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Abstract

Product Attribute Value Identification (PAVI)001
involves identifying attribute values from prod-002
uct profiles, a key task for improving product003
search, recommendation, and business analyt-004
ics on e-commerce platforms. However, ex-005
isting PAVI methods face critical challenges,006
such as inferring implicit values, handling out-007
of-distribution (OOD) values, and producing008
normalized outputs. To address these limi-009
tations, we introduce Taxonomy-Aware Con-010
trastive Learning Retrieval (TACLR), the first011
retrieval-based method for PAVI. TACLR for-012
mulates PAVI as an information retrieval task013
by encoding product profiles and candidate014
values into embeddings and retrieving values015
based on their similarity to the item embedding.016
It leverages contrastive training with taxonomy-017
aware hard negative sampling and employs018
adaptive inference with dynamic thresholds.019
TACLR offers three key advantages: (1) it effec-020
tively handles implicit and OOD values while021
producing normalized outputs; (2) it scales to022
thousands of categories, tens of thousands of023
attributes, and millions of values; and (3) it024
supports efficient inference for high-load in-025
dustrial deployment. Extensive experiments026
on proprietary and public datasets validate the027
effectiveness and efficiency of TACLR. More-028
over, it has been successfully deployed in a029
real-world e-commerce platform, processing030
millions of product listings daily while support-031
ing dynamic, large-scale attribute taxonomies.032

1 Introduction033

Product attribute values are critical components034

that support the function of e-commerce platforms.035

They provide essential structural information, aid-036

ing customers in making informed purchasing de-037

cisions and enabling product listing (Chen et al.,038

2024), recommendation (Truong et al., 2022; Sun039

et al., 2020), retrieval (Magnani et al., 2019; Huang040

et al., 2014), and question answering (Kulkarni041

et al., 2019; Gao et al., 2019).042

Attribute Value
Model iPhone 12 Pro Max
Capacity 256GB
Condition almost brand new
Repairs no repairs
Brand Apple             (implicit value)
Version N/A                     (null value)

PAVE

PAVI

norm

Selling iphone12pm256, sea blue, 16.7 old system
personal use, always with a case, basically brand new,
no bumps, no teardown no repairs, local sale only

Product Title and Description

Entity Type Entity Span
Model iphone12pm
Capacity 256
Condition basically brand new
Repairs no teardown no repairs

Figure 1: Illustration of the PAVE and PAVI tasks.
While an additional normalization step can adapt PAVE
methods for PAVI, these methods remain unable to iden-
tify implicit values, such as Apple.

