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Abstract

Compositional Zero-Shot Learning (CZSL) aims to rec-
ognize novel concepts formed by known states and objects
during training. Existing methods either learn the combined
state-object representation, challenging the generalization
of unseen compositions, or design two classifiers to identify
state and object separately from image features, ignoring
the intrinsic relationship between them. To jointly eliminate
the above issues and construct a more robust CZSL system,
we propose a novel framework termed Decomposed Fusion
with Soft Prompt (DFSP)1, by involving vision-language
models (VLMs) for unseen composition recognition. Specif-
ically, DFSP constructs a vector combination of learnable
soft prompts with state and object to establish the joint rep-
resentation of them. In addition, a cross-modal decomposed
fusion module is designed between the language and image
branches, which decomposes state and object among lan-
guage features instead of image features. Notably, being
fused with the decomposed features, the image features can
be more expressive for learning the relationship with states
and objects, respectively, to improve the response of un-
seen compositions in the pair space, hence narrowing the
domain gap between seen and unseen sets. Experimental
results on three challenging benchmarks demonstrate that
our approach significantly outperforms other state-of-the-
art methods by large margins.

1. Introduction

Given an unseen concept, such as green tiger, even
though this is a nonexistent stuff humans have never seen,
they may associate the known state green with an image of
tiger immediately. Inspired by this, Compositional Zero-
Shot Learning (CZSL) is proposed with the purpose of

*Song Guo and Jingcai Guo are the corresponding authors
1Code is available at: https://github.com/Forest-art/

DFSP.git
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Figure 1. The overview of DFSP. Our method aims to narrow
the domain gap between seen and unseen compositions by fus-
ing decomposed features fo and fs with image feature fv , while
learn the joint representation between state and object in language
branch. Being fused with the state and object features, image fea-
ture can learn the response of them respectively and improve the
sensitiveness of unseen compositions.

equipping models with the ability to recognize novel con-
cepts generated as humans do. Specifically, CZSL learns
on visible primitive composed concepts (state and object)
in the training phase, and recognizes unseen compositions
in the inference phase.

Some prior algorithms [20, 26] design two classifiers
to identify state and object separately, while these mod-
els overlook the intrinsic relation between them. After the
primitive concepts are obtained, the association between
state and object could be established again through graph
neural network (GNN) [24] or external knowledge compo-
sitions [14]. Nevertheless, these are post-processing meth-
ods and these classifiers are separated from image features
with strong correlation, ignoring entanglement. Some other
methods [28, 29] are to directly treat the combination as an
entity, converting CZSL into a general zero-shot recognition
problem. Generally, the visual features are projected into a
shared semantic space and the distance between entities is
optimized, such as Euclidean distance [44]. If too much
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attention is paid to the composed concepts in the training
stage, the model can not be generalized well to unseen com-
positions, causing the domain gap between seen and unseen
sets. In summary, these methods are all visual recognition
models, which are limited by the strong entanglement of
states and objects in image features.

In contrast, we focus on designing novel approaches
based on vision-language models (VLMs) to cope with
CZSL challenges. Since state and object are two separate
words in the text, they are less entangled in language fea-
tures than image features and could be decomposed more
easily and precisely. Certainly, state and object are also
intrinsically linked in the text, such as ripe apple instead
of old apple. Constructing the combination in the form of
text can also establish the joint representation of state and
object to pair with images. Meanwhile, the decomposed
state and object features can also be independently associ-
ated with the image feature, easing the excessive bias of the
model towards seen compositions and enhancing the unseen
response (shown in Fig. 1). To improve CZSL with VLMs,
we design Decomposed Fusion with Soft Prompt (DFSP),
an efficient framework aimed to both learn about the joint
representation of primitive concepts and shrink the domain
gap between seen and unseen composition sets, as shown in
Fig. 2. To be specific, DFSP is designed as a fully learnable
soft prompt including prefix, state and object, which con-
structs the joint representation between primitive concepts
and can be fine-tuned well for new supervised tasks. We
then design a decomposed fusion module (DFM) for state
and object, which decomposes features extracted from text
encoder, such as Bert [6], etc. Meanwhile, the decomposed
language features and image features of DFSP interact with
information in a cross-modal fusion module, which is cru-
cial for learning high-quality language-aware visual repre-
sentations. During the phase of fusion, the image can es-
tablish separate relationships with the state and object, and
then is paired with the composed prompt feature in the pair
space, improving its response even for unseen compositions
to shrink the domain gap.

