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Abstract

In this work, we study the active sequential hypothesis testing problem, also known1

as pure exploration, where the goal is to actively control a data collection process2

to efficiently identify the correct hypothesis underlying a decision problem. While3

relevant across multiple domains, devising adaptive exploration strategies remains4

challenging, particularly due to difficulties in encoding appropriate inductive biases.5

To address these limitations, we introduce In-Context Pure Exploration (ICPE), an6

in-context learning approach that uses Transformers to learn exploration strategies7

directly from experience. Numerical results across diverse benchmarks highlight8

ICPE’s capability to achieve satisfactory performance in stochastic and structured9

settings, demonstrating its ability to meta-learn exploration strategies.10

1 Introduction11

Modern artificial intelligence systems have achieved remarkable performance across specialized tasks12

such as image classification Krizhevsky et al. [2012], Super-human board-game play Silver et al.13

[2018], protein-structure prediction Jumper et al. [2021] and large-scale language modelling Brown14

et al. [2020]. Yet, there is still a lack in understanding how to autonomously discover meta-skills15

fundamental for sequential decision making, such as active testing or active learning Chernoff [1992],16

Cohn et al. [1996].17

Consider an agent tasked with sequentially selecting samples to quickly improve its understanding18

of an underlying phenomenon. When the decision maker can exert some control over the collected19

samples’ information content, this is a problem also known as the active sequential hypothesis20

testing problem Chernoff [1992], Ghosh [1991], Naghshvar and Javidi [2013], Naghshvar et al.21

[2012], Mukherjee et al. [2022] or pure exploration problem Degenne and Koolen [2019], Degenne22

et al. [2019, 2020]. Active hypothesis testing has become increasingly important nowadays, with23

applications ranging from medical diagnostics Berry et al. [2010], image identification Vaidhiyan et al.24

[2012], recommender systems Resnick and Varian [1997], etc. Nonetheless, devising an adaptive25

data collection strategy is notoriously difficult and highly problem-specific.26

In this paper, we address the question: how can sequential decision-making agents autonomously27

discover and leverage hidden structure to enhance active exploration for hypothesis testing? We28

introduce In-Context Pure Explorer (ICPE), a novel method combining Supervised Learning and29

Deep RL Goodfellow et al. [2016], Murphy [2023] , which builds on the in-context learning and30

sequence modeling capabilities of Transformers Lee et al. [2023]–a meta-learning approach that31

uncovers underlying shared structure across a class of problemsM Schaul and Schmidhuber [2010],32

Bengio et al. [1990].33

ICPE operates by integrating two complementary neural networks: an inference (I) network, trained34

via supervised learning to infer the true hypothesis given current data, and an exploration (π) network,35

trained through reinforcement learning to select actions optimizing the inference accuracy of the I36

network.37
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We validate ICPE through different benchmarks, demonstrating its ability to efficiently explore38

in stochastic and structured environments. In particular, these results show that ICPE achieves39

performance comparable to optimal instance-dependent Best Arm Identification (BAI) algorithms40

Garivier and Kaufmann [2016], Audibert and Bubeck [2010], without requiring explicit problem-41

specific exploration strategies that often involve solving complex optimization problems. Thanks to42

the in-context capability of ICPE, it is effectively discovering active sampling techniques that at test43

time do not need much more computation than a forward pass. Consequently, ICPE emerges as a44

practical applicable method for data-efficient exploration.45

1.1 Related Work46

The problem of active sequential hypothesis testing Chernoff [1992], Ghosh [1991], Lindley [1956],47

Naghshvar and Javidi [2013], Naghshvar et al. [2012], Mukherjee et al. [2022], Gan et al. [2021], in48

which a learner is tasked with adaptively performing a sequence of actions to identify an unknown49

property of the environment, is closely related to the exploration problem in Reinforcement Learning50

(RL) Sutton and Barto [2018], where an agent needs to identify the optimal policy. This exploration51

problem has long centred on regret minimisation Sutton and Barto [2018], with techniques based on52

Upper-Confidence Bounds Auer et al. [2002, 2008], Cappé et al. [2013], Lattimore and Hutter [2012],53

Auer [2002], posterior-sampling Kaufmann et al. [2012], Osband et al. [2013], Russo and Van Roy54

[2014], Gopalan et al. [2014] and Information-Directed Sampling (IDS) Russo et al. [2018]; yet these55

schemes assume that minimizing regret is the sole objective and falter in identification problems.56

A more closely related setting is that of pure exploration in bandits and Markov Decision Processes57

(MDPs), settings known as Best Arm/Policy Identification (BAI/BPI) Audibert and Bubeck [2010],58

Garivier and Kaufmann [2016], Degenne and Koolen [2019], Al Marjani et al. [2021], Russo and59

Proutiere [2023a], Russo et al. [2025]. In these problems the samples collected by the agent are60

no longer perceived as rewards, and the agent must actively optimize its exploration strategy to61

identify the optimal policy. BAI/BPI reframe the task as sequential hypothesis testing, yielding62

instance-adaptive algorithms in fixed-confidence settings such as Track-and-Stop (TaS) Garivier and63

Kaufmann [2016]. However, while BAI strategy are powerful, they may be suboptimal when the64

underlying information structure is not adequately captured within the hypothesis testing framework.65

Although IDS and BAI offer frameworks to account for such structure, extending these approaches to66

Deep Learning is difficult, particularly when the information structure is unknown.67

Recently Transformers Vaswani et al. [2017], Chen et al. [2021] have demonstrated remarkable in-68

context learning capabilities Brown et al. [2020], Garg et al. [2022]. In-context learning Moeini et al.69

[2025] is a form of meta-RL Beck et al. [2023], where agents can solve new tasks without updating any70

parameters by simply conditioning on additional context, such as their action-observation histories.71

Building on this ability, Lee et al. [2023] recently showed that Transformers can be trained in a72

supervised manner using offline data to mimic posterior sampling in reinforcement learning. In73

Dai et al. [2024] the authors presente ICEE (In-Context Exploration Exploitation). ICEE uses74

Transformer architectures to perform in-context exploration-exploration for RL. ICEE tackles this75

challenge by expanding the framework of return conditioned RL with in-context learning Chen et al.76

[2021], Emmons et al. [2021]. Return conditioned learning is a type of technique where the agent77

learns the return-conditional distribution of actions in each state. Actions are then sampled from the78

distribution of actions that receive high return Srivastava et al. [2019], Kumar et al. [2019]. Lastly, we79

note the important contribution of RL2 Duan et al. [2016], which proposes to represent an RL policy80

as the hidden state of an RNN, whose weights are learned via RL. ICPE employs a similar idea, but81

focuses on a different objective (identification), and splits the process into a supervised inference82

network that provides rewards to an RL-trained transformer network that selects actions to maximize83

information gain.84

2 Learning to Explore: In-Context Pure Exploration85

We introduce ICPE (In-Context Pure Exploration), a deep-learning framework that combines se-86

quential architecture with supervised and reinforcement learning to automatically discover efficient87

exploration policies for active sequential hypothesis testing. Instead of explicitly encoding induc-88

tive biases, we use transformers to let the agent autonomously infer the problem structures from89

experiences.90

Environment and Interaction Model. We consider a model class of environments M and a91

distribution P(M) ∈ ∆(M) from which the true environment M is sampled from. We model an92
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environment as a tuple M = (X ,A, P, ρ), where X is a set of possible observations, A is a finite93

set of actions, P = (Pt)t∈N denotes the transition functions, with Pt : (X × A)t → ∆(X ) and94

ρ ∈ ∆(X ) denotes the initial observation distribution. All the environments in a classM share95

the same set of observations X and set of actions A. The learner interacts with the environment in96

a sequential manner: (1) an initial observation x1 ∼ ρ is sampled from X ; (2) at time-step t, the97

learner chooses an action at and observes the next observation xt+1 ∼ Pt(·|Dt, at), meaning that98

xt+1 is drawn independently from Pt(·|Dt, at) given a trajectory Dt = (x1, a1, . . . , xt−1, at−1, xt).99

Formally, the learner uses a randomized policy π = (πt)t∈N, which is a sequence of deterministic100

functions, to select actions: action at is selected by sampling independently from πt(Dt) (with Dt101

being a random variable), where πt(Dt) specifies a probability distribution over A.102

We assume a task-specific ground-truth hypothesis H⋆
M from a predefined classH of hypotheses for103

each environment, where our goal is to efficiently infer this hypothesis. Informally, we can state our104

objective as follows:105

Given an environment M drawn from P(M), how can we learn a sampling strategy π that
collects data D from M so the agent can reliably infer H⋆

M solely from D?
106

An oracle h(Ĥ;M) = 1{Ĥ=H⋆
M}

provides super-107

vised feedback at training time (not test time), in-108

dicating correctness without revealing hidden struc-109

tures. Using oracle feedback, we learn an inference110

mapping I : Dt 7→ ∆(H), yielding posterior distri-111

butions over hypotheses given collected data. The112

estimator Ĥt ∼ I(·|Dt) guides exploration by pro-113

viding a reward signal to an RL agent collecting the114

data Dt using an exploration policy π.115

Example: Best Arm Identification A relevant ex-116

ample is that of Best-Arm Identification in MAB117

problems Garivier and Kaufmann [2016]. Recall that in a MAB problem the decision maker can118

choose between K different actions a1, . . . , aK (we also say arms) at each time-step. Upon selecting119

an action a at time t, it observes a random reward rt distributed according to a distribution νat . In120