However, seller-provided attribute values are of- 043

ten incomplete or even inaccurate. This undermines 044

the effectiveness of applications that rely on this 045

information. Consequently, the automatic identi- 046

fication of product attribute values has become a 047

critical challenge. Researchers have explored the 048

task of Product Attribute Value Extraction (PAVE), 049

which extracts spans from product profiles using 050

Named Entity Recognition (NER) (Zheng et al., 051

2018) or Question Answering (QA) (Wang et al., 052

2020) models. The upper part of Figure 1 illustrates 053

an example of NER-based PAVE. 054

Although these approaches effectively extract 055

value spans, the outputs remain raw subsequences. 056

Presenting attribute values in a standardized format 057

is crucial for facilitating data aggregation in busi- 058

ness analytics and enhancing the user experience 059

by providing clear and consistent information. To 060

produce standardized values, a normalization step 061

(Putthividhya and Hu, 2011; Zhang et al., 2021) is 062

required to map these spans to predefined formats, 063

1



as shown in the lower part of Figure 1. However,064

implicit values, such as Apple, cannot be directly065

extracted and must instead be inferred from context066

or prior knowledge.067

Therefore, in this work, we focus on the task068

of Product Attribute Value Identification (PAVI)069

(Shinzato et al., 2023), which aims to associate pre-070

defined attribute values from attribute taxonomy071

(illustrated in Figure 2) with products. The input072

to PAVI includes the product category and profile,073

where the profile comprises textual data, such as the074

title and description, and may optionally include075

visual information, such as images or videos. The076

output is a dictionary with predefined attributes as077

keys and the inferred attribute values as correspond-078

ing entries. In addition, PAVI requires determining079

when attribute values are missing. For instance, as080

shown in Figure 1, the value for Version is unavail-081

able and is therefore assigned an empty result or082

null value.083

Beyond adapting extraction-based approaches,084

researchers have investigated classification-based085

(Chen et al., 2022) and generation-based paradigms086

(Sabeh et al., 2024b) for PAVI. Classification-based087

methods treat each value as a label and employ088

multi-label classification models to recognize val-089

ues across multiple attributes. While straightfor-090

ward, these methods are fundamentally limited by091

their inability to identify out-of-distribution (OOD)092

values not present in the training data, making093

them impractical for the dynamic and continuously094

evolving nature of e-commerce platforms. In con-095

trast, generation-based methods reformulate PAVI096

as a sequence-to-sequence problem. Although097

these methods can handle implicit and OOD values,098

they face significant challenges, such as generat-099

ing uncontrollable outputs and incurring substantial100

computational costs in high-load scenarios due to101

their reliance on Large Language Models (LLMs).102

In summary, existing approaches face distinct103

challenges, including difficulties identifying im-104

plicit values, generalizing to OOD values, pro-105

ducing normalized outputs, or ensuring scalabil-106

ity and efficiency for large-scale industrial appli-107

cations. To address these limitations, we propose108

a novel retrieval-based method, Taxonomy-Aware109

Contrastive Learning Retrieval (TACLR). Our ap-110

proach formulates PAVI as an information retrieval111

task: the product item serves as the query, and112

the attribute taxonomy acts as the corpus, enabling113

the efficient retrieval of relevant attribute values as114

matched documents.115

Attribute Taxonomy

Phone

Brand Capacity Model

Apple
Huawei
Samsung

128GB
256GB
512GB

iPhone 11
iPhone 12
iPhone 12 Pro

LaptopTabletcategories

attributes

values

Figure 2: An illustration of a portion of the attribute
taxonomy. Each category, such as Phone, is linked to
multiple attributes, including Brand, Model, and Ca-
pacity, with standardized values enumerated for each
attribute (e.g., Apple, Huawei, and Samsung for Brand).

We use a shared encoder to generate embeddings 116

for the input product and candidate values from 117

the attribute taxonomy. The cosine similarity be- 118

tween these embeddings is computed and normal- 119

ized to produce a relevance score. Our method 120

adopts a contrastive learning framework inspired 121

by CLIP (Radford et al., 2021). Rather than relying 122

on in-batch negatives, we implement taxonomy- 123

aware negative sampling, which selects hard neg- 124

ative values from the same category and attribute 125

to generate a more challenging and precise con- 126

trastive signal. Additionally, learnable null values 127

are explicitly incorporated as the ground truth for 128

product-attribute pairs without associated values. 129

During inference, we address the limitations of 130

static thresholds by introducing dynamic thresh- 131

olds derived from the relevance score of null values. 132

This adaptive inference mechanism improves the 133

model’s ability to generalize across a large-scale 134

attribute taxonomy. 135

Our contributions are threefold: (1) We propose 136

a novel retrieval-based paradigm for PAVI, intro- 137

ducing a scalable and efficient framework capable 138

of handling implicit values, generalizing to OOD 139

values, and producing normalized outputs. (2) We 140

incorporate contrastive training into TACLR, using 141

a taxonomy-aware negative sampling strategy to 142

improve representation discrimination. Addition- 143

ally, TACLR features an adaptive inference mecha- 144

nism that dynamically balances precision and recall 145

in large-scale industrial applications. (3) We vali- 146

date the effectiveness of TACLR through extensive 147

experiments on proprietary and public datasets. In 148

addition, TACLR has been successfully deployed 149

in a real-world industrial environment, processing 150

millions of product listings and supporting thou- 151

sands of categories and millions of attribute values. 152
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2 Related Work153

