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ABSTRACT

Deep spiking neural networks (SNNs) have been expected to enable energy-
efficient artificial intelligence as a next-generation artificial neural network. Re-
cently, with the development of various algorithms, such as direct spike encod-
ing, many applications have been successfully implemented in deep SNNs. No-
tably, most state-of-the-art deep SNNs have greatly improved their performance
by adopting direct spike encoding, which expresses input information as discrete
spikes, thereby exerting substantial influence. Despite the importance of the en-
coding, efficient encoding methods have not been studied. As the first attempt to
our knowledge, we thoroughly analyzed the conventional direct encoding. Our
analysis revealed that the existing encoding restricts the training performance and
efficiency due to inappropriate encoding. To address this limitation by maintain-
ing an appropriate encoding, we introduced a concept of homeostasis to the direct
spike encoding. With this concept, we presented a homeostasis-aware direct spike
encoding (H-Direct), which consists of dynamic feature encoding loss, adaptive
threshold, and feature diversity loss. Our experimental results demonstrate that the
proposed encoding achieves higher performance and efficiency compared to con-
ventional direct encoding across several image classification datasets on various
architectures. We have validated that brain-inspired algorithms have the potential
to enhance the performance and efficiency of deep SNNs.

1 INTRODUCTION

Deep learning has shown remarkable performance in various artificial intelligence (AI) applica-
tions (Wu et al., 2022; Chang et al., 2024). However, such progress requires a lot of computation,
which results in huge energy consumption. As AI technology utilizes deep learning advances to train
larger models using more data, this energy consumption issue can no longer be overlooked. Deep
neural networks (DNNs) with the latest performance consume a lot of energy not only for training
but also for inference (McDonald et al., 2022; Desislavov et al., 2023). Thus, the energy problem
has become the most urgent issue to be addressed for sustainable development and utilization of AI
in our lives.

Neuromorphic computing, an emerging computing paradigm, has been expected to resolve this en-
ergy consumption issue of deep learning (Roy et al., 2019). By mimicking the human brain, it op-
erates in an event-driven computing manner with spiking neural networks (SNNs), which leads
to energy-efficient AI, especially on neuromorphic hardware (Ostrau et al., 2022). Recently, deep
SNNs, which exploit the advantages of both DNNs and SNNs, have been expected to be the next-
generation artificial neural networks for energy-efficient AI. Deep SNNs can simultaneously achieve
high learning performance and low-energy operation by combining DNNs’ synaptic topology and
SNNs’ asynchronous event-driven computing. The development of gradient-based learning algo-
rithms, such as spatio-temporal backpropagation (STBP) with surrogate gradient (Wu et al., 2018;
Neftci et al., 2019), has paved the way for the utilization of deep SNNs in various models and
applications of DNNs (Guo et al., 2023; Su et al., 2023).

To fully leverage the advantages of deep SNNs, it is imperative to design an efficient neural coding
scheme, which defines how information is represented with spikes. In particular, input spike encod-
ing, which transforms the input signals into spike patterns, has significant effects on performance
and efficiency. There are various types of input spike encoding, such as rate (Kim & Panda, 2021),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

temporal (Park et al., 2020; Wei et al., 2023), and direct encoding (Rathi & Roy, 2021; Zheng et al.,
2021; Guo et al., 2023). Among them, most state-of-the-art (SOTA) deep SNN models have adopted
the direct encoding approach, which generates spikes in the first layer. Direct encoding learns en-
coding methods from data, which leads to superior performance over other encoding approaches.
However, the existing direct encoding lacks consideration for stability and efficiency, which restricts
the overall performance and efficiency of deep SNNs.

In this work, to overcome the aforementioned limitation, we first investigated conventional direct
spike encoding. Following our analysis, we categorized the encoded spike channels into four types:
over-fired, under-fired, dynamically selective, and persistent encoding, as shown in Fig. 1. With
this categorization, we found that there were improperly encoded channels due to the inadequate
firing rate, which limited the encoding layer’s ability to express features from the input. Moreover,
due to the lack of consideration for differences in features depending on input, the spike encoding
for each channel was not optimized across inputs. Based on these analyses and inspired by the
human brain, we introduced a concept of homeostasis into direct spike encoding for stable and
appropriate encoding. With the concept of homeostasis, we propose a homeostasis-aware direct
spike encoding, which is called H-Direct. This method enables stable and appropriate encoding
by suppressing over- and under-firing while encouraging dynamic feature selection. The proposed
approach consists of dynamic feature encoding loss, adaptive threshold, and feature diversity loss.
Our comprehensive experiments demonstrated that the proposed homeostasis mechanism improved
the training performance and efficiency of deep SNNs on various datasets, models, and training
algorithms, which showed effectiveness and versatility of the proposed approach.

