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Abstract

We study a multi-agent imitation learning (MAIL) problem where we take the
perspective of a learner attempting to coordinate a group of agents based on demon-
strations of an expert doing so. Most prior work in MAIL essentially reduces the
problem to matching the behavior of the expert within the support of the demonstra-
tions. While doing so is sufficient to drive the value gap between the learner and
the expert to zero under the assumption that agents are non-strategic, it does not
guarantee robustness to deviations by strategic agents. Intuitively, this is because
strategic deviations can depend on a counterfactual quantity: the coordinator’s
recommendations outside of the state distribution their recommendations induce.
In response, we initiate the study of an alternative objective for MAIL in Markov
Games we term the regret gap that explicitly accounts for potential deviations by
agents in the group. We first perform an in-depth exploration of the relationship
between the value and regret gaps. First, we show that while the value gap can be
efficiently minimized via a direct extension of single-agent IL algorithms, even
value equivalence can lead to an arbitrarily large regret gap. This implies that
achieving regret equivalence is harder than achieving value equivalence in MAIL.
We then provide a pair of efficient reductions to no-regret online convex optimiza-
tion that are capable of minimizing the regret gap (a) under a coverage assumption
on the expert (MALICE) or (b) with access to a queryable expert (BLADES).

1 Introduction

We consider the problem of a mediator learning to coordinate a group of strategic agents via
recommendations of actions to take without knowledge of their underlying utility functions (e.g.
routing a group of drivers through a road network). Given the difficulty of manually specifying
the quality of a recommendation in such situations, it is natural to provide the mediator with data
of desired coordination behavior, turning our problem into one of multi-agent imitation learning
(MAIL, [27, 6, 19, 26, 11]). In our work, we explore the nuances of a fundamental MAIL question:

What is the right objective for the learner in a multi-agent imitation learning problem?

We can begin to answer this question by exploring the following scenario: consider developing a
routing application to provide personalized route recommendations (σ) to a group of users with joint
policy π (e.g. the routing policy that underlies the recommendations provided in Google Maps [3]).
As usual in imitation learning (IL), we assume we are given access to demonstrations from an expert
σE (e.g. a past iteration of the application). We can imagine two kinds of users of our application (i.e.
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agents): non-strategic users who blindly follow the recommendations of our routing application and
strategic users who will deviate from our recommendations if they have the incentive to do so under
their (unknown) personal utility function (e.g. we recommend a long route to a busy driver). We use
Ji(πσ) below to denote the value of the mediator’s learned policy σ under the ith agent’s utility.

Case 1: No Strategic Agents. In the idealized situation where all agents in the population are
perfectly obedient, we can essentially treat a MAIL problem as a single-agent IL (SAIL) problem
over joint policies. It is therefore natural to use a direct extension of the well-studied value gap
criterion from the SAIL literature [1, 28, 21, 24, 22, 23, 25, 16] to the multi-agent setting:

max
i∈[m]

Ji(πσE
)− Ji(πσ).

Intuitively, driving the value gap to 0 (i.e. achieving value equivalence in the terminology of [10])
implies that along as long as all agents blindly follow our recommendations, we have learned a policy
that performs at least as well as that of the expert from the perspective of any agent in the population.
In our running routing application example, this means that if no driver deviates from the previous
behavior, all drivers will be at least as happy as they were with the prior iteration of the application.

Case 2: Strategic Agents. Of course for any MAIL problem where agents actually have agency,
we need to account for the fact that agents may deviate from our recommendations if it appears
beneficial to do so from their subjective perspective. Let us denote the class of deviations (i.e. policy
modifications) for agent i as Φi. Then, we can define the regret induced by the mediator’s policy as

RΦ(σ) := max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ)),

where ϕi is a strategic deviation of agent i and πσ,ϕi is the joint agent policy induced by all agents
other than i following σ’s recommendations. Intuitively, regret captures the maximum incentive any
agent in the population has to deviate from the mediator’s recommendations. We can then compare
this metric between the expert and learner policies to arrive at the notion of a regret gap [27]:

RΦ(σ)−RΦ(σE).

Driving the regret gap to zero (i.e. achieving regret equivalence) implies that even if agents are free
to deviate, our learned policy is at least as good as the expert’s from the perspective of an arbitrary
agent in the population. In our preceding example, this means that despite the fact that they are not
forced to follow our application’s recommendations, all agents would have no more incentive to take
an alternate route than they did under the previous iteration of the application.

A simple decomposition allows us to show that a small value gap does not in general imply a small
regret gap. Consider the performance difference between the learner’s policy under all obedient
(Ji(πσ)) and a deviating ith agent (Ji(πσ,ϕi

)). We can decompose this quantity into the following:

Ji(πσ,ϕi)− Ji(πσ) = (Ji(πσ,ϕi)− Ji(πσE ,ϕi))︸ ︷︷ ︸
(I: value gap under ϕi)

+(Ji(πσE ,ϕi))− Ji(πσE
))︸ ︷︷ ︸

(II: expert regret under ϕi)

+(Ji(πσE
)− Ji(πσ))︸ ︷︷ ︸

(III: SAIL value gap)

,

where we use πσE ,ϕi to denote agent joint behavior under expert recommendations and deviation ϕi.
Term III is the standard single-agent value gap (i.e. the performance difference under the assumption
that no agents deviate). Term II is the expert’s regret under deviation ϕi (i.e. a quantity we cannot
control). Thus, the difference between the regret gap and value gap objectives can be boiled down
to Term I: Ji(πσ,ϕi

) − Ji(πσE ,ϕi
). Observe that because of the state distribution shift induced by

deviation ϕi, minimizing Term III doesn’t give us any guarantees with respect to Term 1. This
underlies our key insight: regret is hard in MAIL as it requires knowing what the expert would have
done in response to an arbitrary agent deviation. More explicitly, our contributions are three-fold:

1. We initiate the study of the regret gap for MAIL in Markov Games. Unlike the value gap – the
standard objective in single-agent IL – the regret gap captures the fact that agents in the population
may choose to deviate from the mediator’s recommendations. The shift from value to regret gap
captures what is fundamentally different about the SAIL and the MAIL problems.

2. We investigate the relationship between regret gap and the value gap. We show that under
the assumption of complete reward and deviation function classes, regret equivalence implies value
equivalence. However, we also prove that value equivalence provides essentially no guarantees on the
regret gap, establishing a fundamental limitation of applying SAIL algorithms to MAIL problems.
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3. We provide a pair of efficient algorithms to minimize the regret gap under certain assump-
tions. While regret equivalence is hard to achieve in general as it depends on counter-factual expert
recommendations, we derive a pair of efficient reductions for minimizing the regret gap that operate
under different assumptions: MALICE (which operates under a coverage assumption) and BLADES
(which requires access to a queryable expert). We prove that both algorithms can provide O(H)
bounds on the regret gap, where H is the horizon, matching the strongest known results for the value
gap in single-agent IL. See Table 1 for a summary of our regret gap bounds.

