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ABSTRACT

Attention mechanisms have achieved remarkable success in deep learning through
parallel searching for the most relevant tokens in large-scale data. However, both
the memory and computational costs of self-attention scale quadratically with
sequence length, making it infeasible for long sequences. Recent sparse top-k
attention methods can achieve performance comparable to full attention with much
lower memory and computational overhead. Nevertheless, they often rely on graph-
or tree-based index structures, which are too slow for batches of token sequences
to rebuild across layers or heads, or use partition-based techniques which lack
precision. To address this issue, we propose a search algorithm for sparse atten-
tion: Hierarchical Router Algorithm, HIROUTER, which can efficiently construct
indexing structures and dynamically retrieve top-k tokens on a per-sequence basis,
striking a better balance between speed and accuracy. HIROUTER employs a
multi-level routing mechanism that hierarchically partitions tokens into discrete
buckets along a learned tree structure withO(T ) to the sequence length T . Notably,
our dual entropy loss directly regularizes embeddings, using affinity for stronger
sample–centroid alignment to improve top-k recall and balanced buckets to ensure
efficient GPU parallelism. HIROUTER outperforms FlashAttention in speed on
long sequences while matching or surpassing the accuracy of full attention, offering
a compelling solution for scalable and efficient attention mechanisms.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become indispensable for sequence modeling across a wide
range of domains (OpenAI, 2023), including natural language processing (NLP) (Devlin et al., 2019;
Brown et al., 2020; OpenAI, 2023; Jiang et al., 2024), computer vision (Dosovitskiy et al., 2021;
Ramesh et al., 2021; Brooks et al., 2024), and more. At the heart of Transformer models lies the self-
attention mechanism (Vaswani et al., 2017), which constructs rich token representations by attending
to all elements in a sequence in parallel. This innovation has powered breakthroughs in language
modeling (Radford et al., 2019), machine translation (Ott et al., 2018), text generation (Brown et al.,
2020), image classification (Touvron et al., 2021), video generation (Brooks et al., 2024), and beyond.
Despite its success, self-attention incurs O(T 2) memory and computational costs as the sequence
length T grows, posing a major obstacle for long-sequence applications (Child et al., 2019; Beltagy
et al., 2020; Tay et al., 2021). This quadratic cost often makes naive self-attention prohibitively
expensive for real-world, large-scale applications.

Recent research has proposed several strategies to mitigate the complexity of self-attention. Deng
et al. (2024) show that attention matrices are inherently sparse. Building on this observation, Top-k
attention restricts computation to the k most informative tokens, substantially reducing both memory
usage and FLOPs while maintaining full-attention quality (Roy et al., 2021; Kitaev et al., 2020; Gupta
et al., 2021; Bertsch et al., 2023; Mao et al., 2024). Nevertheless, existing top-k implementations
suffer from two fundamental drawbacks: (i) Inefficient time–precision trade-off, as they rely
on generic k-Nearest Neighbors (k-NN) or Maximum Inner-Product Search (MIPS) routines that
are ill-suited for batches of token sequences in attention. Consequently, these methods rebuild
graph- or tree-based indices for each head and layer, inserting tokens sequentially and forgoing
GPU parallelism, which leads to prohibitive runtime (Kitaev et al., 2020; Roy et al., 2021); (ii)
Inefficient GPU utilization, as their dependance on data-agnostic k-NN libraries (Johnson et al.,
2021; Guo et al., 2020) that ignore the underlying token distribution (Johnson et al., 2021; Malkov

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

t-SNE Visualization of WikiText-103 Embeddings

Without Dual Entropy Loss Regularization With Dual Entropy Loss Regularization

Child 1 2 3 4 Parent 1 2 3 4

Figure 1: Illustration of HIROUTER configured with two levels, each containing four buckets. Colors
denote parent buckets (level 1) and marker shapes denote child buckets (level 2). Without Dual
Entropy Loss regularization (left), embeddings are scattered across buckets. With regularization
(right), embeddings with the same shape and color cluster tightly, ensuring that semantically similar
tokens fall into the same bucket. This clustering makes top-k retrieval both easier and more reliable,
as queries need only search within well-formed buckets instead of competing with irrelevant tokens.

& Yashunin, 2020; Guo et al., 2020), and therefore fail to leverage neural networks’ ability to learn
data-aware indices. Partition-based methods such as LSH (Kitaev et al., 2020) or k-means (Roy et al.,
2021) further exacerbate this issue by producing imbalanced buckets under skewed data distributions,
leading to inefficient GPU occupancy.

In this work, we address both limitations through our hierarchical routing algorithm, HIROUTER,
together with a dual-entropy loss regularizer: (i) striking a good balance between speed and
precision by routing tokens in parallel into a multi-level tree and performing high-recall MIPS
entirely on-GPU, per sequence and per head, making the approach well suited to batched long-
sequence data. Importantly, the dual-entropy loss regularizes similar tokens to cluster together,
thereby improving retrieval precision, as illustrated in Figure 1. (ii) improving GPU utilization
by partitioning KV-cache into equal-sized buckets. Specifically, the dual-entropy loss encourages
the embeddings to form uniform partitions, and the Gumbel–Softmax relaxation makes the discrete
routing differentiable, allowing the entire partitioning scheme to be optimized end-to-end.

Our experiments in a wide range of tasks on the evaluation benchmarks for language modeling,
natural language understanding show that hierarchical routers achieve better performance compared to
strong transformer baselines. Extensive evaluations demonstrate that our method achieves substantial
improvements in computational efficiency and retrieval accuracy over existing top-k retrieval methods.
We summarize our key contributions as follows:

I) Efficient Parallel Hierarchical Top-k Attention: We introduce HIROUTER, a hierarchical
router that clusters tokens in parallel into multi-level buckets, enabling top-k retrieval with
complexity O(kT ), k ≪ T while outperforming or matching full-attention performance.

II) Entropy-Based Dual-Objective Regularization: We propose a routing loss that regularizes
key and query embeddings, balancing bucket loads while tightening token–centroid affinity.
This ensures retrieval quality and balanced, equal-sized buckets for higher GPU utilization.

III) Strong Benchmarks and Efficient Scalability On language modeling and reasoning bench-
marks, HIROUTER achieves strong accuracy with efficiency, balancing performance and cost. It
also provides up to 3.55× speedup on long-context inputs over FlashAttention.

2 RELATED WORK

Efficient Attention. Location-based sparse patterns have long been used to curb the quadratic
complexity of vanilla self-attention. Early works alternated coarse and local windows to reduce the re-
ceptive field (Liu et al., 2018). Strided/dilated patterns were later adopted for image generation (Child
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et al., 2019), while adaptive windows offered dynamic sparsity for sequence modeling (Sukhbaatar
et al., 2019). Global-plus-local hybrids such as Longformer (Beltagy et al., 2020), ETC (Ainslie et al.,
2020), and BigBird (Zaheer et al., 2020) designate a small set of global tokens that attend everywhere.
Orthogonal to fixed patterns, low-rank or kernelized approaches approximate dense attention via
linear projections (Katharopoulos et al., 2020; Xiong et al., 2021; Wang et al., 2020) or random
features (Choromanski et al., 2021; Peng et al., 2021). NSA (Yuan et al., 2025) is a natively trainable
sparse attention that combines hierarchical token compression and selection. While these designs
bring linear or near-linear complexity, they often under-use fine-grained, content-based interactions.

Sparse Top-K Attention. Content-based sparsification keeps only the most relevant tokens per
query (Pagliardini et al., 2023). Routing Transformers (Roy et al., 2021) and Reformer (Kitaev et al.,
2020) hash queries and keys into shared buckets. Memory-Efficient Top-k Attention (Gupta et al.,
2021) and Unlimiformer (Bertsch et al., 2023) push context lengths toward millions of tokens, but
they still depend on external k-NN or hashing modules. IceFormer (Mao et al., 2024) improves
transformer efficiency by integrating ANN search mechanism that focuses on the k-NN results as
the most relevant tokens during inference, bypassing the need to compute the full attention matrix.
However, most existing pipelines either incur substantial overhead by constructing exact indices for
each head or tolerate a significant drop in recall when relying on approximate hashing.

Approximate Top-k Retrieval. Classical similarity search relies on graph or tree indices such as
HNSW (Malkov & Yashunin, 2020), IVFPQ in FAISS (Douze et al., 2024), or ScaNN (Guo et al.,
2020), which build indices sequentially and are ill-suited for per-layer GPU parallelism in deep
Transformers. Inspired by learned-index approaches (Kraska et al., 2018; Li et al., 2023; Gupta et al.,
2022), we instead propose a learnable hierarchical router that jointly trains centroids and routing
logits, removes explicit indexing overhead, and adapts dynamically to data. Unlike offline-trained
partitioners (Dong et al., 2023), HIROUTER updates embeddings of keys, queries, and centroids
on-the-fly with entropy regularization, improves the precision of top-k retrieval, and balances buckets.