Generally, this paper makes the following contributions:

• A novel framework named Decomposed Fusion with
Soft Prompt (DFSP) is proposed, which is based on
vision-language paradigm aiming to cope with CZSL.

• The Decomposed Fusion Module is designed for
CZSL specifically, which decomposes the concepts of
language features and fuses them with image features
to improve the response of unseen compositions.

• We design a learnable soft prompt to construct the
joint-representation of state and object, which can be
more precisely decomposed than images.

• Extensive experiments demonstrate the effectiveness
of DFSP, which greatly outperforms the state-of-the-
art CZSL approaches on both closed-world and open-
world.

2. Related Work
We describe the compositional zero-shot learning and

prompt learning in this section.
Compositional Zero-Shot Learning. CZSL [9, 20, 25,

26, 28] is a task similar to how humans can imagine and
discriminate unseen concepts according to the concepts they
have learned, which is a significant branch of ZSL [5,10,11,
15, 17, 21, 22, 40].

For CZSL, early works learn a classifier for recogni-
tion and a transformation module to convert state or ob-
ject [26, 28]. Some recent works utilize two separate clas-
sifiers to recognize state and object respectively [14, 18, 20,
26]. Also, some works combine the encoded attribute/state
and object features with late fusion by using multi-layer
perceptron [32]. Li et al. introduce contrastive learn-
ing into CZSL, and design a siamese network to identify
state and object in the contrastive space, respectively [18].
Other methods [28, 29] focus on the joint representation of
the compositions, which learn an emdedding space to map
the compositions like ZSL. Recent works utilize graph net-
works to represent the state and object relationship and then
learn their compositions [24, 35, 42]. Besides, Nihal et al.
first attempt to use a VLM model for CZSL, replacing the
classes in prompt with a learnable combined state and ob-
ject vector representation [30].

As opposed to the previous closed-world, some work aim
at open-world by using external knowledge to filter infeasi-
ble compositions [14, 23, 24].

Prompt Learning. Prompt Learning refers to process-
ing the input text through a specific template, and recon-
structing the task into a form that can more fully utilize
the pre-trained language model [1–3,36,39,46]. Prompting
makes the pre-training model and downstream tasks closer,
which is different from fine-tuning. Benefiting from hav-
ing pre-trained on a large-scale data and associating with
multi-modal information, prompt learning can achieve great
performance in zero-shot and few-shot on a wide range of
tasks [33, 34].

Take the CLIP [34] model as an example, discrete
prompt has difficulty performing well on downstream tasks
even when trained on new data. Some recent works uti-
lize soft prompt to improve downstream tasks and reach fine
performance [16, 19, 37]. CoOp [46] convert the prefix part
of the prompt to soft prompt like [v1][v2][v3]object, fix the
parameters of other parts, and only fine-tune the prompt.
In contrast, CSP [30] sets the primitive concepts section of
the prompt to be soft like a photo of [state][object]. While
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Figure 2. The framework of our proposed DFSP, which consists of Soft Prompt Module (SPM) and Decomposed Fusion Module (DFM).
Since DFSP is vision-language model, it could also be divided into two branches, language segment and image segment. SPM aims to
construct and preserve the joint representation of state and object, then convert the discrete prompt to learnable soft prompt, causing the
extracted language features ft more discriminative and more suitable for new tasks, especially CZSL. There are three forms of decomposed
fusion in SPM, BiF, i2t and t2i respectively, and if the fusion method is t2i, only decomposition exists on the language to image branch.
Meanwhile, decomposition and recomposition coexist in the fusion method of BiF and i2t. After decomposing language feature into
independent state feature fs and object feature fo, DFM fuses them with image feature fv and calculates similarity in the final pair space.
DFSP can not only learn the joint representation of state and object, but also shrink the domain gap of seen and unseen composition sets.

these methods focus only on a certain part of the prompt,
we soften the entire prompt to better fine-tune in the new
scenario.