BAI the goal is to identify the best action a⋆ = argmaxa ER∼νa
[R] as quickly as possible (hence121

H⋆ = a⋆). While several algorithms have been provided for different settings Soare et al. [2014],122

Jedra and Proutiere [2020], Russo and Proutiere [2023b], Kocák and Garivier [2020], Poiani et al.123

[2024], a major issue is that the algorithm design can drastically change if the assumptions change.124

Moreover, it is difficult to design efficient techniques for more complex settings such as MDPs (in125

fact, the problem becomes non-convex Marjani and Proutiere [2021], Russo and Pacchiano [2025]).126

Therefore, in this work we address the open question of whether it is possible to learn efficient127

exploration strategies directly from experience, avoiding the process of designing a BAI algorithm.128

2.1 ICPE for Fixed Confidence Problems129

In this work, we focus on the fixed confidence setting Garivier and Kaufmann [2016]. In this setting,130

the agent needs to learn to stop the data sampling process as soon as it is sufficiently confident131

to have correctly estimated H⋆ for an environment M . Let Pπ
M be the underlying probability132

measure of the process ((Dt, at))t under a sampling strategy π. In the following we also write133

Pπ
M∼P(M)(·) = EM∼P(M)[Pπ

M (·)] to denote the expected probability over the prior.134

We equip the learner with the capability to stop the sampling process at any point in time. We denote135

such stopping rule by τ , which is a stopping time with respect to the filtration (σ(Dt))t. Then,136

the learner wishes to find an optimal stopping rule τ (with τ < ∞ a.s.), exploration policy π and137

inference network I subject to a confidence level at the stopping time τ :138

min
τ,π,I

EM∼P(M)[τ ] s.t. Pπ
M∼P(M)(h(Ĥτ ;M) = 1) ≥ 1− δ. (1)
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Algorithm 1 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with true hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: repeat
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal }, H⋆) to B.
8: Set t← t+ 1.
9: until at−1 = astop or t > N .

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ )− 1 + δ) . (2)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (3)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[
log(Iϕ(H

⋆|s′)
]
. (4)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while

Introducing a stopping action astop to πt, we define τ = min(N, inf t : at = astop) for a maximum139

horizon N (the horizon is introduced for practical reasons). We consider solving the dual formulation:140

min
λ≥0

max
π,I

Vλ(π, I) =− Eπ
M∼P(M)[τ ] + λ

[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
,

with Ĥτ ∼ I(·|Dτ ). To solve this problem, ICPE treats each optimization separately, and optimize141

using a descent-ascent scheme. ICPE leverages transformers to encode trajectories Dt as fixed-length142

states st = (Dt,∅t:N ) of an induced MDP M , padding with null tokens to horizon N . The resulting143

MDP formulation has actions A ∪ astop and a reward structure penalizing each step until stopping,144

defined below.145

Learning I . The distribution I is modeled using a transformer with parameter ϕ, and we denote it146

by Iϕ. Then, considering a fixed (π, λ), the maximization with respect to I amounts to solving147

max
ϕ

Eπ
M∼P(M)[h(Ĥτ ;M)], Ĥτ ∼ Iϕ(·|sτ ).

Therefore, we can train ϕ via a cross-entropy loss −
∑

H′ h(H ′;M) log(Iϕ(H
′|sτ )).148

Learning π. The policy π is learnt using RL techniques. We define a reward r that penalizes149

the agent at all time-steps, that is rt = −1, while at the stopping-time we have rτ = −1 +150

λEH∼I(·|sτ )[h(H;M)]. Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair151

(s, a) as Qπ,I
λ (s, a) = Eπ

M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn).152

We model π with a transformer of parameter θ, and train it using DQN Mnih et al. [2015], Van Hasselt153

et al. [2016] with a replay buffer B and a target network Qθ̄ parameterized by θ̄. To maintain timescale154

separation, we introduce a separate target inference network Iϕ̄, parameterized by ϕ̄, which provides155

feedback for training θ. Note that, as discussed earlier, we introduce a dedicated stop-action astop156

whose value depends solely on history. Thus, its Q-value can be updated at any time, allowing157

retrospective evaluation of stopping. For learning the Q-values, we define the reward for a transition158

z = (s, a, s′, d,H⋆) as:159

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′), d = 1{z terminal},

where we set s′ ← s if a = astop, and terminal means either a = astop or the last step in the horizon.160

We also define the transition zstop by replacing (a, s′) with (astop, s) in z. Then, for a ̸= astop, the161

Q-values can be learned using a target value:162

yλ(z) = rλ(z) + (1− d)max
i

Qθ̄(s
′, ai).
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Instead, for the stopping action, we use the loss (rλ(zstop)−Qθ(s, astop))
2. Therefore, the overall163

loss used for training θ on a transition z is:164

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,

where 1{a̸=astop} avoids double accounting for the stopping action.165

Last steps. Then, to train (θ, ϕ), we sample two independent batches (B,B′) ∼ B from the buffer,166

and compute the gradient updates as in eqs. (3) and (4) of algorithm 1. We periodically update target167

networks, setting ϕ̄ ← ϕ every T steps and using a Polyak averaging θ̄ ← (1 − η)θ̄ + ηθ, with168

η ∈ (0, 1).169

Finally, we update λ by assessing the confidence of Iϕ at the stopping time (2) for a fixed (π, I).170

Thus, for sufficiently small learning rates, optimizing (λ, θ, ϕ) resembles an ascent-descent scheme.171

3 Empirical Evaluation172

We evaluate our approach across various tasks: stochastic bandits with or without latent structure;173

learning a probabilistic version of binary search. Due to space limitations, we refer the reader to174

appendix C for more details and more experiments on MAB problem with feedback graphs Russo175

et al. [2025], MDPs with hidden information and an an analysis of ICPE in the borader setting of176

classifying images by sequentially revealing image patches.177

Algorithms. In our evaluations we compare to different algorithms, depending on the problem. Some178

of the algorithms include: uniform sampling, TaS (Track and Stop) Garivier and Kaufmann [2016],179

TTPS (Top Two Sampling) Russo et al. [2018]. We also include a variant of IDS Russo and Van Roy180

[2018] based on the I-mapping, which uses the observation that I defines a posterior distribution over181

H. Always based on this idea, we also introduce I-DPT, a variant of DPT Lee et al. [2023], based on182

the fact that I can be used to explore a problem à-la Thompson Sampling. More information about183

these methods, and their hyper-parameters, can be found in appendix B 1.184

3.1 Bandit Problems185

We now apply ICPE to the classical BAI problem within MAB tasks. For the MAB setting we have a186

finite number of actions A = {1, . . . ,K}, corresponding to the actions in the MAB problem M . For187

each action a, we define a corresponding reward distribution νa from which rewards are sampled i.i.d.188

Then, P(M) is a prior distribution on the actions’ rewards distributions (νa)a and for BAI we let189

H⋆ = argmaxa Er∼νa
[r], so that we need to identify the best action. Lastly, the observation at time190

t is xt = (at, rt), where at is the chosen action at time t and rt is a reward sampled from νat
.191

Stochastic Bandit Problems. We evaluate ICPE on stochastic bandit environments with δ = 0.1192

and N = 100. Each action’s reward distribution is normally distributed νa = N (µa, 0.5
2), with193

(µa)a∈A drawn from P(M). In this case P(M) is a uniform distribution over problems with194

minimum gap maxa µa − maxb̸=a µa ≥ ∆0, with ∆0 = 0.4. Hence, an algorithm could exploit195

this property to infer H⋆ more quickly. For this case, we also derive some sample complexity196

bounds in appendix A. Figure 1 summarizes the results for this setting. We compare to TaS and

4 6 8 10 12 14
Number of Actions

10

20

30

40

50

60

70

80

90

Av
er

ag
e 

St
op

pi
ng

 T
im

e

TaS
ICPE
Uniform
TTPS
I-DPT

(a)

0 20 40 60 80 100
Time t

0.0

0.2

0.4

0.6

0.8

1.0

P(
>

t)

TaS
ICPE
Uniform
TTPS
I-DPT

(b)

4 6 8 10 12 14
Number of Actions

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Co
rre

ct
ne

ss

TaS
ICPE
Uniform
TTPS
I-DPT

(c)

Figure 1: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ

M∼P(M)(h(Ĥ;M) = 1).
197

TTPS, and use the stopping rule of TaS also for Uniform and TTPS (the stopping rule is based on a198

1In the results, shaded areas indicate 95% confidence intervals, computed via hierarchical bootstrapping.
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self-normalized process, compared with a threshold function β(t, δ); see also appendix B for more199

details). Overall, we see in fig. 1a how ICPE is able to find a more efficient strategy compared to200

classical techniques. Interestingly, also I-DPT seems to achieve relatively small sample complexities.201

However, its tail distribution of τ is rather large compared to ICPE (fig. 1b) and the correctness202

is smaller than 1 − δ for large values of K. Methods like TaS and TTPS achieve larger sample203

complexity, but also larger correctness values (fig. 1c). This is due to the fact that it is hard to define204

stopping rules. In fact, it is well known that current theoretically sound stopping rules are overly205

conservative Garivier and Kaufmann [2016]. Nonetheless, even using a less conservative rule such206

as β(t, δ) = log((1 + log(t))/δ), which is what we use (and, yet, has not been proven to guarantee207