3 METHODOLOGY

In this section, we present HIROUTER, a hierarchical routing framework for efficient top-k attention.
After reviewing self-attention and top-k variants in subsection 3.1, we introduce top-k retrieval
algorithms, HIROUTER,in subsection 3.2 with entropy-based regularization that simultaneously
sharpens token–centroid alignment and balances bucket occupancy in subsection 3.4. Finally, a
hierarchical beam search (subsection 3.5) retrieves the candidate buckets for sparse attention.

3.1 PRELIMINARIES

Self-Attention. Self-attention (Vaswani et al., 2017) lies at the heart of modern sequence models,
enabling each token to attend to all others and thereby capture long-range dependencies. Given
queries Q ∈ RT×d, keys K ∈ RT×d, and values V ∈ RT×d, the scaled dot-product attention is

Attention(Q,K,V ) = softmax
(
QK⊤/

√
d
)
V , (1)

where d denotes the common dimensionality of queries, keys, and values.

Top-k Attention. To alleviate the O(T 2) cost of full self-attention, top-k methods (Kitaev et al.,
2020; Roy et al., 2021; Gupta et al., 2021) restrict each query to its k most relevant keys, reducing
complexity to O(Tk). Specifically, for a query vector q ∈ Rd, let

Iq = TopK
(
qK⊤/

√
d, k

)
(2)

be the set of indices corresponding to the k largest similarity scores. The attention output is then

AttentionTopK(q,K,V ) =
∑
i∈Iq

softmax
(
qK⊤

i /
√
d
)
Vi. (3)

This preserves the expressivity of self-attention while substantially improving efficiency.
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3.2 HIROUTER: HIERARCHICAL ROUTING FOR EFFICIENT TOP-K RETRIEVAL

We introduce HIROUTER, an efficient GPU-friendly method for collecting the top-k highest-similarity
key–value pairs for attention computation. Given an input tensor X ∈ RB×T×d with batch size B,
sequence length T , and feature dimension d, We first apply a learned linear projection Z = XW . For
simplicity, we use the unified notation Z, where Z corresponds to the projected queries Q = XWQ

or the projected keys K = XWK , with W denoting either WQ or WK .

Top-K Tokens

Query

Keys

Figure 2: 2-level-HIROUTER with a beam width of
2. Tokens are recursively routed into three buckets
per level. Given a query (yellow dot), the keys and
values of previous tokens are aggregated in a buffer.
At every level, only the two highest-probability
buckets (in blue) at each layer are kept, with the
others pruned. Remaining leaves are concatenated
into a compact Top-k buffer (in pink).

We define the components that make up the
HIROUTER structure. First, we assume a hi-
erarchical structure with L levels, indexed by
l ∈ {1, . . . , L}. At each level l, every parent
node routes its tokens to one of C child buck-
ets forming a C-ary tree. Level l contains Cl−1

parent nodes and a total of Cl buckets. We de-
note the collection of centroid matrices at level
l by C(l) ∈ RCl−1×d×C , randomly initialized,
where the first dimension indexes the Cl−1 par-
ents and each C(l)p = [C(l)p,1, . . . , C

(l)
p,C ] ∈ Rd×C

corresponds to the C childrens of parent p, and
p ∈ {1, . . . , Cl−1} at the l-th level. The routing
logits for a token z from Z assigned to a cen-
troid p are ℓ

(l)
p = zC(l)p , and its soft assignment

probability is p(l)
p = softmax(ℓ

(l)
p ) ∈ RC .

To obtain a discrete bucket index, we compute
the hard assignment distribution for each parent
node p as p̃

(l)
p = GumbelSoftmax(ℓ

(l)
p ), and

set alocal = argmax
j∈{0,...,C−1}

p̃
(l)
p,j , where alocal is the

hard assignment of token i to one of the C child
nodes under parent p. The global assignment
index a is computed as a = p ·C+alocal, where
p is the parent index and alocal is the local child
assignment obtained from the argmax step.

We then sort the tokens according to their global
assignment indices {ai} so that those mapped to
the same bucket appear contiguously. Denoting
the reordered indices by ã1, ã2, . . . , ãT , we have
ã1 ≤ ã2 ≤ · · · ≤ ãT . Finally, the sorted features at the (l + 1)-th level are reshaped into a tensor

z(l+1) ∈ RB×Cl× T
Cl ×d, where Cl is the number of buckets at level l, and T/Cl is the number

of tokens per bucket. This reshaping explicitly groups tokens assigned to the same bucket together
for processing at the next level. The Gumbel–Softmax relaxation makes the discrete bucket indices
differentiable, allowing gradients to propagate and letting the balance loss in Equation (6) actively
regularize the assignments toward uniformly populated buckets.

3.3 MOTIVATING ENTROPY REGULARIZATION THROUGH ROUTER ANALYSIS

To ground our design, we analyze a single router unit and show how its behavior motivates the entropy
regularizer that underpins our proposed HIROUTER.

Notation. Let z ∈ { z1, . . . ,zT } ⊂ Sd−1 denote unit–norm tokens and let Cj ⊂ Sd−1 denote one
unit–norm centroid. Each token zi is assigned to its nearest centroid via ai = argmaxb⟨zi, Cb⟩, and
satisfies the intra–bucket tightness

⟨zi, Cai
⟩ ≥ 1− ε, 0 < ε < 1. (4)

Given a query q ∈ Sd−1 with centroid assignment aq = argmaxb⟨q, Cb⟩, let Sq = {zi : ai = aq}
be its bucket. Define the inter–centroid margin between Cq and Caz

for any z /∈ Sq as ∆q,z =
1− ⟨Cq, Caz ⟩. Obviously, ∆q,z ∈ [0, 2].
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Proposition 3.1. Let z⋆ = argmaxi⟨q, zi⟩ be the nearest neighbor of a query q ∈ Sd−1 among
the database {zi}. Define geff := minz/∈Sq

(
⟨q, z⋆⟩ − ⟨q, z⟩

)
. If ∆q,z > ε + 2

√
2ε for z /∈ Sq.

Then geff > 0 and z⋆ ∈ Sq; i.e., the query q and z⋆ are assigned to the same centroid.

To ensure that a query and its nearest neighbors are assigned to the same bucket by the routers, the
centroid margin should exceed the intra–bucket distortion, i.e., ∆q,z > ε + 2

√
2ε. Consequently,

learning sharper clusters (ε ↓) or achieving more widely separated centroids (∆q,z ↑) directly
strengthens the retrieval guarantee for the routers. Our proposed Lsmp encourages key and query
embeddings to move toward the bucket centers, thereby shrinking ε and relaxing the lower bound.

3.4 DUAL ENTROPY LOSS

3.4.1 SAMPLE–CENTROID ATTRACTION AND REPULSION

To enforce sharper routing, we apply a Sample-Centroid Loss Lsmp, whose gradient naturally
decomposes into attractive forces pulling embeddings of keys and queries toward centroids with high
assignment probability and repulsive forces pushing them away from low-probability centroids. This
attraction–repulsion mechanism progressively aligns embeddings of keys and queries with their most
likely centroid while increasing their separation from competing centroids.

Formally, for token i under parent p at the l-th level, we define its assignment vector as p
(l)
i,p =

[ p
(l)
i,(p,1), p

(l)
i,(p,2), . . . , p

(l)
i,(p,C) ] ∈ RC , where p

(l)
i,(p,j) is the probability that the i-th token under

parent p is routed to its j-th child at l-th level. The Sample–Centroid Loss is defined as below to
sharpen token–centroid alignment:

Lsmp =
1

T

T∑
i=1

H(p
(l)
i,p) = −

1

T

T∑
i=1

C∑
j=1

p
(l)
i,(p,j) log p

(l)
i,(p,j). (5)

We compute, for each token, the entropy of its assignment distribution at every level of the hierarchical
router and average these entropies across tokens and across all levels l ∈ {1, . . . , L}. The resulting
loss induces token updates that can be understood through an attraction–repulsion dynamic, as
formalized in the following proposition.

Proposition 3.2. At a given router level, let p be the parent node to which token zi is assigned;
denote by {Cp,j}Cj=1 the child centroids under p, and by pi,(p,j) the soft assignment probabilities of

zi to those centroids. For the sample-entropy loss L(p)
smp, the gradient w.r.t. zi is

∇zi
Lsmp = − 1

T

C∑
j=1

pi,(p,j)
(
log pi,(p,j) + 1

)
(Cp,j −

C∑
j′=1

pi,(p,j′) Cp,j′).

