Published in Transactions on Machine Learning Research (12/2025)

Fractal Generative Models

Tianhong Li tianhong@mit. edu
MIT
Qinyi Sun wendysun@mit.edu
MIT
Lijie Fan lijiefan@google.com

Google DeepMind

Kaiming He kaiming@mit.edu
MIT

Reviewed on OpenReview: https: //openreview. net/ forum? id=Qk9kn6101W

gi

Ji+1 Ji+1 Ji+1 Git+1 Ji+1

(a) generator (b) fractal from the generator

Figure 1: Fractal Generative Model. Four levels shown in this figure, better viewed zoomed in. In this
instantiation, we use autoregressive model for the fractal generator. By recursively calling autoregressive
models in autoregressive models, we build a fractal-like framework with self-similarity across different levels.

Abstract

Modularization is a cornerstone of computer science, abstracting complex functions into
atomic building blocks. In this paper, we introduce a new level of modularization by ab-
stracting generative models themselves into atomic modules. Our method constructs gener-
ative models by recursively invoking atomic generative modules, resulting in architectures
with fractal-like, self-similar properties. We call this new class of models fractal generative
models. As a running example, we instantiate our fractal framework using autoregressive
models as the atomic modules and examine it on the challenging task of pixel-by-pixel image
generation. Our experiments show strong performance in both likelihood estimation and
generation quality. We hope this work could serve as a starting point for future research
into fractal generative models, establishing a new paradigm in generative modeling.

1 Introduction

At the core of computer science lies the concept of modularization. For example, deep neural networks are
built from atomic “layers” that serve as modular units (Szegedy et al., 2015). Similarly, modern generative
models—such as diffusion models (Song et al., 2020) and autoregressive models (Radford et al., 2018)—are
built from atomic “generative steps”, each implemented by a deep neural network. By abstracting complex
functions into these atomic building blocks, modularization allows us to create more intricate systems by
composing these modules.

https://openreview.net/forum?id=Qk9kn6lOlW

Published in Transactions on Machine Learning Research (12/2025)

Building on this concept, we propose abstracting a generative model itself as a module to develop more ad-
vanced generative models. Specifically, we introduce a generative model constructed by recursively invoking
generative models of the same kind within itself. This recursive strategy results in a generative frame-
work that exhibits complex architectures with self-similarity across different levels of modules, as shown in
Figure 1.

Our concept draws inspiration from the mathematical notion of fractals (Mandelbrot, 1983). While clas-
sical fractals exhibit exact self-similarity at each recursion level, our framework adopts a looser, conceptual
interpretation: each recursion involves generative modules of the same type but not necessarily sharing
identical parameters. This relaxed definition provides greater flexibility, allowing each fractal level to adapt
to the specific data distributions at different scales, a key advantage in modeling complex, real-world data.
Reflecting this conceptual analogy, we term our framework “fractal generative models”.

This conceptual interpretation also aligns well with fractal-like patterns widely observed in nature. Biological
neural networks, for example, frequently exhibit fractal-like, scale-invariant connectivity (Bassett et al., 2006;
Sporns, 2006; Bullmore & Sporns, 2009; Ansell & Kovdcs, 2024), suggesting that the brain’s development
largely adopts the concept of modularization, recursively building larger neural networks from smaller ones.
Likewise, fractal patterns are prevalent in natural data, ranging from macroscopic structures such as clouds,
tree branches, and snowflakes, to microscopic ones including crystals (Cannon et al., 2000), chromatin (Mirny,
2011), and proteins (Enright & Leitner, 2005). More generally, natural images can also be viewed through
a fractal lens—an image is composed of sub-images that are themselves images (although they may follow
different distributions). Thus, it is natural to consider generative models whose modules recursively invoke
similar generative functionalities.

In this work, we instantiate our fractal generative framework using autoregressive modules as the generator'
which defines the recursive generation rule (Figure 1). In our instantiation, each autoregressive model
is composed of modules that are themselves autoregressive models. Concretely, each parent autoregressive
block, modeling a high-dimensional data distribution, recursively spawns multiple child autoregressive blocks,
each modeling lower-dimensional distributions, and each child block further spawns more autoregressive
blocks. The resulting hierarchical structure thus exhibits fractal-like, self-similar patterns across multiple
levels.

We examine this fractal instantiation on a challenging testbed: pixel-by-pixel image generation. Existing
methods that directly model the pixel sequence do not achieve satisfactory results in both likelihood esti-
mation and generation quality (Hawthorne et al., 2022; Yu et al., 2023), as images do not embody a clear
sequential order. Despite its difficulty, pixel-by-pixel generation represents a broader class of important
generative problems: modeling non-sequential data with intrinsic structures, which is particularly important
for many data types beyond images, such as molecular structures, proteins, and biological neural networks.

Our proposed fractal framework demonstrates strong performance on this challenging yet important task.
It can generate raw images pixel-by-pixel (Figure 3) while achieving accurate likelihood estimation and high
generation quality. We hope our promising results will encourage further explorations of fractal generative
models in their design and applications, ultimately establishing a new paradigm for generative modeling.

2 Related Work

Fractals. A fractal is a geometric structure characterized by self-similarity across different scales, often
constructed by a recursive generation rule called a generator (Mandelbrot, 1983). Fractals are widely observed
in nature, with classic examples ranging from macroscopic structures such as clouds, tree branches, and
snowflakes, to microscopic ones including crystals (Cannon et al., 2000), chromatin (Mirny, 2011), and
proteins (Enright & Leitner, 2005).

Beyond these more easily recognizable fractals, many natural data also exhibit near-fractal characteristics.
Although they do not possess strict self-similarity, they still embody similar multi-scale representations

1We use the term “generator” following Mandelbrot (1983). In this paper, “generator” specifically refers to a rule for
recursively forming fractals.