2 RELATED WORK AND PRELIMINARIES

2.1 DEEP SPIKING NEURAL NETWORKS

SNNs, which mimic the operation of the brain, have been considered the next generation of artifi-
cial neural networks (Maass, 1997). SNNs propagate information using spikes through a network
of neurons and synapses, enabling energy-efficient operations with asynchronous event-driven com-
puting. Deep SNNs can simultaneously achieve high learning ability and energy-efficient operation
by combining DNNs’ synaptic topology and SNNs’ event-based operation (Tavanaei et al., 2019).
Leaky integrate-and-fire (LIF) neurons are widely used in deep SNNs due to their low computational
cost. The integration process of LIF neurons can be described as

ul
i[t] = 1/τ(vli[t− 1] +

∑
j
wijs

l−1
j [t]), (1)

where u, v, w, and s indicate the neuron’s internal state, called membrane potential, intermediate
state, synaptic weight, and input spike, respectively. The layer index is l, and the neuron indices are
i and j. The time constant and time step are represented in τ and t, respectively. A spike is generated
when the membrane potential exceeds the threshold as

sli[t] = H(ul
i[t]− Vth), (2)

where H and Vth are the Heaviside step function and a threshold voltage, respectively. When a
neuron fires a spike, its membrane potential is reset through the intermediate state, which can be
stated as

vli[t] = (ul
i[t]− sli[t])s

l
i[t] + ul

i[t](1− sli[t]). (3)

Recently, various deep learning applications and models have been implemented with deep SNNs,
such as image classification (Fang et al., 2021; Hu et al., 2021; 2024), multi-object detection (Kim
et al., 2020a;b), and Transformer (Zhou et al., 2023; Yao et al., 2024). Most of these SOTA deep
SNN models adopted STBP with surrogate gradient (Wu et al., 2018), threshold-dependent batch
normalization (tdBN) (Zheng et al., 2021), and direct spike encoding (Rathi & Roy, 2021; Wu et al.,
2021; Zheng et al., 2021; Deng et al., 2022; Guo et al., 2022b; 2023). The training algorithms and
spike encoding methods have greatly contributed to the successful implementation of deep SNNs,
but there are still training performance gaps between DNNs and deep SNNs. To narrow these gaps,
many studies have been conducted, including training algorithms (Wu et al., 2019; Rathi & Roy,
2021), and resolving gradient mismatching caused by surrogate gradient (Li et al., 2021; Lian et al.,
2023). However, insufficient attention has been given to research on improving spike encoding.
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Figure 1: (a) The direct encoding converts input data into spikes over several time steps, which
are then accumulated over time (i.e. along with channels), producing output spike features. (b) Each
feature can be categorized into over-fired encoding (OFE), under-fired encoding (UFE), dynamically
selective encoding (DSE), and persistent encoding (PE). Each box represents a single example of
the encodings. (c) Proportions of each categorized encoding.