Hence each centroid Cp,j exerts an attractive effect on xi iff pi,(p,j) > e−1 (since p(log p+ 1) > 0),
and a repulsive effect iff pi,(p,j) < e−1. Thus, the dynamics enforce both intra–bucket tightness (ε ↓)
and inter–centroid margin (∆q,x ↑), as required by Proposition 3.1.

As training evolves, the attraction–repulsion dynamics ensure that each embedding of keys and
queries is progressively pulled toward its dominant centroid while being pushed away from competing
centroids. This dual effect sharpens the assignments, yielding confident one-hot–like routing decisions
and enhancing retrieval reliability. Conversely, fractional assignments incur nonzero entropy and
therefore generate repulsive forces that enlarge the separation between centroids. Consequently,
Proposition 3.2 guarantees the simultaneous decrease of intra–bucket distortion (ε ↓) and increase of
inter–centroid margin (∆q,x ↑), thereby supporting Proposition 3.1.

3.4.2 BALANCED-ASSIGNMENT LOSS

With only Lsmp, keys or queries may collapse into a few centroids, leading to imbalanced bucket
sizes. This degrades the parallel efficiency of the underlying computational kernels, as some buckets
remain underutilized while others become overloaded. Moreover, with such an imbalance, top-k
retrieval becomes inefficient and unstable: some queries retrieve a disproportionately large number of
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tokens while others retrieve almost none, resulting in degraded attention performance. To address
this, we introduce a balanced-assignment loss that encourages keys or queries to be evenly distributed
across centroids, ensuring both statistical robustness and hardware efficiency.

At each parent node p in the hierarchy, every token i ∈ Ip must be routed to one of its C children. To
ensure balanced routing, we define the mean assignment distribution p̄

(l)
p,j =

1
Np

∑
i∈Ip

p̃
(l)
i,(p,j), j ∈

{0, . . . , C − 1}, where p̃
(l)
i,(p,j) is the soft assignment of token i to the j-th child of parent p, and

Np = |Ip| is the number of tokens under parent p. To encourage even splits, we penalize low-entropy
mean distributions via the balanced-assignment loss:

Lbal =

Cl−1∑
p=1

C∑
j=1

p̄
(l)
p,j log p̄

(l)
p,j . (6)

Minimizing Lbal maximizes the entropy of p̄p, driving each p̄p,j toward the uniform distribution
[1/C, . . . , 1/C]. This ensures that tokens are spread evenly across the C children, enabling contiguous
tensor reshaping and efficient parallel operations.
Proposition 3.3. Under parent p, let {p̃i,(p,j)}i∈Ip

and define p̄p,j = 1
Np

∑
i∈Ip

p̃i,(p,j), with∑C
j=1 p̄p,j = 1. The balanced loss is minimized iff p̄p,j = 1/C for all j.

Why Gumbel–Softmax (GS)? Using a vanilla softmax to parameterize assignments makes the
gradient of Lbal identical for all tokens under the same parent, pushing every token’s distribution
toward the uniform vector [1/C]C . This maximizes per-token entropy, contradicting the sample-
entropy loss Lsmp, leading to ambiguous assignments and poorly balanced buckets. GS, with a
straight-through estimator (Jang et al., 2017), instead produces near one-hot assignments while
remaining differentiable. This allows each token to select a single centroid, so that minimizing Lbal

balances the counts Np,j across children, ensuring roughly uniform bucket populations and enabling
efficient top-k attention kernels without sacrificing gradient flow.

3.4.3 OVERALL ROUTING OBJECTIVE.

The final routing loss combines both terms: Lroute = Lbal + Lsmp. In practice, Lroute serves
to regularize the query/key projections, promoting an emergent hierarchical representation space.
We integrate the routing regularizer with the downstream task loss, such that the total objective
becomes L = LCE + αLroute, where LCE = − 1

T

∑T
t=1 logP (yt | y<t) is the standard next-token

cross-entropy, Lroute is our hierarchical routing loss, and α > 0 controls the regularization strength.

3.5 CANDIDATE RETRIEVAL FOR ATTENTION

The router assigns each token to a bucket at each hierarchical level according to its routing probability.
We first project them via learned matrices WQ,WK and compute their similarity:

S =
(
XW⊤

Q

) (
XW⊤

K

)⊤
.

At level l, each token has a conditional routing distribution p(l) ∈ RC .

A brute-force strategy would enumerate all buckets with nonzero joint probability pjoint =
∏L−1

l=0 p(l),
but this quickly becomes prohibitive in both time and memory as there exists a total

∏L−1
l=0 Cl

possibilities. Instead, we perform a level-wise beam search of width M : at each level l, we retain
the M buckets with largest partial joint probability

∏l
i=0 p

(i). These M -element beams define a
candidate set of key tokens for retrieval. To compute attention outputs, we collect these M buckets
and then compute sparse attention following Equation 3.

4 EXPERIMENTS

4.1 SYNTHETIC RESULTS

Synthetic Gaussian Retrieval. To validate the efficiency and recall of HIROUTER, we first evaluate
on a synthetic key–value retrieval task. We generate N keys and values by sampling from a standard

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Recall@128 vs. T . (b) Retrieval time vs. T . (c) Accuracy vs. d. (d) Impact of α.

Figure 3: Synthetic experimental results, demonstrating the efficacy of HIROUTER. (a) and (b) show
performance relative to contemporary retrieval methods in terms of recall and speed with relation to
the sequence length T . (c) plot shows the effect of hidden size d on MQAR’s accuracy, while (d) plot
shows how the scale α of the auxiliary loss can influence performance on MQAR.

multivariate Gaussian in Rd, insert them into our hierarchical router, and then issue M random
key queries drawn from the same distribution, similar setting in (Kraska et al., 2018). We measure
recall@128 (i.e. the fraction of queries whose top-128 retrieved key matches the true maximum inner
production keys) and end-to-end latency as we sweep N from 212 to 218. As shown in Figure 3a,
HIROUTER maintains recall even higher than LSH and vanilla k-means. HNSW achieves slightly
higher recall, but its query time increases superlinearly, resulting in prohibitive latency for processing
long sequences in Attention. Baselines are implemented using FAISS (Douze et al., 2024).
Multi-Query Associative Recall (MQAR). Next, we benchmark on the MQAR task (Arora et al.,
2024) where the model must store a sequence of N key–value pairs and then retrieve the correct value
given a set of query keys. The total vocab size is 8192. Figure 3c shows that HIROUTER sustains
high recall even for small d, whereas other methods fail. Finally, we sweep the weight α on our
dual-entropy routing loss. As shown in Figure 3d, choosing α in [0.01, 0.1] yields the best trade-off:
too small an α leaves Lbal ineffective, while a large α (in the absence of Lsmp) allows trivial uniform
assignments that destroys semantic clustering and hurts recall.

4.2 SMALL SCALE LANGUAGE MODELING Table 1: Test perplexity (lower
is better) on WikiText-103.

Model ppl ↓
Transformer 19.2
Performer 26.8
Reformer 25.6
AFT-conv 28.2
RFA-Gaussian 27.5
CosFormer 23.1
IceFormer 31.4
Routing Tranformer 26.7
Mongoose 23.6
NSA 19.3

HIROUTER 18.5

Our first experiment compares the performance of a HIROUTER en-
hanced Transformer on a classic language modeling task, namely
WikiText-103 language modeling. In this setting, we use α as we
determined best on the MQAR task. All models used in this task
are configured with 125M parameters. Our primary observation is
that HIROUTER outperforms the standard Transformer, achieving
a 0.7 reduction in perplexity; we achieve better perplexity along-
side a significant efficiency improvement. Additionally, alternative
efficient attention methods observe a significant degradation, high-
lighting that HIROUTER can serve as a better choice for efficient
Transformers.

4.3 LARGER SCALE LANGUAGE MODELING

Setup and Training. We conduct an evaluation of our method against other methods, such as a
Transformer based on the Pythia architecture (Biderman et al., 2023)1 as well as RetNet (Sun et al.,
2023), Mamba (Gu & Dao, 2024; Dao & Gu, 2024), Gated Linear Attention (GLA) (Yang et al.,
2024a), DeltaNet (Yang et al., 2024b), Gated Slot Attention (GSA) (Zhang et al., 2024). For fair
comparison, all models are trained under identical conditions with 410M parameters on 10B tokens
from the FineWeb-Edu dataset (Penedo et al., 2024), with some restrictions2. All models are trained
with a context length of 2048 tokens, with embedding/hidden dimension 1024. We use the AdamW
optimizer (Loshchilov & Hutter, 2019) with a peak learning rate of 4e-4, weight decay of 0.1, and
gradient clipping of 1.0. The learning rate follows a cosine annealing schedule with a warm-up period

1Some works follow Gu & Dao (2024) and refer to this architecture as Transformer++.
2Mamba models use ≈430M parameters due to restrictions on the state size and the input dimension.
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of 1% of the total steps (≈100M tokens) and a total batch size of 0.5M tokens. Further details are
available in Appendix B. For our HIROUTER model, we use the same training setup and configure
our router as having 4 levels, each level with 4 buckets/centroids, the window size as 64 for the SWA
branch, and the top-k attention using a beam width of 4. Following our results on the synthetic task,
we choose α to be 0.05 to set the weight for the auxiliary loss.