δ-correctness), is still conservative. The fact that ICPE can achieve the right value of confidence can208

help discover potential ways to define stopping rules. Lastly, in fig. 1a in black we show a complexity209

bound (proof in appendix A.1). While seemingly constant, it is actually slowly increasing in the210

number of arms.211

Bandit Problems with Hidden Information. To evaluate ICPE in structured settings, we introduce212

bandit environments with latent informational dependencies, termed magic actions. In the single213

magic action case, the magic action am’s reward is distributed according to N (µam
, σ2

m), where214

σm ∈ (0, 1) and µam
:= ϕ(argmaxa ̸=am

µa) encodes information about the optimal action’s identity215

through an invertible mapping ϕ that is unknown to the learner. The index am is fixed, and the mean216

rewards of the other actions (µa)a ̸=am are sampled from P(M), a uniform distribution over models217

guaranteeing that am, as defined above, is not optimal (see appendices A.2 and C.1.2 for more details).218

Then, we define the reward distribution of the non-magic actions as N (µa, (1− σm)2).219

In our first experiment, we vary the standard deviation σm in [0, 1]. Thus, agents must balance220

sampling between informative and noisy actions based on varying uncertainty levels. We evaluate221

ICPE in a fixed-confidence setting with error rate δ = 0.1. Figure 2a compares ICPE’s sample222

complexity against a theoretical lower bound (see appendix A) and an informed baseline, denoted as223

I-IDS, which performs standard IDS leveraging ICPE’s trained inference network I for exploiting224

the magic action (details in Appendix B). ICPE achieves sample complexities close to the theoretical
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Figure 2: (a) Single magic action: average stopping time and the theoretical lower bound across
varying σm. (b) Magic chain: average stopping time between ICPE, I-IDS vs. number of magic
actions.

225
bound across all tested noise levels, consistently outperforming I-IDS. To further challenge ICPE, we226

introduce a multi-layered "magic chain" bandit environments, where there is a sequence of n magic227

actions Am := {ai1 , . . . , ain} ⊂ A such that µaij
= ϕ(µaij+1

), and µain
= ϕ(argmaxa/∈Am

µa).228

The first index i1 is known, and by following the chain, an agent can uncover the best action in n229

steps. However, the optimal sample complexity depends on the ratio of magic actions to non-magic230

arms. Varying the number of magic actions from 1 to 9 in a 10-actions environment, Figure 2b231

demonstrates ICPE’s empirical performance, outperforming I-IDS.232

Bandit Problems with Feedback Graphs. In bandit problems, playing action u yields its reward,233

while full-information settings reveal all rewards. Feedback graphs interpolate between these ex-234

tremes: a directed graph G ∈ [0, 1]K×K specifies that choosing u reveals the reward of v with235

probability Gu,v. Although feedback graphs have been extensively studied for regret minimiza-236

tion Mannor and Shamir [2011], their role in pure exploration remains underexplored Russo et al.237

[2025]; here we use them as structured testbeds, where latent relational and stochastic dependencies238
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Figure 3: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

must be inferred to explore efficiently. Formally, upon playing u the learner observes for each239

v ∈ [K]:240

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.
We tested ICPE on 3 different graph families with δ = 0.1: the loopy star graph, the ring graph and241

the loopless clique Russo et al. [2025]. We set the optimal arm’s mean to 1 and all others to 0.5 to242

facilitate faster convergence. We compared it to Uniform Sampling, EXP3.G, and Tas-FG using a243

shared stopping rule from Russo et al. [2025].244

As shown in Figure 3, ICPE consistently achieves significantly lower sample complexity, suggesting245

that that ICPE is able to meta-learn and leverage the underlying structure of the graph.246

3.2 Algorithm Discovery: Meta-Learning Binary Search247

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-248

tonomously meta-learn binary search. We define an action space of A = {1, . . . ,K}, where K is the249

upper bound on the possible location of the hidden target H⋆ ∼ A. Pulling an arm above or below250

H⋆ yields a observation xt = −1 or xt = +1, respectively—providing directional feedback. We251

train ICPE under the fixed-confidence setting for K = 23, . . . , 28 using a target error rate of δ = 0.01.252

In table 1 we report results on 100 held-out tasks per setting. ICPE consistently achieves perfect253

accuracy with worst-case stopping times that match the optimal log2(K) rate, demonstrating that it254

has successfully rediscovered binary search purely from experience. While simple, this task illustrates255

ICPE’s broader potential to learn efficient search strategies in domains where no hand-designed256

algorithm is available.257

K (Actions) Min Accuracy Mean Stop Time Max Stop Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 1: ICPE performance on the binary search task as the number of actions K increases.

4 Conclusions258

In this work, we addressed the design of efficient pure-exploration strategies for the active sequential259

hypothesis testing problem, where an agent sequentially selects samples to rapidly identify the true260

hypothesis. While particularly relevant across different domains, it is difficult to design optimal261

strategies in the presence of hidden structure, and most of the existing optimal strategies are restricted262

to simple cases for unstructured multi-armed bandit problems. To overcome these limitations, we263

introduced ICPE, an in-context learning framework that leverages Transformers to learn exploration264

policies directly from experience. Our results demonstrate that ICPE is able to autonomously265

discovering task-specific adaptive exploration strategies. We believe our work makes a fundamental266

contribution to active testing, and in particular to the sub-field of best-arm identification. Future267

directions include several directions, including a theoretical analysis of ICPE’s guarantees and scaling268

ICPE to larger, higher-dimensional problems.269
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Appendix444

A Theoretical Results445

In this section we provide different theoretical results, mainly for the sample complexity of different446

MAB problems with structure.447

A.1 Sample Complexity Bounds for MAB Problems with Fixed Minimum Gap448

We now derive a sample complexity lower bound for a MAB problem where the minimum gap is449

known and the rewards are normally distributed.450

Consider a MAB problem wit K arms {1, . . . ,K}. To each arm a is associated a reward distribution451

νa = N (µa, σ
2) that is simply a Gaussian distribution. Let a⋆(µ) = argmaxa µa, and define the452

gap in arm a to be ∆a(µ) = µa⋆(µ) − µa. In the following, without loss of generality, we assume453

that a⋆(µ) = 1.454

We define the minimum gap to be ∆min(µ) = mina̸=a⋆(µ) ∆a(µ). Assume now to know that455

∆min ≥ ∆0 > 0.456

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal457

arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆(µ)) ≤ δ, we have the following result.458

Theorem A.1. Consider a model µ satisfying ∆min ≥ ∆0 > 0. Then, for any δ-probably correct459

method Alg, with δ ∈ (0, 1/2), we have that the optimal sample complexity is bounded as460

1

max
(
∆2

0,
1∑

a̸=1 1/∆2
a

) ≤ inf
τ :Alg is δ-correct

Eµ[τ ]

2σ2kl(1− δ, δ)
≤ 2

∑
a

1

(∆a +∆0)2
,

with ∆1 = 0 and kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)). In particular, the solution461

ωa ∝ 1/(∆a +∆0)
2 (up to a normalization constant) achieves the upper bound.462

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the463

same argument used in the Best Arm Identification and Best Policy Identification literature Garivier464

and Kaufmann [2016], Russo and Vannella [2025].465

Define the set of models466

S =
{
µ′ ∈ RK : ∆min(µ

′) ≥ ∆0

}
,

and the set of alternative models467

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= 1

}
.

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ468

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed469

upon selecting At. Then, we can write470

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to471

the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to472

round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be473

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)474

(note that we have σ1 instead of σ for a = 1).475

We also know from the information processing inequality Kaufmann et al. [2016] that Eµ[Λτ ] ≥476

supE∈Mτ
kl(Pµ(E),Pµ′(E)), whereMt = σ(A1, R1, . . . , At, Rt). We use the fact that the algo-477

rithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since478
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Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ
′
a) ≤ δ (we also used479

the monotonicity properties of the Bernoulli KL divergence). Hence480 ∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that481

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:482

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as483

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing484

over the set of alternative models.485

Defining Alta =
{
µ′ ∈ RK : µ′a − µ′b ≥ ∆0 ∀b ̸= a

}
, the set of alternative models can be decom-486

posed as487

Alt(µ) =

{
µ′ ∈ RK : argmax

a
µ′a ̸= 1, ∆min(µ

′) ≥ ∆0

}
,

= ∪a̸=1Alta.

Hence, the optimization problem over the alternative models becomes488

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a) = min

ā ̸=1
inf

µ′∈Altā

∑
a

ωa
(µa − µ′a)

2

2σ2
.

The inner infimum over µ′ can then be written as489

P ⋆
ā (ω) := inf

µ′∈RK

∑
a

ωa
(µa − µ′a)

2

2σ2
.

s.t. µ′ā − µ′b ≥ ∆0 ∀b ̸= ā.

(5)

While the problem is clearly convex, it does not yield an immediate closed form solution.490

To that aim, we try to derive a lower bound and an upper bound of the value of this minimization491

problem.492

Step 3: Upper bound on P ⋆
ā . Note that an upper bound on minā̸=1 P

⋆
ā (ω) can be found by finding a493

feasible solution µ′. Consider then the solution µ′1 = µ1 −∆, µ′ā = µ1 and µ′b = µb for all other494

arms. Clearly We have that µ′ā − µ′b ≥ ∆0 for all b ̸= ā. Hence, we obtain495

min
ā̸=1

P ⋆
ā (ω) ≤ ω1

∆2
0

2σ2
+min

ā̸=1
ωā

∆2
ā

2σ2
.