3. Approach
For CZSL, entities exist in the form of a combination of

state and object, and the model needs to be trained on the
seen composition set while tested on the unseen set. To ad-
dress this challenge, we propose a novel formulation termed
Decomposed Fusion with Soft Prompt (DFSP), which con-
structs a vision-language paradigm with soft prompt and de-
composed fusion module. DFSP first construct soft prompt
with state and object to establish the joint representation
of them. Meanwhile, DFSP decomposes language features
to separated state and object features, and utilizes cross-
modal fusion to transfer knowledge between decomposed
language and images. The framework of our proposed
method is shown in Fig. 2.

3.1. Problem Formulation

Given state set A = {s0, s1, . . . , sn} and object set O =
{o0, o1, . . . , om} as the primitive concepts of CZSL, we can
compose them as a composition set C = A×O, where the
size of C is n×m. Besides, we denote two disjoint sets Cs

and Cu, where Cs, Cu are subsets of the composition set C

and Cs ∩ Cu = ϕ. Specifically, Cs, Cu represent the seen
and unseen sets, respectively, where Cs is used for training
and Cu is used for testing. T = {(xi, ci|x ⊂ X , c ⊂ Cs)}
is the training set where X is the input image space and c
belongs to the seen composition label set.

The CZSL task aims to train a model M : X → Ct

to predict compositions in the test samples space Ct. If
Ct ∩Cs ≡ ϕ, where the model only predicts unseen compo-
sitions. Follow the setting of Generalized ZSL [43], testing
samples contain seen and unseen compositions, i.e., Cs∪Cu

in this paper. Generally, when testing, only the known com-
position space of test samples is required, which is called
closed-world. For Open-World [14], the composition space
for testing is all possible combinations, i.e., Ct = C.

3.2. Decomposed Fusion with Soft Prompt Network

Given an image such as dry dog, dry and dog have strong
joint representation in image features, which is entangle-
ment of state and object. Directly identifying the state and
object of an image feature separately will lose its joint rep-
resentation. For a short sentence of dry dog, although its
embedding is also a combination of dry and dog, this com-
bination is not strong entangled and could be precisely de-
composed. Inspired by this, we propose a vision-language
paradigm for CZSL, called Decomposed Fusion with Soft
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Prompt (DFSP), which includes two modules, Soft Prompt
Module (SPM) and Decomposed Fusion Module (DFM).
SPM is responsible for the construction of joint represen-
tation between state and object, and DFM is to decompose
and fuse language features with image features to improve
the sensitiveness of unseen compositions. The overall ar-
chitecture of DFSP is shown in Fig. 2.

Soft Prompt Module. DFSP is a vision-language
model, in which encoders utilize Contrastive Language-
Image Pre-Training (CLIP) [34], which has pretrained on
nearly 400M text-image pairs. The feature extracted sec-
tion of DFSP consists of the image encoder and the text
encoder. For the image encoder, it can be a vision trans-
former (ViT) [7] or a convolutional neural network [12],
while the text encoder includes several transformer encoder
layers. It is worth mentioning that the parameters of im-
age encoder and text encoder are frozen, because the CLIP
model has done enough pre-training, we only need to fine-
tune for downstream tasks.

To be specific, the entities consist of state and ob-
ject in CZSL are transformed into natural language
prompts like a photo of [state][object], compared with
a photo of [class] in CLIP. Before extracting the text rep-
resentations, the prompts need to be converted to tokens for
each word by tokenizer and the embedding function maps
the tokens to the vocabulary. Due to the discrete vocabulary
[state][object], the model cannot be adapted to CZSL well.
CSP [30] compares the CLIP model and soft [state][object]
in prompt, which achieves some progress. Nevertheless,
while CSP works well for CZSL, prefix is still fixed, which
is too dependent on state and object learning for the model.
And a prefix like a photo of is not necessarily the best
prompt form; if it can also be updated, the model can be
generalized better.