4.3.1 COMMONSENSE REASONING

Table 2: Performance comparison on language modeling and zero-shot common-sense reasoning.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Transformer 30.21 43.44 32.76 67.68 39.20 53.51 57.58 27.47 37.97 61.19 47.17
RetNet 36.47 63.64 26.33 65.18 35.61 50.59 56.82 27.13 37.87 60.95 45.06
Mamba 32.63 61.68 27.79 65.61 38.47 51.22 57.41 26.62 38.64 61.65 45.93
Mamba2 30.15 49.83 28.70 66.81 38.94 51.38 60.69 28.75 37.67 59.69 46.83
HGRN2 30.07 40.29 31.32 66.54 39.68 50.12 59.30 27.05 38.84 58.72 46.45
GLA 31.50 51.56 29.01 66.49 38.60 50.12 57.83 26.11 39.25 57.77 45.40
DeltaNet 28.82 45.06 30.47 67.19 39.51 52.80 58.80 29.10 38.18 58.26 46.79
GSA 30.78 48.74 29.75 66.70 39.01 52.49 59.26 27.65 38.49 60.61 46.50

HIROUTER 31.09 42.94 33.09 66.81 38.03 50.75 59.47 28.50 38.08 61.31 47.01

Similar to previous works, we present perplexity results as well as zero-shot commonsense reasoning
performance on a number of different tasks (see Appendix B.4.1). These tasks are effective at
evaluating the acquired knowledge of models through their general reasoning abilities. In Table 2, we
observe that HIROUTER is effective in comparison to a number of modern methods commonly used
as efficient language model backbones. In particular, we observe that while a baseline, full-attention
Transformer remains the most effective model compared to other alternatives, HIROUTER remains
highly effective on such tasks and performs comparably or outperforms recent models that offer
efficiency gains in comparison to the Transformer.

4.3.2 RECALL-INTENSIVE TASKS Table 3: Accuracy on recall-world retrieval tasks.
Model FDA SWDE SQuAD TQA NQ Drop Avg.

Transformer 7.26 38.07 4.52 0.93 1.00 2.48 9.71
RetNet 0.02 0.02 46.12 0.02 0.06 0.02 7.70
Mamba 1.36 6.84 3.10 1.03 1.00 2.12 2.91
Mamba2 4.26 10.53 4.49 0.55 1.25 2.43 3.92
HGRN2 2.00 10.17 4.02 0.97 1.02 3.12 3.88
GLA 3.27 9.72 2.72 0.40 1.36 1.96 3.24
DeltaNet 4.08 17.19 3.81 0.42 0.97 2.41 4.81
GSA 3.36 7.02 4.13 0.86 1.47 2.47 3.55

HIROUTER 8.43 42.83 3.38 0.67 0.93 2.32 9.76

To better compare the ability of mod-
els to recall information, we evaluate
zero-shot in-context learning perfor-
mance on more recall-intensive tasks
(Appendix B.4.2). As shown in Ta-
ble 3, the Transformer fares best,
while other efficient baselines gener-
ally struggle due to their fixed-size
state. In contrast, HIROUTER remains
capable of on-par performance rela-
tive to the Transformer while main-
taining efficiency. This results demonstrates a use-case where the HIROUTER structure can potentially
serve as beneficial for filtering out irrelevant information.

4.3.3 LONG-CONTEXT TASKS

Finally, we test on LongBench (Bai et al., 2024), a common benchmark for evaluating performance
on long-context tasks (see Appendix B.4.3). In this setting, shown in Table 4, Transformers struggle,
reflecting a long-standing observation regarding the inability of full-attention models to adequately
manipulate long sequences. Meanwhile, linear models are much more performant. In comparison,
we show that HIROUTER is capable of significantly closing the gap between these two paradigms,
highlighting the potential for improved long-context Transformer models, being able to outperform
other baselines outside of Mamba even without additional tuning of the model parameters.

Additionally, we perform a synthetic evaluation on the Needle-in-a-Haystack (NIAH) task, where
models are tasked with retrieving a single element (the needle) from a large context (the haystack).
Table 5 presents these results. It is worth noting that Transformers are generally much more effective
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Table 4: Accuracy on tasks from LongBench (Bai et al., 2024).

Model Single-Doc QA Multi-Doc QA Summarization Few-shot Code Avg.NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Transformer 0.67 3.23 3.86 0.33 1.37 0.11 8.29 11.87 13.31 1.50 3.02 5.61 9.82 9.61 5.19
HGRN2 0.38 0.80 1.63 0.11 0.05 0.11 3.07 5.96 4.08 0.00 0.67 0.00 20.88 20.71 4.17
Mamba 1.52 3.55 10.51 3.20 6.82 2.24 5.51 15.67 10.02 3.00 14.04 5.82 11.55 14.82 7.73
Mamba2 1.80 3.20 10.84 2.97 5.70 2.57 6.66 15.87 10.43 18.50 13.31 6.09 16.67 19.05 9.55
GLA 0.60 1.46 2.50 0.72 1.01 0.70 4.30 10.44 6.41 0.00 5.58 0.00 20.23 20.45 5.31
DeltaNet 0.38 0.76 1.63 0.11 0.05 0.11 3.21 7.40 4.50 0.00 5.58 9.30 20.03 19.89 5.21
GSA 0.37 0.73 1.60 0.11 0.05 4.81 3.28 8.61 4.81 0.00 4.71 8.27 19.33 20.16 5.49

HIROUTER 1.69 3.54 11.25 4.54 6.82 2.54 8.80 16.21 10.66 21.17 11.36 4.48 5.25 11.21 8.54

Table 5: Zero-shot performance on S-NIAH tasks from RULER (Hsieh et al., 2024).

Model
S-NIAH-1 S-NIAH-2 S-NIAH-3 Avg.(pass-key retrieval) (number in haystack) (uuid in haystack)

1K 2K 4K 8K 1K 2K 4K 8K 1K 2K 4K 8K

Transformer 94.8 96.0 0.0 0.0 95.6 70.8 0.0 0.0 91.6 57.6 0.0 0.0 42.2
GLA 0.0 0.0 0.0 0.0 3.2 1.6 1.2 0.8 0.0 0.0 0.0 0.0 0.6
HGRN2 76.0 4.8 0.0 0.0 36.4 7.6 0.0 0.0 0.0 0.0 0.0 0.0 10.4
Mamba 8.8 4.0 1.2 0.8 27.2 3.6 2.4 2.4 0.0 0.0 0.0 0.0 4.2
Mamba2 35.2 9.6 0.8 0.0 25.2 6.4 11.6 1.6 0.8 1.6 0.4 0.0 7.7
DeltaNet 38.8 40.8 48.4 34.8 26.4 6.0 10.8 4.4 8.0 0.8 0.8 2.4 18.5
GSA 23.6 10.0 3.2 2.4 20.4 6.8 9.2 4.8 0.0 0.0 0.0 0.0 6.7

HIROUTER 93.6 86.8 57.4 22.4 84.2 67.6 32.6 4.4 88.4 60.4 22.2 2.4 51.9

on context lengths within the scope of the training context, highlighted by strong performance in
different formats of the needle within the haystack. However, some recurrent models demonstrate a
better propensity to extrapolate beyond the training context, such as Mamba, DeltaNet, and GSA.
HIROUTER again demonstrates the ability to bridge this gap in effectiveness between these two
paradigms: on shorter contexts, the performance remains comparable to the initial Transformer, but
as the context length extends, HIROUTER retains an ability to extrapolate and still perform at par
with models specifically trained for long contexts and extrapolation.

4.4 COMPUTATIONAL EFFICIENCY EXPERIMENT

To further quantify HIROUTER’s runtime behavior, we benchmark it alongside two sparse top-
k attention baselines, Routing Transformer and Mongoose, on a fixed batch size while scaling
sequence length T . Table 6 reports forward (FWD) and forward+backward (FWD+BWD) runtimes
(ms) for sequence lengths between 212 and 216. HIROUTER consistently outpaces both Routing
Transformer and Mongoose in forward/backward modes while surpassing their scaling behavior:
HIROUTER remains efficient at the largest tested lengths while others do not.

Table 6: Time (in milliseconds) for forward (FWD) and forward+backward (FWD+BWD) passes on a
fixed-sized batch across varying sequence lengths. Lower is better.

