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ABSTRACT

Attention mechanisms have achieved remarkable success in deep learning through
parallel searching for the most relevant tokens in large-scale data. However, both
the memory and computational costs of self-attention scale quadratically with
sequence length, making it infeasible for long sequences. Recent sparse top-k
attention methods can achieve performance comparable to full attention with much
lower memory and computational overhead. Nevertheless, they often rely on graph-
or tree-based index structures, which are too slow for batches of token sequences
to rebuild across layers or heads, or use partition-based techniques which lack
precision. To address this issue, we propose a search algorithm for sparse atten-
tion: Hierarchical Router Algorithm, HTIROUTER, which can efficiently construct
indexing structures and dynamically retrieve top-k tokens on a per-sequence basis,
striking a better balance between speed and accuracy. HIROUTER employs a
multi-level routing mechanism that hierarchically partitions tokens into discrete
buckets along a learned tree structure with O(T') to the sequence length 7. Notably,
our dual entropy loss directly regularizes embeddings, using affinity for stronger
sample—centroid alignment to improve top-k recall and balanced buckets to ensure
efficient GPU parallelism. HIROUTER outperforms FlashAttention in speed on
long sequences while matching or surpassing the accuracy of full attention, offering
a compelling solution for scalable and efficient attention mechanisms.

1 INTRODUCTION

Transformers (Vaswani et al., | 2017)) have become indispensable for sequence modeling across a wide
range of domains (OpenAl, 2023), including natural language processing (NLP) (Devlin et al.,[2019;
Brown et al.|, 2020} (OpenAll 2023}, Jiang et al.| 2024}, computer vision (Dosovitskiy et al.l 2021}
Ramesh et al.| 2021} |Brooks et al.,[2024)), and more. At the heart of Transformer models lies the self-
attention mechanism (Vaswani et al., 2017), which constructs rich token representations by attending
to all elements in a sequence in parallel. This innovation has powered breakthroughs in language
modeling (Radford et al.l2019), machine translation (Ott et al., 2018)), text generation (Brown et al.,
2020)), image classification (Touvron et al.||2021)), video generation (Brooks et al.}2024), and beyond.
Despite its success, self-attention incurs O(7T#) memory and computational costs as the sequence
length T' grows, posing a major obstacle for long-sequence applications (Child et al., 2019; |Beltagy
et al.| [2020; Tay et al., |2021). This quadratic cost often makes naive self-attention prohibitively
expensive for real-world, large-scale applications.

Recent research has proposed several strategies to mitigate the complexity of self-attention. Deng
et al.|(2024) show that attention matrices are inherently sparse. Building on this observation, Top-k
attention restricts computation to the £ most informative tokens, substantially reducing both memory
usage and FLOPs while maintaining full-attention quality (Roy et al.|[2021} Kitaev et al., 2020; Gupta
et al.,[2021} Bertsch et al., [2023} [Mao et al.} 2024). Nevertheless, existing top-k implementations
suffer from two fundamental drawbacks: (i) Inefficient time—precision trade-off, as they rely
on generic k-Nearest Neighbors (k-NN) or Maximum Inner-Product Search (MIPS) routines that
are ill-suited for batches of token sequences in attention. Consequently, these methods rebuild
graph- or tree-based indices for each head and layer, inserting tokens sequentially and forgoing
GPU parallelism, which leads to prohibitive runtime (Kitaev et al.l 2020; Roy et al., [2021); (ii)
Inefficient GPU utilization, as their dependance on data-agnostic k-NN libraries (Johnson et al.,
2021} |Guo et al.| 2020) that ignore the underlying token distribution (Johnson et al., 2021; Malkov:
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Figure 1: Illustration of HIROUTER configured with two levels, each containing four buckets. Colors
denote parent buckets (level 1) and marker shapes denote child buckets (level 2). Without Dual
Entropy Loss regularization (left), embeddings are scattered across buckets. With regularization
(right), embeddings with the same shape and color cluster tightly, ensuring that semantically similar
tokens fall into the same bucket. This clustering makes top-k retrieval both easier and more reliable,
as queries need only search within well-formed buckets instead of competing with irrelevant tokens.

& Yashunin, |2020; (Guo et al., 2020), and therefore fail to leverage neural networks’ ability to learn
data-aware indices. Partition-based methods such as LSH (Kitaev et al.| 2020) or k-means (Roy et al.,
2021) further exacerbate this issue by producing imbalanced buckets under skewed data distributions,
leading to inefficient GPU occupancy.

In this work, we address both limitations through our hierarchical routing algorithm, HIROUTER,
together with a dual-entropy loss regularizer: (i) striking a good balance between speed and
precision by routing tokens in parallel into a multi-level tree and performing high-recall MIPS
entirely on-GPU, per sequence and per head, making the approach well suited to batched long-
sequence data. Importantly, the dual-entropy loss regularizes similar tokens to cluster together,
thereby improving retrieval precision, as illustrated in (ii) improving GPU utilization
by partitioning KV-cache into equal-sized buckets. Specifically, the dual-entropy loss encourages
the embeddings to form uniform partitions, and the Gumbel-Softmax relaxation makes the discrete
routing differentiable, allowing the entire partitioning scheme to be optimized end-to-end.

Our experiments in a wide range of tasks on the evaluation benchmarks for language modeling,
natural language understanding show that hierarchical routers achieve better performance compared to
strong transformer baselines. Extensive evaluations demonstrate that our method achieves substantial
improvements in computational efficiency and retrieval accuracy over existing top-k retrieval methods.
We summarize our key contributions as follows:

1) Efficient Parallel Hierarchical Top-k Attention: We introduce HIROUTER, a hierarchical
router that clusters tokens in parallel into multi-level buckets, enabling top-k retrieval with
complexity O(kT'), k < T while outperforming or matching full-attention performance.

II) Entropy-Based Dual-Objective Regularization: We propose a routing loss that regularizes
key and query embeddings, balancing bucket loads while tightening token—centroid affinity.
This ensures retrieval quality and balanced, equal-sized buckets for higher GPU utilization.

III) Strong Benchmarks and Efficient Scalability On language modeling and reasoning bench-
marks, HTIROUTER achieves strong accuracy with efficiency, balancing performance and cost. It
also provides up to 3.55x speedup on long-context inputs over FlashAttention.

2 RELATED WORK

Efficient Attention. Location-based sparse patterns have long been used to curb the quadratic
complexity of vanilla self-attention. Early works alternated coarse and local windows to reduce the re-
ceptive field (Liu et al., 2018)). Strided/dilated patterns were later adopted for image generation (Child
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et al.| 2019), while adaptive windows offered dynamic sparsity for sequence modeling (Sukhbaatar
et al.|[2019). Global-plus-local hybrids such as Longformer (Beltagy et al., 2020), ETC (Ainslie et al.}
2020), and BigBird (Zaheer et al.,2020) designate a small set of global tokens that attend everywhere.
Orthogonal to fixed patterns, low-rank or kernelized approaches approximate dense attention via
linear projections (Katharopoulos et al.l 2020} Xiong et al.| [2021; [Wang et al., [2020) or random
features (Choromanski et al.,2021; |Peng et al., 2021). NSA (Yuan et al.,2025)) is a natively trainable
sparse attention that combines hierarchical token compression and selection. While these designs
bring linear or near-linear complexity, they often under-use fine-grained, content-based interactions.

Sparse Top-K Attention. Content-based sparsification keeps only the most relevant tokens per
query (Pagliardini et al.,|2023)). Routing Transformers (Roy et al., 2021) and Reformer (Kitaev et al.
2020) hash queries and keys into shared buckets. Memory-Efficient Top-k Attention (Gupta et al.}
2021) and Unlimiformer (Bertsch et al., 2023)) push context lengths toward millions of tokens, but
they still depend on external k-NN or hashing modules. IceFormer (Mao et al., |2024) improves
transformer efficiency by integrating ANN search mechanism that focuses on the k-NN results as
the most relevant tokens during inference, bypassing the need to compute the full attention matrix.
However, most existing pipelines either incur substantial overhead by constructing exact indices for
each head or tolerate a significant drop in recall when relying on approximate hashing.