In DFSP, the prompt is fully learnable soft prompt
[v1][v2][v3][state][object]. First, we build a prompt set
with a prefix context, state and object, which is formulated
as follows:

P (s, o) = {x0, x1, . . . , xp, xs, xo} , (1)

where {x0, . . . , xp} is the prefix context and the xs and xo

represents the state and object vocabulary for the compo-
sition set P (s, o). Then, the prompt will be converted to
learnable embeddings as follows:

P soft = Γ(P (s, o)) = {θ0, θ1, . . . , θp, θs, θo} , (2)

where Γ is the embedding function, {θ0, . . . , θp} is the
learnable prefix context and θs and θo denotes the learn-
able state and object embeddings. For the training samples
x ∈ X and the soft prompt P soft, we can extract the image
and language features:

fv =
Ev(x)

∥Ev(x)∥
, ft =

Et(P
soft)

∥Et(P soft)∥
, (3)

where Ev and Et represent the image encoder and text en-
coder, and ∥·∥ means the norm calculation. Next, we can
compute the class probability pspm(y=(s,o)

x:θ ) as follows:

pspm(
y = (s, o)

x; θ
) =

exp(fv · ft)∑
(s̄,ō)∈Cs exp(fv · ft)

. (4)

Finally, we can minimize the cross entropy loss in the
soft prompt module:

Lspm = − 1

|Cs|
∑

(x,y)∈Cs

log

(
pspm(

y = (s, o)

x; θ
)

)
. (5)

Decomposed Fusion Module. The language and image
representations of SPM are directly calculated their similar-
ity in the pair space, causing the model tend to the seen com-
positions of the training set, lacking the ability to perceive
unseen samples. To narrow the domain gap between seen
and unseen sets, we propose Decomposed Fusion Module
(DFM), which decomposes language features into state and
object features and fuses them with image feature.

The design of DFM has three key points for DFSP: i)
DFM only decomposes the language features, in which state
and object has less entanglement. Since state and object
are separated in text, they can be decomposed easily and
precisely, which preserves the joint representation of state
and object; ii) The decomposed state and object features are
fused with image features to realize information interaction
between the two modalities. Meanwhile, DFM establishes
respective associations of the image with the state and ob-
ject, improving the responsiveness in the pair space, espe-
cially for the unseen compositions; iii) If there are many
categories of states and objects, the composition set will be
particularly large, limiting the performance of the model.
DFM can reduce the complexity of the composition, from
O(n×m) to O(n+m). Since training is on the seen set and
testing is on the unseen set, the number of compositions is
inconsistent. For cross-modal fusion, decomposition is es-
sential to ensure that the model can maintain a fixed amount
of parameters when the composition set changes.

With SPM, we can extract the image feature fv and lan-
guage feature ft, and then the state feature fs and object
feature fo can be decomposed as follows:

fs, fo = De(ft), (6)

where De(·) denotes the decomposition, and it’s formula-
tion is:

De =

∑
i

ft(i, j)

|j|
,
∑
j

ft(i, j)

|i|
|i ∈ A, j ∈ O, (i, j) ∈ Cs

 .

(7)
The language feature ft is the combined seen feature set,
and De calculates its average state feature relative to each
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object and the average object feature of each state. The class
scale of them is n and m respectively, and then fs, fo will
be concatenated to f+

t , which is consistent during training
and testing.