Published in Transactions on Machine Learning Research (12/2025)

or patterns, such as images (Freeman et al., 1991; Lowe, 1999) and biological neural networks (Bassett
et al., 2006; Sporns, 2006; Bullmore & Sporns, 2009). Conceptually, our fractal generative model naturally
accommodates all such non-sequential data with intrinsic structures and self-similarity across different scales;
in this paper, we demonstrate its capabilities with an image-based instantiation.

Hierarchical Representations. Extracting hierarchical pyramid representations from visual data has long
been an important topic in computer vision. Many early hand-engineered features, such as Steerable Filters,
Laplacian Pyramid, and SIFT, employ scale-space analysis to construct feature pyramids (Burt & Adelson,
1987; Freeman et al., 1991; Lowe, 1999; 2004; Dalal & Triggs, 2005). In the context of neural networks,
hierarchical designs remain important for capturing multi-scale information. For instance, SPPNet (He
et al., 2015) and FPN (Lin et al., 2017) construct multi-scale feature hierarchies with pyramidal feature
maps. Our fractal framework is also related to Swin Transformer (Liu et al., 2021), which builds hierarchical
feature maps by attending to local windows at different scales. These hierarchical representations have
proven effective in various image understanding tasks, including image classification, object detection, and
semantic segmentation.

Hierarchical Generative Models. Hierarchical designs are also widely used in generative modeling. Many
recent methods employ a two-stage paradigm, where a pre-trained tokenizer maps images into a compact
latent space, followed by a generative model on those latent codes (van den Oord et al., 2017; Razavi et al.,
2019; Esser et al., 2021; Ramesh et al., 2021). Another example, MegaByte (Yu et al., 2023), implements
a two-scale model with a global and a local module for more efficient autoregressive modeling of long pixel
sequences, though its performance remains limited. Some recent work also applies such hierarchical concepts
in reasoning models and RNNs (Wang et al., 2025; Nzoyem et al., 2025).

Another line of research focuses on scale-space image generation. Cascaded generative models (Yu et al.,
2020; Ramesh et al., 2022; Ho et al., 2022; Pernias et al., 2023) train multiple generative models, such as
diffusion models or normalizing flow models, to progressively generate images from low resolution to high
resolution. More recently, scale-space autoregressive methods (Tian et al., 2024; Tang et al., 2024; Han et al.,
2024) generate tokens one scale at a time using an autoregressive transformer. However, generating images
without a tokenizer is often prohibitively expensive for these autoregressive approaches because the large
number of tokens or pixels per scale leads to a quadratic computational cost for the attention within each
scale.

Our fractal generative model builds upon hierarchical generative principles but uniquely integrates recursive,
self-similar structures inspired by fractal geometry. Unlike conventional hierarchical models that typically
use multiple stages at fixed resolutions, our fractal framework recursively invokes generative modules of the
same type across multiple image scales, analogous to the recursive self-similarity of natural fractal structures.
This recursive design enables our approach to effectively capture intrinsically structured, non-sequential data,
introducing a novel form of hierarchical generative modeling.

Modularized Neural Architecture Design. Modularization is a fundamental concept in computer
science and deep learning, which atomizes previously complex functions into simple modular units. One
of the earliest modular neural architectures was GoogleNet (Szegedy et al., 2015), which introduced the
“Inception module” as a new level of organization. Later research expanded on this principle, designing
widely used units such as the residual block (He et al., 2016) and the Transformer block (Vaswani, 2017).
Recently, in the field of generative modeling, MAR (Li et al., 2024) modularize diffusion models as atomic
building blocks to model the distribution of each continuous token, enabling the autoregressive modeling of
continuous data. By providing higher levels of abstraction, modularization enables us to build more intricate
and advanced neural architectures using existing methods as building blocks.

A pioneering approach that applies a modular unit recursively and integrates fractal concepts in neural
architecture design is FractalNet (Larsson et al., 2016), which constructs very deep neural networks by
recursively calling a simple expansion rule. While FractalNet shares our core idea of recursively invoking a
modular unit to form fractal structures, it differs from our method in two key aspects. First, FractalNet uses
a small block of convolutional layers as its modular unit, while we use an entire generative model, representing
different levels of modularization. Second, FractalNet was mainly designed for classification tasks and thus
outputs only low-dimensional logits. In contrast, our approach leverages the exponential scaling behavior of

Published in Transactions on Machine Learning Research (12/2025)

fractal patterns to generate a large set of outputs (e.g., millions of image pixels), demonstrating the potential
of fractal-inspired designs for more complex tasks beyond classification.

3 Fractal Generative Models

In this section, we introduce the fractal generative framework and illustrate how it can efficiently model
high-dimensional data distributions by recursively composing atomic generative modules. We first outline
the general framework and then present an instantiation using autoregressive models as the atomic modules.

3.1 Fractal Generative Framework

A fractal generative model recursively builds more powerful generative models from simpler atomic generative
modules. Formally, each fractal level consists of a generator g; that transforms an output x; from the previous
level into a set of new outputs {z;+1}: {zit+1} = gi(x;). By recursively invoking similar generative modules
at each level (as illustrated in Figure 1), this framework achieves exponential output growth with only a
linear increase in recursive depth. This property enables efficient modeling of complex, high-dimensional
data.

Unlike classical fractals with strict self-similarity and parameter sharing, our framework employs a flexible,
conceptual fractal structure. Each fractal generator level uses independently parameterized modules, allow-
ing the model to adapt to scale-specific data characteristics while keeping structural self-similarity across
recursive levels.

3.2 Instantiation with Autoregressive Modules

We demonstrate the fractal generative framework by instantiating it with autoregressive models. Our goal is
to model the joint distribution of a large set of random variables x1, - - - , xn, but directly modeling it with a
single autoregressive model is computationally prohibitive. To address this, we adopt a divide-and-conquer
strategy. The key modularization is to abstract an autoregressive model as a modular unit that models
a conditional probability distribution p(z|c). With this modularization, we can construct a more powerful
autoregressive model by building it on top of multiple next-level autoregressive models.