2.1 Product Attribute Value Extraction154

PAVE as Named Entity Recognition. PAVE can155

be formulated as NER by identifying subsequences156

in product texts as entity spans and associating157

them with attributes as entity types. Early meth-158

ods, such as OpenTag (Zheng et al., 2018), trained159

individual models for each category-attribute pair.160

Subsequent efforts generalized this approach to sup-161

port multiple attributes or categories. For instance,162

SUOpenTag (Xu et al., 2019) incorporated attribute163

embeddings into an attention layer to handle mul-164

tiple attributes, while AdaTag (Yan et al., 2021)165

used attribute embeddings to parameterize the de-166

coder. TXtract (Karamanolakis et al., 2020) intro-167

duced a category encoder and a category attention168

mechanism to tackle various categories effectively.169

Additionally, M-JAVE (Zhu et al., 2020) jointly170

modeled attribute prediction and value extraction171

tasks while also incorporating visual information.172

More recently, Chen et al. (2023) scaled BERT-173

NER by expanding the number of entity types to174

support a broader range of attributes.175

PAVE as Question Answering. The QA frame-176

work can also be adapted for PAVE by treating the177

product profile as context, attributes as questions,178

and value spans extracted from the context as an-179

swers. Wang et al. (2020) first introduced AVEQA180

for QA-based PAVE. Subsequent work extended181

this framework by incorporating multi-source in-182

formation (Yang et al., 2022), multi-modal feature183

(Wang et al., 2022), and trainable prompts (Yang184

et al., 2023). Moreover, the question can be ex-185

tended by appending candidate values as demon-186

strated by (Shinzato et al., 2022). Combining NER187

and QA paradigms, Ding et al. (2022) proposed a188

two-stage framework, which first identifies candi-189

date values and then filters them.190

While NER- and QA-based paradigms have191

proven effective for PAVE, they struggle to iden-192

tify implicit attribute values. Additionally, both193

paradigms rely on post-extraction normalization194

to standardize values, using either string-based195

methods (Putthividhya and Hu, 2011) or semantic-196

based techniques (Zhang et al., 2021). Further-197

more, QA-based methods require processing a sin-198

gle product multiple times to handle multiple target199

attributes, leading to inefficiencies in large-scale200

settings. These limitations underscore the need for201

novel paradigms integrating extraction and normal-202

ization while addressing implicit values.203

Table 1: Comparison of different paradigms for identi-
fying implicit, OOD, and normalized values.

Paradigm Implicit OOD Normalized

Extraction ✗ ✓ ✗
Classification ✓ ✗ ✓
Generation ✓ ✓ ✗

Retrieval ✓ ✓ ✓

2.2 Product Attribute Value Identification 204

Classification-Based PAVI. A straightforward ap- 205

proach is to frame PAVI as a multi-label classifi- 206

cation problem over a finite set of values. Chen 207

et al. (2022) trained a unified classification model 208

that masks invalid labels based on the product cat- 209

egory. However, a significant limitation of this 210

classification-based paradigm is its inability to rec- 211

ognize OOD values not included in the training set. 212

This limitation reduces its practicality in dynamic 213

e-commerce environments, where new categories 214

and values frequently emerge. 215

Generation-Based PAVI. Recent advancements in 216

LLM have spurred the exploration of generation- 217

based PAVI methods (Sabeh et al., 2024b). Some 218

methods (Roy et al., 2021; Nikolakopoulos et al., 219

2023; Blume et al., 2023) construct attribute-aware 220

prompts to generate values for each attribute indi- 221

vidually. In contrast, others generate values for mul- 222

tiple attributes simultaneously, either in a linearized 223

sequence format (Shinzato et al., 2023) or as a hier- 224

archical tree structure (Li et al., 2023). Multimodal 225

information has also been integrated into LLMs 226

to identify implicit attribute values from product 227

images (Lin et al., 2021; Khandelwal et al., 2023). 228

More recently, Brinkmann et al. (2024) explored 229

the use of LLMs for both the extraction and normal- 230

ization of attribute values. Additionally, Zou et al. 231

(2024) introduced the learning-by-comparison tech- 232

nique to reduce model confusion, and Sabeh et al. 233

(2024a) investigated Retrieval-Augmented Genera- 234

tion (RAG) technologies for PAVI. 235

Although generation-based methods can infer 236

implicit and OOD attribute values from product 237

profiles, they face several challenges in real-world 238

scenarios. A key issue is the potential for the LLMs 239

to produce uncontrollable or hallucinated outputs, 240

a known limitation of LLMs (Huang et al., 2024). 241

Additionally, these methods often rely on large, 242

computationally intensive models to achieve strong 243

performance, making them inefficient and costly 244

for large-scale industrial deployment. 245
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Figure 3: Overview of the training and inference process of our retrieval-based PAVI method. The left section
illustrates contrastive training with taxonomy-aware negative sampling, while the right section demonstrates adaptive
inference with pre-computed value embeddings.