Assumption Upper Bound (Matching) Lower Bound

J-BC β-Coverage O
(

1
β ϵuH

)
, Theorem 5.1 Ω

(
1
β ϵuH

)
, Theorem 5.2

J-IRL β-Coverage O
(

1
β ϵuH

)
, Theorem 5.3 Ω

(
1
β ϵuH

)
, Corollary 5.4

MALICE (ours) β-Coverage O (ϵuH), Theorem 5.5 Ω (ϵuH), Theorem 5.6
BLADES (ours) Queryable Expert O (ϵuH), Theorem 5.7 Ω (ϵuH), Theorem 5.8

Table 1: A summary of our results: upper and lower bounds on the regret gap (i.e. RΦ(σ)−RΦ(σE))
of various approaches to multi-agent IL. Here, β is the coverage constant in Assumption 5.2, u is the
recoverability constant in Assumption 5.1, H is the horizon.

2 Related Work

Single-Agent Imitation Learning. Much of the theory of imitation learning focuses on the single-
agent setting [14]. Offline approaches like behavioral cloning (BC, [15]) reduce the problem of
imitation to mere supervised learning. Ignoring the covariate shift in state distributions between the
expert and learner policies can cause compounding errors [17, 21] and associated poor performance.
In response, interactive IL approaches like inverse reinforcement learning (IRL, [1, 28]) allow
the learner to observe the consequences of their actions during the training procedure, preventing
compounding errors [21]. However, such approaches can be rather sample-inefficient due to the
need to repeatedly solve a hard RL problem [25, 16]. Alternative approaches include interactively
querying the expert to get action labels on the learner’s induced state distribution (DAgger, [17]) or,
assuming full coverage of the demonstrations, using importance weighting to correct for the covariate
shift (ALICE, [20]). Our BLADES and MALICE algorithms can be seen as the regret gap analog of the
value gap-centric DAgger and ALICE algorithms, operating under the same assumptions.

Multi-Agent Imitation Learning. The concept of the regret gap was first introduced in the excep-
tional work of Waugh et al. [27], though their exploration was limited to Normal Form Games (NFGs),
in contrast to the more general Markov Games (MGs) we focus on. Fu et al. [7] briefly consider
the regret gap in Markov Games (MGs) but do not explore its properties nor provide algorithms for
efficient minimization. Most empirical MAIL work [19, 12, 4, 26, 11] is value gap-based, while we
take a step back and ask what the right objective is for MAIL in the first place.

Inverse Game Theory. Another line of work focuses on inverse game theory in Markov Games
[13, 8], where the goal is to recover a set of utility functions that rationalize the observed agent
behavior, rather than learning to coordinate from demonstrations. A detailed comparison between the
goals of our work at that of inverse game theory provided in Appendix F.

3 Preliminaries

We begin with the notation we will use in our paper. Throughout, we use ∆(X) denote the space
of probability distribution over a set X . We will use ℓ to denote the loss function each algorithm
optimizes, which should be thought of as a convex upper bound on the total variation distance TV.
We use ℓTV when the loss function is exactly the TV distance.

Markov Games. We use MG(H,S,A, T , {ri}mi=1, ρ0) to denote a Markov Game (MG) between m
agents. Here, H is the horizon, S is the state space, and A = A1 × ...×Am is the joint action space
for all agents. We use T : S ×A → ∆(S) to denote the transition function. Furthermore, the reward
(utility) function for agent i ∈ [m] is denoted by ri : S ×A → [−1, 1]. Lastly, we use ρ0 to denote
the initial state distribution from which the initial state s0 ∼ ρ0 is sampled.
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Learning to Coordinate. Rather than considering the problem of learning individual agent policies
in the MG, we take the perspective of a mediator who is giving recommendations to each agent to
help them coordinate their behavior (e.g. a smartphone mapping application providing directions to a
set of users). At each time step, the mediator gives each agent i a private action recommendation
ai to take at the current state s. Critically, no agent observes the recommendations the mediator
provides to another agent. We can represent the mediator as a Markovian joint policy σ ∈ Σ, where
σ : S → ∆(A). We use σ(⃗a|s) to denote the probability of recommending joint action a⃗ in state s.
We use π : S → ∆(A) to denote the joint policy that agents play in response to the mediator’s policy.
When agents exactly follow the mediator’s recommendations, we denote their joint policy as πσ .

A trajectory ξ ∼ π = {sh, a⃗h}h=1,...,H refers to a sequence of state-action pairs generated by
starting from s0 ∼ ρ0 and repeatedly sampling joint action a⃗h and next states sh+1 from π and T for
H − 1 time steps. Let dπh denote the state visitation distribution at timestep h following π and let
dπ = 1

H

∑H
h=1 d

π
h be the average state distribution. Let ρπh(sh, a⃗h) denote the occupancy measure –

i.e., probability of reaching state s and then taking action a⃗ at time step h. By definition, we know
that ∀h,

∑
s,⃗a ρ

π
h(s, a⃗) = 1. Let ρπ(s, a⃗) = 1

H

∑H
h=1 ρ

π
h(s, a⃗) be the average occupancy measure.

We use V π
i,h to denote the expected cumulative reward of agent i under this policy from time step h,

i.e. V π
i,h(s) = Eξ∼π[

∑H
t=h ri(st, a⃗t)|sh = s]. We define Q-value function of agent i as Qπ

i,h(s, a⃗) =

Eξ∼π[
∑H

t=h ri(st, a⃗t)|sh = s, a⃗h = a⃗]. We define advantage of an agent i to be the difference
between its Q-value on a selected action and the V-value on the state, i.e. Aπ

i,h(s, a⃗) = Qπ
i,h(s, a⃗)−

V π
i,h(s). We also define the performance of a policy π from the perspective of agent i as Ji(π) =

Es0∼ρ0
[Eξ∼π[

∑H
t=1 ri(st, a⃗t)|s = s0]]. Observe that performance is the inner product between the

occupancy measure and the agent’s reward function, i.e. Ji(π) = H
∑

s,⃗a ρ
π(s, a⃗)ri(s, a⃗).

Correlated Equilibria. We now introduce the notion of a correlated equilibrium (CE, Aumann
[2]). First, we define a strategy deviation ϕi for the i-th agent as a map ϕi : S × Ai → Ai.
Intuitively, a strategy deviation captures how the agent responds to the current state of the world and
the recommendation of the mediator – they can either obey (in which case ϕi(s, a) = a) or defect (in
which case ϕi(s, a) ̸= a). Let Φi be the set of deviations for agent i, which is a subset of all possible
deviations. We use Φ := {Φi}mi=1 to denote deviations for all agents. We assume that for all i, the
identity mapping ϕi(s, a) ≡ a is in Φi. We use πσ,ϕi

to denote (ϕi ◦ πσ,i)⊙ πσ,−i: the joint agent
policy induced by mediator policy σ being over-ridden by deviation ϕi. We can now define a CE.
Definition 3.1 (Regret and CE in General-Sum MGs). Let σ ∈ Σ be the mediator’s policy in a
Markov Game, and Φi, i ∈ [m] be the deviation classes for each agent. Then,

1. We define the regret of a mediator policy σ to be

RΦ(σ) := max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ)), (1)

2. We say a mediator with policy σ induces an ϵ-approximate Correlated Equilibrium (CE) if

RΦ(σ) ≤ ϵ. (2)

Intuitively, regret captures the maximum utility any agent can gain by defecting from the mediator’s
recommendation. A CE is an induced joint policy where no agent has a large incentive to deviate.