Specifically, assume each autoregressive module handles sequences of length k, and the total number of
variables is N = k", where n = log, (V) represents the number of recursive levels in our fractal framework.
The joint distribution factorizes recursively as:

k
p(xh T 7xk") = Hp(x(i—l)k"*l—&-h RN Lt ‘xla T 7x(i—1)~k"*1)7
i=1
where each conditional distribution p(---|---) with k"~! variables is modeled by an autoregressive module

at the next fractal level. By recursively calling such a divide-and-conquer process, our fractal framework can
efficiently handle the joint distribution of k™ variables using n levels of autoregressive models, each operating
on a manageable sequence length k.

This recursive process represents a standard divide-and-conquer strategy. By recursively decomposing the
joint distribution, our fractal autoregressive architecture not only significantly reduces computational costs
compared to a single large autoregressive model but also captures the intrinsic hierarchical structure within
the data.

Conceptually, as long as the data exhibits a structure that can be organized in a divide-and-conquer manner,
it can be naturally modeled within our fractal framework. To provide a more concrete example, in the next
section, we implement this approach to tackle the challenging task of pixel-by-pixel image generation.

Published in Transactions on Machine Learning Research (12/2025)

Output from
prev. generator

e o o Transformer Blocks

o O
oo

Outputs for next generators

.
‘

94
Figure 2: Instantiation of our fractal method Figure 3: Our fractal framework can generate
on pixel-by-pixel image generation. In each high-quality images pixel-by-pixel. We show the
fractal level, an autoregressive model receives the generation process of a 256 x256 image by recursively
output from the previous generator, concatenates it calling autoregressive models in autoregressive models.
with the corresponding image patches, and employs We also provide additional example videos in the sup-
multiple transformer blocks to produce a set of out- plementary material to illustrate the generation pro-
puts for the next generators. cess.

Table 1: Model configurations, parameters, and computational costs at different autoregressive
levels for our large-size model. The computational costs are measured by GFLOPs per forward pass during
training with batch size 1. Notably, thanks to the fractal design, the total computational cost of modeling
a 256x256 image is only twice that of modeling a 64x64 image.

image size seq. len. | #layers | hidden dim | #params (M) | #GFLOPs
g1 16x16 32 1024 403 215
g2 4x4 8 512 25 208
64x64x3
O ab A IR 3 128 0.6 15
g1 16x16 32 1024 403 215
g2 4x4 8 512 25 208
256x256x3 1 1 4xa 4 256 3 419
ga 3 1 64 0.1 22

4 An Image Generation Instantiation

In this section, we present a concrete instantiation of our fractal generative model applied to the challenging
task of pixel-by-pixel image generation. Although demonstrated here with image data, the underlying divide-
and-conquer architecture can potentially extend to other structured, high-dimensional domains. Next, we
first discuss the challenges and importance of pixel-by-pixel image generation.

4.1 Pixel-by-pixel Image Generation

Pixel-by-pixel image generation remains a significant challenge in generative modeling because of the high
dimensionality and complexity of raw image data. This task requires models that can efficiently handle a
large number of pixels while effectively learning the rich structural patterns and interdependency between
them. As a result, pixel-by-pixel image generation has become a challenging benchmark where most existing
methods are still limited to likelihood estimation and fail to generate satisfactory images (Child et al., 2019;
Hawthorne et al., 2022; Yu et al., 2023).

Published in Transactions on Machine Learning Research (12/2025)

Recently, several scale-space autoregressive methods have explored next-scale prediction strategies for image
generation (Tian et al., 2024; Tang et al., 2024; Han et al., 2024). However, these methods rely on a single
autoregressive model performing full attention across the entire pixel sequence at each scale, resulting in
prohibitively high computational complexity for high-resolution images. For example, modeling a 256 x256
image at the finest scale using these methods requires each attention matrix in the transformer to have
approximately 4 x 10° elements, making direct modeling of pixels impractical.

Though challenging, pixel-by-pixel generation represents a broader class of important high-dimensional gen-
erative problems. These problems aim to generate data element-by-element but differ from long-sequence
modeling in that they typically involve non-sequential data. For example, many structures—such as molec-
ular configurations, proteins, and biological neural networks—do not exhibit a sequential architecture yet
embody very high-dimensional and structural data distributions. By selecting pixel-by-pixel image genera-
tion as an instantiation for our fractal framework, we aim not only to tackle a pivotal challenge in computer
vision but also to demonstrate the potential of our fractal approach in addressing the broader problem of
modeling high-dimensional non-sequential data with intrinsic structures.

4.2 Architecture

As shown in Figure 2, each autoregressive model takes the output from the previous-level generator as its
input and produces multiple outputs for the next-level generator. It also takes an image (which can be
a patch of the original image), splits it into patches, and embeds them to form the input sequence for a
transformer model. These patches are also fed to the corresponding next-level generators. The transformer
then takes the output of the previous generator as a separate token, placed before the image tokens. Based
on this combined sequence, the transformer produces multiple outputs for the next-level generator.

Following common practices from vision transformers and image generative models (Dosovitskiy et al., 2020;
Peebles & Xie, 2023), we set the sequence length of the first generator g; to 256, dividing the original images
into multiple 16 x 16 patches. The second-level generator then models each patch and further subdivides them
into smaller patches, continuing this process recursively. To manage computational costs, we progressively
reduce the width and the number of transformer blocks for smaller patches, as modeling smaller patches is
generally easier than larger ones. At the final level, we use a very lightweight transformer to model the RGB
channels of each pixel autoregressively, and apply a 256-way cross-entropy loss on the prediction. The exact
configurations and computational costs for each transformer across different recursive levels and resolutions
are detailed in Table 1. Notably, with our fractal design, the computational cost of modeling a 256x256
image is only twice that of modeling a 64x64 image.