Approximate Top-k Retrieval. Classical similarity search relies on graph or tree indices such as
HNSW (Malkov & Yashuninl [2020), IVFPQ in FAISS (Douze et al.,[2024), or ScaNN (Guo et al.,
2020), which build indices sequentially and are ill-suited for per-layer GPU parallelism in deep
Transformers. Inspired by learned-index approaches (Kraska et al.,[2018} |ILi et al.| 2023} |Gupta et al.|
2022), we instead propose a learnable hierarchical router that jointly trains centroids and routing
logits, removes explicit indexing overhead, and adapts dynamically to data. Unlike offline-trained
partitioners (Dong et al.| [2023), HIROUTER updates embeddings of keys, queries, and centroids
on-the-fly with entropy regularization, improves the precision of top-k retrieval, and balances buckets.

3 METHODOLOGY

In this section, we present HIROUTER, a hierarchical routing framework for efficient top-£ attention.
After reviewing self-attention and top-k variants in we introduce top-k retrieval
algorithms, HIROUTER,in with entropy-based regularization that simultaneously
sharpens token—centroid alignment and balances bucket occupancy in Finally, a
hierarchical beam search retrieves the candidate buckets for sparse attention.

3.1 PRELIMINARIES
Self-Attention. Self-attention (Vaswani et al.,|2017) lies at the heart of modern sequence models,

enabling each token to attend to all others and thereby capture long-range dependencies. Given
queries Q € RT*4 keys K € RT*? and values V € RT*?, the scaled dot-product attention is

Attention(Q, K, V') = softmax (QKT/\/E) Vv, )]
where d denotes the common dimensionality of queries, keys, and values.

Top-k Attention. To alleviate the O(TQ) cost of full self-attention, top-k methods (Kitaev et al.,
2020; Roy et al., 2021} |Gupta et al., 2021) restrict each query to its £ most relevant keys, reducing
complexity to O(Tk). Specifically, for a query vector g € R?, let

I, = TopK (qKT V4, k:) )
be the set of indices corresponding to the k largest similarity scores. The attention output is then
Attentionrok (g, K, V) = Z softmax (qKZT/\/@ Vi. 3)
i€y

This preserves the expressivity of self-attention while substantially improving efficiency.
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3.2 HIROUTER: HIERARCHICAL ROUTING FOR EFFICIENT TOP-K RETRIEVAL

We introduce HIROUTER, an efficient GPU-friendly method for collecting the top-% highest-similarity
key—value pairs for attention computation. Given an input tensor X € RZ*T*4 with batch size B,
sequence length 7', and feature dimension d, We first apply a learned linear projection Z = X W. For
simplicity, we use the unified notation Z, where Z corresponds to the projected queries Q@ = X Wy
or the projected keys K = X W, with W denoting either Wg or W

We define the components that make up the
HIROUTER structure. First, we assume a hi-
erarchical structure with L levels, indexed by
1 € {1,...,L}. Ateach level [, every parent
node routes its tokens to one of C' child buck-
ets forming a C-ary tree. Level [ contains C'~!
parent nodes and a total of C' buckets. We de-
note the collection of centroid matrices at level
I by D e RO "xdxC  randomly initialized,
where the first dimension indexes the '~ par-
ents and each C,(,l) = [Céf’l, . ,CZ()Z_)C] € RxC
corresponds to the C' childrens of parent p, and
p € {1,...,C'"1} at the I-th level. The routing
logits for a token z from Z assigned to a cen-

troid p are Kg) = zC,(,l), and its soft assignment

probability is pz(,l) = softmax(f,(,l)) € RC.

To obtain a discrete bucket index, we compute Top-K Tokens
the hard assignment distribution for each parent "YeoX Xo)
node p as j)',(,l) = GumbelSoftmax(@l(f)), and
Set Gjocal = argmax ﬁﬁ)j,
je{0,...,.0—1}
hard assignment of token i to one of the C' child  Fjgyre 2: 2-level- HIROUTER with a beam width of
nodes under parent p. The global assignment 3 Tokens are recursively routed into three buckets
index a is computed as @ = p- C'+ aiocal, Where  per Jevel. Given a query (yellow dot), the keys and
p is the parent index and ajoca is the local child  yaJyes of previous tokens are aggregated in a buffer.
assignment obtained from the arg max step. At every level, only the two highest-probability
buckets (in blue) at each layer are kept, with the
others pruned. Remaining leaves are concatenated
into a compact Top-k buffer (in pink).

where ajocq 18 the

We then sort the tokens according to their global
assignment indices {a; } so that those mapped to
the same bucket appear contiguously. Denoting
the reordered indices by a1, as, . . ., ar, we have
ay < as < --- < ar. Finally, the sorted features at the (I + 1)-th level are reshaped into a tensor

PAG SRS RBXCLX%XCI, where C! is the number of buckets at level [, and 7//C! is the number
of tokens per bucket. This reshaping explicitly groups tokens assigned to the same bucket together
for processing at the next level. The Gumbel-Softmax relaxation makes the discrete bucket indices
differentiable, allowing gradients to propagate and letting the balance loss in Equation (6) actively
regularize the assignments toward uniformly populated buckets.

3.3 MOTIVATING ENTROPY REGULARIZATION THROUGH ROUTER ANALYSIS

To ground our design, we analyze a single router unit and show how its behavior motivates the entropy
regularizer that underpins our proposed HIROUTER.

Notation. Let z € { z1,...,2zr} C S?! denote unit-norm tokens and let C; C S%~! denote one
unit-norm centroid. Each token z; is assigned to its nearest centroid via a; = arg maxy(z;, Cp), and
satisfies the intra—bucket tightness

(2, Cq;) > 1—e, O0<e<]l. 4)
Given a query g € S?~! with centroid assignment a, = arg max,{(q, Cp), let S; = {z; : a; = a4}
be its bucket. Define the inter—centroid margin between Cq and C,, for any z ¢ S, as A, . =
1 —(Cqy, Cq.). Obviously, A, . € [0,2].
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Proposition 3.1. Let z* = argmax;(q, z;) be the nearest neighbor of a query q € S*~! among

the database {z;}. Define gegr = min¢s, ((q, z*) — (q, z}) IfAg . > e+ 2V2 forz ¢ S,
Then geg > 0 and 2* € Sy; i.e., the query q and z* are assigned to the same centroid.

To ensure that a query and its nearest neighbors are assigned to the same bucket by the routers, the
centroid margin should exceed the intra—bucket distortion, i.e., A, , > € + 2¢/2¢. Consequently,
learning sharper clusters (¢ |) or achieving more widely separated centroids (A, . 1) directly
strengthens the retrieval guarantee for the routers. Our proposed L, encourages key and query
embeddings to move toward the bucket centers, thereby shrinking € and relaxing the lower bound.

3.4 DuAL ENTROPY LOSS
3.4.1 SAMPLE—-CENTROID ATTRACTION AND REPULSION

To enforce sharper routing, we apply a Sample-Centroid Loss L, whose gradient naturally
decomposes into attractive forces pulling embeddings of keys and queries toward centroids with high
assignment probability and repulsive forces pushing them away from low-probability centroids. This
attraction—repulsion mechanism progressively aligns embeddings of keys and queries with their most
likely centroid while increasing their separation from competing centroids.

Formally, for token ¢ under parent p at the I-th level, we define its assignment vector as p(l) =

i,p
[pz(',lZp,l)7 pgfgpg), RPN pggnc) ] € RY, where pgfgpyj) is the probability that the i-th token under

parent p is routed to its j-th child at [-th level. The Sample—Centroid Loss is defined as below to
sharpen token—centroid alignment:

T T C
_ 1 my_ 1 0 0]
Lomp = 7 > Hpi,) = T > Zpi,@,j) 108 Dj, (p,j)- ©)
i=1 i=1 j=1
We compute, for each token, the entropy of its assignment distribution at every level of the hierarchical
router and average these entropies across tokens and across all levels [ € {1, ..., L}. The resulting

loss induces token updates that can be understood through an attraction-repulsion dynamic, as
formalized in the following proposition.