Input Length FlashAttention Routing Transformer Mongoose HIROUTER
FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD

4096 0.18 0.61 2.88 5.81 2.21 4.58 1.03 2.15
8192 0.56 1.95 3.76 8.20 3.76 8.20 1.09 3.83

16384 1.93 6.55 7.98 18.58 6.76 15.04 1.88 9.03
32768 7.14 25.09 15.76 36.08 13.29 29.08 3.98 19.05
65536 30.76 99.69 33.79 73.41 29.66 60.34 8.66 42.04

5 CONCLUSION

In this work, we present HIROUTER, a novel hierarchical routing approach towards computing
top-k attention via maximum inner product search. HIROUTER uses a bucket partitioning approach,
partitioning tokens within the sequence into discrete buckets across multiple levels of a learned
tree. The tree uses learned centroid-based routing logits and a Gumbel-Softmax trick with a dual-
component routing loss for training. Our work provides empirical evidence to show that HIROUTER is
both competitive with concurrent efficient LLM architectures as well as regular full-attention base-
lines. Furthermore, we provide an efficient Trition-based implementation to enable our method to
outperform other efficient attention-based implementations in terms of efficiency.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on developing efficient attention mechanisms for large-scale language models.
While our method improves the scalability and retrieval accuracy of Transformer models, the ethical
considerations are largely consistent with those of general-purpose language modeling. Potential
risks include misuse in generating harmful or misleading content, reinforcement of biases present in
training corpora, and environmental concerns arising from large-scale training. We mitigate these
risks by (i) benchmarking only on standard public datasets, (ii) avoiding the use of sensitive or private
data, and (iii) providing transparent methodology to facilitate responsible replication. Moreover, the
computational efficiency gains of HIROUTERreduce energy consumption relative to dense or less
efficient sparse baselines, contributing positively to the environmental impact of model deployment.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure reproducibility and transparency in all aspects of this work. The
proposed HIROUTER algorithm, including hierarchical routing, dual entropy regularization, and
beam-search retrieval, is fully described in the methodology section with precise mathematical
formulations. Detailed hyperparameter choices, model architectures, and training procedures are
provided in the appendix, including dataset splits, optimization settings, and auxiliary loss scaling.
Synthetic experiments, WikiText-103 evaluations, and large-scale benchmarks are reported with
sufficient detail to enable replication. We also release a Triton-based implementation of our GPU
kernels, ensuring that researchers can reproduce both the efficiency and accuracy results.
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A THEORETICAL ANALYSIS AND PROOFS

Notation. Let {z1, . . . ,zT } ⊂ Sd−1 denote unit–norm tokens and let {C1, . . . , CC} ⊂ Sd−1 be
unit–norm centroids. Each token zi is assigned to its nearest centroid

ai = argmax
b
⟨zi, Cb⟩,

and satisfies the intra–bucket tightness

⟨zi, Cai
⟩ ≥ 1− ε, 0 < ε < 1. (1)

Given a query q ∈ Sd−1 with centroid assignment aq = argmaxb⟨q, Cb⟩, let Sq = {zi : ai = aq}
be its bucket. Define the inter–centroid margin between Cq and Caz

for any z /∈ Sq as

∆q,z = 1− ⟨Cq, Caz ⟩, ∆q,z ∈ [0, 2]. (2)

Lemma A.1 (Tight cluster). For any zi, zj ∈ Sq ,

⟨zi, zj⟩ ≥ 1− 4ε.

Proof. By Equation (1), ∥z −Cq∥ ≤
√
2ε for each z ∈ Sq . Thus ∥zi − zj∥ ≤ 2

√
2ε, and since both

are unit–norm, ⟨zi, zj⟩ = 1− 1
2∥zi − zj∥2 ≥ 1− 4ε.

Lemma A.2 (Residual norm bound). If ∥q∥ = ∥Cq∥ = 1 and ⟨q, Cq⟩ ≥ 1 − ε, then in the
decomposition q = ⟨q, Cq⟩ Cq + r, with r ⊥ Cq , we have

∥r∥ ≤
√
2ε.

Proof. ∥q∥2 = ⟨q, Cq⟩2 + ∥r∥2, so ∥r∥2 = 1 − ⟨q, Cq⟩2 = (1 − ⟨q, Cq⟩)(1 + ⟨q, Cq⟩). Since
⟨q, Cq⟩ ≥ 1− ε, it follows that ∥r∥2 ≤ 2ε. Taking square roots yields the claimed bound.

Lemma A.3 (Orthogonal component bound). If ∥Cq∥ = ∥Caz
∥ = 1 and ⟨Cq, Caz

⟩ = 1−∆q,z , then
for C⊥az

= Caz
− ⟨Cq, Caz

⟩ Cq ,
∥C⊥az
∥ ≤

√
2∆q,z.

Proof. Because C⊥az
⊥ Cq and ∥Caz

∥ = ∥Cq∥ = 1,

∥C⊥az
∥2 = 1− ⟨Cq, Caz

⟩2 = 1− (1−∆q,z)
2 = 2∆q,z −∆2

q,z ≤ 2∆q,z.

Taking square roots yields the desired inequality.

Lemma A.4 (Centroid gap with distortion). If ⟨q, Cq⟩ ≥ 1 − ε and ⟨Cq, Caz
⟩ = 1 − ∆q,z with

∆q,z > ε, then
⟨q, Caz

⟩ ≤ ⟨q, Cq⟩ − (∆q,z − ε).

Proof. Decompose q = ⟨q, Cq⟩ Cq + r with ∥r∥ ≤
√
2ε (Lemma A.2), and let C⊥az

be from
Lemma A.3. Then

⟨q, Caz
⟩ = ⟨q, Cq⟩(1−∆q,z) + ⟨r, C⊥az

⟩ ≤ ⟨q, Cq⟩(1−∆q,z) +
√
2ε
√

2∆q,z.

Since
√
2ε
√
2∆q,z ≤ ∆q,z − ε, the result follows.

Proposition A.5. Let
z⋆ = argmax

i
⟨q, zi⟩

be the true nearest neighbor of query q ∈ Sd−1 among {zi}, and let Sq be the bucket of q. Define
the effective gap

geff = min
z/∈Sq

(
⟨q, z⋆⟩ − ⟨q, z⟩

)
.

If ∆q,z > ε + 2
√
2ε for all z /∈ Sq, then geff > 0 and z⋆ ∈ Sq; i.e., the query and its nearest

neighbor are assigned to the same centroid.
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Proof. 1. Bound on ∥z − Caz
∥. For any z /∈ Sq , its assigned centroid Caz

satisfies ⟨z, Caz
⟩ ≥ 1− ε.

Since ∥z∥ = ∥Caz
∥ = 1,

∥z − Caz
∥2 = 2 (1− ⟨z, Caz

⟩) ≤ 2ε =⇒ ∥z − Caz
∥ ≤
√
2ε.

2. Outsider score upper bound. Because ∥q∥ = 1, Cauchy–Schwarz gives |⟨q, z − Caz
⟩| ≤
√
2ε.

Thus
⟨q, z⟩ = ⟨q, Caz

⟩+ ⟨q, z − Caz
⟩ ≤ ⟨q, Caz

⟩+
√
2ε.

By Lemma A.4, ⟨q, Caz ⟩ ≤ ⟨q, Cq⟩ − (∆q,z − ε), so

⟨q, z⟩ ≤ ⟨q, Cq⟩ − (∆q,z − ε) +
√
2ε = ⟨q, Cq⟩ −

(
∆q,z − ε−

√
2ε
)
. (A)

3. Insider score lower bound. By intra–bucket tightness,

∥z⋆ − Cq∥ ≤
√
2ε.

Since ∥q∥ = 1, Cauchy–Schwarz gives

|⟨q, z⋆ − Cq⟩| ≤ ∥z⋆ − Cq∥ ≤
√
2ε.

Therefore,
⟨q, z⋆⟩ = ⟨q, Cq⟩+ ⟨q, z⋆ − Cq⟩ ≥ ⟨q, Cq⟩ −

√
2ε. (B)

4. Effective gap. Subtracting (A) from (B) yields, for every z /∈ Sq ,

⟨q, z⋆⟩ − ⟨q, z⟩ ≥ (∆q,z − ε)− 2
√
2ε = ∆q,z −

(
ε+ 2

√
2ε
)
.

Hence
geff = min

z/∈Sq

{⟨q, z⋆⟩ − ⟨q, z⟩} ≥ ∆q,z −
(
ε+ 2

√
2ε
)
.

5. Correct assignment of z⋆ and q. If ∆q,z > ε+ 2
√
2ε then geff > 0, so z⋆ scores strictly above

every outsider. As it is also the top insider, it must lie in the same bucket as q.