At this point, one can easily note that if ∆2
0

2σ2 ≥ 1
2σ2

∑
a ̸=1

1
∆2

a

, then supω∈∆(K) minā ̸=1 P
⋆
ā (ω) ≤

∆2
0

2σ2 .496

This corresponds to the case where all the mass is given to ω1 = 1. Otherwise, the solution is to set497

ω1 = 0 and ωa =
1/∆2

a∑
b 1/∆2

b
for a ̸= 1.498

Hence, we conclude that499

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≤

1

2σ2
max

(
∆2

0,
1∑

a ̸=1 1/∆
2
a

)
.
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Step 4: Lower bound on P ⋆
ā . For the lower bound, note that we can relax the constraint to only500

consider µ′ā − µ′1 ≥ ∆0. This relaxation enlarges the feasible set, and thus the infimum of this new501

problem lower bounds P ⋆
ā (ω).502

By doing so, since the other arms are not constrained, by convexity of the KL divergence at the503

infimum we have µ′b = µb for all b /∈ {1, ā}. Therefore504

P ⋆
ā (ω) ≥ inf

µ′:µ′
ā−µ′

1≥∆0

∑
a

ωa
(µa − µ′a)

2

2σ2
= inf

µ′:µ′
ā−µ′

1≥∆0

ω1
(µ1 − µ′1)

2

2σ2
+ ωā

(µā − µ′ā)
2

2σ2
.

Solving the KKT conditions we find the equivalent conditions µ′ā = µ′1 +∆0 and505

ω1(µ1 − µ′1) + ωā(µā − µ′1 −∆0) = 0⇒ µ′1 =
ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
.

Therefore506

µ′ā =
ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
+∆0 =

ω1µ1 + ωāµā + ω1∆0

ω1 + ωā
.

Plugging these solutions back in the value of the problem, we obtain507

P ⋆
ā (ω) ≥

ω1ω
2
ā

(ω1 + ωā)2
(µ1 − µā +∆0)

2

2σ2
+

ωāω
2
1

(ω1 + ωā)2
(µā − µ1 −∆0)

2

2σ2
,

=
ω1ωā

ω1 + ωā

(µ1 − µā +∆0)
2

2σ2
,

=
ω1ωā

ω1 + ωā

(∆ā +∆0)
2

2σ2
.

Let θa = ∆a +∆0, with θ1 = ∆0. We plug in a feasible solution ωa =
1/θ2

a∑
b 1/θ2

b
, yielding508

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≥ min

ā ̸=1

1/(θ1θā)
2∑

b 1/θ
2
b (1/θ

2
1 + 1/θ2ā)

θ2ā
2σ2

,

= min
ā ̸=1

1∑
b 1/θ

2
b (1 + θ21/θ

2
ā)

1

2σ2
,

=
1

2σ2
∑

b 1/θ
2
b

min
ā̸=1

1

1 + θ21/θ
2
ā

,

≥ 1

2σ2
∑

b 1/θ
2
b

1

1 + θ21/∆
2
0

,

=
1

4σ2
∑

b 1/θ
2
b

.

509

A.2 Sample Complexity Lower Bound for the Magic Action MAB Problem510

We now consider a special class of models that embeds information about the optimal arm in the511

mean reward of some of the arms. Let ϕ : R→ R be a strictly decreasing function over {2, . . . ,K}2.512

Particularly, we make the following assumptions:513

1. We consider mean rewards µ satisfying µ1 = ϕ(argmaxa̸=1 µa), and µ⋆ = maxa µa >514

ϕ(2). Arm 1 is called "magic action", and with this assumption we are guaranteed that the515

magic arm is not optimal, since516

µ1
1

maxa µa
= ϕ(argmax

a̸=1
µa)

1

maxa µa
≤ ϕ(2)

1

maxa µa
< 1⇒ max

a
µa > µ1.

2. The rewards are normally distributed, with a fixed known standard deviation σ1 for the517

magic arm, and fixed standard deviation σ for all the other arms.518

2One could also consider strictly increasing functions.
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Hence, define the set of models519

S =

{
µ ∈ RK : µ1 = ϕ(argmax

a̸=1
µa),max

a
µa > ϕ(2)

}
,

and the set of alternative models520

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= a⋆

}
,

where a⋆ = argmaxa µa.521

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal522

arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆) ≤ δ, we have the following result.523

Theorem A.2. For any δ-correct algorithm, the sample complexity lower bound on the magic action524

problem is525

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ), (6)
where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and T ⋆(µ) is the characteristic time of526

µ, defined as527

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a̸=1,a⋆

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑

b∈Ka(ω)

ωb
(µb −m(ω;Ka(ω))

2

2σ2
, (7)

where m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

and the set Ka(ω) is defined as528

Ka(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb ∪ {a}) and µb ≥ ϕ(2)} .
with Cx = {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K].529

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the530

same argument used in the Best Arm Identification and Best Policy Identification literature Garivier531

and Kaufmann [2016], Russo and Vannella [2025].532

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ533

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed534

upon selecting At. Then, we can write535

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to536

the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to537

round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be538

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)539

(note that we have σ1 instead of σ for a = 1).540

We also know from the information processing inequality Kaufmann et al. [2016] that Eµ[Λτ ] ≥541

supE∈Mτ
kl(Pµ(E),Pµ′(E)), whereMt = σ(A1, R1, . . . , At, Rt). We use the fact that the algo-542

rithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since543

Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ
′
a) ≤ δ (we also used544

the monotonicity properties of the Bernoulli KL divergence). Hence545 ∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that546

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).
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Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:547

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as548

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing549

over the set of alternative models. First, we observe that S = ∪a̸=a⋆{µ : µ1 = ϕ(a), µa > ϕ(2)}.550

Therefore, we can write551

Alt(µ) = ∪a/∈{1,a⋆} {µ′ : µ′1 = ϕ(a), µ′a > max(ϕ(2), µ′b) ∀b ̸= a} .

Hence, for a fixed a /∈ {1, a⋆}, the inner infimum becomes552

inf
µ′∈RK

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
a̸=1

ωa
(µa − µ′a)

2

2σ2

s.t. µ′a ≥ max (ϕ(2), µ′b) ∀b,
µ′1 = ϕ(a).

(8)

To solve it, we construct the following Lagrangian553

ℓ(µ′, θ) = ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
b̸=1

ωb
(µb − µ′b)

2

2σ2
+
∑
b

θb (max (ϕ(2), µ′b)− µ′a) ,

where θ ∈ RK
+ is the multiplier vector. From the KKT conditions we already know that θ1 = 0, θa = 0554

and θb = 0 if µ′b ≤ ϕ(2), with b ∈ {2, . . . ,K}. In particular, we also know that either we have555

µ′b = µ′a or µ′b = µb. Therefore, for µb ≤ ϕ(2) the solution is µ′b = µb, while for µb > ϕ(2) the556

solution depends also on ω.557

To fix the ideas, let K be the set of arms for which µ′b = µ′a at the optimal solution. Such set must558

necessarily include arm a. Then, note that559

∂ℓ

∂µ′a
= ωa

µ′a − µa

σ2
−
∑
b∈[K]

θb = 0.

and560
∂ℓ

∂µ′b
= ωb

µ′b − µb

σ2
+ θb = 0 for b ̸= (1, a).

Then, using the observations derived above, we conclude that561

µ′a =

∑
b∈K ωbµb∑
b∈K ωb

,

with µ′b = µ′a if b ∈ K, and µ′b = µb otherwise. However, how do we compute such set K?562

First, K includes arm a. However, in general we have K ≠ {a} : if that were not true we would have563

µ′a = µa and µ′b = µb for the other arms – but if any µb is greater than µa, then a is not optimal,564

which is a contradiction. Therefore, also arm a⋆ is included in K, since any convex combination of565

{µa} is necessarily smaller than µa⋆ . We apply this argument repeatedly for every arm b to obtain K.566

Hence, for some set C ⊆ [K] define the average reward567

m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

,

and the set Cx = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K]. Then,568

K := K(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb) and µb ≥ ϕ(2)} .

In other words, K is the set of confusing arms for which the mean reward in the alternative model569

changes. An arm b is confusing if the average reward m, taking into account b, is smaller than µb. If570

this holds for b, then it must also hold all the arms b′ such that µb′ ≥ µb.571
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Finally, to get a better intuition of the main result, we can look at the 3-arms case: it is optimal to572

only sample the magic arm iff |ϕ(a⋆)− ϕ(a)| > σ1(µa⋆−µa)
2σ .573

Lemma A.3. With K = 3 we have that ω1 = 1 if and only if574

|ϕ(a⋆)− ϕ(a)| > σ1(µa⋆ − µa)

2σ
,

and ω1 = 0 if the reverse inequality holds.575

Proof. With 3 arms, from the proof of the theorem we know that Ka(ω) = {a, a⋆} for all ω. Letting576

m(ω) = ωaµa+ωa⋆µa⋆

ωa+ωa⋆
, we obtain577

(T ⋆(µ))−1 = max
ω∈∆(3)

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

Clearly the solution is ω1 = 1 as long as578

(ϕ(a⋆)− ϕ(a))2

2σ2
1

> max
ω:ωa+ωa⋆=1

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

To see why this is the case, let f1 = (ϕ(a⋆)−ϕ(a))2
2σ2

1
, f2(ωa, ωa⋆) = ωa(µa−m(ω))2

2σ2 and f3(ωa, ωa⋆) =579

ωa⋆ (µa⋆−m(ω))2

2σ2 . Then, we can write580

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)

[
ωaf2
1− ω1

+
ωa⋆f3
1− ω1

]
.