Proposition 3.2. At a given router level, let p be the parent node to which token z; is assigned;
denote by {C,, ; }jC:1 the child centroids under p, and by p; (,, ;) the soft assignment probabilities of

z; to those centroids. For the sample-entropy loss ,Céﬁzp, the gradient w.r.t. z; is

C C
1
Va2, Lsmp = T Zpi,(p,j) (Ingiy(p,j) + 1) (Cp,j — Z Pi,(p,i") Cp.i")-
i=1

j=1

Hence each centroid Cy, j exerts an attractive effect on x; iff p; (p, ;) > e~! (since p(logp + 1) > 0),
and a repulsive effect iff p; (p,5) < e~ L. Thus, the dynamics enforce both intra—bucket tightness (¢ |)
and inter—centroid margin (Ay 5 1), as required by Proposition

As training evolves, the attraction—repulsion dynamics ensure that each embedding of keys and
queries is progressively pulled toward its dominant centroid while being pushed away from competing
centroids. This dual effect sharpens the assignments, yielding confident one-hot-like routing decisions
and enhancing retrieval reliability. Conversely, fractional assignments incur nonzero entropy and
therefore generate repulsive forces that enlarge the separation between centroids. Consequently,
Proposition [3.2| guarantees the simultaneous decrease of intra—bucket distortion (£ J.) and increase of
inter—centroid margin (A, , 1), thereby supporting Proposition

3.4.2 BALANCED-ASSIGNMENT LOSS

With only Lg,p, keys or queries may collapse into a few centroids, leading to imbalanced bucket
sizes. This degrades the parallel efficiency of the underlying computational kernels, as some buckets
remain underutilized while others become overloaded. Moreover, with such an imbalance, top-k
retrieval becomes inefficient and unstable: some queries retrieve a disproportionately large number of



Under review as a conference paper at ICLR 2026

tokens while others retrieve almost none, resulting in degraded attention performance. To address
this, we introduce a balanced-assignment loss that encourages keys or queries to be evenly distributed
across centroids, ensuring both statistical robustness and hardware efficiency.

At each parent node p in the hierarchy, every token ¢ € Z,, must be routed to one of its C children. To
ensure balanced routing, we define the mean assignment distribution ﬁz()l,)j = N%) Ziezp ﬁglg ) jE
{0,...,C — 1}, where ﬁglgp ) is the soft assignment of token ¢ to the j-th child of parent p, and

N, = |Z,] is the number of tokens under parent p. To encourage even splits, we penalize low-entropy
mean distributions via the balanced-assignment loss:

c'-t ¢
(1 _(1
Loar = > D Py o8By ©
p=1 j=1
Minimizing L. maximizes the entropy of p,, driving each p, ; toward the uniform distribution
[1/C,...,1/C]. This ensures that tokens are spread evenly across the C children, enabling contiguous

tensor reshaping and efficient parallel operations.
Proposition 3.3. Under parent p, let {p; (, j}icz, and define p,; = N%, Ziezp Di(p,j)> With

Zle Dp,j = 1. The balanced loss is minimized iff pp ; = 1/C for all j.

Why Gumbel-Softmax (GS)? Using a vanilla softmax to parameterize assignments makes the
gradient of Ly, identical for all tokens under the same parent, pushing every token’s distribution
toward the uniform vector [1/C]. This maximizes per-token entropy, contradicting the sample-
entropy loss Lg,p, leading to ambiguous assignments and poorly balanced buckets. GS, with a
straight-through estimator (Jang et al., [2017), instead produces near one-hot assignments while
remaining differentiable. This allows each token to select a single centroid, so that minimizing Ly,
balances the counts NV, ; across children, ensuring roughly uniform bucket populations and enabling
efficient top-k attention kernels without sacrificing gradient flow.

3.4.3 OVERALL ROUTING OBJECTIVE.

The final routing loss combines both terms: Lioute = Lbal + Lsmp. In practice, Lyoyte SEIves
to regularize the query/key projections, promoting an emergent hierarchical representation space.
We integrate the routing regularizer with the downstream task loss, such that the total objective

becomes L = Lcg + a Lroute, Where Loy = —% Zthl log P(y: | y<¢) is the standard next-token
cross-entropy, Lyoute 18 our hierarchical routing loss, and v > 0 controls the regularization strength.

3.5 CANDIDATE RETRIEVAL FOR ATTENTION

The router assigns each token to a bucket at each hierarchical level according to its routing probability.
We first project them via learned matrices W, Wi and compute their similarity:

S=(XWJ) (XW) .
At level [, each token has a conditional routing distribution p() € R€.

A brute-force strategy would enumerate all buckets with nonzero joint probability pjoint = Hlefol p®,

but this quickly becomes prohibitive in both time and memory as there exists a total HlL:_Ol C!
possibilities. Instead, we perform a level-wise beam search of width M: at each level [, we retain

the M buckets with largest partial joint probability Hi:o p(9). These M-element beams define a
candidate set of key tokens for retrieval. To compute attention outputs, we collect these M buckets

and then compute sparse attention following[Equation 3|

4 EXPERIMENTS

4.1 SYNTHETIC RESULTS

Synthetic Gaussian Retrieval. To validate the efficiency and recall of HIROUTER, we first evaluate
on a synthetic key—value retrieval task. We generate NV keys and values by sampling from a standard
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Figure 3: Synthetic experimental results, demonstrating the efficacy of HIROUTER. (a) and (b) show
performance relative to contemporary retrieval methods in terms of recall and speed with relation to
the sequence length 7. (c) plot shows the effect of hidden size d on MQAR’s accuracy, while (d) plot
shows how the scale « of the auxiliary loss can influence performance on MQAR.

multivariate Gaussian in R<, insert them into our hierarchical router, and then issue M random
key queries drawn from the same distribution, similar setting in (Kraska et al.,|2018)). We measure
recall@128 (i.e. the fraction of queries whose top-128 retrieved key matches the true maximum inner
production keys) and end-to-end latency as we sweep N from 2!2 to 2'%. As shown in Figure [3a]
HIROUTER maintains recall even higher than LSH and vanilla k-means. HNSW achieves slightly
higher recall, but its query time increases superlinearly, resulting in prohibitive latency for processing
long sequences in Attention. Baselines are implemented using FAISS (Douze et al.,[2024).

Multi-Query Associative Recall (MQAR). Next, we benchmark on the MQAR task (Arora et al.,
2024) where the model must store a sequence of [V key—value pairs and then retrieve the correct value
given a set of query keys. The total vocab size is 8192. Figure [3c|shows that HIROUTER sustains
high recall even for small d, whereas other methods fail. Finally, we sweep the weight o on our
dual-entropy routing loss. As shown in Figure choosing « in [0.01, 0.1] yields the best trade-off:
too small an o leaves Ly, ineffective, while a large o (in the absence of Lgy,p) allows trivial uniform
assignments that destroys semantic clustering and hurts recall.

4.2 SMALL SCALE LANGUAGE MODELING Table 1: Test perplexity (lower

] is better) on WikiText-103.
Our first experiment compares the performance of a HIROUTER en-  —r 00

hanced Transformer on a classic language modeling task, namely Ppl Y
WikiText-103 language modeling. In this setting, we use  as we ~ Lransformer 19.2
determined best on the MQAR task. All models used in this task ~ Performer 26.8
. . . Reformer 25.6

are configured with 125M parameters. Our primary observation is AFT-conv 8.2
that HIROUTER outperforms the standard Transformer, achieving  ppa_Gaussian 275
a 0.7 reduction in perplexity; we achieve better perplexity along-  ~ysFormer 231
side a significant efficiency improvement. Additionally, alternative IceFormer 31.4
efficient attention methods observe a significant degradation, high- Routing Tranformer ~ 26.7
lighting that HIROUTER can serve as a better choice for efficient ~ Mongoose 23.6
Transformers. NSA 19.3
HIROUTER 18.5

4.3 LARGER SCALE LANGUAGE MODELING

Setup and Training. We conduct an evaluation of our method against other methods, such as a
Transformer based on the Pythia architecture (Biderman et al.} 2023ﬂ as well as RetNet (Sun et al.,
2023), Mamba (Gu & Dao, 2024; Dao & Gu, 2024)), Gated Linear Attention (GLA) (Yang et al.,
20244a), DeltaNet (Yang et al., [2024b), Gated Slot Attention (GSA) (Zhang et al., [2024). For fair
comparison, all models are trained under identical conditions with 410M parameters on 10B tokens
from the FineWeb-Edu dataset (Penedo et al., 2024}, with some restrictionfl All models are trained
with a context length of 2048 tokens, with embedding/hidden dimension 1024. We use the AdamW
optimizer (Loshchilov & Hutter, 2019) with a peak learning rate of 4e-4, weight decay of 0.1, and
gradient clipping of 1.0. The learning rate follows a cosine annealing schedule with a warm-up period

'Some works follow |Gu & Dao (2024) and refer to this architecture as Transformer++.
?Mamba models use ~430M parameters due to restrictions on the state size and the input dimension.
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of 1% of the total steps (=100M tokens) and a total batch size of 0.5M tokens. Further details are
available in Appendix [B] For our HIROUTER model, we use the same training setup and configure
our router as having 4 levels, each level with 4 buckets/centroids, the window size as 64 for the SWA
branch, and the top-k attention using a beam width of 4. Following our results on the synthetic task,
we choose « to be 0.05 to set the weight for the auxiliary loss.