Proposition A.6. Under parent p, let {p̃i,(p,j)}i∈Ip and define p̄p,j = 1
Np

∑
i∈Ip

p̃i,(p,j), with∑C
j=1 p̄p,j = 1. The balanced loss is minimized iff p̄p,j = 1/C for all j.

Proof. Fix parent p and write p̄j := p̄p,j . Introduce a Lagrange multiplier λ for the constraint∑C
j=1 p̄j = 1:

L({p̄j}, λ) =
C∑

j=1

p̄j log p̄j + λ

 C∑
j=1

p̄j − 1

 .

Stationarity ∂L/∂p̄j = 0 gives log p̄j + 1 + λ = 0, so p̄j = e−(λ+1). Enforcing
∑C

j=1 p̄j =

Ce−(λ+1) = 1 yields p̄j = 1/C for all j, the unique minimizer of Lbal.

Under a low-temperature Gumbel–Softmax, each p̃i,(p,·) is nearly one-hot, so p̄p,j converges to
the fraction of tokens assigned to bucket j. Driving p̄p → (1/C, . . . , 1/C) thus enforces an
approximately equal token count per bucket.

Proposition A.7. At a given router level, let p be the parent node to which token zi is assigned;
denote by {Cp,j}Cj=1 the child centroids under p, and by pi,(p,j) the soft assignment probabilities of

zi to those centroids. For the sample-entropy loss L(p)
smp, the gradient w.r.t. zi is

∇ziLsmp = − 1

T

C∑
j=1

pi,(p,j)
(
log pi,(p,j) + 1

)
(Cp,j −

C∑
j′=1

pi,(p,j′) Cp,j′).

Hence each centroid Cp,j exerts an attractive effect on xi iff pi,(p,j) > e−1 (since p(log p+ 1) > 0),
and a repulsive effect iff pi,(p,j) < e−1. Thus, the dynamics enforce both intra–bucket tightness (ε ↓)
and inter–centroid margin (∆q,x ↑), as required by Proposition 3.1.
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Proof. For a fixed token index i, abbreviate

pj := pi,(p,j), Cj := Cp,j , ℓj := z⊤i Cj .

Then pj = softmax(ℓ)j = exp(ℓj)/
∑C

k=1 exp(ℓk) and the per-sample entropy term is

Li = −
C∑

j=1

pj log pj , L(p)
smp =

1

T

T∑
i=1

Li.

Differentiating Li with respect to zi and using∇zi
(pj log pj) = (log pj + 1)∇zi

pj gives

∇ziL(p)
smp =

1

T
∇ziLi = −

1

T

C∑
j=1

(log pj + 1)∇zipj .

By the softmax Jacobian,

∂pj
∂ℓm

= pj(δjm − pm), and ∇ziℓm = Cm,

so by the chain rule,

∇zipj =

C∑
m=1

∂pj
∂ℓm

∇ziℓm =

C∑
m=1

pj(δjm − pm)Cm = pj

(
Cj −

C∑
m=1

pmCm

)
.

Define the soft centroid mean µi :=
∑C

m=1 pmCm. Substituting the expression for∇zipj yields

∇ziL(p)
smp = − 1

T

C∑
j=1

pj(log pj + 1) (Cj − µi),

which is the claimed gradient formula after restoring the original indices.

Attraction–repulsion. A (small) gradient-descent step updates zi as zi ← zi − η∇zi
L(p)
smp =

zi +
η
T

∑C
j=1 ϕj (Cj − µi), where ϕj := pj(1 + log pj) and η is learning rate. Since 0 < pj ≤ 1

implies log pj ≤ 0, we have

ϕj


> 0, iff pj > e−1,

= 0, iff pj = e−1,

< 0, iff pj < e−1.

Thus components with pj > e−1 move zi in the direction (Cj − µi), i.e. toward centroid Cj

(attraction), while components with pj < e−1 contribute along −(Cj − µi), i.e. away from centroid
Cj (repulsion). When one centroid dominates (pj⋆ > e−1), the update is approximately toward Cj⋆

and away from all others, which tightens token–centroid cohesion (reducing intra-bucket distortion ε)
and enlarges the margin to competing centroids (increasing ∆q,x), as claimed.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Three-Branch Router with Softmax Gating. We extend our architecture into a three-branch
structure combining a Softmax-Weighted Average (SWA) branch, a learned bias branch, and a
HIROUTER sparse top-k attention branch. A gating head produces mixing weights through a softmax,
adaptively balancing contributions from the three branches. The SWA branch provides dense
contextual aggregation; the learned bias branch adds a trainable bias vector weighted by the gate to
absorb uncertain queries and stabilizes training similar to attention sinks (Gu et al., 2024); and the
HIROUTER branch delivers high-precision retrieval by selecting a small set of relevant tokens.
Grouped-Query Retrieval. In addition, we employ grouped-query attention (GQA) (Ainslie et al.,
2023) to enhance computational efficiency. Instead of retrieving buckets for each query independently,
we compute the average of queries within a group and use this group representative to identify the
top candidate buckets. All queries in the group then share these buckets during retrieval.

All experiments were conducted on a single machine with 8 NVIDIA H100 80GB GPUs connected
with HBM3. Experiments were run in an environment using CUDA version 12.6 and PyTorch 2.6.0.

B.2 OPTIMIZED IMPLEMENTATIONS FOR ENHANCING GPU EFFICIENCY

A core ingredient of HIROUTER is that every bucket is exactly the same size. After computing the
routing logits with a low-temperature Gumbel–Softmax, we apply a stable sort to both keys and
values, grouping tokens by their hard bucket assignments while preserving their original order within
each bucket. This transforms the input tensor into Z(L) ∈ RBH×4L×N×d, N = T

4L
, in O(1)

simply by a reshape. Here BH = batch × heads and N ∈ {32, 64, 128}. Because each bucket
occupies a contiguous, equal-sized region of memory, our Triton kernels can load/store an entire
bucket with a single memory access, minimizing bandwidth waste and maximizing throughput.

B.3 FAISS BASELINE CONFIGURATION FOR SYNTHETIC GAUSSIAN RETRIEVAL

To ensure reproducibility and clarify the interpretation of our comparisons, we provide the explicit
configuration parameters used for the Faiss-GPU baselines.

K-Means (faiss.Kmeans).

• num_clusters = max(1, sequence_length // 32): one cluster is allocated per 32
samples, with at least one cluster enforced.

• niter = 20: the number of k-means iterations.

LSH (faiss.IndexLSH).

• n_bits = 10: number of bits used to represent each vector in the LSH index.

HNSW (faiss.IndexHNSWFlat).

• M = 32: maximum number of links (neighbors) maintained per node.

• efConstruction = 40: size of the candidate list during index construction, where larger
values improve recall at the cost of higher construction time.

• efSearch = 128: size of the candidate list during query search, trading recall for search
efficiency.

These parameter settings follow standard recommendations in the Faiss library, where M,
efConstruction, and efSearch are the primary controls for the accuracy–efficiency tradeoff in
LSH and HNSW.
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B.4 LANGUAGE TASK DETAILS

Here we list some additional details regarding the different tasks on which we conduct language
model evaluation.

B.4.1 LANGUAGE MODEL EVALUATION HARNESS TASKS

The following are recall-intensive tasks on which we evaluate. All tasks are evaluated directly using
accuracy for commonsense reasoning tasks and perplexity for language modeling.

Table 7: Harness tasks on which we evaluate.

Task Task Type

PIQA (Bisk et al., 2020) Physical Commonsense Reasoning
ARC (Bhakthavatsalam et al., 2021) Commonsense Reasoning
HELLASWAG (Zellers et al., 2019) Commonsense Natural Language Inference
WINOGRANDE (Sakaguchi et al., 2020) Pronoun Resolution
SIQA (Sap et al., 2019) Social Commonsense Reasoning
BOOLQ Yes/No Commonsense QA
WIKITEXT (Merity et al., 2017) Language Modeling
LAMBADA (Paperno et al., 2016) Text Understanding

B.4.2 RECALL INTENSIVE TASKS

The following are recall-intensive tasks on which we evaluate. All tasks are evaluated directly with
accuracy reported as the metric of choice.

Table 8: Recall-intensive tasks on which we evaluate.

Task Task Type

STRUCTURED WEB DATA EXTRACTION (SWDE) (Lockard et al., 2019) Structure HTML Relation Extraction
FDA (Arora et al., 2023) PDF Key-Value Retrieval
SQUAD (Rajpurkar et al., 2018) Question Answering
TRIVIAQA (Joshi et al., 2017) Question Answering
DROP (Dua et al., 2019) Question Answering
NATURAL QUESTIONS (Kwiatkowski et al., 2019) Question Answering

B.4.3 LONGBENCH

We evaluate the following tasks from LongBench (Bai et al., 2024) (Table 9). Due to our pre-training
on an English dataset, we choose to use only the English language tasks included in the benchmark.