Following Li et al. (2024), our method supports different autoregressive designs. In this work, we mainly
consider two variants: a raster-order, GPT-like causal transformer (AR) and a random-order, BERT-like
bidirectional transformer (MAR) (Figure 6). Both designs follow the autoregressive principle of next-token
prediction, each with its own advantages and disadvantages, which we discuss in detail in Appendix B. We
name the fractal framework using the AR variant as FractalAR and the MAR variant as FractalMAR.

4.3 Relation to Long-Sequence Modeling

Most previous work on pixel-by-pixel generation formulates the problem as long-sequence modeling and
leverages methods from language modeling to address it (Child et al., 2019; Roy et al., 2021; Ren et al., 2021;
Hawthorne et al., 2022; Yu et al., 2023). However, the intrinsic structures of many data types, including but
not limited to images, are beyond one-dimensional sequences. Different from these methods, we treat such
data as sets (instead of sequences) composed of multiple elements and employ a divide-and-conquer strategy
to recursively model smaller subsets with fewer elements. This approach is motivated by the observation
that much of this data exhibits a near-fractal structure: images are composed of sub-images, molecules
are composed of sub-molecules, and biological neural networks are composed of sub-networks. Accordingly,
generative models designed to handle such data should be composed of submodules that are themselves
generative models.

Published in Transactions on Machine Learning Research (12/2025)

Table 2: More fractal levels achieve better likelihood estimation performance with lower com-
putational costs, measured on unconditional ImageNet 64x64 test set. The GFLOPs are measured per
forward pass during training with batch size 1. The training time is measured per training iteration on 1
H100 GPU with batch size 8. NLL is reported in bits/dim. The network configurations of g1, g2 and g3 are
in Table 1.

Seq Len

g1 g2 g3 | #GFLOPs Training time (s/iter) NLLJ
AR, full-length 64x64x3 - - 29845 N/A N/A
MAR, full-length 64x64x3 - - 29845 N/A N/A
FractalAR (2-level) 64x64 3 - 5516 1.63 3.34
FractalMAR (2-level) 64x64 3 - 5516 4.63 3.36
FractalAR (3-level) 16x16 4x4 3 438 0.28 3.14
FractalMAR (3-level) 16x16 4x4 3 438 0.28 3.15

4.4 Implementation

We now describe our fractal generative model implementation for both training and generation processes at
a high level. Further details and hyper-parameters can be found in Appendix A. We also provide our source
code in the supplementary materials.

Training. We train our fractal model end-to-end directly on raw image pixels following a breadth-first
manner through the fractal architecture. As shown in Figure 2, during training, each autoregressive module
receives outputs from the previous level, processes them through transformer blocks, and generates embed-
dings for the subsequent fractal level. At the final fractal level, a lightweight autoregressive transformer
predicts discrete RGB pixel intensities (from 0 to 255). We compute a cross-entropy loss at this pixel-level
prediction and backpropagate it through all fractal levels, optimizing the entire framework in an end-to-end
manner.

Generation. Our fractal model generates images pixel-by-pixel following a depth-first manner through the
fractal hierarchy, as illustrated in Figure 3. Here we use the random-order generation scheme from MAR (Li
et al., 2024) as an example. The first-level autoregressive model g; captures the interdependence between
16x16 image patches in each 256 x256 image, and at each step, it produces an embedding for the next level
model g, to generate a patch. Subsequent generators recursively produce outputs to guide the generation
of smaller patches. Ultimately, the final-level autoregressive model generates individual pixel RGB values.
This recursive generation strategy effectively captures dependencies across multiple image scales, resulting
in high-quality generated images.

5 Experiments

We conduct extensive experiments on the ImageNet dataset (Deng et al., 2009) with resolutions at 64x64
and 256x256. Our evaluation includes both unconditional and class-conditional image generation, cover-
ing various aspects of the model such as likelihood estimation, fidelity, diversity, and generation quality.
Accordingly, we report the negative log-likelihood (NLL), Frechet Inception Distance (FID) (Heusel et al.,
2017), Inception Score (IS) (Salimans et al., 2016), Precision and Recall (Dhariwal & Nichol, 2021a), and
visualization results for a comprehensive assessment of our fractal framework.

5.1 Likelihood Estimation

We begin by evaluating our method on unconditional ImageNet 64x64 generation to evaluate its likelihood
estimation capability. To demonstrate the effectiveness of our fractal framework, we compare the likelihood
estimation performance of our framework with different numbers of fractal levels, as shown in Table 2.
Modeling the entire 64x64x3=12,288-pixel sequence with a single autoregressive model incurs prohibitive
computational costs and makes training infeasible. Moreover, a two-level fractal framework that first models
the entire pixel sequence and then the RGB channels requires over ten times the computation of our three-

Published in Transactions on Machine Learning Research (12/2025)

Table 3: Comparison with other Table 4: Sample quality evaluation on ImageNet 256 x256 pixel-
likelihood-based models on uncondi- level generation. FractalMAR is the only pixel-by-pixel frame-
tional ImageNet 64x64 test set. NLL is work in this table. We also provide the performance of other