3 Taxonomy-Aware Contrastive Learning246

Retrieval247

This section defines the PAVI task with an attribute248

taxonomy (§3.1) and presents our retrieval-based249

paradigm for PAVI (§3.2). We then detail the use of250

contrastive training with taxonomy-aware negative251

sampling (§3.3) and an adaptive inference mech-252

anism with dynamic thresholds (§3.4). Figure 3253

provides an overview of the approach.254

3.1 PAVI Task Definition255

PAVI is grounded in an attribute taxonomy that256

encompasses numerous product categories. For257

each category c, the taxonomy specifies a set of258

attributes Ac = {a1, a2, . . . } relevant to products259

in that category, and for each attribute a ∈ Ac, it260

provides a predefined set of standard values Va =261

{v1, v2, . . . }. Figure 2 illustrates this structure.262

For a given product item i, with its title t and263

description d, the item is assigned to a specific cate-264

gory c with associated attributes Ac. The objective265

of the PAVI task is to identify a relevant set of val-266

ues V+
a ⊆ Va for each attribute a ∈ Ac. The set267

V+
a can take one of three forms: a singleton ({v}),268

multiple values ({v1, v2, . . . }), or an empty set (∅)269

if no information about a is available in the product270

profile. Notably, a standard value may not always271

appear explicitly as a text span in t or d; it may272

be conveyed in other forms. When a value is not273

explicitly mentioned, such cases are referred to as274

implicit values.275

3.2 Retrieval-Based PAVI276

In a standard information retrieval setting, given a277

query, the objective is to retrieve a list of relevant278

documents from a corpus. Similarly, for PAVI, we279

treat the input item as the query and the attribute280

taxonomy as the corpus, aiming to retrieve relevant 281

attribute values as the output documents. 282

To achieve this, we use encoders to generate em- 283

beddings for both the item and its candidate values. 284

The cosine similarity between the item embedding 285

and each candidate value embedding is computed 286

and normalized to the range [0, 1] to measure rel- 287

evance. For each attribute, the candidate values 288

are ranked based on their similarity scores, and the 289

most relevant values are selected as the output set. 290

To effectively encode both the item and candi- 291

date values, we preprocess them as textual inputs 292

and use a shared text encoder. For each item, we 293

concatenate its title t and description d as the in- 294

put text. Each candidate value v associated with 295

attribute a under category c is represented as a text 296

prompt, such as “A [phone (c)] with [brand (a)] 297

being [Apple (v)]”. 1 We explore the impact of 298

various value prompt templates in §5.3. 299

3.3 Contrastive Training 300

Inspired by CLIP (Radford et al., 2021), we em- 301

ploy contrastive learning to train the shared encoder. 302

Rather than relying on in-batch negatives, we com- 303

pare each positive value with hard negative values 304

from the same category and attribute in the tax- 305

onomy, providing a more challenging and precise 306

training signal. 307

Formally, the subset of values matched with the 308

item is referred to as the ground truth value set, 309

V+
a ⊆ Va. If no matched values exist for a given 310

attribute, i.e., V+
a = ∅, we assign a specific null 311

value va0 for this attribute as the positive value, 312

i.e. v+a = va0 . Otherwise, a positive value is ran- 313

1This framework can be extended to multimodal scenarios
by replacing the text encoder with a multimodal encoder to
incorporate features like images.
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domly drawn from the ground truth value set, i.e.314

v+a ∼ V+
a . For negative sampling, we select values315

as V−
a = {v−1 , v

−
2 , . . . } ⊆ Va − V+

a , ensuring a316

maximum of K values. The contrastive loss is then317

computed as follows:318

La = − log

 exp( s(i,v
+
a )

τ )

exp( s(i,v
+
a )

τ ) +
∑

v∈V−
a

exp( s(i,v)τ )