Being a convex combination, this last term can be upper bounded as581

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

ωaf2
1− ω1

+
ωa⋆f3
1− ω1

)
.

Now, note that also the term inside the bracket is a convex combination. Threfore, let ωa = (1−ω1)α582

and ωa⋆ = (1− ω1)(1− α) for some α ∈ [0, 1]. We have that583

m(ω) =
(1− ω1)αµa + (1− ω1)(1− α)µa⋆

1− ω1
= αµa + (1− α)µa⋆ .

Hence, we obtain that584

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2(1− ω1)σ2
=

ωaf2 + ωa⋆f3
1− ω1

,

=
α(1− α)2(µa − µa⋆)2 + (1− α)α2(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(1− α)(µa − µa⋆)2 + α(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(µa − µa⋆)2

2σ2
.

Since this last term is maximized for α = 1/2, we obtain585

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

(µa − µa⋆)2

8σ2

)
.

Since f1 is attained for ω1 = 1, we have that as long as f1 > (µa−µa⋆ )2

8σ2 , then the solution is ω1 = 1.586

On the other hand, if (µa−µa⋆ )2

8σ2 > f1, then we can set ωa = (1 − ω1)/2 and ωa⋆ = (1 − ω1)/2,587

leading to588

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)
(µa − µa⋆)2

8σ2
,

which is maximized at ω1 = 0.589
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A.3 Sample Complexity Bound for the Multiple Magic Actions MAB Problem590

We now extend our analysis to the case where multiple magic actions can be present in the environment.591

In contrast to the single magic action setting, here a chain of magic actions sequentially reveals592

information about the location of the optimal action. Without loss of generality, assume that the first593

n arms (with indices 1, . . . , n) are the magic actions, and the remaining K − n arms are non–magic.594

The chain structure is such that pulling magic arm j (with 1 ≤ j < n) yields information about only595

the location of the next magic arm j + 1, while pulling the final magic action (arm n) reveals the596

identity of the optimal action. As before, we assume that the magic actions are informational only597

and are never optimal.598

To formalize the model, let ϕ : {1, . . . , n} → R be a strictly decreasing function. We assume that the599

magic actions have fixed means given by600

µj =

ϕ(j + 1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{1,...,n} µa

)
, if j = n.

and that the non–magic arms satisfy601

µ⋆ = max
a/∈{1,...,n}

µa > ϕ(n).

Thus, the optimal arm lies among the non–magic actions. Considering the noiseless case where the602

rewards of all actions are fixed and the case where we can identify if an action is magic once revealed,603

we have the following result.604

Theorem A.4. Consider noiseless magic bandit problem with K arms and n magic actions. The605

optimal sample complexity is upper bounded as606

inf
Alg

EAlg[τ ] ≤ min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) .

Proof. In the proof we derive a sample complexity bound for a policy based on some insights. We607

use the assumption that upon observing a reward from a magic arm, the learner can almost surely608

identify that the pulled arm is a magic arm.609

Let us define the state (m, r, l), where m denotes the number of remaining unrevealed magic actions610

(m0 = n− 1), r denotes the number of remaining unrevealed non-magic actions (r0 = K − n), and611

l is the binary indicator with value 1 if we have revealed any hidden magic action and 0 otherwise.612

Before any observation the learner has no information about which n− 1 indices among {2, . . . ,K}613

form the chain of intermediate magic arms. Hence, one can argue that at the first time-step is optimal614

to sample uniformly at random an action in {2, . . . ,K}.615

Upon observing a magic action, and thus we are in state (m, r, 1), we consider the following candidate616

policies: (1) start from the revealed action and follow the chain, or (2) keep sampling unrevealed617

actions uniformly at random until all non-magic actions are revealed. As previously discussed,618

starting the chain from the initial magic action would be suboptimal and we do not consider it.619

Upon drawing a hidden magic arm, let its chain index be j ∈ {2, . . . , n} (which is uniformly620

distributed). The remaining cost to complete the chain is n− j, and hence its expected value is621

E[n− j] =
n− 2

2
.

Therefore, the total expected cost for strategy (1) is622

T1 =
n− 2

2
.

We can additionally compute the expected cost for strategy (2) as follows: if the last non-magic action623

is revealed at step i, then among the first i− 1 draws there are exactly r − 1 non-magic arms. Since624
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there are
(
m+r
r

)
ways to place all r non-magic arms m+ r slots, we have625

T2 = E[Draws until all non-magic revealed]

=

m+r∑
i=r

i · P[Last non-magic revealed at step i]

=

m+r∑
i=r

i ·
(
i−1
r−1
)(

m+r
r

)
=

r! ·m!

(m+ r)!

m+r∑
i=r

i

(
i− 1

r − 1

)

=
r! ·m!

(m+ r)!

m+r∑
i=r

i!

(r − 1)!(i− r)!

=
r! ·m!

(m+ r)!

m+r∑
i=r

r

(
i

r

)
=

r · r! ·m!

(m+ r)!

(
m+ r + 1

r + 1

)
=

r · r! ·m!

(m+ r)!
· (m+ r + 1) · (m+ r)!

(r + 1) · r! ·m!

=
r(m+ r + 1)

r + 1

Finally, we define a policy in (m, r, 1) as the one choosing between strategy 1 and strategy 2,626

depending on which one achieves the minimum cost. Hence, the complexity of this policy is627

V (m, r, 1) = min

(
n− 2

2
,
r(m+ r + 1)

r + 1

)
.

Now, before finding a magic arm, consider a policy that uniformly samples between the non-revealed628

arms. Therefore, in (m, r, 0) we can achieve a complexity of 1+ m
m+rV (m−1, r, 1)+ r

m+rV (m, r−629

1, 0). Since we can always achieve a sample complexity of n, we can find a policy with the following630

complexity:631

V (m, r, 0) = min

(
n, 1 +

m

m+ r
V (m− 1, r, 1) +

r

m+ r
V (m, r − 1, 0)

)
= min

(
n, 1 +

m

m+ r
min

(
n− 2

2
,
r(m+ r)

r + 1

)
+

r

m+ r
V (m, r − 1, 0)

)

Given we always start with n− 1 hidden magic actions we can define a recursion in terms of just the632

variable r as follows:633

V (r) = 1 +
n− 1

n− 1 + r
T (r) +

r

n− 1 + r
V (r − 1),

where T (r) = min
(

n−2
2 , r(n−1+r)

r+1

)
. Letting A(r) = r

n−1+r and B(r) = 1 + n−1
n−1+rT (r), we can634

write635

V (r) = B(r) +A(r)V (r − 1),
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Clearly V (0) = 0 since if all non-magic actions are revealed, then we know the optimal action636

deterministically. Unrolling the recursion we get637

V (1) = B(1),

V (2) = B(2) +A(2)B(1),

V (3) = B(3) +A(3)B(2) +A(3)A(2)B(1),

...

V (r) =

r∑
j=1

 r∏
i=j+1

A(i)

B(j).

Substituting back in our expression, we get638

V (r) =

r∑
j=1

 r∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
T (j)

)
.

Thus starting at r = K − n we get the following expression:639

min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) ,

which is also an upper bound on the optimal sample complexity.640

641

To get a better intuition of the result, we also have the following corollary, which shows that we642

should expect a scaling linear in n for small values of n (for large values the complexity tends instead643

to "flatten").644

Corollary A.5. Let T be the scaling in theorem A.4. We have that645

min(n, (K − n)/2) ≲ T ≲ Cmin(n,K/2).

Proof. First, observe the scaling646 (
1 +

n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

))
= O(n/2).

At this point, note that647
K−n∏
i=j+1

i

n− 1 + i
=

K−n∏
i=j+1

(
1 +

n− 1

i

)−1
.

Using that x
1+x ≤ log(1 + x) ≤ x, we have648

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≥ −(n− 1)

K−n∑
i=j+1

1

i
.

and649

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≤ −(n− 1)

K−n∑
i=j+1

1

n− 1 + i
.

Define Hn =
∑n

i=1 1/i to be the n-th Harmonic number, we also have650

K−n∑
i=j+1

1

i
= HK−n −Hj .

Therefore651

−(n− 1)(HK−n −Hj) ≤ log

K−n∏
i=j+1

i

n− 1 + i
≤ −(n− 1)(HK−1 −Hn+j−1)
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Using that Hℓ ∼ log(ℓ) + γ +O(1/ℓ), where γ is the Euler–Mascheroni constant, we get652 (
j

K − n

)n−1

≲
K−n∏
i=j+1

i

n− 1 + i
≲

(
n+ j − 1

K − 1

)n−1

.

Therefore, we can bound
∑K−n

j=1

(
n+j−1
K−1

)n−1
using an integral bound653

K−n∑
j=1

(
n+ j − 1

K − 1

)n−1

≤
∫ K−n

0

(
n+ x

K − 1

)n−1

dx ≤ e(K − 1)

n
.