The decomposed state and object features can also be
supervised to provide some guidance for subsequent train-
ing. We can compute the state probability p(y=s

x:θ ) and ob-
ject probability p(y=o

x:θ ) as follows:

p(
y = s

x; θ
) =

exp(fv · fs)∑
(s̄)∈A exp(fv · ft)

, (8)

p(
y = o

x; θ
) =

exp(fv · fo)∑
(ō)∈O exp(fv · fo)

. (9)

And the cross entropy loss can be minimized by:

Lst+obj = − 1

|A|
∑

(x,y)∈Cs

log

(
p(

y = s

x; θ
)

)

− 1

|O|
∑

(x,y)∈Cs

log

(
p(

y = o

x; θ
)

) (10)

Due to the mismatching of feature dimension, decomposed
language features and image features need to be converted
to consistent, the formulation is as follows:

f+
t→i = Ttxt2img(f

+
t ), fi→t = Timg2txt(fv), (11)

where Ttxt2img is the transformation from language feature
to image feature and Timg2txt is opposite.

The key to the image-text matching task is how to accu-
rately calculate the visual-semantic similarity between im-
ages and texts. However, most of the existing algorithms
only focus on the association between elements within a
single modality, and do not combine the image and text
features. Since the image and text encoders are all based
on transformer layers, we utilize cross-attention and self-
attention mechanism to fuse the decomposed feature with
image feature [4, 38, 41]. Let S1 and S2 be the two modal-
ities to be fused, and the fusion from S1 to S2 can be de-
scribed as follows:

F(S1 → S2) = softmax((WQS2)(WKS1)
T )WV S1,

(12)
where WQ, WK , WV are trainable parameters and de-
note the query, key and value similar to Multi-Head Self-
Attention [38]. So the specific fusion of cross-attention is
as follows:

ffused
v = F(f+

t→i → fv),

ffused
t = F(fi→t → f+

t ).
(13)

To establish a deeper relationship among the fused features,
they can to be fine-tuned by self-attention and the formula-
tion is as follows.

ffused
v = F(ffused

v → ffused
v ),

ffused
t = F(ffused

t → ffused
t ).

(14)

Besides, the fusion module consists of cross-attention and
self-attention can be repeated K times to better adapted
to complex tasks. Since the language features are decom-
posed, they can be recomposed before comparing with im-
age features, which is a reverse phase compared to the de-
composition. The formula is as follows:

fs, fo = S(ffused
t ), ft = {MLP (fs · fo)|(s, o) ∈ Cs} ,

(15)
where S(·) is the split function and MLP (·) is the multi-
layer perception to fine-tune. Finally, the DFM class prob-
ability pdfm(y=(s,o)

x:θ ) as follows:

pdfm(
y = (s, o)

x; θ
) =

exp(fv · ft)∑
(s̄,ō)∈Cs exp(fv · ft)

. (16)

And the cross entropy loss in DFM can be minimized:

Ldfm = − 1

|Cs|
∑

(x,y)∈Cs

log

(
pdfm(

y = (s, o)

x; θ
)

)
. (17)

The overall loss of the framework DFSP can be summarized
as follows:

L = Ldfm + αLst+obj + βLspm, (18)

in which α and β are the weighting coefficients to balance
the influence of each loss.

DFSP can be divided into three categories according to
the fusion methods, BiF, i2t and t2i. While i2t and t2i re-
spectively mean the fusion of image feature into text fea-
ture and text feature into image feature, while BiF means
the fusion in both directions. Fusion of image feature with
text feature requires decomposition of the text feature, and
to maintain joint representation in the pair space, the fused
features need to be recomposed, which is reverse of decom-
position.

3.3. Inference

We utilize the final fused probability to infer on test set,
and the test set includes seen and unseen compositions,
which can be denoted as Cs ∪ Cu. For both closed-world
and open-world settings in testing phase, the most likely
predicted result can by calculated as follows:

ŷ = argmax(pdfm(
y = (s, o)

x : θ
)), y ∈ Cs ∪ Cu. (19)

To filter out infeasible compositions in the open-world
setting, we follow the post-training calibration method [24,
30]. First, we calculate the similarities between objects:

qo(s, o) = max
ϕ(o) · ϕ(ô)

∥ϕ(o)∥ ∥ϕ(ô)∥
, (o, ô) ∈ O, (20)
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where qo(s, o) denotes the similarity between object o and
ô, and ϕ(·) is an embedding function. Also, the similari-
ties of states can be obtained in the same way. Next, the
feasibility score can be calculated by mean pooling µ:

q(s, o) = µ(qs(s, o), qo(s, o)). (21)

Finally, the infeasible compositions can be filter out by a
threshold T:

ŷ = argmax(p(
y = (s, o)

x : θ
)), y ∈ Cs ∪ Cu, q(s, o) > T.