 ,319

where s(i, v) = I·V
∥I∥∥V ∥ denotes the cosine similar-320

ity between the item embedding I and the value em-321

bedding V , and τ is the temperature hyperparame-322

ter. It is important to note that each item typically323

includes multiple attributes, all of which share the324

same item embedding I while being individually325

compared against corresponding values. Therefore,326

the loss for item i is the sum of losses over all327

attributes from Ac:328

Li =
∑
a∈Ac

La.329

An example logit matrix is depicted on the left330

side of Figure 3. Note that the item embedding I1331

contributes to the loss computations of L1
1, L2

1, and332

L3
1, which correspond to the attributes a1, a2, and333

a3 within the same product category. We also pad334

the logit matrix with negative infinity for batched335

computation if fewer than K values are available.336

3.4 Adaptive Inference337

During retrieval, relevance scores are assigned to338

every candidate values. To filter output values, a339

static threshold T can be applied to these scores.340

However, in real-world e-commerce platforms with341

a vast number of category-attribute pairs, using a342

single threshold across all pairs is often suboptimal.343

Moreover, defining a unique threshold for each pair344

is tedious or even impractical.345

To address this, we introduce an adaptive infer-346

ence method that uses dynamic thresholds to make347

cutoff decisions. As discussed in §3.3, we add an348

explicit null value va0 for each category-attribute349

pair, with its embedding learned during training.350

In the inference phase, we compute the similarity351

s(i, va0) between the item and the null value, using352

it as a dynamic threshold T ′
a to exclude candidate353

values for attribute a that have lower scores:354

Vpred
a = {v | s(i, v) > T ′

a}.355

Since most category-attribute pairs have exclusive356

values, meaning that each product can have at most357

one value for a given attribute, we focus on the 358

top-1 predicted value in this work. The output can 359

be further simplified as follows: 360

vpred
a =

argmax
v∈Va

s(i, v) if max
v∈Va

s(i, v) > T ′
a

null otherwise
. 361

The inference process is illustrated on the right 362

side of Figure 3, demonstrating how candidate 363

value embeddings from the attribute taxonomy are 364

pre-computed and stored offline to enhance effi- 365

ciency. During online inference, the item profile is 366

encoded into an item embedding I , which is then 367

compared against groups of candidate value em- 368

beddings for various attributes. In this example, 369

the predictions for a3 and a5 are determined to be 370

empty because the highest-scoring value for these 371

attributes is the null value. 372

4 Experiment Settings 373

4.1 Datasets 374

To evaluate PAVI under the settings described in 375

§3.1, we benchmark our proposed method against 376

baselines using both proprietary and public datasets 377

with normalized values.2 Table 2 presents statistics 378

of the attribute taxonomies and the datasets. 379

Ecom-PAVI. This dataset, derived from a real- 380

world e-commerce platform, is designed to evaluate 381

the scalability and generalization of PAVI methods. 382

The attribute taxonomy in the e-commerce plat- 383

form comprises 8,803 product categories, 26,645 384

category-attribute pairs, and 6.3 million category- 385

attribute-value tuples. For our experiments, we 386

sampled 1 million products for training, 10,000 for 387

validation, and 10,000 for testing, ensuring that the 388

samples span different time periods to reflect real- 389

world scenarios. To ensure data quality, annotators 390

manually verified the assigned product categories, 391

discarded incorrectly categorized products, and se- 392

lected the corresponding attribute-value pairs from 393

the taxonomy as the ground truth. 394

WDC-PAVE (Brinkmann et al., 2024). This dataset 395

consists of products distributed across 5 categories. 396

The training set includes 1,066 products and 8,832 397

product-attribute pairs, of which 3,973 have null 398

values. The test set contains 354 products and 399

2,937 product-attribute pairs, with 1,330 null pairs. 400

2Other popular benchmarks such as AE-110k (Xu et al.,
2019) and MAVE (Yang et al., 2022) provide only unnormal-
ized values as spans extracted from product profiles, making
them unsuitable for our experiments.
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Table 2: Statistics of the attribute taxonomies and dataset splits from Ecom-PAVI and WDC-PAVE. “CA Pairs”
refers to category-attribute pairs, “CAV Tuples” denotes category-attribute-value tuples, “PA Pairs” represents
product-attribute pairs, and “Null Pairs” indicate product-attribute pairs with null values. “Excl.” refers to the test
split excluding measurement attributes.

(a) Statistics of the attribute taxonomies.

Statistic Ecom WDC

# Categories 8,803 5
# Attributes 3,326 24
# CA Pairs 26,645 37
# CAV Tuples 6,302,220 2,297

(b) Statistics of the datasets.

Statistic Ecom-PAVI WDC-PAVE
Train Valid Test Train Test Excl.

# Products 809,528 81,699 85,024 1,066 354 354
# PA Pairs 3,584,462 358,582 458,954 8,832 2,937 2,285
# Null Pairs 2,345,577 228,534 272,285 3,973 1,330 916

Table 3: Confusion matrix comparing labeled value set
with predicted value and their corresponding outcomes.