reported in bits/dim. pixel-level generation methods for reference.
type NLL| type |#params|FID] ISt [Pre.f Rec.t
iDDPM (Nichol & Dhariwal, 2021) diffusion 3.53 BigGAN-deep (Brock et al., 2018) GAN | 160M |6.95 198.2|0.87 0.28
FM (Lipman et al., 2022) diffusion 3.31 GigaGAN (Kang et al., 2023) GAN | 569M |3.45 225.5|0.84 0.61
NFDM (Bartosh et al,, 2024) diffusion _3.20 StyleGAN-XL, (Sauer et al., 2022) GAN | 166M |2.30 265.1|0.78 0.53
Wavelet Flow (Yu et al., 2020) norm. flow 378 ADM Dhariwal & Nichol (2021b) diffusion| 554M | 4.59 186.7]0.82 0.52
TarFlow (Zhai et al., 2024) norm. flow 2.99
PixelONN (van den Oord ot al, 2016) AR 357 Simple diffusion Hoogeboom et al. (2023)|diffusion| 2B 3.54 205.3| - -
Combiner AR (Ren et al., 2021) AR 3.49 VDM++ Kingma & Gao (2023) diffusion 2B 2.12 267.7| - -
Perceiver AR (Hawthorne et al., 2022) AR 3.40 SiD2 Hoogeboom et al. (2024) diffusion - 1.38 - - -
MegaByte (Yu et al., 2023) AR 3.40 JetFormer Tschannen et al. (2024) AR+flow| 2.8B [6.64 - 0.69 0.56
FractalAR fractal ~ 3.14 FractalMAR-B fractal | 186M [11.80 274.3|0.78 0.29
FractalMAR fractal 3.15 FractalMAR-L fractal | 438M |7.30 334.9(0.79 0.44
FractalMAR-H fractal 848M | 6.15 348.9|0.81 0.46
] w
i - ' i -
\. ‘ﬁil 4
L A = ¥
2 i - & -."‘ " 3 A !«h
. Ay
-! - .-::":-"' W
s
=

TR -

N
eraeta
b1

Figure 4: Pixel-by-pixel generation results from FractalMAR-H on ImageNet 256x256. Our
fractal method can generate high-quality high-resolution images in a pixel-by-pixel manner, with an average
throughput of 1.29 seconds per image. More qualitative results are in Figure 7.

level fractal model. Employing more fractal levels is not only more computationally efficient but also improves
likelihood estimation performance, likely because it better captures the intrinsic hierarchical structure of
images.

We further compare our method with other likelihood-based models in Table 5. Our fractal generative
model, instantiated with both causal and masked autoregressive fractal generators, achieves strong likelihood
performance. In particular, it achieves a negative log-likelihood of 3.14 bits per dim, which outperforms the
previous best autoregressive model (3.40 bits per dim) by a significant margin and remains competitive with
advanced diffusion-based and normalizing-flow-based methods. These findings demonstrate the effectiveness

Published in Transactions on Machine Learning Research (12/2025)

Ground truth Ground truth Masked input

L

L
\ﬁ -

Masked input Reconstructed Reconstructed

A
\é V ; \é
J MM Hul | r[lh

Figure 5: Conditional pixel-by-pixel prediction results, including image inpainting (first row left half), out-
painting (second row left half), uncropping (outpainting on a large mask, first row right half), and class-
conditional editing (inpainting with another class label, second row right half).

of our fractal framework on the challenging task of pixel-by-pixel image generation, highlighting its promising
potential in modeling high-dimensional non-sequential data distributions.

5.2 Generation Quality

We also evaluate FractalMAR on the challenging task of class-conditional image generation at a resolution of
256 x 256, using four fractal levels. We report standard metrics including FID, Inception Score, Precision, and
Recall following standard practices to evaluate its generation quality in Table 4. Specifically, FractalMAR-
H achieves an FID of 6.15 and an Inception Score of 348.9, with an average throughput of 1.29 seconds
per image (evaluated at a batch size of 1,024 on a single Nvidia H100 PCIe GPU). Notably, our method
achieves strong Inception Score and Precision, indicating its ability to generate images with high fidelity and
fine-grained details, as also demonstrated in Figure 4. However, its FID and Recall are relatively weaker,
suggesting that the generated samples are less diverse compared to other methods. We hypothesize that this
is due to the significant challenge of modeling nearly 200,000 pixels in a pixel-by-pixel way. Nonetheless,
these results highlight our method’s effectiveness in not only accurate likelihood estimation but also the
generation of high-quality images.

We further observe a promising scaling trend: increasing the model size from 186M to 848M parameters
substantially improves the FID from 11.80 to 6.15 and the Recall from 0.29 to 0.46. We expect that
additional scaling of parameters could narrow the gap in FID and Recall even further. Unlike models that
rely on tokenizers, our method is free from the reconstruction errors introduced by tokenization, suggesting
the potential for uncapped performance gains with larger model capacities.

5.3 Conditional Pixel-by-pixel Prediction

We further examine the conditional pixel-by-pixel prediction performance of our method using conventional
tasks in image editing. Figure 5 provides several examples, including inpainting, outpainting, uncropping,
and class-conditional editing. As shown in the figure, our method can accurately predict the masked pixels
based on the unmasked regions. Additionally, it can effectively capture high-level semantics from class labels
and reflect it in the predicted pixels. This is illustrated in the class-conditional editing example, where
the model replaces a cat’s face with that of a dog by conditioning on the dog’s class label. These results
demonstrate the effectiveness of our method in predicting unknown data given known conditions.

More broadly, by generating data element-by-element, our method provides a generation process that is more
interpretable for humans compared to approaches such as diffusion models or generative models operating
in latent spaces. This interpretable generation process not only allows us to better understand how data is
generated but also offers a way to control and interact with the generation. Such abilities are particularly

Published in Transactions on Machine Learning Research (12/2025)

important in applications like visual content creation, architectural design, and drug discovery. Our promising
results highlight the potential of our approach for controllable and interactive generation, paving the way
for future explorations in this direction.

6 Discussion and Conclusion

The effectiveness of our proposed fractal generative model, demonstrated through the challenging task of
pixel-by-pixel generation, suggests new opportunities for designing generative models. It highlights the
potential of dividing complex data distributions into manageable sub-problems and addressing them by
using existing generative models as modular units. We believe that fractal generative models are particularly
suited for modeling data with intrinsic structures beyond sequential orders. We hope that the simplicity and
effectiveness of our method will inspire the research community to explore novel designs and applications of
fractal generative models.

Broader Impacts. Our primary aim is to advance the fundamental research on generative models. Similar
to all generative models, there are potential negative societal consequences if our approach is misused to
produce disinformation or amplify biases. However, these considerations lie outside the scope of this paper
and are therefore not discussed in detail.