(22)

4. Experiment
In this section, we describe all datasets and our exper-

iments. And the comparisons with other state-of-the-art
methods are presented in detail. Finally, the ablation ex-
periments prove the efficiency of our algorithm.

4.1. Experiment Setup

Datasets. We experiment with three real-world chal-
lenging benchmark datasets: MIT -States [13], UT-
Zappos [45] and C-GQA [27] respectively. Specifically,
MIT-States contains 53753 natural images, with 115 states
and 245 objects. In the closed-world settings, the search
space contains 1262 seen compositions and 300 unseen for
validation and 400 unseen for test. UT-Zappos consists of
50025 images of shoes, with 16 states and 12 objects. For
the closed-world experiments, it is constrained to the 83
seen and 15/18 (validation/test) unseen compositions. And
for UT-Zappos, we follow the split in [32]. For about C-
GQA, the most pairs dataset for CZSL, contains 453 states
and 870 objects, with 39298 images in total, which contains
over 9500 compositions. Finally, in the open-world settings,
these datasets contain 28175, 192 and 278362 compositions
respectively.

Metrics. Following the setting of prior work [23], we
compute the prediction accuracy based on the seen and un-
seen compositions both in the closed-world and open-world
scenarios. Specifically, Seen (S) denotes the accuracy tested
only on seen compositions and Unseen (U) represents the
accuracy evaluated only on unseen compositions. Also, we
can calculate Harmonic Mean (H) of the S and U metrics.
Since zero-shot models have inherent bias for seen compo-
sitions, we can draw a seen-unseen accuracy curve at dif-
ferent operating points with the bias from −∞ to +∞ to
compute the Area Under the Curve (AUC). To sum up, the
metrics consist of S, U, H and AUC.

Implementation Details. We implement DFSP with Py-
Toch 1.12.1 [31] and optimized by Adam optimizer over
the three challenging datasets for 20 epochs. The image
encoder and text encoder are both based on the pretrained
CLIP Vit-L/14 model, and the entire model are trained and

evaluated on 1×NVIDIA RTX 3090 GPU. Besides, we set
the number of fusion blocks K and self-attention section as
1, and the evaluation metrics are tested on the model which
computes lowest loss during the validation phase.

4.2. Comparision with State-of-the-Arts

Experimental comparisons with the prior composi-
tional zero-shot learning methods are reported, including
AoP [28], LE+ [27], TMN [32], SymNet [20], Comp-
Cos [23], CGE [27], Co-CGE [24], SCEN [18], KG-SP [14]
and recently proposed CSP [30]. For our proposed method
DFSP, we test a variety of different fusion methods: BiF, i2t
and t2i, which denotes the fusion direction as bidirectional
fusion, fusion on the text branch and fusion on the image
branch. The experiment is conducted on both closed-world
and open-world, and the results are shown in Tab. 1 and
Tab. 2.

For the closed-world setting, DFSP in Tab. 1 shows that
our method achieves the new state-of-the-art on MIT-States,
UT-Zappos and CGQA datasets. DFSP reaches the highest
AUC of 20.8% on MIT-States, 36.0% on UT-Zappos and
10.5% on CGQA, which outperforms CSP by 4.3%. Be-
sides, we improve the harmonic mean by 6.6% on CGQA
relative to other existing methods. And the seen and unseen
accuracies on these datasets are also the best results.

Tab. 2 shows the DFSP results on open-world setting
and we also get the best results on all metrics. During the
inference stage, the infeasible filter threshold T is fixed on
0.4, and DFSP outperforms CSP by 1.1% on MIT-States
and KG-SP by 3.8% on UT-Zappos for the AUC metric. It
can be clearly seen that the unseen accuracy in open-world
has improved a lot like 15.9% on UT-Zappos, which proves
that the decomposes state and object features fused with the
image feature can really enhance the sensitiveness for un-
seen compositions. This improvement can also drive the H
metric to the best.