From which follows that the original expression can be upper bounded by an expression scaling as654

O(min(n, (K − 1)/2)).655

Similarly, using that
∑K−n

j=1

(
j

K−n

)n−1
≥ (K − n)/n, we have that the lower bound scales as656

min(n, (K − n)/2).657
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B Algorithms658

In this section we present some of the algorithms more in detail. These includes: ICPE, TaS, I-DPT659

and I-IDS.660

MDP Formulation for ICPE. Recall that in ICPE we treat trajectories of dataDt = (x1, a1, . . . , xt)661

as sequences to be given as input to sequential models, such as Transformers. We treat trajectories662

as states of an MDP M . An environment M can be then modeled as an MDP, which is a sequential663

model characterized by a tuple M = (S,A, P ′, r,H⋆
M , ρ), where S is the state space, A the action664

space, P ′ : S ×A → ∆(S) is the transition function, r : S → [0, 1] defines the reward function (to665

be defined later), H⋆ ∈ H is the true hypothesis in M and ρ is the initial state distribution.666

We define the state at time-step t as st = (Dt,∅t:N ), with ∅t:N indicating a null sequence of tokens667

for the remaining steps up to some pre-defined horizon N , with s1 = (x1,∅1:N ).668

To be more precise, letting (s∅t , a
∅
t ) denote, respectively, the null elements in the state and action at669

time-step t, we have ∅t:t+k = {s∅t , a∅t+1, s
∅
t+1, · · · , a

∅
t+k−1, s

∅
t+k}.670

The limit N is a practical upper bound on the horizon that limits the dimensionality of the state,671

which is introduced for implementing the algorithm. The action space remains A, and the transition672

dynamics P ′ are induced by (ρ, P ).673

B.1 ICPE with Fixed Confidence674

Recall that Dt = (x1, a1, . . . , xt−1, at−1, xt) and Ĥτ ∼ I(·|Dτ ). In the fixed confidence setting,675

problems terminate at some random point in time τ , chosen by the learner, or when the maximum676

horizon N is reached. We model this by giving πt an additional stopping action astop such that677

πt : Dt → A ∪ {astop} so that the data collection processes terminates at the stopping-time678

τ = min(N, tstop), with tstop := inf{t ∈ N : at = astop}.679

Optimizing the dual formulation680

min
λ≥0

max
I,π

Vλ(π, I)

can be viewed as a multi-timescale stochastic optimization problem: the slowest timescale updates681

the variable λ, an intermediate timescale optimizes over I , and the fastest refines the policy π.682

Algorithm 2 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: for t = 1, . . . , N − 1 do
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal}, H⋆) to B.
8: If at = astop, break the loop.
9: end for

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ+1)− 1 + δ) . (9)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a ̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (10)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[log(Iϕ(H
⋆|s)] . (11)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while
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MDP Formulation. We can use the MDP formalism to define an RL problem: we define a reward683

r that penalizes the agent at all time-steps, that is rt = −1, while at the stopping-time we have684

rτ = −1 + λEH∼I(·|sτ )[h(H;M)]. Hence, a trajectory’s return can be written as685

Gτ =

τ∑
t=1

rt = −τ + 1 + r(sτ , aτ )︸ ︷︷ ︸
rτ

= −τ + λI(H⋆|sτ ).

Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair (s, a) at the t-th step as686

Qπ,I
λ (s, a) = Eπ

M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn)687

Optimization over ϕ. We treat each optimization separately, employing a descent-ascent scheme.688

The distribution I is modeled using a sequential architecture parameterized by ϕ, denoted by Iϕ.689

Fixing (π, λ), the inner maximization in eq. (1) corresponds to690

max
ϕ

Eπ
M∼P(M)[h(Ĥτ ;M)], with Ĥτ ∼ Iϕ(·|sτ ).

We train ϕ via cross-entropy loss:691

−
∑
H′

h(H ′;M) log Iϕ(H
′|sτ ) = − log Iϕ(H

⋆|sτ ),

averaged across environments. Alternatively, a MAP estimator may be used with the same loss.692

Optimization over π. The policy π is defined as the greedy policy with respect to learned Q-values.693

Therefore, standard RL techniques can learn the Q-function that maximizes the value in eq. (1)694

given (λ, I). Denoting this function by Qθ, it is parameterized using a sequential architecture with695

parameters θ.696

We train Qθ using DQN Mnih et al. [2015], Van Hasselt et al. [2016], employing a replay buffer697

B and a target network Qθ̄ parameterized by θ̄. To maintain timescale separation, we introduce an698

additional inference target network Iϕ̄, parameterized by ϕ̄, which provides stable training feedback699

for θ. When (I, λ) are fixed, optimizing π reduces to maximizing:700

−τ + λ log Iϕ(H
⋆|sτ ).

Hence, we define the reward at the transition z = (s, a, s′, d,H⋆) (with the convention that s′ ← s if701

a = astop) as:702

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′),

where d = 1{z is terminal} (z is terminal if the transition corresponds to the last time-step in703

a horizon, or a = astop). Furthermore, for a transition z = (s, a, s′, d,H⋆) we define zstop :=704

z|(a,s′)←(astop,s) as the same transition z with a← astop and s′ ← s.705

There is one thing to note: the logarithm in the reward is justified since the original problem can be706

equivalently written as:707

min
λ≥0

max
I,π
−Eπ

M∼P(M)[τ ] + λ
[
log
(
Pπ
M∼P(M)(h(Ĥτ ;M) = 1)

)
− log(1− δ)

]
,

after noting that we can apply the logarithm to the constraint in eq. (1), before considering the dual.708

Thus the optimal solutions (I, π) remain the same.709

Then, using classical TD-learning Sutton and Barto [2018], the training target for a transition710

z = (s, a, s′, d,H⋆) can be defined as:711

yλ(z) = rλ(z) + (1− d)γmax
a′

Qθ̄(s
′, a′),

where γ ∈ (0, 1] is the discount factor.712

As discussed earlier, we have a dedicated stopping action astop, whose value depends solely on history.713

Thus, its Q-value is updated retrospectively at any state s using an additional loss:714

(rλ(zstop)−Qθ(s, astop))
2
.
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Therefore, the overall loss that we consider for θ for a single transition z can be written as715

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,

where 1{a̸=astop} avoids double accounting for the stopping action.716

To update parameters (θ, ϕ), we sample independent batches (B,B′) ∼ B from the replay buffer and717

apply gradient updates as specified in eqs. (3) and (4) of algorithm 1. Target networks are periodically718

updated, with ϕ̄← ϕ every M steps, and θ̄ using Polyak averaging: θ̄ ← (1− η)θ̄ + ηθ, η ∈ (0, 1).719

Optimization over λ. Finally, we update λ by assessing the confidence of Iϕ at the stopping time720

according to eq. (2), maintaining a slow ascent-descent optimization schedule for sufficiently small721

learning rates.722

Implementation with the MAP estimator. A practical implementation may consider to use the723

MAP estimator Ĥτ = argmaxH Iϕ(H|sτ ), which is what we do in practice, since it results in a724

lower variance estimator. We note that the loss function for Iϕ, and the reward for Qθ, as defined725

above, still yield the same optimal solution.726

Cost implementation. Lastly, in practice, we optimize a reward rλ(z) = −c + dIϕ̄(H
⋆|s′), by727

setting c = 1/λ, and noting that for a fixed λ the RL optimization remains the same. The reason why728

we do so is due to the fact that with this expression we do not have the product λEH′∼Iϕ [h(H
′;M)],729

which makes the descent-ascent process more difficult.730

We also use the following cost update731

ct+1 = ct − β(1− δ − Iϕ(H
⋆
M |sτ+1)),

or ct+1 = ct − β(1 − δ − h(Ĥτ ;M)) if one uses the MAP estimator. To see why the cost can be732

updated in this way, define the parametrization λ = e−x. Then the optimization problem becomes733

min
x

max
I

min
π
−Eπ

M∼P(M)[τ ] + e−x
[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
,

Letting ρ = Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ, the gradient update for x with a learning rate β734

simply is735

xt+1 = xt − βe−xtρ,

implying that736

− log(λt+1) = − log(λt)− βλtρ.

Defining ct = 1/λt, we have that737

log(ct+1) = log(ct)− (βρ/ct)⇒ ct+1 = cte
βρ/ct .