10

Published in Transactions on Machine Learning Research (12/2025)

References

Helen S Ansell and Istvan A Kovécs. Unveiling universal aspects of the cellular anatomy of the brain. Communications
Physics, 7(1):184, 2024.

Grigory Bartosh, Dmitry Vetrov, and Christian A Naesseth. Neural flow diffusion models: Learnable forward process
for improved diffusion modelling. arXiv preprint arXiv:2404.12940, 2024.

Danielle S Bassett, Andreas Meyer-Lindenberg, Sophie Achard, Thomas Duke, and Edward Bullmore. Adaptive
reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of
Sciences, 103(51):19518-19523, 2006.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nature reviews neuroscience, 10(3):186-198, 2009.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings in computer
vision, pp. 671-679. Elsevier, 1987.

JAMES W Cannon, WILLIAM J Floyd, and WALTER R Parry. Crystal growth, biological cell growth, and geometry.
Pattern formation in biology: vision, and dynamics. Singapore: World Scientific, pp. 65-82, 2000.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. MaskGIT: Masked generative image Trans-
former. In CVPR, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy,
William T Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-to-image generation via
masked generative Transformers. In /CML, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE computer society
conference on computer vision and pattern recognition (CVPR’05), volume 1, pp. 886-893. Ieee, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In NeurIPS, 2021a.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural infor-
mation processing systems, 34:8780-8794, 2021b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Matthew B Enright and David M Leitner. Mass fractal dimension and the compactness of proteins. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 71(1):011912, 2005.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for high-resolution image synthesis. In
CVPR, 2021.

William T Freeman, Edward H Adelson, et al. The design and use of steerable filters. IEEE Transactions on Pattern
analysis and machine intelligence, 13(9):891-906, 1991.

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677,
2017.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Infinity: Scaling
bitwise autoregressive modeling for high-resolution image synthesis. arXiv preprint arXiv:2412.04431, 2024.

11

Published in Transactions on Machine Learning Research (12/2025)

Curtis Hawthorne, Andrew Jaegle, Catalina Cangea, Sebastian Borgeaud, Charlie Nash, Mateusz Malinowski, Sander
Dieleman, Oriol Vinyals, Matthew Botvinick, Ian Simon, et al. General-purpose, long-context autoregressive
modeling with perceiver ar. In International Conference on Machine Learning, pp. 8535-8558. PMLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. IEEFE transactions on pattern analysis and machine intelligence, 37(9):1904-1916, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR,
2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs trained by a
two time-scale update rule converge to a local nash equilibrium. In NIP, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv:2207.12598, 2022.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303, 2022.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for high resolution
images. arXiv preprint arXiw:2301.11093, 2023.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Salimans. Simpler diffusion
(sid2): 1.5 fid on imagenet512 with pixel-space diffusion. arXiv preprint arXiv:2410.1932/4, 2024.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling
up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10124-10134, 2023.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple data augmentation.
In NeurIPS, 2023.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks without resid-
uals. arXiv preprint arXiv:1605.07648, 2016.

Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. MAGE: Masked generative
encoder to unify representation learning and image synthesis. In CVPR, 2023.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation without
vector quantization. arXiv preprint arXiv:2406.11838, 2024.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 2117-2125, 2017.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 10012-10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh IEEFE international
conference on computer vision, volume 2, pp. 1150-1157. Ieee, 1999.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision,
60:91-110, 2004.

Benoit B Mandelbrot. The fractal geometry of nature/revised and enlarged edition. New York, 1983.
Leonid A Mirny. The fractal globule as a model of chromatin architecture in the cell. Chromosome research, 19:

37-51, 2011.

12

Published in Transactions on Machine Learning Research (12/2025)

Debarshi Mustafi, Andreas H Engel, and Krzysztof Palczewski. Structure of cone photoreceptors. Progress in retinal
and eye research, 28(4):289-302, 2009.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In ICML, 2021.

Roussel Desmond Nzoyem, Nawid Keshtmand, Enrique Crespo Fernandez, Idriss Tsayem, Raul Santos-Rodriguez,
David AW Barton, and Tom Deakin. Weight-space linear recurrent neural networks. arXiv preprint
arXiw:2506.01153, 2025.

William Peebles and Saining Xie. Scalable diffusion models with Transformers. In ICCV, 2023.

Pablo Pernias, Dominic Rampas, Mats L Richter, Christopher J Pal, and Marc Aubreville. Wiirstchen: An efficient
architecture for large-scale text-to-image diffusion models. arXiv preprint arXiv:2306.00637, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by gener-
ative pre-training. 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with VQ-VAE-2. In
NeurIPS, 2019.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, and Bo Dai. Combiner:
Full attention transformer with sparse computation cost. Advances in Neural Information Processing Systems, 34:
22470-22482, 2021.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention with
routing transformers. Transactions of the Association for Computational Linguistics, 9:53-68, 2021.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In NeurIPS, 2016.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse datasets. In ACM
SIGGRAPH 2022 conference proceedings, pp. 1-10, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXi:2010.02502, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint arXiv:2303.01469,
2023.

Olaf Sporns. Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems,
85(1):55—-64, 2006.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1-9, 2015.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao
Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive transformer. arXiv preprint
arXiw:2410.10812, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Michael Tschannen, André Susano Pinto, and Alexander Kolesnikov. Jetformer: An autoregressive generative model
of raw images and text. arXiv preprint arXiv:2411.19722, 2024.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu.
Conditional image generation with PixelCNN decoders. In NeurIPS, 2016.

13

Published in Transactions on Machine Learning Research (12/2025)

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In NeurIPS,
2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and Yasin Abbasi Yadkori.
Hierarchical reasoning model. arXiv preprint arXiv:2506.21734, 2025.

Jason J Yu, Konstantinos G Derpanis, and Marcus A Brubaker. Wavelet flow: Fast training of high resolution
normalizing flows. Advances in Neural Information Processing Systems, 33:6184-6196, 2020.