Table 9: Tasks from LongBench on which we evaluate.

Task Context Type Average Length Metric Data Samples

NARRATIVEQA (Kociský et al., 2018) Literature/Film 18409 F1 200
QASPERQA (Dasigi et al., 2021) Science 3619 F1 200
MULTIFIELDQA (Bai et al., 2024) Multi-Field 4559 F1 150
HOTPOTQA (Yang et al., 2018) Wikipedia 9151 F1 200
2WIKIMULTIQA (Ho et al., 2020) Wikipedia 4887 F1 200
MUSIQUE (Trivedi et al., 2022) Wikipedia 11214 F1 200
GOVREPORT (Huang et al., 2021) Government Reports 8734 Rouge-L 200
QMSUM (Zhong et al., 2021) Meetings 10614 Rouge-L 200
MULTINEWS Fabbri et al. (2019) News 2113 Rouge-L 200
TREC (Li & Roth, 2002) Web Questions 5117 Accuracy 200
TRIVIAQA (Joshi et al., 2017) Wikipedia/Web 8209 F1 200
SAMSUM (Gliwa et al., 2019) Dialogue 6258 Rouge-L 200
LCC (Guo et al., 2023) Github 1235 Edit Similarity 500
REPOBENCH-P (Liu et al., 2024) Github Repositories 4206 Edit Similarity 500
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B.4.4 SINGLE NEEDLE-IN-A-HAYSTACK

We utilize the Single Needle-in-a-Haystack (S-NIAH) task on three settings.

• S-NIAH-1: The key type is a word and the value type is a number. The haystack consists of
repeated sentences. This is referred sometimes as passkey retrieval.

• S-NIAH-3: The key type is a word and the value type is a number. The haystack consists of
Paul Graham Essays. This is referred to as vanilla NIAH.

• S-NIAH-1: The key type is a word and the value type is a UUID. The haystack consists of Paul
Graham Essays.

For evaluating correctness on NIAH, the model is made to generate a sequence. If the generation
contains the correct value, the model is considered correct. Performance is reported in terms of
accuracy.

B.5 EXPERIMENTAL REPRODUCIBILITY

For full transparency, we provide our code within the supplemental material. This includes the code
used directly to evaluate our models. Our code is based directly on the packages used for evaluating
the models:

• lm-evaluation-harness: We use this package to evaluate on commonsense reasoning (Table 2)
and real-world recall tasks (Table 3).

– https://github.com/EleutherAI/lm-evaluation-harness

• LongBench: We use this to evaluate on LongBench tasks (Table 4).
– https://github.com/THUDM/LongBench

• RULER: We use this package to evaluate on NIAH tasks (Table 5).
– https://github.com/NVIDIA/RULER

For training baselines, we utilized the flame (https://github.com/fla-org/flame) pack-
age along with their provided model configurations. We change the tokenizer to use the
EleutherAI/gpt-neox-20b tokenizer and make according changes to the special token ids to
support the tokenizer.
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C ADDITIONAL EXPERIMENTS

C.1 SCALING RESULTS AT 1B PARAMETERS

We further evaluate HIROUTER at the 1B parameter scale. As shown in Table 10, the method
continues to demonstrate strong performance, extending the robustness observed at the 410M scale
(see Table 2). These results reinforce that HIROUTER scales effectively with model size across diverse
language modeling and reasoning tasks. We also note that additional scaling studies, particularly on
parameter and hyperparameter tuning, would further support broader adoption, which we leave to
future work.

Results. Table 10 compares two variants: one without the learned bias branch (w/o bias) and one
with a learned bias branch (w/ bias). The bias branch yields consistent improvements, highlighting
its role in stabilizing training and enhancing generalization as model size grows.

Table 10: Results at the 1B scale on language modeling and zero-shot common-sense reasoning.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

HIROUTER-1B w/o bias 26.29 30.56 35.80 68.23 41.90 53.12 63.17 29.69 39.30 58.99 48.78
HIROUTER-1B w/ bias 26.01 27.21 36.06 68.82 42.99 53.35 62.96 29.27 39.30 59.79 49.07

C.2 ABLATION: BEAM WIDTH

We investigate how increasing beam width (without retraining) affects performance in two settings:
SNIAH-1 and WikiText-103. The results are shown in Tables 11 and 12.

Table 11: SNIAH-1: Retrieval accuracy at different beam widths

Model 1K 2K 4K 8K

HiRouter (width = 4) 93.6% 86.8% 57.4% 22.4%
HiRouter (width = 8) 96.4% 88.0% 60.2% 33.2%

Table 12: WikiText-103: Perplexity (↓) vs beam width

Width 1 2 4 8

Perplexity 20.7 19.4 18.5 18.6

Even without retraining, increasing beam width from 4 to 8 in SNIAH-1 leads to higher recall.
Yet on WikiText-103, further increases beyond width 3 or 4 show diminishing gains in perplexity.
This suggests a moderate beam width yields the best practical trade-off between accuracy and
computational cost.

C.3 ABLATION: TOP-K RECALL ON SYNTHETIC GAUSSIAN RETRIEVAL

We perform ablations for the recall task on synthetic Gaussian retrieval, on datasets of total length 212

tokens. We examine how beam width, number of buckets, and routing levels each affect Recall@128
under fixed budget settings.

Beam Width Ablation (with num_levels = 4, num_bucket = 4)

Beam Width M 4 8 12 16 32

Recall @128 (%) 14.0 25.3 34.0 39.4 62.1

Recall increases monotonically with beam width, confirming that enlarging the search beam system-
atically improves top-k retrieval accuracy (at the cost of higher runtime).
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Bucket Count Ablation (adjusted beam width for fairness, num_levels = 4)

num_bucket 2 4 6 8

Recall @128 (%) 33.1 39.4 38.0 36.4

We see the best recall at num_bucket = 4. Fewer buckets make the tree too broad and reduce
specialization; too many buckets fragment retrieval too finely, decreasing recall.

Level Depth Ablation (adjusted beam width, num_bucket = 4)

num_level 2 3 4 5

Recall @128 (%) 33.8 39.4 39.1 37.6

A routing depth of 3 levels achieves the best recall. Both shallower and deeper trees reduce perfor-
mance, due respectively to coarse bucket granularity or excessive fragmentation of tokens.

Summary of Findings These ablations indicate that for sequence length 212 and top-128 recall: (i)
moderate beam widths (e.g. 12 or 16) yield strong gains without excessive overhead; (ii) a balance
of bucket width (4) gives the right granularity; and (iii) a mid-level tree depth (3 levels) maximizes
recall efficiency. Overly coarse or overly fine configurations degrade performance.

C.4 ABLATION ON WINDOW SIZE OF THE SWA BRANCH

We further ablate the impact of the attention window size on language modeling and zero-shot
reasoning performance. Table 13 reports results for window sizes 32, 64, and 128 across the same
evaluation benchmarks as in the main paper.

Table 13: Ablation on window size for HIROUTER. We report accuracy (%) on common-sense
reasoning benchmarks.

Window Size LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

32 27.38 66.16 38.18 52.64 58.88 28.41 38.33 61.13 46.38
64 33.09 66.81 38.03 50.75 59.47 28.50 38.08 61.31 47.01
128 30.33 65.72 37.62 52.57 58.75 27.82 38.54 52.48 45.48

We observe that moderate window sizes (e.g., 64) provide the best overall performance, balancing
perplexity and accuracy across tasks. Too small a window (32) reduces model expressiveness, while
larger windows (128) slightly degrade recall and downstream accuracy.

C.5 ABLATION ON GROUPED-QUERY ATTENTION (GQA)

To study the effect of grouped-query attention (GQA) (Ainslie et al., 2023), we conduct an ablation
on WikiText-103. We vary the group size G while keeping other hyperparameters fixed, and report
perplexity in Table 14.

Table 14: Ablation of GQA group size on WikiText-103. Smaller group sizes correspond to fewer
queries sharing key–value projections.

Group Size Perplexity
16 19.1
4 18.8
2 18.6
1 18.5
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We observe that larger group sizes (G = 16) slightly degrade performance due to excessive parameter
sharing, while reducing the group size consistently improves perplexity. At G = 1, which corresponds
to standard multi-head attention without grouping, the model achieves the best perplexity (18.5).
These results highlight the trade-off between efficiency and modeling capacity: GQA provides
computational savings at the cost of a small increase in perplexity, while smaller groups preserve
model expressivity.

C.6 ABLATION ON REGULARIZATION LOSS WEIGHTING

We ablate the effect of the dual-entropy regularization weight on performance across language
modeling and zero-shot commonsense reasoning tasks. Table 15 reports results when varying the
regularization α coefficient from 0.00 (no regularization) to 0.10.