Combining the results of closed-world and open-world,
it can be seen that the fusion method of t2i is the best,
showing that fused with decomposed features on the im-
age branch can achieve better performance than that on the
language branch due to the destruction of joint represen-
tation even they can be recomposed. Experimental results
on three challenging datasets demonstrate that our proposed
Decomposed Fusion with Soft Prompt framework (DFSP)
can effectively improve the performance of the model for
compositional zero-shot learning.

4.3. Ablation Study

To evaluate the effectiveness of DFSP, we also estab-
lish an ablation study on MIT-States and UT-Zappos. The
soft prompt module in Fig. 2 is the base recognition model
and the DFSP version is t2i. Meanwhile, we evaluate mod-
els with only self-attention (SA), with only fusion (Fusion),
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Table 1. Closed-world results on MIT-States, UT-Zappos and C-GQA. S and U are the predict accuracies evaluated on seen and unseen
compositions. H is the harmonic mean of U and S and AUC is the area under the curve. The best results are in bold.

Method MIT-States UT-Zappos CGQA
S U H AUC S U H AUC S U H AUC

AoP [28] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [27] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN [32] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1

SymNet [20] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [23] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6

CGE [27] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.7 25.3 17.2 5.1
Co-CGE [24] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5
SCEN [18] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5
CSP [30] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2

DFSP(i2t) 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1 35.6 29.3 24.3 8.7
DFSP(BiF) 47.1 52.8 37.7 20.8 63.3 69.2 47.1 33.5 36.5 32.0 26.2 9.9
DFSP(t2i) 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5

burnt fence cooked chicken tiny lightbulbweathered chair straight road

Closed-
World

Open-
World

small pool open book windblown tree tiny elephant filled bucket fallen wheel
empty bucket

muddy garage
small garage

pierced bowl
ruffled bowl

wet moss
mossy stone

Suede Boots
Sheepskin Boots

Leather Sandals
Synthetic Sandals

Success Cases Failure Cases

Leather Shoes

Rubber Boats

GT:

GT:

Figure 3. Qualitative results. We evaluate top-1 predictions for some cases on MIT-States and UT-Zappos. The first row shows the results
of the closed-world and the bottom row is the open-world. Six cols on the left are examples of successful predictions, and three on the right
are examples of failures. For the failure cases, blue denotes the wrong prediction and all images are randomly selected.

with only decomposition section (DeC) and with decom-
posed fusion module (DFM). The closed-world and open-
world experimental results can be seen in Tab. 3.

Effectiveness of SPM. The experimental results show
that the model with only SPM can improve a little compared
with CSP, demonstrating its fully learnable soft prompts can
be better adapted to downstream supervised tasks. If only
the language feature is decomposed and not integrated, the
experimental results can be improved a lot in multiple met-
rics, including closed-world and open-world. Meanwhile,
the results of +SA are also significantly improved compared
to SPM, which proves the fine-tuning effect of adding self-
attention to the model, making it better to transfer VLMs to
new tasks.

Effectiveness of DFM. Eventually, the results of +DFM
show a very large improvement, proving the effectiveness
of DFSP. However, the results of +SA and +DeC are not
much different, and +DFM both decomposes language fea-
tures and fuses with image features, which will lead to a
particularly large improvement. Also, only +Fusion will

make the effect worse, mainly causing increasing the bias
of seen compositions, which does not meet the definition of
CZSL. To a certain extent, this shows that decomposition
and fusion complement each other, and only decomposition
in the form of combination is the same as the essence of
+SA. From the results of metric U, DFSP can also demon-
strate the high response of DFM to unseen compositions.
Besides, this is not limited to closed-world, open-world has
also seen significant improvements.