Label Prediction Outcome

∅ ∅ True Negative (TN)
∅ v False Positive (FP)
V v ∈ V True Positive (TP)
V ∅ False Negative (FN)
V v′ /∈ V FP & FN

We conduct two evaluations: the first on the orig-401

inal test set, which includes all attributes, and the402

second on a test split that excludes measurement403

attributes to focus on tasks not requiring complex404

reasoning for unit conversion.405

4.2 Metrics406

Since most attributes in the taxonomy are ex-407

clusive (i.e., each product can have at most one408

value per attribute), we evaluate PAVI methods us-409

ing micro-averaged Precision@1, Recall@1, and410

F1@1 scores.411

For each attribute, the ground truth is a set of412

values V from the taxonomy. If the ground truth413

is empty (∅), a correct prediction (True Negative,414

TN) occurs when the model also predicts an empty415

set; otherwise, it is a False Positive (FP). When the416

ground truth is not empty, the model’s top-1 output417

is a True Positive (TP) if it matches any ground418

truth value. Predicting an empty set in this case419

results in a False Negative (FN), while mismatched420

predictions are both False Positives (FP) and False421

Negatives (FN), as it simultaneously introduces an422

error and misses the correct value.3 Table 3 summa-423

rizes these outcomes. Final precision, recall, and424

F1 scores are computed by aggregating TP, FP, and425

FN counts across the dataset for a comprehensive426

performance evaluation.427

3In prior work (Shinzato et al., 2023), metrics did not
account for the FP case, and FP & FN cases were counted as
FP only. We adopt more stringent metrics.

4.3 Baselines 428

We evaluate our retrieval-based method TACLR 429

against classification and generation baselines.4 430

For implementation details, refer to Appendix A. 431

BERT-CLS. This baseline frames PAVI as a multi- 432

label classification task, treating each category- 433

attribute-value tuple as an independent label. The 434

model is fine-tuned to predict matches, with label 435

masking applied to exclude irrelevant labels for 436

each category, following (Chen et al., 2022). The 437

model outputs a probability distribution over val- 438

ues and selects the highest probability value for 439

each attribute. If no probability exceeds a specified 440

threshold, the prediction is set to be empty. 441

LLMs. For generation-based baselines, we uti- 442

lize state-of-the-art open-source LLMs, including 443

Llama3.1-7B (Llama Team, 2024) and Qwen2.5- 444

7B (Qwen Team, 2024). These models are initially 445

evaluated in zero-shot and few-shot settings using 446

a template adapted from (Brinkmann et al., 2024), 447

which incorporates the category, attribute, and prod- 448

uct profile along with detailed value normalization 449

guidelines. We also fine-tune the LLMs on task- 450

specific data to predict attribute values in JSON 451

format. A greedy decoding strategy is applied to 452

ensure reproducibility. 453

5 Results 454

5.1 Main Results 455

Table 4 presents the performance comparison be- 456

tween our retrieval-based method TACLR and 457

classification- and generation-based baselines on 458

Ecom-PAVI and WDC-PAVE. On Ecom-PAVI, 459

TACLR achieves the highest F1 score of 86.2%, 460

surpassing the fine-tuned Llama3.1, which obtains 461

an F1 score of 84.7%. Notably, TACLR excels in 462

4Extraction-based baselines, such as NER or QA models,
are widely used for PAVE, but they are excluded from our com-
parison due to the lack of a standard normalization method,
which makes fair evaluation challenging.
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Table 4: Performance comparison of different methods on Ecom-PAVI and WDC-PAVE. "F1 Excl." refers to the F1
score calculated without measurement attributes (e.g., width and height), which require unit conversion reasoning.

Paradigm Method Ecom-PAVI WDC-PAVE
Precision Recall F1 Score Precision Recall F1 Score F1 Excl.

Classification BERT-CLS 50.9 50.1 50.5 68.9 12.0 20.5 23.4

Generation

Llama3.1 (zero-shot) 29.1 46.2 35.7 56.6 60.8 58.6 64.6
Llama3.1 (few-shot) 31.0 51.1 38.6 76.0 74.1 75.0 79.0
Llama3.1 (fine-tune) 86.9 82.7 84.7 57.7 60.4 59.0 64.5
Qwen2.5 (zero-shot) 42.7 55.7 48.4 51.9 60.3 55.8 60.8
Qwen2.5 (few-shot) 45.8 58.6 51.4 72.2 72.3 72.2 76.2
Qwen2.5 (fine-tune) 84.5 79.1 81.7 54.1 60.0 56.9 61.7

Retrieval TACLR 85.4 87.1 86.2 74.3 70.9 72.6 80.3

Table 5: Inference efficiency comparison on Ecom-PAVI
(Throughput in samples/second).