4.3.1 COMMONSENSE REASONING

Table 2: Performance comparison on language modeling and zero-shot common-sense reasoning.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg
ppld ppld | accT acct acc.n?T acctT acct acc.n?tT acct acc?t .
Transformer | 30.21 4344 | 3276 67.68 3920 53.51 57.58 2747 3797 61.19 4717
RetNet 3647 63.64 | 26.33 65.18  35.61 50.59 56.82 27.13  37.87 6095 45.06
Mamba 32,63 61.68 | 27.79 65.61 3847 5122 5741 26.62 38.64 61.65 4593
Mamba2 30.15 49.83 | 2870 66.81 3894 5138 60.69 28.75  37.67 59.69 46.83
HGRN2 30.07 40.29 | 31.32 66.54 39.68 50.12 59.30 27.05 38.84 58.72 4645
GLA 31.50 51.56 | 29.01 6649 38.60 50.12 57.83 26.11  39.25 57.77 45.40
DeltaNet 28.82 45.06 | 3047 67.19  39.51 52.80 58.80 29.10 38.18 5826 46.79
GSA 30.78 4874 | 29.75 66.70  39.01 5249  59.26 27.65 3849 60.61 46.50

HIROUTER |31.09 42.94 | 33.09 66.81 38.03 50.75 59.47 28.50  38.08 6131 47.01

Similar to previous works, we present perplexity results as well as zero-shot commonsense reasoning
performance on a number of different tasks (see Appendix [B.4.T). These tasks are effective at
evaluating the acquired knowledge of models through their general reasoning abilities. In Table[2] we
observe that HIROUTER is effective in comparison to a number of modern methods commonly used
as efficient language model backbones. In particular, we observe that while a baseline, full-attention
Transformer remains the most effective model compared to other alternatives, HIROUTER remains
highly effective on such tasks and performs comparably or outperforms recent models that offer
efficiency gains in comparison to the Transformer.

4.3.2 RECALL-INTENSIVE TASKS Table 3: Accuracy on recall-world retrieval tasks.

To better compare the ability of mod-  Model | FDA SWDE SQuAD TQA NQ Drop Avg.

els to recall information, we evaluate

zero-shot in-context learnine perfor- Transformer | 7.26  38.07 4.52 093 1.00 248 9.71
> gp RetNet 002 002 4612 002 006 002 7.70

mance on more recall-intensive tasks Mamba 1.36 6.84 3.10 1.03 1.00 212 291

(Appendix B.4.2). As shown in Ta- Mamba2 | 426 1053 449 055 125 243 392

ble the Transformer fares best, HGRN2 2.00 10.17 4.02 097 1.02 3.12 3.88

while other efficient baselines gener- ~ GLA 327 9.7 272 040 136 196 324
DeltaNet 4.08 17.19 3.81 042 097 241 4381

ally struggle due to their fixed-size g, 336 7.02 413 086 147 247 355
state. In contrast, HIROUTER remains

capable of on-par performance rela- HIROUTER | 843 4283 338  0.67 093 232 976
tive to the Transformer while main-

taining efficiency. This results demonstrates a use-case where the HTIROUTER structure can potentially
serve as beneficial for filtering out irrelevant information.

4.3.3 LONG-CONTEXT TASKS

Finally, we test on LongBench (Bai et al.,|2024), a common benchmark for evaluating performance
on long-context tasks (see Appendix|B.4.3). In this setting, shown in Tabled] Transformers struggle,
reflecting a long-standing observation regarding the inability of full-attention models to adequately
manipulate long sequences. Meanwhile, linear models are much more performant. In comparison,
we show that HIROUTER is capable of significantly closing the gap between these two paradigms,
highlighting the potential for improved long-context Transformer models, being able to outperform
other baselines outside of Mamba even without additional tuning of the model parameters.

Additionally, we perform a synthetic evaluation on the Needle-in-a-Haystack (NIAH) task, where
models are tasked with retrieving a single element (the needle) from a large context (the haystack).
Table[3]presents these results. It is worth noting that Transformers are generally much more effective
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Table 4: Accuracy on tasks from LongBench (Bai et al.,[2024).

Single-Doc QA Multi-Doc QA Summarization Few-shot Code
NQA QQA MFQ | HQA 2WM Mus | GVR QMS MNs | TRC TQA SSM | LCC RBP

Model Avg.

Transformer | 0.67 323 3.86 | 033 137 0.11 | 829 11.87 13.31| 1.50 3.02 561 | 982 9.61 |5.19

HGRN2 038 080 1.63 | 0.11 005 O0.11 |3.07 596 4.08 | 0.00 067 0.00 |20.88 20.71 | 4.17
Mamba 1.52 355 1051 | 320 6.82 224|551 1567 10.02| 3.00 14.04 582 | 11.55 14.82|7.73
Mamba2 1.80 320 10.84 | 297 570 257 |6.66 1587 1043|1850 1331 6.09 | 16.67 19.05 | 9.55
GLA 060 146 250 | 072 1.01 0.70 | 430 1044 6.41 | 0.00 558 0.00 | 20.23 2045 | 5.31
DeltaNet 038 076 1.63 | 0.11 005 0.11 321 740 450 | 000 558 9.30|20.03 19.89 |5.21
GSA 037 073 1.60 | 0.11 005 4.81|328 861 481 | 000 471 827 |19.33 20.16 |5.49

HIROUTER ‘ 1.69 354 11.25‘ 454 682 254 ‘ 8.80 16.21 10.66 ‘ 21.17 1136 4.48 ‘ 525 11.21 ‘ 8.54

Table 5: Zero-shot performance on S-NIAH tasks from RULER (Hsieh et al., [2024).

S-NIAH-1 S-NIAH-2 S-NIAH-3

Model (pass-key retrieval) (number in haystack) (uuid in haystack) Avg.
‘ 1K 2K 4K 8K ‘ 1K 2K 4K 8K ‘ 1K 2K 4K 8K ‘
Transformer 948  96.0 0.0 0.0 95.6 708 0.0 00 | 91.6 57.6 0.0 0.0 422
GLA 0.0 0.0 0.0 0.0 32 1.6 1.2 0.8 0.0 0.0 0.0 0.0 0.6
HGRN2 76.0 4.8 0.0 0.0 36.4 7.6 0.0 0.0 0.0 0.0 0.0 0.0 10.4
Mamba 8.8 4.0 1.2 0.8 27.2 3.6 24 24 0.0 0.0 0.0 0.0 4.2
Mamba2 35.2 9.6 0.8 0.0 25.2 6.4 11.6 1.6 0.8 1.6 0.4 0.0 7.7
DeltaNet 388 40.8 484 348 26.4 6.0 108 44 8.0 0.8 0.8 24 18.5
GSA 23.6 10.0 32 2.4 20.4 6.8 9.2 4.8 0.0 0.0 0.0 0.0 6.7
HIROUTER ‘ 93.6 8.8 574 224 ‘ 842 676 326 44 ‘ 884 604 222 24 ‘ 51.9

on context lengths within the scope of the training context, highlighted by strong performance in
different formats of the needle within the haystack. However, some recurrent models demonstrate a
better propensity to extrapolate beyond the training context, such as Mamba, DeltaNet, and GSA.
HIROUTER again demonstrates the ability to bridge this gap in effectiveness between these two
paradigms: on shorter contexts, the performance remains comparable to the initial Transformer, but
as the context length extends, HIROUTER retains an ability to extrapolate and still perform at par
with models specifically trained for long contexts and extrapolation.