4 On the Relationship between the Value Gap and the Regret Gap

As sketched above, we consider two potential objectives for the learner in MAIL:
Definition 4.1 (Value Gap). We define the value gap between the expert’s policy σE and the learner’s
policy σ ∈ Σ as

max
i∈[m]

(Ji(πσE
)− Ji(πσ)). (3)

Definition 4.2 (Regret Gap). We define the regret gap between the expert’s policy σE and the
learner’s policy σ ∈ Σ as

RΦ(σ)−RΦ(σE) = max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi)−Ji(πσ))− max
k∈[m]

max
ϕk∈Φk

(Jk(πσE ,ϕk
)−Jk(πσE

)). (4)
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Regret
Equivalence

Complete Reward / Deviation Classes
Value

Equivalence

Figure 1: Under expressive enough reward function and deviation classes, regret equivalence implies
value equivalence but not vice versa, making the regret gap a “stronger” objective than the value gap.

We say that the learner’s policy satisfies value / regret equivalence when the value / regret gap is 0.
We now explore the relationship between the value and regret gap in MAIL, 1 summarized in Figure
1. We use Ji(πσ, f) andRΦ(σ, f) to denote the value/regret of policy σ under the reward function f .

4.1 Regret Equivalence + Complete Reward / Deviation Class =⇒ Value Equivalence

First, we show that if the reward function class and deviation class are both complete, then regret
equivalence implies value equivalence. We say that the reward function class is complete when
F = {S × A → [−1, 1]} (i.e. all convex combinations of state-action indicators), and that the
deviation class is complete if for every agent i, Φi = {S × Ai → Ai} (i.e. all possible deviations).
Theorem 4.1 (Complete Classes). If the reward function class F and deviation class Φ are complete
and regret equivalence is satisfied (i.e. supf∈F (RΦ(σ, f)−RΦ(σE , f)) = 0), then value equivalence
is also satisfied: supf∈F maxi∈[m](Ji(πσE

, f)− Ji(πσ, f)) = 0. [Proof]

Next, we prove that large classes are needed for this implication to hold true.
Theorem 4.2 (Incomplete Classes). There exists an MG, an expert policy σE , and a trained policy
σ such that even though the regret equivalence is satisfied under the true reward function r, i.e.
RΦ(σ, r)−RΦ(σE , r) = 0, the value gap maxi∈[m](Ji(πσE

, r)− Ji(πσ, r)) ̸= 0. [Proof]

Together, these results tell us that with an expressive enough class of reward functions / deviations,
regret equivalence is stronger than value equivalence. We now turn our attention to the converse.

4.2 Value Equivalence ≠⇒ Regret Equivalence

We now show a surprising result: value equivalence does not directly imply a low regret gap! In the
worst case, value equivalence fails to provide any meaningful guarantees on the regret gap. This
reveals a critical distinction between SAIL and MAIL not fully addressed in the prior work.
Theorem 4.3. There exists a Markov Game, an expert policy σE , and a learner policy σ, such that
even occupancy measure of πσ exactly matches πσE

, i.e. ∀(s, a⃗), ρπσ (s, a⃗) = ρπσE (s, a⃗) (i.e. we
have value equivalence under all rewards), the regret gapRΦ(σ)−RΦ(σE) ≥ Ω(H). [Proof]

We leave the details of the proof for this theorem in Appendix E.3. As visualized in Figure 2, both the
expert and learner policies only visit the states in the lower path s2, s4, ..., s2H−2. The trained policy
perfectly matches the occupancy measure of the expert by taking identical actions in visited states
s2, s4, ..., s2H−2. However, expert demonstrations lack coverage of state s1 as it is unreachable by
executing πE . This omission becomes critical when agent 1 deviates from the original policy, making
s1 unreachable with high probability. Consequently, the trained policy may perform poorly in s1, in
stark contrast to the expert playing a CE under the true reward function. This example highlights the
key difference between value equivalence and regret equivalence: the former only depends on states
actually visited by the policy, while the latter depends on the counterfactual recommendations the
learner would make at unvisited states in response to an agent deviations.
Remark 4.1. As shown in Theorem 4.3, even if the learner has access to infinite samples on the
equilibrium path from expert demonstrations, it is possible that the learner remains unaware of
the expert’s behavior in states unvisited by the expert (but reachable by the deviated agents joint
policy). Thus, from an information theoretic perspective, it is impossible for the learner to minimize
the regret gap without knowing how the expert would behave on those states. This demonstrates the
fundamental difficulty of minimizing the regret gap, and thus, regret is ‘hard’ in MAIL. We therefore
need a fundamentally new paradigm of MAIL algorithm to minimize the regret gap.

1We prove in Appendix D that the value and regret gaps are equivalent in single-agent IL.

5



s0

s1

s2

s3

s4

s5

s6

s2H−1

s2H

a2a1

else

all

else

a2a1 all

all

...

...

Figure 2: Illustration of an Markov Game that captures why “regret is hard”. Here, σE(a1a1|s0) = 1.
Observe that s1 is un-visited when all agents obediently follow σE but is with probability 1 under
deviation ϕ1 (ϕ1(s0, a1) = ϕ1(s1, a1) = a2). This means that unless we know what the expert σE

would have recommended counter-factually in s1, we cannot minimize the regret gap.

4.3 Low Regret Gap =⇒ CE, Low Value Gap ≠⇒ CE

Given the deep connections between regret and correlated equilibrium discussed above, it is perhaps
intuitive that if the expert σE is playing a CE, a low regret gap means the learner is as well.

Theorem 4.4 (Regret Gap Implies CE). If the expert policy σE induces a δ1-approximate CE, and
the learner policy σ satisfies RΦ(σ) − RΦ(σE) ≤ δ2, then σ induces a δ1 + δ2-approximate CE.
[Proof]

Then, by combining our preceding result with Theorem 4.3, it follows that a low value gap does not
imply that the learner is playing a CE.

Corollary 4.5. There exists a Markov Game, an expert policy σE , and a learner policy σ, such that
σE induces a δ1-approximate CE, and σ satisfies maxi∈[m](Ji(πσE

)− Ji(πσ)) = δ2, σ induces a
Ω(H)-approximate CE.

Together, these results imply that if we are interested in inducing a CE amongst the agents in the
population, the regret gap is a more suitable objective.