Method Time (ms) Throughput

BERT-CLS 8.6 930

Llama3.1 (zero-shot) 101.3 80
Llama3.1 (few-shot) 124.8 64
Qwen2.5 (zero-shot) 84.0 95
Qwen2.5 (few-shot) 98.4 81

TACLR 12.7 630

recall, achieving 87.1% compared to Llama3.1’s463

82.7%. On WDC-PAVE, TACLR achieves the high-464

est F1 Excl. score of 80.3%, which excludes mea-465

surement attributes requiring reasoning ability for466

unit normalization. This result highlights TACLR’s467

effectiveness and robustness in addressing general468

PAVI across diverse datasets.469

The classification-based method, BERT-CLS,470

shows the weakest performance on both datasets. It471

achieves an F1 score of 50.5% on Ecom-PAVI, but472

its performance drops drastically on WDC-PAVE,473

where it only attains an F1 score of 20.5%. This474

underscores the limitations of classification-based475

approaches in generalization, including their inabil-476

ity to adapt to OOD values.477

Among the generation-based methods, few-shot478

and fine-tuning consistently improve performance479

over zero-shot settings. For example, on Ecom-480

PAVI, Llama3.1 achieves F1 scores of 35.7%,481

38.6%, and 84.7% in zero-shot, few-shot, and fine-482

tuned settings, respectively. Similarly, Qwen2.5483

achieves F1 scores of 48.4%, 51.4%, and 81.7% in484

the corresponding settings. On WDC-PAVE, how-485

ever, fine-tuned LLMs exhibit weaker generaliza-486

tion due to the scarcity of training data. Few-shot487

learning proves more robust in this dataset, achiev-488

ing an F1 score of 75.0% for Llama3.1 and 72.2%489

for Qwen2.5.490

16 32 64 128
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40
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90

100

Sc
or

e 
(%
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51.1 51.7 52.2 53.3
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Sampling Strategy
Taxonomy-Aware
In-Batch

Figure 4: Comparison of negative sampling strategies
with increasing number of samples.

5.2 Inference Efficiency 491

Table 5 compares the inference efficiency of PAVI 492

methods under identical evaluation conditions. We 493

employed a naive PyTorch implementation without 494

speed optimizations and used the largest batch size 495

that avoids out-of-memory errors. All experiments 496

were conducted on a machine equipped with one 497

NVIDIA V100 GPU. 498

TACLR achieves a strong balance between per- 499

formance and efficiency, with an inference time of 500

12.7 ms and a throughput of 630 samples per sec- 501

ond. In contrast, generation-based methods, such 502

as Llama3.1 (few-shot) and Qwen2.5 (few-shot), 503

exhibit significantly longer inference times (124.8 504

ms and 98.4 ms, respectively) and lower through- 505

puts (64 and 81 samples per second), highlighting 506

the computational overhead of LLMs in high-load 507

scenarios. While BERT-CLS delivers the fastest 508

inference time and highest throughput, its inability 509

to handle OOD values and limited capacity restrict 510

its effectiveness in practical applications. 511

5.3 Analysis 512

Impact of Taxonomy-Aware Negative Sampling. 513

Figure 4 compares the proposed taxonomy-aware 514

sampling (§3.3) with in-batch sampling across dif- 515

ferent sample sizes. As the number of sampled 516
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Figure 5: Performance analysis across inference thresholds, prompt templates, and data domains.