2.2 SPIKE ENCODING

Spike encoding determines how input signals are expressed as spikes, a form of information that
can be processed by SNNs (Auge et al., 2021). Since the encoded spikes convey information from
input data, the encoding process significantly impacts the performance and efficiency of SNNs.
Previous research has proposed various encoding schemes such as rate (Van Rullen & Thorpe, 2001)
and temporal encoding, including phase (Kim et al., 2018; Park et al., 2019), and time-to-first-
spike (TTFS) (Comsa et al., 2020; Han & Roy, 2020; Park et al., 2020; Park & Yoon, 2021) for
the efficient processing of input in deep SNNs. However, these encoding methods restricted the
training performance of deep SNNs due to loss of input information. To address this, SOTA deep
SNN models have commonly adopted direct encoding (Guo et al., 2023; Yao et al., 2024). In this
approach, the first layer is designated as the encoding layer, which is responsible for learning an
encoding method from data. This encoding layer is trained in an end-to-end manner, simultaneously
with the other layers in the model. Direct encoding has been experimentally validated to improve the
training of deep SNNs across various datasets and models (Rathi & Roy, 2021; Zheng et al., 2021;
Deng et al., 2022; Guo et al., 2022b; 2023; Yao et al., 2024). However, due to a lack of consideration
of SNN characteristics, the encoding has constrained the training capability of deep SNNs. In the
recent study (Qiu et al., 2024), an attention mechanism was applied to the encoding layer of direct
encoding, achieving SOTA accuracy. However, this approach imposes additional overhead compared
to conventional direct encoding due to the need for an extra attention layer in the encoding process.

2.3 HOMEOSTASIS IN SNNS

Homeostasis is crucial for the appropriate functionality of biological systems by maintaining inter-
nal stability (Fernandes & Carvalho, 2016). The absence of homeostasis makes the system unstable,
which results in degradation of information processing ability and efficiency (Miller & MacKay,
1994; Abbott & Nelson, 2000; Abraham et al., 2002). Thus, the learning process of the neural
network should incorporate homeostatic mechanisms to maintain appropriate firing rate (Turri-
giano & Nelson, 2004), such as synaptic scaling observed in vitro (Turrigiano et al., 1998) and
in vivo (Keck et al., 2013). Few studies have introduced the biological efficiency of homeostasis
on SNNs. In (Diehl & Cook, 2015), homeostasis was introduced through an adaptive threshold to
improve training performance. However, it had limitations as it could not be applied to deep SNNs.
Another recent study showed adversarial robustness through homeostasis using an adaptive thresh-
old (Geng & Li, 2023). Nonetheless, this study focused on the stability of the neural network and
failed to show the possibility of improving information processing. Hence, it is imperative to investi-
gate methods for enhancing the training performance and efficiency of deep SNNs with homeostasis.

3 ANALYSIS OF CONVENTIONAL DIRECT ENCODING

To improve spike encoding, we analyzed the conventional direct encoding widely used in deep
SNNs. To clearly observe the impact of direct encoding, we trained deep SNNs with STBP using
surrogate gradient and tdBN, which are the current standard training approach. Direct encoding
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employs the first layer of deep SNNs as the encoding layer, which usually consists of synaptic con-
nection (e.g., convolution), normalization (e.g., batch normalization), and encoding neurons (Fang
et al., 2021; Zheng et al., 2021; Zhou et al., 2023; Yao et al., 2024). The direct encoding extracts
features from input data and encodes them into spikes in a channel-wise manner according to the
time step t, as shown in Fig. 1-(a). The accumulated encoded spikes during a total time step T are
depicted in Fig. 1-(b). According to the encoding aspect, we found that the encoded features (chan-
nels) can be categorized into four types: over-fired, under-fired, persistent, and dynamically selective
encoding.

Over- and under-fired encoding (OFE and UFE, respectively) are caused by an inadequate firing rate
of encoding neurons (red and yellow boxes in Fig. 1-(b)). These inappropriate encoded channels
cannot encode any features because all neurons in the channel are fired with the same value. As
in many other studies (Hwang et al., 2020; 2021), such inappropriate encoding should be avoided
since it limits the training ability of deep SNNs. Persistent encoding (PE) consistently converts the
extracted features into spikes regardless of input, as in DNNs (orange box in Fig. 1-(b)). In this
case, the generation of encoded spikes in every input results in inefficient deep SNNs that rely on
event-driven computing. Lastly, dynamically selective encoding (DSE) generates encoding spikes
depending on the input (blue box in Fig. 1-(b)). In this encoding, only essential features of the input
are encoded into spikes. As illustrated in Fig. 1-(b), the feature corresponding to the blue box is
encoded in Sample2 but not in Sample1. Such selective encoding according to inputs can reduce the
number of spikes, thereby improving the energy efficiency of deep SNNs.

The proportions of the four types of encoding for Fig. 1-(b) are shown in Fig. 1-(c). PE has the
highest proportions, while there are also inappropriately encoded channels (OFE and UFE). This
suggests that the conventional direct encoding needs improvement to achieve a proper encoding rate
with more selective encoding features, ultimately resulting in more efficient deep SNNs.