4.4 COMPUTATIONAL EFFICIENCY EXPERIMENT

To further quantify HIROUTER’s runtime behavior, we benchmark it alongside two sparse top-
k attention baselines, Routing Transformer and Mongoose, on a fixed batch size while scaling
sequence length T'. Table [6] reports forward (FWD) and forward+backward (FWD+BWD) runtimes
(ms) for sequence lengths between 2'> and 2'®. HIROUTER consistently outpaces both Routing
Transformer and Mongoose in forward/backward modes while surpassing their scaling behavior:
HIROUTER remains efficient at the largest tested lengths while others do not.

Table 6: Time (in milliseconds) for forward (FWD) and forward+backward (FWD+BWD) passes on a
fixed-sized batch across varying sequence lengths. Lower is better.

Tnput Length FlashAttention | Routing Transformer Mongoose HIROUTER
FWD  FWD+BWD FWD FWD+BWD FWD FWD+BWD | FWD FWD+BWD
4096 0.18 0.61 | 2.88 5.81 2.21 458 | 1.03 2.15
8192 0.56 195 | 3.76 820 | 3.76 8.20 | 1.09 3.83
16384 1.93 6.55 | 7.98 18.58 | 6.76 15.04 | 1.88 9.03
32768 7.14 25.09 | 15.76 36.08 | 13.29 29.08 | 3.98 19.05
65536 30.76 99.69 | 33.79 73.41 | 29.66 60.34 | 8.66 42.04

5 CONCLUSION

In this work, we present HIROUTER, a novel hierarchical routing approach towards computing
top-k attention via maximum inner product search. HIROUTER uses a bucket partitioning approach,
partitioning tokens within the sequence into discrete buckets across multiple levels of a learned
tree. The tree uses learned centroid-based routing logits and a Gumbel-Softmax trick with a dual-
component routing loss for training. Our work provides empirical evidence to show that HTIROUTER is
both competitive with concurrent efficient LLM architectures as well as regular full-attention base-
lines. Furthermore, we provide an efficient Trition-based implementation to enable our method to
outperform other efficient attention-based implementations in terms of efficiency.
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ETHICS STATEMENT

This work focuses on developing efficient attention mechanisms for large-scale language models.
While our method improves the scalability and retrieval accuracy of Transformer models, the ethical
considerations are largely consistent with those of general-purpose language modeling. Potential
risks include misuse in generating harmful or misleading content, reinforcement of biases present in
training corpora, and environmental concerns arising from large-scale training. We mitigate these
risks by (i) benchmarking only on standard public datasets, (ii) avoiding the use of sensitive or private
data, and (iii) providing transparent methodology to facilitate responsible replication. Moreover, the
computational efficiency gains of HIROUTERreduce energy consumption relative to dense or less
efficient sparse baselines, contributing positively to the environmental impact of model deployment.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure reproducibility and transparency in all aspects of this work. The
proposed HIROUTER algorithm, including hierarchical routing, dual entropy regularization, and
beam-search retrieval, is fully described in the methodology section with precise mathematical
formulations. Detailed hyperparameter choices, model architectures, and training procedures are
provided in the appendix, including dataset splits, optimization settings, and auxiliary loss scaling.
Synthetic experiments, WikiText-103 evaluations, and large-scale benchmarks are reported with
sufficient detail to enable replication. We also release a Triton-based implementation of our GPU
kernels, ensuring that researchers can reproduce both the efficiency and accuracy results.
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A THEORETICAL ANALYSIS AND PROOFS

Notation. Let {zy,...,2z7} C S?! denote unit-norm tokens and let {C1,...,Cc} C S~ be
unit-norm centroids. Each token z; is assigned to its nearest centroid

a; = arg m{?X<Zi, Cb>7

and satisfies the intra—bucket tightness

(z;,Cq;) > 1—¢, 0<e<l. €

Given a query g € S?~! with centroid assignment a, = arg max,(q, Cp), let S; = {2z; : a; = a,}
be its bucket. Define the inter—centroid margin between C, and C,_ for any z ¢ S, as

Ag.=1—(Cq, Ca.), Ag.€][0,2] 2)
Lemma A.1 (Tight cluster). For any z;,z; € S,

(zi, zj) > 1—4e.

Proof. By Equation , |z — C,|l < V/2¢ foreach z € S,. Thus ||z; — z;|| < 21/2¢, and since both

are unit-norm, (2;, z;) = 1 — 1{|z; — z;[|> > 1 — 4e. O
Lemma A.2 (Residual norm bound). If ||q|| = ||Cy|| = 1 and {q.Cq) > 1 — ¢, then in the
decomposition ¢ = (q,Cq) Cq + 7, with v L C,4, we have

Il < V2=,
Proof. ||q|* = (q,Cq)* + [[7]|?, so [[r[* = 1 —(q,Cy)* = (1 = (g,Cq))(L + (g, Cy))- Since
(q,Cq) > 1 — &, it follows that ||7||* < 2e. Taking square roots yields the claimed bound. O

Lemma A.3 (Orthogonal component bound). If ||C,|| = ||Ca.|| = 1 and (Cq,Ca.) =1 — Ay ., then
for Calz =Cq, —(C4,Ca.) Cy,
ICa 11 < v/28q.:.

Proof. Because Co- L Cqand ||Cq. || = [|Cqll = 1,
HC;;||2 =1- <qucaz>2 =1- (1 - Aq7z)2 = 2Aq,z - Ai,z < 2Aq,z-
Taking square roots yields the desired inequality. O

Lemma A.4 (Centroid gap with distortion). If (q,Cy) > 1 — € and (Cy,C,,) = 1 — Ay, with

Ay» > €, then
(@,Ca.) < (a,Cq) — (Agz —€).
Proof. Decompose ¢ = (q,Cq)Cq + 7 with ||r|| < v/2¢ (Lemma |A.2), and let C;- be from
Lemmal[AJ3l Then
(@,Ca.) = (q,C)(1 — Ay2) + <"°vcalz> <{q,C)(1 = Ay2) + V2e V24 .
Since v/2¢ /20, < A, . — €, the result follows. O

Proposition A.5. Let
2" = arg max(q, z;)
K3

be the true nearest neighbor of query q € S*~! among {z;}, and let Sy be the bucket of q. Define
the effective gap
Geff = mln(<q7 Z*> - <Q7 Z>)
z¢S,

If A, > e+ 2V2 forall z ¢ S,, then geg > 0 and z* € S,; i.e., the query and its nearest
neighbor are assigned to the same centroid.
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Proof. 1. Bound on ||z — C,_||. For any z ¢ S,, its assigned centroid C,_ satisfies (2,C,.) > 1 — .
Since [|z]| = [|Ca. || = 1,

Iz = Ca.ll* =2 (1 = (2,Ca.)) < 26 = Iz —Ca. || < V2e.
2. Outsider score upper bound. Because ||g| = 1, Cauchy-Schwarz gives |{q, z — C,.)| < v/2¢.

Thus
(@, 2) = (a4, Ca.) + (a4, 2 — Ca.) < (g, Ca.) + V2e.
By Lemma (@, Ca.) <(q, Cq) — (Agz —€), 50

<q7 z> < <q7 Cq> - (Aq,z - 5) + \/2> = <Qa Cq> - (Aq,z — &€ \/%) . (A)

3. Insider score lower bound. By intra—bucket tightness,
l= —C,ll < V.
Since ||q|| = 1, Cauchy—Schwarz gives
(g, 2" = Cy)l < [l27 = Gyl < V2.
Therefore,
<q7 Z*> = <q7 Cq> + <q7 Z* - Cf]> Z <q7 Cq> -V 26' (B)
4. Effective gap. Subtracting (A) from (B) yields, for every z ¢ S,

(@, 2") — (@, 2) > (Dg — &) —2V/2e = Ay, — (5 + 2\@) .
Hence

ger = min{(a, =) (@, 2)} = By (g + 2\@) .

S. Correct assignment of z* and q. If A, . > ¢ + 2v/2¢ then g > 0, so 2* scores strictly above
every outsider. As it is also the top insider, it must lie in the same bucket as q. O

Proposition A.6. Under parent p, let {p; (. j)}icz, and define p,; = N%) Ziezp Di,(p.j), With
Zle Dp.; = L. The balanced loss is minimized iff p, ; = 1/C for all j.