values increases, F1 score consistently improve,517

corroborating findings from (Chen et al., 2020).518

With in-batch sampling as the baseline, the model519

achieves an F1 score of 53.3% with a sample size of520

128. In contrast, taxonomy-aware sampling signifi-521

cantly outperforms this baseline, with an F1 score522

improving from 84.0% to 86.2% as the sample523

size increases from 16 to 128. These results high-524

light the superiority of taxonomy-aware sampling,525

which leverages the structure of attribute taxonomy526

to generate more challenging negative examples,527

enhancing the model’s recognition capabilities.528

Comparison of Dynamic and Static Thresholds.529

Figure 5a evaluates the dynamic, learnable thresh-530

olds (§3.4) against the best static thresholds of 0.6,531

0.65, and 0.7, which were chosen based on their per-532

formance on the validation set. The dynamic thresh-533

old achieves the highest F1 score of 86.2%, sur-534

passing the static thresholds, which yield F1 scores535

of 75.5%, 80.2%, and 78.2%, respectively. Static536

thresholds exhibit a clear trend: as the threshold537

increases, precision rises (from 65.1% to 84.5%)538

while recall diminishes (from 90.0% to 72.8%). In539

contrast, the dynamic threshold balances precision540

(85.4%) and recall (87.1%) effectively, eliminat-541

ing the need for extensive hyperparameter tuning542

across category-attribute pairs. This adaptability543

makes dynamic thresholds a practical choice.544

Performance Gains from Context-Rich Prompts.545

The influence of varying value prompt templates546

on the PAVI task is shown in Figure 5b. Using547

only the value as a prompt achieves an F1 score548

of 83.2%. Adding category information raises the549

F1 score to 83.9%, while incorporating attribute550

information further improves it to 85.4%. The most551

comprehensive template, combining category, at-552

tribute, and value information (e.g., "A {category}553

with {attribute} being {value}"), achieves the high-554

est F1 score of 86.2%. These results are consistent555

with prior work (Radford et al., 2021), highlight- 556

ing that context-rich prompts enhance the model’s 557

discriminative performance. 558

Zero-Shot Generalization Across Data Domains. 559

Figure 5c presents the results of zero-shot trans- 560

fer experiments, evaluating the model’s general- 561

ization across unseen categories and values. The 562

in-domain split achieves an F1 score of 88.7%, 563

while performance decreases for cross-category 564

and cross-value splits, which attain F1 scores of 565

80.2% and 78.2%, respectively. These declines re- 566

flect the inherent challenges of adapting to dynamic 567

attribute taxonomies in OOD domains. Neverthe- 568

less, the overall F1 score of 86.2% demonstrates 569

the robust generalization capabilities of TACLR. 570

6 Conclusion 571

In this work, we present TACLR, a novel approach 572

for retrieval-based PAVI. By formulating PAVI as 573

an information retrieval problem, TACLR enables 574

the inference of implicit values, generalization to 575

OOD values, and the production of normalized out- 576

puts. Building on this framework, TACLR employs 577

contrastive training with taxonomy-aware sampling 578

and adaptive inference with dynamic thresholds to 579

enhance retrieval performance and scalability. 580

Comprehensive experiments on proprietary and 581

public datasets demonstrated TACLR’s superiority 582

over classification- and generation-based baselines. 583

Notably, TACLR achieved an F1 score of 86.2% on 584

the large-scale Ecom-PAVI dataset. Efficiency anal- 585

ysis further highlighted its advantage, achieving sig- 586

nificantly faster inference speeds than generation- 587

based methods. Beyond these experimental results, 588

TACLR has been successfully deployed on a real- 589

world e-commerce platform, processing millions 590

of product listings daily and seamlessly adapting to 591

dynamic attribute taxonomies, making it a practical 592

solution for large-scale industrial applications. 593
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7 Limitations594

While TACLR demonstrates effectiveness in pro-595

cessing textual product profiles, it does not cur-596

rently leverage multimodal information, such as597

images or videos. Multimodal data could provide598

valuable complementary context for attributes that599

are challenging to infer from text alone (e.g., vi-600

sual attributes like color or texture). Incorporat-601

ing multimodal capabilities may further enhance602

the model’s ability to identify attribute values with603

greater accuracy and comprehensiveness.604
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A Implementation Details869

We utilize pre-trained RoBERTa-base models (Liu870

et al., 2019; Cui et al., 2020), augmented with a lin-871

ear projection layer, to encode both the item profile872

and the value prompt. The embedding dimension is873

set to 256. For each product-attribute pair, we sam- 874

ple up to 128 values, which include a null value, an 875

optional positive value (no positive value is selected 876

when absent for the product-attribute), and negative 877

values sampled from the same category-attribute 878

pair. The temperature parameter for contrastive 879

learning is set to 0.05. The models is fine-tuned 880

using the AdamW optimizer with a batch size of 881

32 and a learning rate of 2e-5, over a maximum 882

of 5 epochs. Hyperparameters and the best model 883

checkpoints are selected based on the F1 score on 884

the validation set. 885

B Deployment 886

The proposed TACLR has been successfully inte- 887

grated into key functionalities of an e-commerce 888

platform, including product listing, search, recom- 889

mendation, and price estimation. The system is 890

designed to be highly scalable and efficiently pro- 891

cess millions of products daily. 892

In the product listing process, TACLR automat- 893

ically identifies attribute-value pairs from user- 894

provided titles and descriptions, significantly re- 895

ducing manual effort and errors while improving 896

the quality of structured information. 897

For product search, improved structured informa- 898

tion directly enhances lexical retrieval, leading to 899

more accurate matching with user queries. Mean- 900

while, it enriches product features, consequently 901

enhancing personalized recommendations. 902

In the area of price estimation, TACLR identi- 903

fies key attributes that influence pricing, leading to 904

more accurate price predictions. This provides both 905

sellers and buyers with reliable, market-aligned in- 906

formation. 907
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