4.4 Efficient Algorithms for Minimizing the Value Gap

Although we have shown that the value gap is a ‘weaker’ objective in some sense, in many real-world
scenarios, the agents may be non-strategic. In these scenarios, minimizing value gap can be a
reasonable learning objective. As we will demonstrate here, the natural multi-agent generalization of
single-agent IL algorithms can efficiently minimize the value gap—hence, value is ‘easy’ in MAIL.

Behavior Cloning (BC) and Inverse Reinforcement Learning (IRL) are two single-agent IL algorithms
aimed at minimizing the value gap. By running these algorithms over joint policies, we can apply BC
and IRL to the multi-agent setting, which we call Joint Behavior Cloning (J-BC) and Joint Inverse
Reinforcement Learning (J-IRL). Doing so results in the same value gap bounds as in the single-agent
setting. More details on of J-BC and J-IRL can be found in Appendix B.

Theorem 4.6 (J-BC Value Gap Upper Bound). If J-BC returns a policy σ that satisfies
Es∼dπσE [ℓ(σE(s), σ(s))] ≤ ϵ, then the value gap maxi∈[m](Ji(πσE

)−Ji(πσ)) ≤ O(ϵH2). [Proof]

Theorem 4.7 (J-IRL Value Gap Upper Bound). If J-IRL outputs a policy σ with moment-matching
error

sup
f∈F

EπσE

[
H∑

h=1

f(sh, a⃗h)

]
− Eπσ

[
H∑

h=1

f(sh, a⃗h)

]
≤ ϵH,

then the value gap maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH). [Proof]

As argued by Swamy et al. [21], satisfying the conditions for either of the above theorems can be
achieved oracle-efficiently via a reduction to no-regret online learning. We now turn our attention to
sufficient conditions for there to exist efficient algorithms for minimizing the regret gap.
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5 Efficient Algorithms for Minimizing the Regret Gap

In our following analysis, we will make a recoverability assumption: that a single-step agents
deviation could at most cost the expert a fixed constant.

Assumption 5.1 (u-recoverability). We say that an MG is u-recoverable if the expert advantage
function is bounded for all deviations, i.e. ∀s, a⃗, h, i, ϕi,

∣∣∣AπσE,ϕi

i,h (s, a⃗)
∣∣∣ ≤ u.

Intuitively, a small value of u means that we’re not in a problem where a single agent can deviate
and a joint mistake happens that even the expert couldn’t recover from for the rest of the episode.
In the worst case, u is O(H). However, we believe that in many cases u is small. For instance, in
the route planning example, at some point many cars may miss their turns/intersections/exits, but
this can be recovered within a constant time, even when a single driver chooses not to follow its
recommendation, rather than u increasing as H increases.

This assumption can be thought of natural multi-agent generalization of the standard recoverability
assumption in SAIL [18, 21, 20] which is necessary and sufficient to avoid compounding errors
while maintaining computational efficiency. While we define recoverability with respect to the actual
reward function for implicitly, one can instead easily define it with respect to the worst-case reward
function in a class (supf∈F ) – moment recoverability – as in [21] to avoid the need to know the
ground truth set of agent reward functions r to bound u.

In Section 4.2, we proved that for general MGs, J-BC and J-IRL don’t give any guarantees on the
regret gap. Fundamentally, without the ability to observe how the expert would have responded in the
counter-factual state induced by a deviation, the learner cannot ensure that they match the expert’s
regret. We now explore two different sets of assumptions that give us this ability.

5.1 Assumption 1: Full Coverage of Expert Demonstrations

In this section, we introduce a coverage assumption on the expert’s state distribution dπσE (s) which
states that the expert visits every state with a positive probability. We will show that this assumption
is sufficient to give a regret gap guarantee. The state coverage assumption is a common theoretical
assumption in the analysis of learning in MDPs/MGs [5] and has been explored in SAIL [20].

Assumption 5.2 (β-coverage). There exists a constant β > 0 such that for the expert’s policy σE , it
holds that dπσE (s) ≥ β for all s.

Intuitively, this assumption implies that in the infinite sample limit, there are no states where we
are unsure what the expert would recommend. As discussed in Remark 4.1, without the ability to
interactively query the expert, a coverage assumption is necessary because we cannot minimize the
regret gap without knowing the expert mediator’s actions in counter-factual states.

We first show that under Assumption 5.2, J-BC and J-IRL get a (relatively weak) regret gap guarantee.

5.1.1 Regret Gaps of J-BC and J-IRL under Full Demonstration Coverage

We begin by analyzing joint behavioral cloning (J-BC).

Theorem 5.1 (J-BC Regret Gap Upper Bound). Under Assumption 5.1 and Assumption 5.2, if the
J-BC algorithm returns a policy σ that satisfies Es∼dπσE [ℓ(σE(s), σ(s))] ≤ ϵ, then

RΦ(σ)−RΦ(σE) ≤ O

(
1

β
ϵuH

)
.

[Proof]

We leave the proof in Appendix E.7. It is worth to note that although the dependency of H is linear
under our recoverability assumption, we still need to pay for the term 1

β in our regret gap bound. In
general, this term can grow exponentially with the horizon, making this guarantee relatively weak. We
can show its tightness by slightly modifying the example in Theorem 4.3 to satisfy the assumptions.

Theorem 5.2 (J-BC Regret Gap Lower Bound). There exists a Markov Game, an expert policy σE ,
and learner policy σ such that σE satisfies Assumption 5.1 and Assumption 5.2, σ achieves BC error
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Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ ϵ, and

RΦ(σ)−RΦ(σE) = Ω

(
1

β
ϵuH

)
.

[Proof]

We now prove analogous results for joint inverse reinforcement learning (J-IRL).
Theorem 5.3 (J-IRL Regret Gap Upper Bound). Under Assumption 5.2 and Assumption 5.1 and with
a complete reward function class F , if J-IRL returns a policy σ with moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

thenRΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
. [Proof]

There are two interesting features of this theorem. The first is that we needed to assume that the
reward function class is complete – otherwise, a small value gap can still translate to a large regret
gap. The second is that the upper-bound for J-IRL matches that for J-BC, which is in stark contrast to
the single-agent setting, where IRL enjoys linear-in-H guarantees with respect to the value gap [21].
We now show this is not an artifact of our analysis by providing a matching lower bound.
Corollary 5.4 (J-IRL Regret Gap Lower Bound). There exists a Markov Game, an expert policy σE ,
and a policy σ such that σE satisfies Assumption 5.1 and Assumption 5.2, the trained policy σ gets
moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

andRΦ(σ)−RΦ(σE) = Ω
(

1
β ϵuH

)
. [Proof]

This result implies another fundamental distinction between SAIL and MAIL: in contrast to the
value gap, interactive training alone is not sufficient to effectively minimize the regret gap.