4 HOMEOSTASIS-AWARE DIRECT SPIKE ENCODING

In Sec. 3, we observed improper encoding in the conventional direct encoding, which hindered im-
provement in performance and efficiency of deep SNNs. To enhance encoding stability, we introduce
homeostasis to spike encoding with the following definition: ”the homeostasis of spike encoding is
the property that maintains appropriate encoding regardless of input”. This can be accomplished
by the three factors: (i) preventing inappropriate firing rate of encoding neurons, (ii) encoding only
essential features depending on input, and (iii) encoding diverse features by enhancing the utiliza-
tion of model capacity. To facilitate these in deep SNNs, we propose a novel direct spike encoding
called H-Direct, which consists of dynamic feature encoding (DFE) loss, adaptive threshold (AT),
and feature diversity (FD) loss. Detailed explanations for each method are provided in the following
sections.

4.1 DYNAMIC FEATURE ENCODING LOSS

Conventional direct spike encoding, which has been widely used in deep SNNs, mostly ex-
ploits the same structure as ”Conv-BN-Neuron” regardless of the model architectures, as shown
in Fig. 2 (Zheng et al., 2021; Deng et al., 2022; Guo et al., 2022a; 2023). Thus, since the output
of batchnormalization (BN) is used as the input of the encoding neuron, the parameters of BN sig-
nificantly impact spike encoding. For example, if the influence of the shift parameter (β) is greater
than the scale parameter (γ) of BN, the deviation decreases depending on the input, strengthening
the deterministic behavior of the encoding. In the opposite case, different encoding patterns appear
frequently depending on the input. Based on this intuition, we found that the ratio of the scale pa-
rameter and shift parameter of BN for each channel (βc/γc) is closely related to the type of encoding
channel categorized in Sec. 3. As shown in Fig. 2-(a) (at epoch 1), each encoding type has a distin-
guished distribution according to the ratio. If this value is excessively positive or negative compared
to the threshold, the firing of encoding neurons is excessively promoted or suppressed, resulting in
OFE or UFE, respectively. Moreover, if the ratio is moderately positive near the threshold, the chan-
nel has a high probability of firing spikes and thus acts as a PE that encodes spikes for all inputs.
When the ratio is adequately negative or positive, the channel operates as a DSE whose encoding is
determined by the input.
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Figure 2: An overview of our proposed method, H-Direct, which achieves this with three main mod-
ules: (a) dynamic feature encoding loss (LDFE), which suppresses OFE and UFE while increasing
DSE and PE, enabling us to dynamically select the essential features to encode as spikes based on
the input, (b) adaptive threshold that triggers the firing of non-encoded channels, and (c) histograms
showing the spike count distributions of encoded channels during training. As illustrated in (c), the
application of feature diversity loss (LFD) leads to a more dispersed distribution, thereby enhancing
encoding performance by encouraging diverse features.

With these observations, we propose DFE loss that makes this ratio a certain value in the distribution
of DSE to prohibit inappropriate encodings and improve encoding efficiency. We define DFE loss as
follows:

LDFE =
∑
c

∥∥∥∥ βc

γc + ϵ
− α

∥∥∥∥
2

, (4)

where c, α, and ϵ are the channel index, the target value of the ratio (β/γ), and a small positive
number for the numerical stability, respectively. This loss encourages the ratio to be trained to the
target value α at which DSE channels are likely to occur. The gradients of each parameter for the
loss are presented as

∂LDFE

∂βc
=

χc

∥χc − α∥2
1

(γc + ϵ)
,

∂LDFE

∂γc
= − χ2

c

∥χc − α∥2
1

(γc + ϵ)
, (5)

where χc =
βc

(γc+ϵ) . The more detailed derivation is in Sec. A.3.

When DFE is applied, the encoding neurons’ firing rate of each channel is maintained appropriately
as training progresses. Accordingly, unsuitable encoding channels (UFE and OFE) were eliminated,
as shown in Fig. 2-(a). Furthermore, a larger proportion of encoding channels transitions to DSE,
which improves the efficiency of encoding.