Proof. Fix parent p and write p; := p, ;. Introduce a Lagrange multiplier A for the constraint

C _
Zj:lpj =1
L({p;}, N ij log pj + A Zpa ~1

Stationarity 0L/0p; = 0 gives logp; + 1+ A = 0, s0 p; = e~ (1 Enforcing chzlﬁj =
Ce~ O+ =1 yields p;j = 1/C for all j, the unique minimizer of L.
Under a low-temperature Gumbel-Softmax, each p; () is nearly one-hot, so p, ; converges to

the fraction of tokens assigned to bucket j. Driving p, — (1/C,...,1/C) thus enforces an
approximately equal token count per bucket. O

Proposition A.7. At a given router level, let p be the parent node to which token z; is assigned;
denote by {Cp, ; }]C:1 the child centroids under p, and by p; (, ;) the soft assignment probabilities of

z; to those centroids. For the sample-entropy loss £§ﬁ?p, the gradient w.r.t. z; is
c

C
1
VaiLomp = =7 > Pitng) (10806,) +1) Cpj = D Pioin) Coir)-
Jj=1 j

Hence each centroid Cy, j exerts an attractive effect on x; iff p; (p, ;) > e~ 1 (since p(logp + 1) > 0),

and a repulsive effect iff p; (p,5) < e~ L. Thus, the dynamics enforce both intra—bucket tightness (¢ |)
and inter—centroid margin (Ay 5 1), as required by Proposition
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Proof. For a fixed token index ¢, abbreviate
-
pi = Dipgy  Cj=Cpy =12

Then p; = softmax(¢),; = exp(¢;)/ ¢ w—1 €xp(¢;,) and the per-sample entropy term is

C 1 T
-~ Yontn L = F3
j= i=1

Differentiating £, with respect to z; and using V,, (p;logp;) = (logp; + 1) V,,p; gives

VLB = fvziﬁi =— Z logp; + 1) V. p;.

By the softmax Jacobian,

Ipj.
oy,

so by the chain rule,

¢ c
Op
zpj_28]v E ij((sjm_pm)cm:p](ci_mecm>
m=1 m=1
Define the soft centroid mean p; := Zﬁzl PmCr,. Substituting the expression for V,, p; yields

C
1
Vo Ly = —7 > pi(logp; +1) (C; — ),

J=1

which is the claimed gradient formula after restoring the original indices.

Attractzon—repulszon A (small) gradient-descent step updates z; as z; < z; — 1 Vg, Egmp =
+ 7 ijl ¢; (C; — pi), where ¢; := p;(1 + log p;) and 7 is learning rate. Since 0 < p; < 1
implies logp; < 0, we have
>0, iffp; >e L,
(bj = O7 lffp_] = 6_1,
<0, iffp; <e?!

Thus components with p; > e~ move z; in the direction (Cj — ;), i.e. toward centroid C;

(attraction), while components with p; < e~ ! contribute along —(Cj — ), 1.e. away from centroid
C; (repulsion). When one centroid dominates (p;« > e~ !), the update is approximately toward C;
and away from all others, which tightens token—centroid cohesion (reducing intra-bucket distortion ¢)
and enlarges the margin to competing centroids (increasing A, ), as claimed. O
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Three-Branch Router with Softmax Gating. We extend our architecture into a three-branch
structure combining a Softmax-Weighted Average (SWA) branch, a learned bias branch, and a
HIROUTER sparse top-k attention branch. A gating head produces mixing weights through a softmax,
adaptively balancing contributions from the three branches. The SWA branch provides dense
contextual aggregation; the learned bias branch adds a trainable bias vector weighted by the gate to
absorb uncertain queries and stabilizes training similar to attention sinks (Gu et al.| 2024); and the
HIROUTER branch delivers high-precision retrieval by selecting a small set of relevant tokens.

Grouped-Query Retrieval. In addition, we employ grouped-query attention (GQA) (Ainslie et al.|
2023)) to enhance computational efficiency. Instead of retrieving buckets for each query independently,
we compute the average of queries within a group and use this group representative to identify the
top candidate buckets. All queries in the group then share these buckets during retrieval.

All experiments were conducted on a single machine with 8 NVIDIA H100 80GB GPUs connected
with HBM3. Experiments were run in an environment using CUDA version 12.6 and PyTorch 2.6.0.

B.2 OPTIMIZED IMPLEMENTATIONS FOR ENHANCING GPU EFFICIENCY

A core ingredient of HIROUTER is that every bucket is exactly the same size. After computing the
routing logits with a low-temperature Gumbel-Softmax, we apply a stable sort to both keys and
values, grouping tokens by their hard bucket assignments while preserving their original order within
each bucket. This transforms the input tensor into Z(&) € RBH Xd"xNxd N — 4%, in O(1)
simply by a reshape. Here BH = batch x heads and N € {32,64, 128}. Because each bucket
occupies a contiguous, equal-sized region of memory, our Triton kernels can load/store an entire
bucket with a single memory access, minimizing bandwidth waste and maximizing throughput.

B.3 FAISS BASELINE CONFIGURATION FOR SYNTHETIC GAUSSIAN RETRIEVAL

To ensure reproducibility and clarify the interpretation of our comparisons, we provide the explicit
configuration parameters used for the Faiss-GPU baselines.

K-Means (faiss.Kmeans).

* num_clusters = max(1, sequence_length // 32): one cluster is allocated per 32
samples, with at least one cluster enforced.

* niter = 20: the number of k-means iterations.

LSH (faiss.IndexLLSH).

* n_bits = 10: number of bits used to represent each vector in the LSH index.

HNSW (faiss.IndexHNSWFlat).

* M = 32: maximum number of links (neighbors) maintained per node.

* efConstruction = 40: size of the candidate list during index construction, where larger
values improve recall at the cost of higher construction time.

» efSearch = 128: size of the candidate list during query search, trading recall for search
efficiency.

These parameter settings follow standard recommendations in the Faiss library, where M,
efConstruction, and efSearch are the primary controls for the accuracy—efficiency tradeoff in
LSH and HNSW.

23



Under review as a conference paper at ICLR 2026

B.4 LANGUAGE TASK DETAILS

Here we list some additional details regarding the different tasks on which we conduct language

model evaluation.

B.4.1

LANGUAGE MODEL EVALUATION HARNESS TASKS

The following are recall-intensive tasks on which we evaluate. All tasks are evaluated directly using
accuracy for commonsense reasoning tasks and perplexity for language modeling.

Table 7: Harness tasks on which we evaluate.

Task

Task Type

PIQA (Bisk et al., 2020)

ARC (Bhakthavatsalam et al.| |[2021)
HELLASWAG (Zellers et al.,[2019)
WINOGRANDE (Sakaguchi et al., [2020)

SIQA (Sap et al.,[2019)
BooLQ

WIKITEXT (Merity et al.,[2017)
LAMBADA (Paperno et al., 2016)

Physical Commonsense Reasoning
Commonsense Reasoning

Commonsense Natural Language Inference

Pronoun Resolution
Social Commonsense Reasoning
Yes/No Commonsense QA
Language Modeling
Text Understanding

B.4.2 RECALL INTENSIVE TASKS

The following are recall-intensive tasks on which we evaluate. All tasks are evaluated directly with
accuracy reported as the metric of choice.

Table 8: Recall-intensive tasks on which we evaluate.

Task

Task Type

STRUCTURED WEB DATA EXTRACTION (SWDE) (Lockard et al.|[2019)

FDA (Arora et al.||2023)
SQUAD (Rajpurkar et al.|[2018)
TRIVIAQA (Joshi et al.|{|2017)
DROP (Dua et al.|[2019)

NATURAL QUESTIONS (Kwiatkowski et al.|[2019)

Structure HTML Relation Extraction
PDF Key-Value Retrieval
Question Answering
Question Answering
Question Answering
Question Answering

B.4.3 LONGBENCH

We evaluate the following tasks from LongBench (Bai et al.| [2024) (Table @ Due to our pre-training
on an English dataset, we choose to use only the English language tasks included in the benchmark.

Table 9: Tasks from LongBench on which we evaluate.