Using then the approximation ex ≈ 1+x, we find ct+1 = ct +βρ = ct−β(1− δ− Iϕ(H
⋆
M |sτ+1)).738

Training vs Deployment. Thus far, our discussion of ICPE has focused on the training phase. After739

training completes, the learned policy π and inference network I can be deployed directly: during740

deployment, π both collects data and determines when to stop—either by triggering its stopping741

action or upon reaching the horizon N .742

B.2 Other Algorithms743

In this section we describe Track and Stop (TaS) Garivier and Kaufmann [2016], and some variants744

such as I-IDS, I-DPT and the explore then commit variant of ICPE.745

B.2.1 Track and Stop746

Track and Stop (TaS, Garivier and Kaufmann [2016]) is an asymptotically optimal as δ → 0 for MAB747

problems. For simplicity, we consider a Gaussian MAB problem with K actions, where the reward748

of each action is normally distributed according to N (µa, σ
2), and let µ = (µa)a∈[K] denote the749

model. The TaS algorithm consists of: (1) the model estimation procedure and recommender rule; (2)750

the sampling rule, dictating which action to select at each time-step; (3) the stopping rule, defining751

when enough evidence has been collected to identify the best action with sufficient confidence, and752

therefore to stop the algorithm.753
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Estimation Procedure and Recommender Rule The algorithm maintains a maximum likelihood754

estimate µ̂a(t) of the average reward for each arm based on the observations up to time t. Then, the755

recommender rule is defined as ât = argmaxa µ̂a(t).756

Sampling Rule. The sampling rule is based on the observation that any δ-correct algorithm, that is757

an algorithm satisfying P(âτ = a⋆) ≥ 1− δ, with a⋆ = argmaxa µa, satisfies the following sample758

complexity759

E[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and760

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
a ̸=a⋆

ωa⋆ωa

ωa + ωa⋆

∆2
a

2σ2
,

with ∆a = µa⋆−maxa̸=a⋆ µa. Interestingly, to design an algorithm with minimal sample complexity,761

we can look at the solution ω⋆ = arg infω∈∆(K) T (ω;µ), with (T (ω))−1 = mina̸=a⋆
ωa⋆ωa

ωa+ωa⋆

∆2
a

2σ2 .762

The solution ω⋆ provides the best proportion of draws, that is, an algorithm selecting an action a with763

probability ω⋆
a matches the lower bound and is therefore optimal with respect to T ⋆. Therefore, an idea764

is to ensure that Nt/t tracks ω⋆, where Nt is the visitation vector N(t) := [N1(t) . . . NK(t)]
⊤.765

However, the average rewards (µa)a are initially unknown. A commonly employed idea [Garivier766

and Kaufmann, 2016, Kaufmann et al., 2016] is to track an estimated optimal allocation ω⋆(t) =767

arg infω∈∆(K) T (ω; µ̂(t)) using the current estimate of the model µ̂(t).768

However, we still need to ensure that µ̂(t)→ µ. To that aim, we employ a D-tracking rule Garivier769

and Kaufmann [2016], whcih guarantees that arms are sampled at a rate of
√
t. If there is an770

action a with Na(t) ≤
√
t − K/2 then we choose at = a. Otherwise, choose the action at =771

argmina Na(t)− tω⋆
a(t).772

Stopping rule. The stopping rule determines when enough evidence has been collected to determine773

the optimal action with a prescribed confidence level. The problem of determining when to stop can774

be framed as a statistical hypothesis testing problem [Chernoff, 1959], where we are testing between775

K different hypotheses (Ha : (µa > maxb ̸=b µa))a.776

We consider the following statistic L(t) = tT (N(t)/t; µ̂(t))−1, which is a Generalized Likelihood777

Ratio Test (GLRT), similarly as in [Garivier and Kaufmann, 2016]. Comparing with the lower bound,778

one needs to stop as soon as L(t) ≥ kl(δ, 1 − δ) ∼ ln(1/δ). However, to account for the random779

fluctuations, a more natural threshold is β(t, δ) = ln((1 + ln(t))/δ), thus we use L(t) ≥ β(t, δ) for780

stochastic MAB problems. We also refer the reader to Kaufmann and Koolen [2021] for more details.781

B.2.2 I-IDS782

We implement a variant of Information Directed Sampling (IDS) Russo and Van Roy [2018], where783

we use the inference network Iϕ learned during ICPE training as a posterior over optimal arms. This784

approach enables IDS to exploit latent structure in the environment without explicitly modeling it via785

a probabilistic model; instead, the learned I-network implicitly captures such structure.786

By using the same inference network in both ICPE and I-IDS, we directly compare the exploration787

policy learned by ICPE to the IDS heuristic applied on top of the same posterior distribution. While788

computing the expected information gain in IDS requires intractable integrals, we approximate them789

using a Monte Carlo grid of 30 candidate reward values per action. The full pseudocode for I-IDS is790

given in Algorithm 3.791

B.2.3 I-DPT792

We implement a variant of DPT Lee et al. [2023] using the inference network. The idea is to act793

greedily with respect to the posterior distribution I at inference time.794

First, we train I using ICPE. Then, at deployment we act with respect to I: in round t we selection795

action at = argmaxH I(H|Dt). Upon observing xt+1, we update Dt+1 and stop as soon as796

argmaxH I(H|Dt) ≥ 1− δ.797
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B.3 Transformer Architecture798

Here we briefly describe the architecture of the inference network I and of the network Q.799

Both networks are implemented using a Transformer architecture. For the inference network, it is800

designed to predict a hypothesis H given a sequence of observations. Let the input tensor be denoted801

by X ∈ RB×H×m, where:802

• B is the batch size,803

• H is the sequence length (horizon), and804

• m = (d+ |A|), where d is the dimensionality of each observation xt.805

The inference network operates as follows:806

1. Embedding Layer: Each observation vector mt = (xt, at) is first embedded into a higher-807

dimensional space of size de using a linear transformation followed by a GELU activation:808

ht = GELU(Wembedmt + bembed), ht ∈ Rde .809

2. Transformer Layers: The embedded sequence h ∈ RB×H×de is then passed through810

multiple Transformer layers (specifically, a GPT-2 model configuration). The Transformer811

computes self-attention over the embedded input to model dependencies among observations:812

h′ = Transformer(h), h′ ∈ RB×H×de .

3. Output Layer: The final hidden state corresponding to the last element of the sequence813

(h′:,−1,:) is fed into a linear output layer that projects it to logits representing the hypotheses:814

o = Wouth
′
:,−1,: + bout, o ∈ RB×|H|.

4. Probability Estimation: The output logits are transformed into log-probabilities via a815

log-softmax operation along the last dimension816

log p(H|X) = log_softmax(o).

For Q, we use the same architecture, but do not take a log-softmax at the final step.817

Algorithm 3 I-IDS

1: Input: Pre-trained inference network Iϕ; prior means and variances µa, σ
2
a for all a ∈ A; target

error threshold δ
2: Initialize: fa(x) = N (x | µa, σ

2
a) for each a

3: for t = 1, 2, . . . do
4: if maxa Iϕ(a | Dt−1) ≥ 1− δ then
5: return argmaxa Iϕ(a | Dt−1)
6: end if
7: for each arm a ∈ A do
8: Approximate information gain:

gt(a) = H (Iϕ(· | Dt−1))− Er∼p(r|a,Dt−1) [H (Iϕ(· | Dt−1, a, r))]

9: end for
10: Select action at = argmaxa gt(a)
11: Observe reward rt
12: Update dataset Dt = Dt−1 ∪ {(at, rt)}
13: end for
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Input X ∈ RB×H×d

Embedding Layer Linear + GELU

Transformer
(GPT-2)

Output LayerLinear

Log-softmax
log p(H|X)

Last hidden state

Figure 4: Model architecture for the inference network I (similarly for Q).

C Experiments818

This section provides additional experimental results, along with detailed training and evaluation819

protocols to ensure clarity and reproducibility. All experiments were conducted using four NVIDIA820

A100 GPUs.821

C.1 Bandit Problems822

Here, we provide the implementation and evaluation details for the bandit experiments reported in823

Section 3.1, covering deterministic, stochastic, and structured settings.824

Model Architecture and Optimization. For all bandit tasks, ICPE uses a Transformer with 3825

layers, 2 attention heads, hidden dimension 256, GELU activations, and dropout of 0.1 applied826

to attention, embeddings, and residuals. Layer normalization uses ϵ = 10−5. Inputs are one-hot827

action-reward pairs with positional encodings. Models are trained using Adam with learning rates828

between 1× 10−4 and 1× 10−6, and batch sizes from 128 to 1024 depending on task complexity.829

C.1.1 Stochastic Bandits Problems830

In the stochastic Gaussian bandit setting, we evaluate ICPE on best-arm identification tasks with831

K ∈ {4, 6, 8, . . . , 14}. Arm means are sampled uniformly from [0, 0.4K], with a guaranteed832

minimum gap of 1/K between the top two arms. All arms have a fixed reward standard deviation of833

0.5. The target confidence level is set to δ = 0.1.834

We compare ICPE against several widely used baselines: Top-Two Probability Sampling (TTPS) Jour-835

dan et al. [2022], Track-and-Stop (TaS) Garivier and Kaufmann [2016], Uniform Sampling, and836

I-DPT. For I-DPT, stopping occurs when the predicted optimal arm has estimated confidence at least837

1− δ. For TTPS and TaS, we apply the classical stopping rule based on the characteristic time T ∗(µ̂t):838

t · T ∗(µ̂t) ≥ log

(
1 + log t

δ

)
.

