in color mode.
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Figure 15: The visualization of point cloud registration on nuScenes. Yellow and blue points
indicate input point pair frames, with green lines showing accurate correspondences (inliers) and
red lines showing inaccurate ones (outliers). This figure is best viewed in zoomed-in color mode.
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Figure 16: The visualization of point cloud registration on Apollo-Southbay. Yellow and blue
points indicate input point pair frames, with green lines showing accurate correspondences (inliers)
and red lines showing inaccurate ones (outliers). This figure is best viewed in zoomed-in color
mode.
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