5.1.2 MALICE: Multi-agent Aggregation of Losses to Imitate Cached Experts

Observe that the upper bounds for both J-BC and J-IRL include a dependence on the inverse of the
coverage coefficient 1

β , which can be rather large for problems with long horizons or large action
spaces. We now present an efficient algorithm that is able to avoid this dependence by extending the
ALICE algorithm [20] to the multi-agent setting. ALICE is an interactive algorithm that, at each
round, uses importance sampling to re-weight the behavior cloning (BC) loss based on the density
ratio between the current learner policy and that of the expert. Accordingly, ALICE requires a full
demonstration coverage assumption to ensure that these importance weights are finite. ALICE uses a
no-regret algorithm to learn a policy that minimizes reweighed on-policy error, which guarantees a
linear-in-H bound on the value gap under a recoverability assumption [20].

In Algorithm 1, we describe Multi-agent ALICE (MALICE), where adapt ALICE to the multi-agent
setting (i.e. minimizing the regret gap). Specifically, we modify the ALICE loss function to include a
maximum over all deviations. This gives us

ℓMALICE(σ,DE , σ̂) = max
i∈[m]

max
ϕi∈Φi

Es∼dπσE

[
dπσ̂,ϕi (s)

dπσE (s)
ℓ(σE(s), σ(s))

]
. (5)

Since Es∼dπE

[
d
πσ̂,ϕi (s)
dπσE (s)

ℓ(σE(s), σ(s))
]

is a convex loss function, and the maximum of convex
functions is still a convex function, we know that ℓMALICE(σ,DE , σ̂) is a valid convex loss function
with scales in [0, 1]. As a result, we can run an (arbitrary) no-regret online convex optimization (OCO)
algorithm to efficiently optimize it, giving us an efficient reduction from regret gap minimization to
no-regret online convex optimization under demonstration coverage.

We now provide regret gap guarantees on the policy returned by MALICE.
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Algorithm 1 MALICE (Multi-agent Aggregation of Losses to Imitate Cached Experts)

1: Input: Expert demonstrations DE .
2: Initialize σ(1) ∈ Σ.
3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample states from st ∼ d

π
(n)
σ,ϕi .

7: end for
8: end for
9: Construct loss function ℓ(n)(σ) = ℓMALICE(σ,DE , σ

(n)).
10: // Run arbitrary no-regret OCO algorithm on sequence of losses, e.g. FT(R)L:
11: σ(n+1) ← argminσ∈Σ

∑n
j=1 ℓ

(n)(σ)
12: end for
13: Return Best of σ(1:N) on validation data.

Theorem 5.5 (MALICE Regret Gap Upper Bound). Let σ be a policy such that ℓMALICE(σ,DE , σ) ≤ ϵ.
Under Assumption 5.1 and Assumption 5.2, we have

RΦ(σ)−RΦ(σE) ≤ O(ϵuH).

[Proof]

As promised, observe that adapting the importance sampling technique of Spencer et al. [20] to the
multi-agent setting allows us to efficiently minimize the regret gap while avoiding an upper bound
that depends on the coverage coefficient of the expert demonstrations.

We now show that the bound in Theorem 5.5 is tight by constructing a matching lower bound.
Theorem 5.6 (MALICE Regret Gap Lower Bound). There exists a Markov Game, an expert policy σE

that satisfies Assumption 5.1, and a trained policy σ that gets error ℓTV,MALICE(σ,DE , σ) ≤ ϵ, and

RΦ(σ)−RΦ(σE) = Ω (ϵuH) .

[Proof]

We now turn our attention to an alternate assumption and the corresponding regret gap algorithm.

5.2 Assumption 2: Access to a Queryable Expert

For many problems, full coverage of expert demonstrations is not a reasonable assumption. Thus,
we explore another natural assumption that allows us to observe expert recommendations at counter-
factual states: access to a queryable expert. In their classic DAgger algorithm, Ross et al. [18]
showed that access to a queryable expert allows one to eliminate the covariate shift that results from
the difference between expert and learner induced state distributions. When we transition to the
multi-agent setting, we can again use access to a queryable expert to handle yet another source of
covariate shift: potential strategic deviations by agents in the population that push the learner outside
of the support of the expert. We refer to our multi-agent extension of DAgger as BLADES.

In each iteration of BLADES, we request the expert to provide recommendations under all possible
agent deviations, before training on the aggregated data. More formally, we minimize the following
sequence of loss functions:

ℓBLADES(σ, σ̂) = max
i∈[m]

max
ϕi∈Φi

Es∼d
πσ̂,ϕi [ℓ(σE(s), σ(s))]. (6)

Similar to MALICE, we know that the loss ℓBLADES is also a valid convex loss function, and thus we
can use a no-regret algorithm to efficiently minimize it. This gives us an efficient reduction from
regret gap minimization to no-regret online convex optimization with access to a queryable expert.
We now derive and upper and lower bounds on the regret gap of a policy returned by BLADES.
Theorem 5.7 (BLADES Regret Gap Upper Bound). Under Assumption 5.1, if a policy σ satisfies
ℓBLADES(σ, σ) ≤ ϵ , then

RΦ(σ)−RΦ(σE) ≤ O(ϵuH).

[Proof]
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Algorithm 2 BLADES (Bend Learner, Aggregate Datasets of Expert Suggestions)

1: Input: Expert demonstrations DE .
2: Initialize learner σ(1) = argminσ Es∼DE

ℓ(σE(s), σ(s)).
3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample trajectories from π

(n)
σ,ϕi

.

7: Query expert for action recommendations to construct dataset D(n)
ϕi

= {(s, σE(s))}.
8: end for
9: end for

10: Construct loss function ℓ(n)(σ) = ℓBLADES(σ, σ
(n)).

11: // Run arbitrary no-regret OCO algorithm on sequence of losses, e.g. FT(R)L:
12: σ(n+1) ← argminσ∈Σ

∑n
j=1 ℓ

(n)(σ).
13: end for
14: Return Best of σ(1:N) on validation data.

Theorem 5.8 (BLADES Regret Gap Lower Bound). There exists a Markov Game, an expert policy σE ,
and a trained policy σ such that σE satisfies Assumption 5.1, σ achieves error ℓTV,BLADES(σ, σ) ≤ ϵ,
and

RΦ(σ)−RΦ(σE) = Ω (ϵuH) .

[Proof]

In short, under either a demonstration coverage assumption or with access to a queryable expert, we
are able to efficiently minimize the regret gap on a recoverable MAIL problem.

6 Conclusion

Our work focuses on the core question of what fundamentally distinguishes multi-agent IL problems
from single-agent ones. In short, our answer is that on problems with strategic agents that are not
mere puppets, we need to deal with another source of distribution shift: deviations by agents in the
population. This new source of distribution shift cannot be efficiently controlled with environment
interaction (i.e. inverse RL). Instead, we need to be able to estimate how the expert would act in
counter-factual states. Based on this core insight, we derive two reductions that are able to minimize
the regret gap under a coverage or queryable expert assumption. We leave the development and
implementation of practical approximations of our idealized algorithms to future work.
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A Broader Impacts

As the algorithms we proposed are theoretical, we do not foresee any direct societal concerns resulting
from this work. However, these theoretical algorithms can serve as a foundation for developing
practical algorithms or provide guidance for designing practical algorithms in MAIL, which could be
applied to real world problems in the future.