Task Context Type Average Length Metric Data Samples
NARRATIVEQA (Kocisky et al.|[2018) Literature/Film 18409 F1 200
QASPERQA (Dasigi et al.||[2021) Science 3619 F1 200
MULTIFIELDQA (Bai et al.[[2024) Multi-Field 4559 F1 150
HOTPOTQA (Yang et al.|[2018) Wikipedia 9151 F1 200
2WIKIMULTIQA (Ho et al.[[2020) Wikipedia 4887 F1 200
MUSIQUE (Trivedi et al.||2022) Wikipedia 11214 F1 200
GOVREPORT (Huang et al.[[2021) Government Reports 8734 Rouge-L 200
QMSUM (Zhong et al.[[2021) Meetings 10614 Rouge-L 200
MULTINEWS |[Fabbri et al.|(2019) News 2113 Rouge-L 200
TREC (Li & Roth/[2002) ‘Web Questions 5117 Accuracy 200
TRIVIAQA (Joshi et al.|[2017) Wikipedia/Web 8209 F1 200
SAMSUM (Gliwa et al.|[2019) Dialogue 6258 Rouge-L 200
LCC (Guo et al.{[2023) Github 1235 Edit Similarity 500
REPOBENCH-P (Liu et al.|[2024) Github Repositories 4206 Edit Similarity 500
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B.4.4 SINGLE NEEDLE-IN-A-HAYSTACK

We utilize the Single Needle-in-a-Haystack (S-NIAH) task on three settings.

* S-NIAH-1: The key type is a word and the value type is a number. The haystack consists of
repeated sentences. This is referred sometimes as passkey retrieval.

* S-NIAH-3: The key type is a word and the value type is a number. The haystack consists of
Paul Graham Essays. This is referred to as vanilla NIAH.

* S-NIAH-1: The key type is a word and the value type is a UUID. The haystack consists of Paul
Graham Essays.

For evaluating correctness on NIAH, the model is made to generate a sequence. If the generation
contains the correct value, the model is considered correct. Performance is reported in terms of
accuracy.

B.5 EXPERIMENTAL REPRODUCIBILITY

For full transparency, we provide our code within the supplemental material. This includes the code
used directly to evaluate our models. Our code is based directly on the packages used for evaluating
the models:

* lm-evaluation-harness: We use this package to evaluate on commonsense reasoning (Table[2)
and real-world recall tasks (Table[3).

— https://github.com/EleutherAI/lm-evaluation-harness
* LongBench: We use this to evaluate on LongBench tasks (Table ).
— lhttps://github.com/THUDM/LongBench
* RULER: We use this package to evaluate on NIAH tasks (Table [5).
— https://github.com/NVIDIA/RULER
For training baselines, we utilized the flame (https://github.com/fla-org/flame) pack-
age along with their provided model configurations. We change the tokenizer to use the

EleutherAIl/gpt-neox-20b tokenizer and make according changes to the special token ids to
support the tokenizer.
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C ADDITIONAL EXPERIMENTS

C.1 SCALING RESULTS AT 1B PARAMETERS

We further evaluate HIROUTER at the 1B parameter scale. As shown in the method
continues to demonstrate strong performance, extending the robustness observed at the 410M scale
(see[Table 7). These results reinforce that HIROUTER scales effectively with model size across diverse
language modeling and reasoning tasks. We also note that additional scaling studies, particularly on
parameter and hyperparameter tuning, would further support broader adoption, which we leave to
future work.

Results. Table|10]compares two variants: one without the learned bias branch (w/o bias) and one
with a learned bias branch (w/ bias). The bias branch yields consistent improvements, highlighting
its role in stabilizing training and enhancing generalization as model size grows.

Table 10: Results at the 1B scale on language modeling and zero-shot common-sense reasoning.

Wiki. LMB.
ppl L ppld

26.29 30.56 | 3580 6823 4190 53.12 63.17 29.69 3930 58.99 48.78
26.01 27.21 | 36.06 6882 4299 5335 62.96 29.27 3930 59.79 49.07

LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ

Model acct acctT acc_ntT acct accT acc_ntT acctT acct

Avg.

HIROUTER-1B w/0 bias
HIROUTER-1B w/ bias

C.2 ABLATION: BEAM WIDTH

We investigate how increasing beam width (without retraining) affects performance in two settings:
SNIAH-1 and WikiText-103. The results are shown in Tables[TTland [12]

Table 11: SNIAH-1: Retrieval accuracy at different beam widths

Model ‘ 1K 2K 4K 8K

HiRouter (width=4) | 93.6% 86.8% 57.4% 22.4%
HiRouter (width=8) | 96.4% 88.0% 60.2% 33.2%

Table 12: WikiText-103: Perplexity () vs beam width

Width ‘ 1 2 4 8
Perplexity | 20.7 194 185 18.6

Even without retraining, increasing beam width from 4 to 8 in SNIAH-1 leads to higher recall.
Yet on WikiText-103, further increases beyond width 3 or 4 show diminishing gains in perplexity.
This suggests a moderate beam width yields the best practical trade-off between accuracy and
computational cost.

C.3 ABLATION: TOP-K RECALL ON SYNTHETIC GAUSSIAN RETRIEVAL
We perform ablations for the recall task on synthetic Gaussian retrieval, on datasets of total length 22

tokens. We examine how beam width, number of buckets, and routing levels each affect Recall@ 128
under fixed budget settings.

Beam Width Ablation (with num_levels = 4, num_bucket = 4)

Beam Width M | 4 8 12 16 32
Recall @128 (%) | 140 253 340 394 621

Recall increases monotonically with beam width, confirming that enlarging the search beam system-
atically improves top-k retrieval accuracy (at the cost of higher runtime).
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Bucket Count Ablation (adjusted beam width for fairness, num_levels = 4)

num_bucket | 2 4 6 8
Recall @128 (%) ‘ 33.1 394 380 364

We see the best recall at num_bucket = 4. Fewer buckets make the tree too broad and reduce
specialization; too many buckets fragment retrieval too finely, decreasing recall.

Level Depth Ablation (adjusted beam width, num_bucket = 4)

num_level | 2 3 4 5
Recall @128 (%) ‘ 33.8 394 39.1 376

A routing depth of 3 levels achieves the best recall. Both shallower and deeper trees reduce perfor-
mance, due respectively to coarse bucket granularity or excessive fragmentation of tokens.

Summary of Findings These ablations indicate that for sequence length 212 and top-128 recall: (i)
moderate beam widths (e.g. 12 or 16) yield strong gains without excessive overhead; (ii) a balance
of bucket width (4) gives the right granularity; and (iii) a mid-level tree depth (3 levels) maximizes
recall efficiency. Overly coarse or overly fine configurations degrade performance.

C.4 ABLATION ON WINDOW SIZE OF THE SWA BRANCH

We further ablate the impact of the attention window size on language modeling and zero-shot
reasoning performance. Table [I3|reports results for window sizes 32, 64, and 128 across the same
evaluation benchmarks as in the main paper.

Table 13: Ablation on window size for HIROUTER. We report accuracy (%) on common-sense
reasoning benchmarks.

LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA  BoolQ

Window Size acc T acc T acc_n T acc T acc T acc_n 1 acc T acc T Avg.
32 27.38 66.16 38.18 52.64 58.88 28.41 38.33 61.13 46.38
64 33.09 66.81 38.03 50.75 59.47 28.50 38.08 61.31 47.01
128 30.33 65.72 37.62 52.57 58.75 27.82 38.54 52.48 45.48

We observe that moderate window sizes (e.g., 64) provide the best overall performance, balancing
perplexity and accuracy across tasks. Too small a window (32) reduces model expressiveness, while
larger windows (128) slightly degrade recall and downstream accuracy.

C.5 ABLATION ON GROUPED-QUERY ATTENTION (GQA)

To study the effect of grouped-query attention (GQA) (Ainslie et al.,|2023)), we conduct an ablation
on WikiText-103. We vary the group size G while keeping other hyperparameters fixed, and report

perplexity in Table

Table 14: Ablation of GQA group size on WikiText-103. Smaller group sizes correspond to fewer
queries sharing key—value projections.

Group Size Perplexity

16 19.1
4 18.8
2 18.6
1 18.5

27



Under review as a conference paper at ICLR 2026

We observe that larger group sizes (G' = 16) slightly degrade performance due to excessive parameter
sharing, while reducing the group size consistently improves perplexity. At G = 1, which corresponds
to standard multi-head attention without grouping, the model achieves the best perplexity (18.5).
These results highlight the trade-off between efficiency and modeling capacity: GQA provides
computational savings at the cost of a small increase in perplexity, while smaller groups preserve
model expressivity.

C.6 ABLATION ON REGULARIZATION L0OSS WEIGHTING

We ablate the effect of the dual-entropy regularization weight on performance across language
modeling and zero-shot commonsense reasoning tasks. Table[T5]reports results when varying the
regularization « coefficient from 0.00 (no regularization) to 0.10.