Each method is evaluated over three seeds, with 30 environments, and 30 trajectories per environment.839

95% confidence intervals were computed with hierarchical bootstrapping.840
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C.1.2 Bandit Problems with Hidden Information841

Magic Action Environments We evaluate ICPE in bandit environments where certain actions842

reveal information about the identity of the optimal arm, testing its ability to uncover and exploit843

latent structure under the fixed-confidence setting.844

Each environment contains K = 5 arms. Non-magic arms have mean rewards sampled uniformly845

from [1, 5], while the mean reward of the designated magic action (always arm 1) is defined as846

µ1 = ϕ(argmaxa ̸=1 µa) with ϕ(i) = i/K. The magic action is not the optimal arm, but it encodes847

information about which of the other arms is. To control the informativeness of this signal, we vary848

the standard deviation of the magic arm σ1 ∈ {0.0, 0.1, . . . , 1.0}, while fixing the standard deviation849

of all other arms to σ = 1− σ1.850

ICPE is trained under the fixed-confidence setting with a target confidence level of 0.9. For each851

σ1, we compare ICPE’s sample complexity to two baselines: (1) the average theoretical lower852

bound computed for the problem computed via averaging the result of Theorem A.2 over numerous853

environmental mean rewards, and (2) I-IDS, a pure-exploration information-directed sampling854

algorithm that uses ICPE’s I-network for posterior estimation. All methods are over 500 environments,855

with 10 trajectories per environment. 95% confidence intervals are computed using hierarchical856

bootstrapping with two levels.857

Beyond the exploration efficiency analysis shown in Figure 2a, we also assess the correctness of858

each method’s final prediction and its usage of the magic action. As shown in Figure 5a, both859

ICPE and I-IDS consistently achieve the target accuracy of 0.9, validating their reliability under the860

fixed-confidence formulation.861

Figure 5b plots the proportion of total actions that were allocated to the magic arm across different862

values of σ1. While both methods adapt their reliance on the magic action as its informativeness863

degrades, I-IDS tends to abandon it earlier. This behavior suggests that ICPE is better able to retain864

and exploit structured latent information beyond what is captured by simple heuristics for expected865

information gain.866
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Figure 5: (a) Final prediction accuracy across varying levels of noise in the magic action (σ1). Both
ICPE and I-IDS consistently achieve the target confidence threshold of 0.9. (b) Percentage of actions
allocated to the magic arm as a function of σ1. ICPE continues to exploit the magic action longer
than I-IDS, suggesting more robust use of latent structure.

Magic Chain Environments To assess ICPE’s ability to perform multi-step reasoning over latent867

structure, we evaluate it in environments where identifying the optimal arm requires sequentially868

uncovering a chain of informative actions. In these magic chain environments, each magic action869

reveals partial information about the next, culminating in identification of the best arm.870

We use K = 10 arms and vary the number of magic actions n ∈ {1, 2, . . . , 9}. Mean rewards for871

magic actions are defined recursively as:872

µij =

ϕ(ij+1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{i1,...,in} µa

)
, if j = n,
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where ϕ(i) = i/K, and the remaining arms have mean rewards sampled uniformly from [1, 2]. All873

rewards are deterministic (zero variance).874

ICPE is trained under the fixed-confidence setting with δ = 0.99. For each n, five models are trained875

across five seeds. We compare ICPE’s average stopping time to the theoretical optimum (computed876

via Theorem A.4) and to the I-IDS baseline equipped with access to the I-network. Each model877

is evaluated over 1000 test environments per seed. 95% confidence intervals are computed using878

hierarchical bootstrapping.879

In interpreting the results from Figure 2b, we observe that for environments with one or two magic880

actions, ICPE reliably learns the optimal policy of following the magic chain to completion. In these881

cases, the agent is able to identify the optimal arm without ever directly sampling it, by exploiting the882

structured dependencies embedded in the reward signals of the magic actions. Figure 6 illustrates a883

representative trajectory from the two-magic-arm setting, where the first magic action reveals the884

location of the second, which in turn identifies the optimal arm. The episode terminates without885

requiring the agent to explicitly sample the best arm itself.886

Figure 6: Example trajectory in the 2-magic-arm environment. ICPE follows the magic chain: the
first magic action reveals the second, which identifies the optimal arm.

For environments with more than two magic actions, however, ICPE learns a different strategy. As the887

length of the magic chain increases, the expected sample complexity of following the chain from the888

start becomes suboptimal. Instead, ICPE learns to randomly sample actions until it encounters one of889

the magic arms and then proceeds to follow the chain from that point onward. This behavior represents890

an efficient, learned compromise between exploration cost and informativeness. Figure 7 shows an891

example trajectory from the six-magic-arm setting, where the agent initiates random sampling until it892

lands on a magic action, then successfully follows the remaining chain to identify the optimal arm.893

Figure 7: Example trajectory in the 6-magic-arm environment. Rather than starting from the first
magic action, ICPE samples randomly until finding a magic action and then follows the chain to the
optimal arm.

30



µ1

µ5

µ4µ3

µ2

p

rr

r q

1− p

(1− 2p)+(1− 2p)+

(1− 2p)+

Figure 8: Loopy star graph.

µ1

µ2

µ3

µ4

p

1− p 1− p

pp

1− p

p

1− p

Figure 9: Ring graph.

µ1

µ2

µ3

µ4

Figure 10: Loopless clique
graph.

C.2 Exploration on Feedback Graphs894

In the standard bandits setting we studied in Section 3.1, the learner observes the reward of the selected895

action, while in full-information settings, all rewards are revealed. Feedback graphs generalize this896

spectrum by specifying, via a directed graph G which additional rewards are observed when a897

particular action is chosen. Each node corresponds to an action, and an edge from u to v means that898

playing u may reveal feedback about v.899

While feedback graphs have been widely studied for regret minimization Mannor and Shamir [2011],900

their use in pure exploration remains relatively underexplored Russo et al. [2025]. We study them901

here as a challenging and structured testbed for in-context exploration. Unlike unstructured bandits,902

these environments contain latent relational structure and stochastic feedback dependencies that must903

be inferred and exploited to explore efficiently.904

Formally, we define a feedback graph as an adjacency matrix G ∈ [0, 1]K×K , where Gu,v denotes905

the probability that playing action u reveals the reward of action v. The learner observes a feedback906

vector r ∈ RK , where each coordinate is revealed independently with probability Gu,v:907

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.

This setting allows us to test whether ICPE can learn to uncover and leverage latent graph struc-908

ture to guide exploration. We evaluate performance on best-arm identification tasks across three909

representative feedback graph families:910

• Loopy Star Graph (Figure 8): A star-shaped graph with self-loops, parameterized by911

(p, q, r). The central node observes itself with probability q, one neighboring node with912

probability p, and all others with probability r. When p is small, it may be suboptimal to913

pull the central node, requiring the agent to adapt its strategy accordingly.914

• Ring Graph (Figure 9): A cyclic graph where each node observes its right neighbor with915

probability p and its left neighbor with probability 1 − p. Effective exploration requires916

reasoning about which neighbors provide more informative feedback.917

• Loopless Clique Graph (Figure 10): A fully connected graph with no self-loops. Edge918

probabilities are defined as:919

Gu,v =


0 if u = v,
p
u if v ̸= u and v is odd,
1− p

u otherwise.

Here, informativeness varies systematically with action index, requiring the learner to infer920

which actions are most useful.921

These environments offer a diverse testbed for evaluating whether ICPE can uncover and exploit922

complex feedback structures without direct access to the underlying graph.923
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We tested ICPE in a fixed-confidence setting, using the same graph families but setting the optimal924

arm’s mean to 1 and all others to 0.5 to facilitate faster convergence. ICPE was trained for K =925

4, 6, . . . , 14 with a target error rate of δ = 0.1. We compared it to Uniform Sampling, EXP3.G, and926

Tas-FG using a shared stopping rule from Russo et al. [2025].927

4 6 8 10 12 14
Number of Actions

0

10

20

30

40

50

60

Av
er

ag
e 

St
op

pi
ng

 T
im

e

Loopystar
ICPE
TaS-FG
EXP3.G
Uniform

(a)

4 6 8 10 12 14
Number of Actions

0

5

10

15

20

Av
er

ag
e 

St
op

pi
ng

 T
im

e

Looplessclique
ICPE
TaS-FG
EXP3.G
Uniform

(b)

4 6 8 10 12 14
Number of Actions

0

5

10

15

20

Av
er

ag
e 

St
op

pi
ng

 T
im

e

Looplessclique
ICPE
TaS-FG
EXP3.G
Uniform

(c)

Figure 11: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

As shown in Figure 11, ICPE consistently achieves significantly lower sample complexity than all928

baselines. This suggests that ICPE is able to meta-learn the underlying structure of the feedback929

graphs and leverage this knowledge to explore more efficiently than uninformed strategies. These930

results align with expectations: when environments share latent structure, learning to explore from931

experience offers a substantial advantage over fixed heuristics that cannot adapt across tasks.932

C.3 Meta-Learning Binary Search933

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-934

tonomously meta-learn binary search.935

We frame the task as a structured multi-armed bandit problem where the optimal arm (i.e., the936

target number) is uniformly drawn from 1, . . . ,K. Pulling the correct arm yields a reward of +10,937

while pulling an arm above or below the target yields −1 or +1, respectively—providing directional938

feedback. The agent must learn to interpret and exploit this structure to efficiently locate the target.939

We train ICPE under the fixed-confidence setting for K = 23, . . . , 28, using 150,000 in-context940

episodes and a target error rate of δ = 0.01. Evaluation was conducted on 100 held-out tasks per941

setting. We report the minimum accuracy, mean stopping time, and worst-case stopping time, and942

compare against the theoretical binary search bound O (log2 K).943

Number of Actions (K) Minimum Accuracy Mean Stopping Time Max Stopping Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 2: ICPE performance on the binary search task as the number of actions K increases.

As shown in Table 2, ICPE consistently achieves perfect accuracy with worst-case stopping times that944

match the optimal log2(K) rate, demonstrating that it has successfully rediscovered binary search945

purely from data. While simple, this task illustrates ICPE’s broader potential to learn efficient search946

strategies in domains where no hand-designed algorithm is available.947
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