B Extending Single-Agent IL Algorithms to Minimize the Value Gap

B.1 Multi-Agent Joint Behavior Cloning

Behavioral Cloning (BC, Pomerleau [15]) treats the problem of imitation learning as supervised
learning and performs maximum likelihood estimation with expert states as inputs and expert actions
as labels. Unfortunately, as first analyzed by Ross and Bagnell [17], the covariate shift between the
training (expert states) and test (learner states) distributions can lead to compounding errors – i.e.
a value gap that increases quadratically as a function of the horizon H . We note that this is not an
artifact of the particular objective used in BC – as argued by Swamy et al. [21], the same can be said
for any offline imitation learning algorithm. J-BC extends BC to a multi-agent setting by learning a
map from the state space S to the joint action space A. By adapting the analysis of Ross and Bagnell
[17] and Swamy et al. [21] to the multi-agent setting, we establish a similar compounding error result
for multi-agent behavior cloning in Theorem 4.6. There exists an example of MDP/MG that matches
this bound, which shows that the bound is tight [21].

B.2 Multi-Agent Inverse Reinforcement Learning

A popular family of online techniques for imitation learning is inverse reinforcement learning (IRL).
Intuitively, IRL can be thought of as being similar to a GAN [9] but in the space of trajectories: the
generator is the learner’s policy coupled with a world model to actually give us trajectories, while the
discriminator is trained between expert and learner trajectories and is used as a reward function for
policy updates. More formally, IRL can be viewed as a two-player zero-sum game between a reward
player and a policy player [21]. In each round, the reward player picks a reward function from F that
maximizes the value gap between σE and σ, while the policy player uses a reinforcement learning
algorithm to learn a new policy in Σ that maximizes the performance under this reward function.

Intuitively, as the learner can see policy rollouts during training procedure, they cannot be “surprised”
by where their policy ends up at test time, removing the covariate shift issue that lies at the heart of
compounding errors. More formally, Swamy et al. [21] proved that value gap for single-agent IRL
algorithm is O(ϵH). We now generalize this result to the multi-agent setting. Accordingly, our policy
class Σ becomes one of joint policies. We use a reward function class F that is identical for all agents
(i.e. we assume the the game is common payoff). Then, by following the proof in Swamy et al. [21],
we prove a O(ϵH) value gap bound for multi-agent IRL algorithm in Theorem 4.7.

Algorithm 3 J-IRL

1: Input: expert demonstration DE , Policy class Σ, Reward class F
2: Set σ(1) ∈ Σ
3: for n = 1 to N do
4: f (n) ← argmaxJ(πσE

, f)− J(Unif(πσ(1:n)), f) +R(f)
// Treat it as a single-agent RL problem over joint action space under reward
function f (n)

5: σ(n+1) ← MaxEntRL(r = f (n))
6: end for
7: Return best σ(n) on validation

C Useful Lemmas

We introduce a lemma which will be very useful in the analysis under the recoverability assumption.
It is used in the analysis in the single-agent DAgger [18] and ALICE [20], and we will also use
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it in the analysis for MAIL. It shows that if the policy achieves small on-policy error, then, with
recoverability assumption, the value gap is linear over H .
Lemma C.1. [Ross et al. [18]] For agent joint policy π1 and π2, if the advantage of π1 is
bounded under the true reward function ∀i, h, s, a⃗, |Aπ1

i,h(s, a⃗)| ≤ u, and π2 get on-policy error
Es∼dπ2 [ℓ(π1(s), π2(s))] ≤ ϵ, then |Ji(π1)− Ji(π2)| ≤ ϵuH,∀i ∈ [m].

Proof. Via the performance difference lemma, ∀i ∈ [m], we have

|Ji(π1)− Ji(π2)| =

∣∣∣∣∣
H∑

h=1

Es∼d
π2
h
[Aπ1

i,h(s, π(s))]

∣∣∣∣∣
≤ uHEs∼dπ2 [ℓ(π1(s), π2(s))]

≤ ϵuH

(7)

For our analysis of MALICE and BLADES, we will let π1 be any deviated expert policy πσE ,ϕi
and π2

be the deviated trained policy πσ,ϕi
under the same deviation.

D Equivalence of Regret Gap and Value Gap in Single-Agent IL

For single-agent IL we prove that the regret gap and the value gap are equivalent.
Theorem D.1 (Equivalence in Single-Agent IL). For single-agent MDP, regret gap and value gap
are equivalent to each other

J(πσE
)− J(πσ) = RΦ(σ)−RΦ(σE)

Proof. For single-agent MDP, we ignore the index i in the following proof. A strategy deviation in
single-agent MDP is equivalent to taking another policy, because there are no other agents affecting
the dynamics of the agent. We have

RΦ(σ) = max
ϕ∈Φ

(J(πσ,ϕ)− J(πσ)) = J(π∗)− J(πσ)

where π∗ is the optimal policy under the true reward function. Similarly, we have

RΦ(σE) = J(π∗)− J(πσE
)

Therefore,

RΦ(σ)−RΦ(σE) = (J(π∗)− J(πσ))− (J(π∗)− J(πσE
)) = J(πσE

)− J(πσ)

In single-agent MDPs, the dynamics are fixed because no other agents affect the agent’s dynamics,
and therefore, the regret gap is equivalent to the value gap.
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E.1 Proof of Theorem 4.1

Proof. We prove the lemma by showing that the occupancy measures of πσ and πσE
exactly match,

i.e. ρπσ (s, a⃗) = ρπσE (s, a⃗) for every (s, a⃗). Consider a cooperative reward function fs′ ,⃗a′ = −1(s =
s′, a⃗ = a⃗′).

Under fs,⃗a, we have J(πσ) = −Hρπσ (s, a⃗), J(πσE
) = −HρπσE (s, a⃗). The maximum value

performance the expert/learner can get after deviation is 0 because the reward function is non-positive.
(0 can be achieved by simply not taking a⃗ on s).

Therefore RΦ(σ) = 0 − (−Hρπσ (s, a⃗)) = Hρπσ (s, a⃗), RΦ(σE) = 0 − (−HρπσE (s, a⃗)) =
HρπσE (s, a⃗).

SinceRΦ(σ)−RΦ(σE) = 0, we know that ρπσ (s, a⃗) = ρπσE (s, a⃗). This implies that the occupancy
measures of two policies exactly match. As a result,

sup
f∈F

max
i∈[m]

(Ji(πσE
, f)− Ji(πσ, f)) = 0

E.2 Proof of Theorem 4.2

Proof. We can construct an example in normal form games, in which there are mulitple CEs with
different pay-offs. We can let the σE plays CE 1 and σ plays CE 2. Therefore, although the regret
gapRΦ(σ)−RΦ(σE) = 0, the value gap maxi∈[m](Ji(πσE

)− Ji(πσ)) ̸= 0. The NFG in Figure 5
is an example, where (a1, a1) and (a2, a2) are two CEs with different values.