Table 15: Ablation on the weighting of the dual-entropy regularization loss. We report perplexity
(Wiki., LMB.) and accuracy (%) across commonsense reasoning benchmarks.

Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA  BoolQ

Reg. Weight ppl | ppl | acc T acc T acc_n T acc T acc T acc_n 1 acc T acc 1 Ave.
0.10 31.53 44.74 32.58 65.78 38.02 50.36 58.00 27.22 38.13 60.64 46.34
0.05 31.09 42.94 33.09 66.81 38.03 50.75 59.47 28.50 38.08 61.31 47.01
0.01 30.30 39.99 34.47 66.76 38.36 50.59 58.80 28.24 39.41 58.99 46.95
0.00 30.04 43.22 33.08 67.00 38.25 51.18 59.73 28.21 38.29 57.02 46.59

We find that moderate weighting (e.g., 0.05) achieves the best overall trade-off across tasks, improving
average performance compared to both no regularization (0.00) and heavier weighting (0.10). This
supports the view that the dual-entropy loss is most effective when applied as a lightweight regularizer,
sharpening token-to-bucket assignments without overwhelming the training objective.

C.7 COMPARISON WITH SCANN-PQ: TRAINING OVERHEAD AND RECALL-SPEED TRADEOFF

We train HiRouter jointly with the base model, so it introduces no separate training cost, and its
parameter overhead is negligible. Routing is realized as dot-product operations with centroids (i.e.
linear transforms), which allows rapid convergence alongside the main model. To validate this in
practice, we benchmark both training and inference time of HiRouter against ScaNN-PQ (Guo et al.}
2020) under a batch size of 128 (equivalent to top-k attention over 8 heads x 16 sequences).

| 05K 4K 8K 16K

1.14s 4.04s 6.15s 10.80s
032s 036s 034s 0.33s
934s 17.06s 253s 403s

HiRouter (train)
HiRouter (infer)
ScaNN-PQ (infer)

Even for inference alone, HiRouter is substantially faster than ScaNN-PQ, and its training overhead
remains modest.

We further compare top-128 recall across varying sequence lengths:

| 05K 4K 8K 16K

HiRouter (Recall@128) 60.1% 253% 17.9% 13.8%
ScaNN-PQ (Recall@128) | 50.0% 42.9% 34.9% 26.5%

While ScaNN-PQ attains higher recall at longer lengths, its large runtime cost makes it less practical
for efficient sparse top-k attention. HiRouter offers a better balance of recall and efficiency, making it
more suitable in real systems.
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D

TRITON KERNELS

Algorithm[I|demonstrates how we perform our sparse top-k attention computations within our custom
Trition kernels. Algorithm [3]demonstrates how we implement the hierarchical beam search within
our custom Triton kernels.

Algorithm 1 Forward Pass for the HiRouter Sparse Attention Kernel

Require: Query, key, and value tensors Q, K,V € RBHXTxd,

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:

Query/key index tensors q_idx, k_idx € ZBHXTXS
Block size BS, candidate paddlng CAND_PAD, and number of samples per query S.
Notation: B: batch size; H: number of attention heads; BH = B x H: total head instances; G:
number of queries grouped per head; B : block size in the key dimension; By : block size in the
value dimension.
Output: Attention result O € REH*T*d and Jog-sum-exp buffer LSE € RBAXT,
Initialize a 3-D launch grid over (¢, v,bh) + (0. T—1, 0..d/By—1, 0..BH-1).
for each block (¢, v, bh) in the grid do
b,h < |bh/H |, bh mod H
Initialize accumulators: £ <— —co g, s < 0 g, w < 0 gxB, > running max, sum-exp,
weighted sum
Determine padded group size: Gpaq <— max(G, CAND_PAD)
Load query block: ¢ <— Q[bh, t, 0:Bf| € REma*Bx
Scale queries: ¢ « ¢/V/d
for each sampled index 7 = 0:5—1 do
s_idx < q_idx[bh,t,i] x BS
Load corresponding key/value blocks K;, V; via k_idx
Compute attention scores: score +— ¢ KT
Apply causal mask if s_itdx > t: score <— —o0
Update statistics: (¢, s,w) <— UPDATE_STATS(¢, s, w, score, V)
end for
Normalize outputs: O[bh,t,v] < w/s, LSE[bh,t] < ¢+ logs
end for

Algorithm 2 UPDATE_STATS: Numerically Stable Softmax Statistics Update

1:

function UPDATE_STATS(Y, s, w, scores, V)

Require: Given running softmax statistics £ € R? (max logits), s € R? (sum of exps), w € RE*4

® R U hHE 2D

9:
10:
11:

RBXN RBxNxd

(Welghted sum), a new block of logits scores € , and corresponding values V €
m < max; scores. ; € RP > block-wise max
lrew + max (E m)
scale <+ exp(ﬂ — Knew)

5 < s X scale

w < w X scale
A — exp(scores Loewl:, None]) € RBxN

N
s+ s+ Ej?vl A
w 4= w+2j:1A-,ijj,'
return lpey,, S, W

end function
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Algorithm 3 Hierarchical Beam Search Kernel

Require: Q € RBs*P Offsets € ZLH!, Counts € Z%, beam, K, BLOCK_TOKENS, L, C, D
1: b < program_id(0)
2: ids ¢ b - BLOCK_TOKENS + [0 : BLOCK_TOKENS—1]
3: valid < ids < Bg
4: Qyite < load(gptr, ids)

5: initialize beam_probs « [1,0,...,0], beam_parents « [0,...,0]
6: for(=0...L—1do

7: Py < counts[f], off «+ offsets[/]

8: W < gather(routep,, beam_parents, off)

9: scores < exp (Qtilc . WT)

10: normalize and weight by beam_probs

11: reshape to [BLOCK_TOKENS, beam - C]

12: (sorted_s7 sorted_idxs) + ARGSORT(scores, arange)
13: take top-K from sorted_s, sorted_idxs

14: update beam_probs, beam_parents

15: end for

16: store final beam_parents into output buffer
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E TIME COMPLEXITY ANALYSIS

Let T be the sequence length, D the per-head feature dimension, L the number of routing levels,
C the (constant) branching factor, and k the average number of buckets probed per query in the
sparse-attention kernel. All costs below are per head and per sequence.

The routing stage at each of the L levels computes C-way logits for T tokens (O (T D C')), applies
a low-temperature Gumbel-Softmax plus a stable bucket sort (which can be implemented in O(T")
via radix or counting sort for fixed C'), and then reshapes into contiguous buckets in O(1). Hence
routing costs

O(LTDC+T) ~ O(LTD),
since C'is fixed.

The sparse-attention kernel then, for each of the 1" queries, probes k buckets and performs D-
dimensional dot-products, incurring
O(TkD)
work.
Overall, HIROUTER runs in
O(LTD+TkD) = O(TD(L+k)) < O(T*D)
time, yielding linear scaling in 7" for fixed L, k. For a batch of size B and H heads, the total cost is
O(BHTD (L+k)).

The backward pass mirrors the forward complexity, since it simply recomputes or reuses the same
routing structure and runs one sparse-attention gradient kernel.
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F LIMITATIONS

For reasons related to computational resource limitations, we do not train models past a size of
410M parameters. Furthermore, we restrict ourselves to auto-regressive large language models,
but we contend that our method is also suitable for bi-directional models that use attention, such
as vision-language models that use Transformer backbones (ex. ViT). We believe that our chosen
datasets still provide valuable insights while remaining within our operational constraints and will
further explore other directions as our computational capabilities expand.

G BROADER IMPACTS

This work explores a novel method for retrieval-based top- K attention. The underlying method is
meant to be efficient and scalable. While the direct usage of attention can entail potential broader
risks within Al-based systems, these risks do not stem directly from the algorithm presented within
the paper. As such, there are no risks that are deemed significant and worthy of further discussion.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as a general-purpose assistive
tool. Specifically, LLMs were employed for polishing the writing (e.g., improving grammar, clarity,
and conciseness of sentences) and for generating simple code snippets such as IATEX tables or small
illustrative examples. LLMs were not used for research ideation, conceptual contributions, data
analysis, experiment design, or result interpretation. All core technical ideas, theoretical analyses,
algorithm design, and experiments reported in this paper were conceived, implemented, and validated
entirely by the authors.
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