4.4. Qualitative Results

We report qualitative results for seen and unseen com-
positions with top-1 predictions both on closed-world and
open-world in Fig. 3. Our model can really be generalized
well to unseen compositions, alleviating the domain gap be-
tween seen and unseen sets. Meanwhile, benefited from the
joint prompt consists of state and object, DFSP can predict
the compositions with high accuracy. For the failure cases,
the most prone to error is the prediction of state, but even if
the prediction is not correct, it still conforms to the combi-
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Table 2. Open-world results on MIT-States, UT-Zappos and C-GQA. S and U are the predict accuracies evaluated on seen and unseen
compositions. H is the harmonic mean of U and S and AUC is the area under the curve. The best results are in bold.

Method MIT-States UT-Zappos CGQA
S U H AUC S U H AUC S U H AUC

AoP [28] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [27] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN [32] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -

SymNet [20] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos [23] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 - - - -

CGE [27] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
Co-CGEˆClosed [24] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.53
Co-CGEˆOpen [24] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78

KG-SP [14] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78
CSP [30] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20

DFSP(i2t) 47.2 18.2 19.1 6.7 64.3 53.8 41.2 26.4 35.6 6.5 9.0 1.95
DFSP(BiF) 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6 36.4 7.6 10.6 2.39
DFSP(t2i) 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.40

Table 3. Ablation study experiments on MIT-States and UT-
Zappos with the setting of closed-world (CW) and open-world
(OW). The best results are in bold.

Method MIT-States UT-Zappos
S U H AUC S U H AUC

CW

SPM 45.8 50.2 35.8 19.1 64.6 63.9 47.0 33.1
+SA 47.6 51.9 37.4 20.6 65.3 66.2 46.6 32.6
+Fusion 46.9 47.5 34.9 18.3 62.9 41.4 38.0 21.4
+DeC 48.3 51.3 37.3 20.7 62.3 70.7 46.8 33.5
+DFM 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0

OW

SPM 45.8 16.7 18.3 6.1 64.6 44.6 40.8 23.5
+SA 47.6 17.6 19.0 6.6 65.4 54.6 43.0 26.9
+DeC 47.4 17.7 19.3 6.6 61.7 57.1 42.3 26.4
+DFM 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3

nation logic of state and object. Great results can be seen on
both closed-world and open-world setting, indicating that
the model is not restricted by open-world scenario.

4.5. Why DFSP can work well?

Extensive experiments show the efficiency of DFSP and
we analyze the reasons of this. Firstly, since the encoders of
DFSP have been pretrained on a large-scale image-text pairs
dataset, the model can be really fine-tuned well with a tar-
geted prompt like CSP. Compared with CSP, there are more
parameters can be fine-tuned in DFSP to be adapted to new
supervised tasks [8]. With the Decomposed Fusion Module
(DFM), the pair space is transformed from the original pair-
ing of ”language” and ”image” to the pairing of ”language
+ (image)” and ”(state and object) + image” (as shown in
Fig. 2), and both decomposed state feature and object fea-
ture can respond to image feature in the fusion stage. Being
fused with the decomposed features, image feature can es-
tablish its relation to state and object, then pair with another
branch (like language feature in DFSP (t2i)) to guide the
results beyond the seen compositions during training. Ben-

efited from this, the overall model can be more sensitive to
the unseen compositions in the pair space.

5. Conclusion
In this work, we propose a novel framework termed De-

composed Fusion with Soft Prompt (DFSP) to effectively
recognize the unknown compositions of state and object
during training. Based on the vision-language paradigm,
we firstly establish a learnable soft prompt consists of pre-
fix, state and object to construct the joint representation of
state and object. Besides, we design a Decomposed Fu-
sion Module (DFM) to fuse the language features with im-
age features, which can enable cross-modal interactions be-
tween them. Meanwhile, DFM decomposes the language
feature to unattached state and object features, and then they
will be fused with image feature to guide enhancing fusion.
Benefited from DFM, image feature could learn relations
with state and object features, which improves the response
of unseen compositions in the pair space. Extensive exper-
iments on three challenging datasets demonstrate the effi-
ciency of our proposed method DFSP.
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