E.3 Proof of Theorem 4.3

Proof. We prove the theorem by constructing such a Markov Game and policies that can get Ω(H)
regret gap. For simplicity, we construct a two-player cooperative game where the reward is identical
for all agents. Agents can not visit the same state at different time steps. These allow us to omit the
index i in the reward function in the proof. The notation aiaj is used to represent the action pair
(ai, aj).
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The transition dynamics are illustrated in Figure 2, and the rewards are action free. The reward
function r(s3) = r(s5) = ... = r(s2H−3) = 1, with all other states yielding a reward of 0. Each
agent has an action space Ai = {a1, a2, a3}.
The expert policy σE satisfies σE(a1a1|s0) = 1.σE(a3a3|s1) = 1. Action on all other states don’t
matter because the transition and the reward would be the same. The trained policy σ satisfies
σ(a1a1|s0) = 1, σ(a1a1|s1) = 1, and plays the same as the expert in all other states.

It is not hard to verify that σE plays a CE under this reward function, which means
RΦ(σE) = 0

The worst deviation for σ is to deviate action of agent 1 from playing a1 to a2 on both s0 and s1. We
get

RΦ(σ) = H − 2

Therefore, the regret gapRΦ(σ)−RΦ(σE) = H − 2 = Ω(H)

E.4 Proof of Theorem 4.4

Proof. From the definition of CE, we knowRΦ(σE) ≤ δ1. Therefore,
RΦ(σ) = RΦ(σE) + (RΦ(σ)−RΦ(σE)) ≤ δ1 + δ2 (8)

Thus, we know that σ induces a δ1 + δ2-approximate CE.

E.5 Proof of Theorem 4.6

Proof. For any i, we can view multi-agent problem as a single agent MDP over the joint action space
under reward function ri. Following the proof in Ross and Bagnell [17], Swamy et al. [21], we can
prove Ji(πσE

)− Ji(πσ) ≤ O(ϵH2). Therefore, maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH2).

E.6 Proof of Theorem 4.7

Proof. For any i,

Ji(πσE
)− Ji(πσ) ≤ sup

f∈F
Eξ∼πσE

[
H∑

h=1

f(sh, a⃗h)

]
− Eξ∼πσ

[
H∑

h=1

f(sh, a⃗h)

]
≤ ϵH

Therefore, maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH).

E.7 Proof of Theorem 5.1

Proof. With Assumption 5.2, we know that

Es∼dπσ [ℓ(σE(s), σ(s))] ≤
1

β
Es∼dπσE [ℓ(σE(s), σ(s))] ≤

ϵ

β

By Lemma C.1, we get

Ji(πσE
)− Ji(πσ) ≤ O

(
1

β
ϵuH

)
For any deviation ϕi,

Es∼d
πσ,ϕi [TV(πσE ,ϕi(s), πσ,ϕi(s))] ≤ Es∼d

πσ,ϕi [TV(πσE
(s), πσ(s))] ≤

1

β
Es∼dπσE [TV(σE(s), σ(s))] ≤

ϵ

β

By Lemma C.1, we get

Ji(πσ,ϕi
)− Ji(πσE ,ϕi

) ≤ O

(
1

β
ϵuH

)
Therefore,
Ji(πσ,ϕi)− Ji(πσ) = (Ji(πσ,ϕi)− Ji(πσE ,ϕi)) + (Ji(πσE ,ϕi))− Ji(πσE

)) + (Ji(πσE
)− Ji(πσ))

≤ Ji(πσE ,ϕi)− Ji(πσE
) +O

(
1

β
ϵuH

)
(9)
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Figure 3: Example of Ω( 1β ϵuH) regret gap for J-BC and J-IRL

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O

(
1

β
ϵuH

)

E.8 Proof of Theorem 5.2

Proof. We prove the theorem by constructing such a Markov Game policies that can get Ω( 1β ϵuH)

regret gap. We consider the two-player cooperative game similar to the example in Theorem 4.3.
What we need to do is to slightly modify the MG and the policy to satisfy Assumption 5.1 and
Assumption 5.2. The rewards are action free. Let u′ = ⌊u⌋, the reward function r(s3) = r(s5) =
... = r(s2u′−3) = 1, with all other states yielding a reward of 0. The transition of the MG is shown
in Figure 3. We know that the value is between [0, u′] for any policy, which means Assumption 5.1 is
satisfied.

Let σE be the policy that σE(a1a1|s0) = 1 − 2β, σE(a2a1|s0) = 2β, σE(a2a1|s1) =
1
2 , σE(a3a3|s1) = 1

2 . Action at all other states doesn’t matter because the transition and the re-
ward would be the same. σE satisfies Assumption 5.2.

Let trained policy σ be the policy that σ(a1a1|s0) = 1 − 2β, σ(a2a1|s0) = 2β, σ(a2a1|s1) =
1
2 , σ(a1a1|s1) =

ϵH
2β , σ(a3a3|s1) =

1
2 −

ϵH
2β . σ and σE only differs at s1.

Behavior cloning error of σ satisfies

Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ 2β · ϵH
2β
· 1
H

= ϵ

It is not hard to verify, the worst deviation for πσE
is to deviate action of agent 1 at s0 from playing

a1 to a2, and thus

RΦ(σE) =
1

2
(1− 2β)(u′ − 2)

The worst deviation of πσ is to deviate action of agent 1 from playing a1 to a2 at s0 and s1.

RΦ(σ) =
1

2
(1− 2β)(u′ − 2) +

ϵH

2β
(u′ − 2)

Therefore, the regret gapRΦ(σ)−RΦ(σE) =
ϵH
2β (u

′ − 2) = Ω( 1β ϵuH).

E.9 Proof of Theorem 5.3

Proof. We prove it by showing that under complete reward function class F , low IRL error will
imply low BC error, and then apply Theorem 5.1.
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When F = [−1, 1]|S||A|,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

=
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

(10)

Therefore, we have
∑

s,⃗a |ρπσE (s, a⃗)− ρπσ (s, a⃗)| ≤ ϵ.∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσ (s)σ(⃗a|s)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s) + dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|

≥
∑
s,⃗a

(|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s)| − |dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|)

=Es∼dπσE [TV(σE(s), σ(s))]−
∑
s

|dπσE (s)− dπσ (s)|

=Es∼dπσE [TV(σE(s), σ(s))]−
∑
s

∣∣∣∣∣∑
a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]

∣∣∣∣∣
≥Es∼dπσE [TV(σE(s), σ(s))]−

∑
s,a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≥Es∼dπσE [TV(σE(s), σ(s))]− ϵ

(11)

Therefore, we get

Es∼dπσE [TV(σE(s), σ(s))] ≤ 2ϵ

Directly applying Theorem 5.1, we getRΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
.