Lili Yu, Déniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis. Megabyte: Predicting
million-byte sequences with multiscale transformers. Advances in Neural Information Processing Systems, 36:
78808-78823, 2023.

Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng, Tianrong Chen,

Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing flows are capable generative models. arXiv
preprint arXiv:2412.06329, 2024.

14

Published in Transactions on Machine Learning Research (12/2025)

A Implementation Details

Here we provide more step-by-step implementation details of the training and generation process of our
pixel-by-pixel image generation instantiation. We also include the codes to reproduce our results in the
supplementary materials. All codes and models will be made publicly available.

Training. Below is a detailed step-by-step description of the training procedure on 256 x256 images:

o At the highest fractal level, generator g; receives the class embedding (or condition embedding) as input,
along with embeddings of 16x16 image patches. The transformer within g; processes these embeddings
to produce output embeddings that serve as conditional inputs for the next fractal level go. Due to the
autoregressive nature of the generator, the training can be done in a teacher-forcing way that produces
embeddings and receives gradients from all patches in one training iteration.

o The second-level generator g then takes these conditional embeddings from g; and combines them with
embeddings of 4x4 patches in each 16x16 patch. The transformer of go processes these combined inputs
and generates further refined embeddings to be used as conditional inputs for the subsequent fractal level
gs3-

o Similarly, the third-level generator g3 combines the conditional embeddings from g» with the embeddings
of all pixels in each 4x4 patch. Its transformer outputs embeddings that condition the final fractal level
94.-

o At the final fractal level g4, a specialized pixel-level autoregressive transformer predicts discrete RGB values
for individual pixels. These pixel-level RGB intensities are discretized into 256 levels, and a cross-entropy
loss is computed between these predictions and the ground-truth pixel values from the input images.

o Finally, the computed cross-entropy loss at the pixel level is backpropagated through all fractal levels and
trains the entire framework in an end-to-end manner.

The backward pass is simply the automatic differentiation of the forward pass. In summary, each fractal
generator receives conditioning signals from the previous level and produces new conditions for the next.
The final level computes the cross-entropy loss, and gradients are propagated in reverse order.

When modeling high-resolution images with multiple levels of autoregressive models, we find it slightly
helpful to include a “guiding pixel” in the autoregressive sequence. Specifically, the model first uses the
output from the previous generator to predict the average pixel value of the current input image. This
average pixel value then serves as an additional condition for the transformer. In this way, each generator
begins with a global context before predicting fine-grained details. We apply this “guiding pixel” only in
experiments on ImageNet 256 x256.

Since our autoregressive model divides images into patches, it can lead to inconsistent patch boundaries
during generation. To address this issue, we provide the next-level generator not only the output at the
current patch but also the outputs at the surrounding four patches. Although incorporating these additional
inputs slightly increases the sequence length, it significantly reduces the patch boundary artifacts.

By default, the models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) for 800 epochs
(the FractalMAR-H model is trained for 600 epochs). The weight decay and momenta for AdamW are 0.05
and (0.9, 0.95). We use a batch size of 2048 for ImageNet 64x64 and 1024 for ImageNet 256x256, and a
base learning rate (Ir) of 5e-5 (scaled by batch size divided by 256). The model is trained with 40 epochs
linear Ir warmup (Goyal et al., 2017), followed by a cosine Ir schedule. The 64x64 model takes 3.5 days, and
the 256x256 FractalMAR-L model takes 7.6 days on 32 H100 GPUs.

NLL computation. Since our method uses a divide-and-conquer approach by recursively applying autore-
gressive decompositions, the computation of the NLL effectively becomes recursively computing the NLL for
each autoregressive model. Specifically, the NLL of an image is computed as

k
—logp(xy, -+ ,xpn) = — Z log p(T(i—1).kn—1415" " s Tikn—1]T1, -+, T(1)kn—1)-
i=1

15

Published in Transactions on Machine Learning Research (12/2025)

This means the overall image NLL is simply the summation of individual NLL values on each patch condi-
tioned on previous patches. Furthermore, the NLL of each individual patch itself is also recursively computed
as the sum of NLL values of the smaller patches in it, and so on. The NLL on each pixel channel is computed
w.r.t. the ground-truth pixel value using cross-entropy on 256 discrete values.

Generation. Here we describe the generation process step-by-step, using the generation of a 256 x 256 image
as an example. To provide additional clarity, we also include visualization videos illustrating this recursive
generation process in the supplementary materials.

o The first-level generator g; models the interdependence between the 16x16 patches in an 256 x256 image.
At each step of g1, it uses its transformer to produce an embedding for a 16x16 patch to generate,
conditioned on the previously generated patches. Then, it asks the second-level generator g, to generate
this patch based on the embedding it produced.

¢ The second-level generator g, operates similarly but at a finer scale. It models the interdependence between
the 4x4 patches in a 16x16 image. Specifically, at each step of go, it uses its transformer to produce an
embedding for the next 4x4 patch to generate, conditioned on previously generated 4x4 patches and the
output embedding from g;. Then, it asks the third-level generator g3 to generate this 4x4 patch based on
this embedding.

e The third-level generator g3 models and generates individual pixels within each 4x4 patch. For each step
of g3, it employs its transformer to generate embeddings for the next pixel to generate, conditioned on the
previously generated pixels in the patch and the output embedding from go. It then asks the final-level
generator g4 for the actual RGB value generation.

o At the final fractal level, the generator g4 samples RGB values for each pixel autoregressively from proba-
bility distributions produced by its transformer’s output logits. These RGB predictions represent the final
pixel values of the generated image.