4.2 ADAPTIVE THRESHOLD IN ENCODING NEURONS

While DFE can eliminate encoding channels that lead to inappropriate firing, this may negatively
impact training performance. Specifically, when the membrane potential of neurons accumulates to
substantial negative values, DFE needs to exert significant effort to induce their firing, which can de-
grade the performance. To overcome this, we introduce an adaptive threshold in encoding neurons.
The proposed threshold is adjusted channel-wise to ensure computational efficiency and precise ad-
justment. The adaptive increase in threshold may suppress neurons with lower firing rates within the
same channel, consequently deteriorating the encoding performance. Thus, we propose an asym-
metric adaptive threshold that promotes the firing of non-encoded channels to improve homeostasis
while having less influence on other encoding channels. The proposed method can be expressed as
follows:

Vth,c(t) =

{
ηVth,c(t− 1) if

∑
{i∈Channelc} si[t] = 0

Vth,c(0) otherwise , (6)

where c, η, and Vth(0) denote channel index, adjust rate, and initial threshold, respectively. As de-
picted in Fig. 2-(b), this adjustment can be cumulative, but once firing occurs, the threshold is re-
stored to its initial value for subsequent time steps. This method enables the encoding layer to fully
utilize its potential by promoting the encoding of non-firing channels.

5
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4.3 FEATURE DIVERSITY LOSS

As discussed in the homeostasis of encoding, another factor for stable encoding is diversity in encod-
ing features, which can be achieved by maximizing the utilization of model capacity. By extracting
diverse features from the input data and encoding them into spikes, it is possible to achieve stable
encoding that consistently generates appropriate spike patterns. From this perspective, DFE, which
primarily focuses on efficiency and minimal encoding, struggles to induce diverse feature repre-
sentations. Thus, to achieve more stable and effective spike encoding, we propose an FD loss that
encourages diverse feature encoding by maximizing the entropy of features. However, while cal-
culating feature entropy, there was distortion in the distribution of features since the feature space
was severely undersampled relative to the dimensionality. To address this, we used the accumulated
spike distribution of neurons in each channel as a surrogate for the feature distribution and fitted it
to the probability density function (PDF). The general form of FD loss can be represented as

LFD = −
∑
k

p(xk) log p(xk), (7)

where xk and p(xk) denote the feature and PDF, respectively. In order for the proposed loss to be
compatible with a gradient-based training algorithm, the PDF must be differentiable. Thus, we used
a normal distribution N (µ, σ) as the PDF, where µ and σ are the mean and standard deviation of
accumulated spikes. The gradient of the encoding layer for the feature diversity loss can be stated as

∂LFD

∂W
≈
∑
k

− log(p(xk)− 1)p′(xk)
∑
t

I[t]/τ , (8)

where I is the input. The more detailed derivation is in Sec. A.2. As shown in Fig. 2-(c), this method
improves encoding performance by encouraging diverse feature encoding.

Our overall loss function including cross-entropy loss for the image classification is as follows:

L = λCELCE + λFDLFD + λDFELDFE, (9)

where λCE, λFD, and λDEF denote the weights factors of LCE, LFD, and LDEF, respectively.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed encoding approach, we conducted extensive experi-
ments with typical model architectures (i.e., VGG16, ResNet19, and ResNet20) on various datasets,
such as static image datasets (CIFAR10, CIFAR100, and ImageNet) and neuromorphic dataset
(CIFAR10-DVS). We use the training algorithm of the STBP-tdBN (Zheng et al., 2021) (a threshold-
dependent batch normalization method based on the spatio-temporal backpropagation) as our base-
line. Furthermore, we applied our proposed encoding approach to other training algorithms, such as
IM-loss (Guo et al., 2022a) and RMP-loss (Guo et al., 2023). For all experiments, average scores
over four independent runs are reported for each configuration to ensure a fair comparison. Follow-
ing the conventions, we use LIF neurons with a soft reset (Eq. 3) and set the time step to four. For
more details about experimental setup and implementation, please refer to Sec. A.4.