E.10 Proof of Corollary 5.4

Proof. Consider the same example in proof of Theorem 5.2 with parameter ϵ′. In the example, the
only difference between the occupancy measures of two policies are ρ(s, a⃗) at state s1. Therefore,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

≤
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≤|ρπσE (s1, a3a3)− ρπσ (s1, a3a3)|+ |ρπσE (s1, a1a1)− ρπσ (s1, a1a1)|

=
1

H

(
2β · ϵ

′H

2β
· 2
)

= 2ϵ′

(12)

Let ϵ′ = 1
2ϵ. Then the regret gapRΦ(σ)−RΦ(σE) =

ϵH
4β (u

′ − 2) = Ω( 1β ϵuH).
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E.11 Proof of Theorem 5.5

Proof. From the definition of ℓMALICE, we know

ℓMALICE(σ,DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πE(s), π(s))

]
≥ max

i∈[m]
max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πEϕi

(s), πϕi
(s))

]
≥ max

i∈[m]
max
ϕi

Es∼d
πσ,ϕi

[
ℓ(πEϕi

(s), πϕi(s))
] (13)

From Lemma C.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi
)− Ji(πσE ,ϕi

) ≤ O(ϵuH)

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)

Therefore, we get

Ji(πσ,ϕi)− Ji(πσ) = (Ji(πσ,ϕi)− Ji(πσE ,ϕi)) + (Ji(πσE ,ϕi))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi)− Ji(πσE
) +O (ϵuH)

(14)
Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O (uϵH)

E.12 Proof of Theorem 5.6

Proof. We prove the theorem by constructing such a Markov Game policies that MALICE can get
Ω(ϵuH) regret gap. We consider a single-agent MDP shown in Figure 4. The rewards are action
free. Let u′ = ⌊u⌋, the reward function r(s1) = r(s3) = ... = r(s2u′−3) = 1, with all other states
yielding a reward of 0. The transition of the MDP is shown in Figure 4. We know that the value is
between [0, u′] for any policy, and thus Assumption 5.1 is satisfied.

Let σE be the policy that σE(a1|s0) = 1 − β, σE(a2|s0) = β. Action at all other states doesn’t
matter because the transition and the reward would be the same. It is easy to verify that σE satisfies
Assumption 5.2.

Let trained policy σ be the policy that σ(a1|s0) = 1− β −Hϵ, σ(a2|s0) = β +Hϵ. σ and σE only
differ at s0.

Now we verify that ℓTV,MALICE(σ,DE , σ) ≤ ϵ.

Since σ and σE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have that

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
= Es∼d

πσ,ϕi [TV(σE(s), σ(s))] ≤
1

H
·Hϵ = ϵ

Therefore,

ℓTV,MALICE(σ,DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
≤ ϵ

It is not hard to verify, the worst deviation for πE is to deviate action on s0 from playing a2 to a1,
and thus

RΦ(πE , r) = β(u′ − 1)

the worst deviation for πE is also to deviate action on s0 from playing a2 to a1.

RΦ(π, r) = (β + ϵH)(u′ − 1)

Therefore, the regret gapRΦ(π)−RΦ(πE) = ϵ(u′ − 1)H = Ω(ϵuH).
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Figure 4: Example of Ω(ϵuH) regret gap for MALICE and BLADES

E.13 Proof of Theorem 5.7

Proof. From the definition of ℓBLADES, we know

ℓBLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi

[
ℓ(σE(s), σ(s))

]
≥ max

i∈[m]
max
ϕi

Es∼d
πσ,ϕi [ℓ(πσE ,ϕi

(s), πσ,ϕi
(s))]

(15)

From Lemma C.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi)− Ji(πσE ,ϕi) ≤ O(ϵuH)

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)

Therefore, we get

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
)) + (Ji(πσE ,ϕi

))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi
)− Ji(πσE

) +O (ϵuH)
(16)

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O (ϵuH)

E.14 Proof of Theorem 5.8

Proof. Let MDP, expert policy σE and the trained policy σ be the same example in the proof of
Theorem 5.6.

Since σ and σE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤

1

H
·Hϵ = ϵ

Therefore, the trained policy π satisfies

ℓTV,BLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤ ϵ

The regret gapRΦ(σ)−RΦ(σE) = ϵ(u′ − 1)H = Ω(ϵuH).

F Comparison with Goktas et al. [8]

Recent work Goktas et al. [8] worked on similar problem as ours. We will highlight some of the
difference between two works.

First, the learning goals are different. They focus on a problem of inverse game theory, where the
goal is to recover a reward function to rationalize the expert’s behavior, i.e. the expert policy plays
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Figure 5: Multiple reward functions rationalize σE

an equilibrium under such a reward function. However, in our setting, instead of recovering a singe
reward function, our goal is to learn a robust policy that get similar regret performance under a class
of reward functions. We will show later that if the ultimate goal is to learn this robust policy, simply
recovering a single reward function is not enough.

Second, the solution concepts are different. they work on Nash equilibrium, while in our setting, we
focus on correlated equilibrium. We note that our algorithms also work for learning independent
policies, by restricting the policy class to be a class of independent policies.

Third, in finite demonstration setting, their objective is to find a reward function which the learned
policy plays a local NE, under the constraints that ℓ2 difference of the observations for behaviors of
two learned policy is small. We note that in general simply matching this difference is not enough
to guarantee that the learned policy play an equilibrium. From Theorem 4.3, we know that even if
the occupancy measures of two policies exactly match, the regrets can still be significantly different
under the same reward function.

In conclusion, they work on a inverse game theory style problem where the goal is to recover a
single reward function to rationalize the agents behavior. We work on imitation learning problem,
where the goal is not recovering a single reward function but learning a policy that matches the regret
performance of the expert under a class of reward functions.

We will give examples in normal form games (NFG) to show that recovering a single reward function
is not enough to learn a policy that minimizing the regret gap for a large class of reward functions.
NFG can be viewed as an MG in which H = 1 and |S| = 1.
Lemma F.1. For an expert policy σE , there may exist multiple reward functions that rationalize it.

Proof. We show this by an example of normal form games in Figure 5. Consider the policy to be
σE(a1a1) = 1, then the expert plays CE/NE under both reward functions r and r′, which means both
reward functions rationalize σE .

Lemma F.2. For a fixed reward function, There may exist multiple CE/NEs.

Proof. For reward function r in Figure 5, we can construct such two policies σ1, σ2. For σ1, let
σ1(a1, a1) = 1. Let σ2(a1, a1) =

4
9 , σ2(a1, a2) = σ2(a2, a1) =

2
9 , σ2(a2, a2) =

1
9 . Tt is not hard

to verify that both σ1 and σ2 play CE/NE under the reward function r.

Therefore, since there is no one-to-one mapping between the equilibria and the pay-off structures,
simply recovering a single reward function might not help recover a policy that gets small regret gap.

For example, the true reward function is r in Figure 5, and expert policy σE satisfies σE(a1, a1) = 1.
The algorithm may recover r′ in Figure 5, and a trained policy σ that plays NE/CE under recovered
reward function r′ would be σ(a1, a1) = σ(a1, a2) = σ(a2, a1) = σ(a2, a2) =

1
4 . However, this

trained policy σ does not play NE/CE under the true reward function r.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is a theory paper and does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a theory paper and it does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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