Following common practices in the literature (Chang et al., 2022; 2023; Li et al., 2023), we implement
classifier-free guidance (CFG) and temperature scaling for class-conditional generation. To facilitate
CFG (Ho & Salimans, 2022), during training, the class condition is replaced with a dummy class token
in 10% of the samples. At inference time, the model is run with both the given class token and the dummy
token, yielding two sets of logits I. and [, for each pixel channel. The predicted logits are then adjusted
according to the following equation: | =1, + w - (I. — l,,), where w is the guidance scale. We employ a linear
CFG schedule during inference for the first-level autoregressive model, as described in Chang et al. (2023).
We perform a sweep over different combinations of guidance scale and temperature to identify the optimal
settings for each conditional generation model.

We also observed that CFG can suffer from numerical instability when the predicted probability for a pixel
value is very small. To mitigate this issue, we apply top-p sampling with a threshold of 0.0001 on the
conditional logits before applying CFG.

Fractal Factorization. We provide a concrete walkthrough of the recursive factorization used in our fractal
autoregressive framework. We aim to model a joint distribution over N random variables, p(z1, z2,...,ZN).
Directly factorizing this distribution with a single autoregressive model becomes impractical for large N. We
therefore adopt a divide-and-conquer strategy: we fix a block size k and choose the number of recursive levels
n such that N = k", n = log;,, N. At each level, an autoregressive module models a conditional probability of
the form p(z|c), where = denotes a short sequence of length k and ¢ is the context produced by the previous
level.

Now, we provide a two-level example when N = k?. We partition the variables into k consecutive groups
Gi ={z(-1)k+1,---»Tar},4 = 1,..., k. By the chain rule,

k
plar,... z2) = [[p(Gil G- . Gia). (1)

i=1

This conditional probability distribution between groups is modeled by the level-1 autoregressive model.
Then, each term on the right is a distribution over k variables, which we further factorize with a lower-level

16

Published in Transactions on Machine Learning Research (12/2025)

=\ S\

= ol = o
(a) AR generator (b) MAR generator

Figure 6: Two variants for autoregressive modeling. The AR variant models the sequence in a raster-
scan order using a causal transformer. The MAR variant models the sequence in a random order using a
bidirectional transformer: at each generation step, the model randomly selects masked positions to fill in,
resulting in a random sampling order. Both are valid generators to build our fractal framework.

AR module:

k
p(Gi | Gl, ey Gi—l) = Hp(f‘c(i—l)k—i-j | G1, ey Gi—ly :E(i—l)k—&-la ces am(i—l)k—i-j—l) . (2)

j=1
This conditional probability distribution within each group is modeled by the level-2 autoregressive model.
Now, let N = k™. The top level groups the sequence into k contiguous blocks of size k™'

k

p(r1, - o) = Hp(w(iq)-knflﬂa”' s Tisgn—1 |T1, - >$(i71)-k"*1)'
i=1

Each conditional on the right is again a joint distribution over k"1 variables, which is factorized by the
next fractal level using the same rule, now with exponent n—1. After n applications of this rule, we reach
modules that operate on sequences of length k, completing the recursive factorization.

B Additional Results

Table 5: Comparison on conditional ImageNet 64x64 with classical generative models.

type FIDJ|
iDDPM (Nichol & Dhariwal, 2021) diffusion 2.92
StyleGAN-XL (Sauer et al., 2022) GAN 1.51
Consistency Model (Song et al., 2023)| consistency | 4.70
MAR (Li et al., 2024) AR+diffusion| 2.93
FractalAR fractal 6.30
FractalMAR fractal 2.76

Class-conditional ImageNet 64x64. We evaluate class-conditional image generation on ImageNet 64 x64,
reporting FID according to standard practice. Consistent with PixelCNN (van den Oord et al., 2016), we
find that class conditioning has negligible impact on NLL but substantially improves visual quality and FID.
The results demonstrate that our fractal generative model can achieve competitive performance as classical
generative models.

We also compare the performance of the AR and MAR variants, whose structures are illustrated in Figure 6.
The AR variant leverages key-value caching to accelerate generation, whereas the MAR variant employs
bidirectional attention, which aligns more naturally with image modeling and enables the parallel prediction
of multiple patches, thereby improving computational efficiency. As shown in the table, both of our models
achieve favorable performance, with FractalMAR outperforming FractalAR overall, as also demonstrated in
Li et al. (2024). Therefore, we choose to use the MAR variant for conditional image synthesis on ImageNet
at a resolution of 256 x256.

17

Published in Transactions on Machine Learning Research (12/2025)

Table 6: Different orders of channel modeling within each pixel can slightly influence generation performance.
All models are trained for 400 epochs on ImageNet 64 x64.

order INLL| FID|
Y—Cb—Cr| N/A 3.55
BSR-G| 3.17 3.32
G—R—B 3.17 3.14
R—-G—B 3.17 3.15

Modeling Pixels. We also examine how different pixel modeling orders affect performance. We experi-
mented with three autoregressive orders: RGB, GRB, and BGR, as well as converting the RGB channels to
the YCbCr color space. The results are summarized in Table 6. We found that while all orders achieved
similar negative log-likelihood values, the FID varied slightly among the autoregressive orders (note that the
NLL in the YCbCr space is not comparable with that in the RGB space). This variation is likely because,
akin to human vision, the Inception model used to compute FID places greater emphasis on the red and
green channels than on the blue channels (Mustafi et al., 2009). Nonetheless, the choice of autoregressive
order does not result in significant performance differences, demonstrating the robustness of our method.

Additional qualitative results. We further provide additional conditional generation results on ImageNet
256x256 in Figure 7, additional conditional pixel-by-pixel prediction results in Figure 8, and also include
videos that demonstrate our generation process in the supplementary material.

18

Published in Transactions on Machine Learning Research (12/2025)

Figure 7: Additional pixel-by-pixel generation results from FractalMAR-H on ImageNet 256 x256.

Ground truth Masked inBut Reconstructed‘

Ground truth Masked input Reconstructed

Figure 8: Additional conditional pixel-by-pixel prediction results, including image inpainting, outpainting,
and uncropping.

19