Table 15: Ablation on the weighting of the dual-entropy regularization loss. We report perplexity
(Wiki., LMB.) and accuracy (%) across commonsense reasoning benchmarks.

Reg. Weight Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

0.10 31.53 44.74 32.58 65.78 38.02 50.36 58.00 27.22 38.13 60.64 46.34
0.05 31.09 42.94 33.09 66.81 38.03 50.75 59.47 28.50 38.08 61.31 47.01
0.01 30.30 39.99 34.47 66.76 38.36 50.59 58.80 28.24 39.41 58.99 46.95
0.00 30.04 43.22 33.08 67.00 38.25 51.18 59.73 28.21 38.29 57.02 46.59

We find that moderate weighting (e.g., 0.05) achieves the best overall trade-off across tasks, improving
average performance compared to both no regularization (0.00) and heavier weighting (0.10). This
supports the view that the dual-entropy loss is most effective when applied as a lightweight regularizer,
sharpening token-to-bucket assignments without overwhelming the training objective.

C.7 COMPARISON WITH SCANN-PQ: TRAINING OVERHEAD AND RECALL–SPEED TRADEOFF

We train HiRouter jointly with the base model, so it introduces no separate training cost, and its
parameter overhead is negligible. Routing is realized as dot-product operations with centroids (i.e.
linear transforms), which allows rapid convergence alongside the main model. To validate this in
practice, we benchmark both training and inference time of HiRouter against ScaNN-PQ (Guo et al.,
2020) under a batch size of 128 (equivalent to top-k attention over 8 heads × 16 sequences).

0.5K 4K 8K 16K

HiRouter (train) 1.14 s 4.04 s 6.15 s 10.80 s
HiRouter (infer) 0.32 s 0.36 s 0.34 s 0.33 s
ScaNN-PQ (infer) 9.34 s 17.06 s 25.3 s 40.3 s

Even for inference alone, HiRouter is substantially faster than ScaNN-PQ, and its training overhead
remains modest.

We further compare top-128 recall across varying sequence lengths:

0.5K 4K 8K 16K

HiRouter (Recall@128) 60.1% 25.3% 17.9% 13.8%
ScaNN-PQ (Recall@128) 50.0% 42.9% 34.9% 26.5%

While ScaNN-PQ attains higher recall at longer lengths, its large runtime cost makes it less practical
for efficient sparse top-k attention. HiRouter offers a better balance of recall and efficiency, making it
more suitable in real systems.
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D TRITON KERNELS

Algorithm 1 demonstrates how we perform our sparse top-k attention computations within our custom
Trition kernels. Algorithm 3 demonstrates how we implement the hierarchical beam search within
our custom Triton kernels.

Algorithm 1 Forward Pass for the HiRouter Sparse Attention Kernel

Require: Query, key, and value tensors Q,K,V ∈ RBH×T×d;
1: Query/key index tensors q_idx, k_idx ∈ ZBH×T×S ;
2: Block size BS, candidate padding CAND_PAD, and number of samples per query S.

Notation: B: batch size; H: number of attention heads; BH = B ×H: total head instances; G:
number of queries grouped per head; BK : block size in the key dimension; BV : block size in the
value dimension.
Output: Attention result O ∈ RBH×T×d, and log-sum-exp buffer LSE ∈ RBH×T .

3: Initialize a 3-D launch grid over (t, v, bh)← (0..T−1, 0..d/BV−1, 0..BH−1).
4: for each block (t, v, bh) in the grid do
5: b, h← ⌊bh/H⌋, bh mod H
6: Initialize accumulators: ℓ← −∞ G, s← 0 G, w ← 0 G×BV

▷ running max, sum-exp,
weighted sum

7: Determine padded group size: Gpad ← max(G, CAND_PAD)
8: Load query block: q ← Q[bh, t, 0:BK ] ∈ RGpad×BK

9: Scale queries: q ← q/
√
d

10: for each sampled index i = 0:S−1 do
11: s_idx← q_idx[bh, t, i]× BS
12: Load corresponding key/value blocks Ki,Vi via k_idx
13: Compute attention scores: score← qKT

i
14: Apply causal mask if s_idx > t: score← −∞
15: Update statistics: (ℓ, s, w)← UPDATE_STATS(ℓ, s, w, score,Vi)
16: end for
17: Normalize outputs: O[bh, t, v]← w/s, LSE[bh, t]← ℓ+ log s
18: end for

Algorithm 2 UPDATE_STATS: Numerically Stable Softmax Statistics Update

1: function UPDATE_STATS(ℓ, s, w, scores, V)
Require: Given running softmax statistics ℓ ∈ RB (max logits), s ∈ RB (sum of exps), w ∈ RB×d

(weighted sum), a new block of logits scores ∈ RB×N , and corresponding values V ∈ RB×N×d

2: m ← maxj scores · ,j ∈ RB ▷ block-wise max
3: ℓnew ← max

(
ℓ, m

)
4: scale ← exp

(
ℓ− ℓnew

)
5: s ← s × scale
6: w ← w × scale
7: ∆ ← exp

(
scores− ℓnew[:, None]

)
∈ RB×N

8: s ← s+
∑N

j=1 ∆ · ,j

9: w ← w +
∑N

j=1 ∆ · ,j V · ,j,:
10: return ℓnew, s, w
11: end function
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Algorithm 3 Hierarchical Beam Search Kernel

Require: Q ∈ RBS×D, Offsets ∈ ZL+1, Counts ∈ ZL, beam, K, BLOCK_TOKENS, L, C, D
1: b← program_id(0)
2: ids← b · BLOCK_TOKENS+ [0 : BLOCK_TOKENS−1]
3: valid← ids < BS

4: Qtile ← load(qptr, ids)
5: initialize beam_probs← [1, 0, . . . , 0], beam_parents← [0, . . . , 0]
6: for ℓ = 0 . . . L− 1 do
7: Pℓ ← counts[ℓ], off← offsets[ℓ]
8: W← gather(routeptr, beam_parents, off)
9: scores← exp

(
Qtile ·W⊤)

10: normalize and weight by beam_probs
11: reshape to [BLOCK_TOKENS, beam · C]
12:

(
sorted_s, sorted_idxs

)
← ARGSORT(scores, arange)

13: take top-K from sorted_s, sorted_idxs
14: update beam_probs, beam_parents
15: end for
16: store final beam_parents into output buffer
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E TIME COMPLEXITY ANALYSIS

Let T be the sequence length, D the per-head feature dimension, L the number of routing levels,
C the (constant) branching factor, and k the average number of buckets probed per query in the
sparse-attention kernel. All costs below are per head and per sequence.

The routing stage at each of the L levels computes C-way logits for T tokens (O(T DC)), applies
a low-temperature Gumbel–Softmax plus a stable bucket sort (which can be implemented in O(T )
via radix or counting sort for fixed C), and then reshapes into contiguous buckets in O(1). Hence
routing costs

O
(
LT DC + T

)
≈ O

(
LT D

)
,

since C is fixed.

The sparse-attention kernel then, for each of the T queries, probes k buckets and performs D-
dimensional dot-products, incurring

O
(
T kD

)
work.

Overall, HIROUTER runs in

O
(
LT D + T kD

)
= O

(
T D (L+ k)

)
≪ O

(
T 2 D

)
time, yielding linear scaling in T for fixed L, k. For a batch of size B and H heads, the total cost is

O
(
BH T D (L+ k)

)
.

The backward pass mirrors the forward complexity, since it simply recomputes or reuses the same
routing structure and runs one sparse-attention gradient kernel.
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F LIMITATIONS

For reasons related to computational resource limitations, we do not train models past a size of
410M parameters. Furthermore, we restrict ourselves to auto-regressive large language models,
but we contend that our method is also suitable for bi-directional models that use attention, such
as vision-language models that use Transformer backbones (ex. ViT). We believe that our chosen
datasets still provide valuable insights while remaining within our operational constraints and will
further explore other directions as our computational capabilities expand.

G BROADER IMPACTS

This work explores a novel method for retrieval-based top-K attention. The underlying method is
meant to be efficient and scalable. While the direct usage of attention can entail potential broader
risks within AI-based systems, these risks do not stem directly from the algorithm presented within
the paper. As such, there are no risks that are deemed significant and worthy of further discussion.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as a general-purpose assistive
tool. Specifically, LLMs were employed for polishing the writing (e.g., improving grammar, clarity,
and conciseness of sentences) and for generating simple code snippets such as LATEX tables or small
illustrative examples. LLMs were not used for research ideation, conceptual contributions, data
analysis, experiment design, or result interpretation. All core technical ideas, theoretical analyses,
algorithm design, and experiments reported in this paper were conceived, implemented, and validated
entirely by the authors.
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