5.1 QUANTITATIVE ANALYSIS

Comparison with Baseline. We start by analyzing the effect of our proposed encoding method by
visualizing the spike feature maps and comparing the proportions of the following four encoding
categories: i.e., OFE, UFE, DSE, and PE. In Fig. 3, we observe that applying our proposed H-Direct
notably reduces the OFE and UFE rates, maintaining an appropriate firing rate as we intended. In
Fig. 3-(a), we provide examples of encoded feature maps between only two samples, differently
color-coded according to their encoding categories. Further, in Fig. 3-(b), we provide the averaged
proportion of each encoding category over all test sets. Notably, we observe that the DSE rate in-
creases to 62.9% (12.9%↑) while the PE rate decreases to about 37% (2.0%↓).

Further, as shown in Tab. 1, we measured (i) the classification accuracy, (ii) the number of total spikes
(which refers to the number of spikes that are fired by neurons across all layers), and (iii) the number
of encoded spikes (which refer to the number of spikes that are fired in the encoding layer). We
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Figure 3: (a) Comparison of encoded feature maps between baseline (top) and ours (bottom). We also
highlight grids with different colors according to their encoding categories (i.e., red: OFE, yellow:
UFE, blue: DSE, and orange: PE). (b) The average proportions of each encoding category over all
test sets. Note that we use VGG16 on CIFAR10.

Table 1: Given four different datasets (CIFAR10, CIFAR100, CIFAR10-DVS, and ImageNet), we
compare ours with the baseline training algorithm (STBP-tdBN) based on various architectures,
including VGG16 and ResNet-based models.

Accuracy (%) # of All Spikes (in k) # of Encoded Spikes (in k)

Baseline Ours ∆ Baseline Ours ∆ Baseline Ours ∆

Data: CIFAR10

VGG16 93.47±0.14 93.67±0.06 +0.21 148±8.0 144±6.0 -3.00% 59±2.00 52±0.8 -12.00%
ResNet19 95.61±0.03 95.72±0.18 +0.12 825±12.0 781±11.0 -5.30% 190±0.04 188±0.8 -1.05%
ResNet20 94.99±0.02 95.09±0.04 +0.11 480±11.0 463±5.0 -3.54% 92±1.20 83±0.9 -9.78%

Data: CIFAR100

VGG16 69.03±0.13 69.29±0.05 +0.38 160±0.6 151±1.0 -6.00% 64±1.00 57±0.9 -11.00%
ResNet19 76.86±0.05 77.07±0.10 +0.23 1003±8.0 987±7.0 -1.60% 222±2.00 217±0.6 -2.30%
ResNet20 74.92±0.03 75.13±0.12 +0.28 629±5.0 624±0.8 -0.78% 121±0.60 118±0.5 -2.29%

Data: CIFAR10-DVS

VGG16 75.10±0.16 76.15±0.62 +1.40 413±1.2 273±1.8 -33.90% 146±0.50 18±0.2 -87.74%

Data: ImageNet

ResNet18 64.07±0.08 64.30±0.03 +0.36 2175±15.0 2051±7.0 -5.70% 872±8.00 722±5.0 -17.20%
ResNet34 68.29±0.06 68.43±0.02 +0.21 3079±9.0 2908±17.0 -5.55% 840±9.00 608±6.0 -27.62%

compare ours with the baseline training algorithm (i.e., STBP-tdBN) with different architectures and
datasets, including CIFAR10, CIFAR100, CIFAR10-DVS, and ImageNet. We observe that applying
H-Direct consistently improves the overall classification accuracy in all experiments, significantly
reducing the number of fired spikes (0.78–33.90%↓ for all spikes and 1.05–87.74%↓ for encoded
spikes). Notably, this trend is more significant with the neuromorphic dataset, i.e., CIFAR10-DVS.
As shown in supplemental Tab. 7, we observe that the conventional direct encoding results in a
dominant proportion of PE. In contrast, with H-Direct, the proportion of DSE increases to 23.8%,
offering significant efficiency improvements.

(b) Integration noise(a) Input noise
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Figure 4: Classification accuracy comparison against
different levels of (a) input and (b) integration noise.

Noise Robustness. The model’s robust-
ness against noise is crucial for deploying
deep SNNs on various real-world neuro-
morphic devices (Park et al., 2021; Yang
et al., 2022). To evaluate the effect of
our encoding method on noise robust-
ness, we measure the classification accu-
racy in terms of different levels of two
noise types: (i) input and (ii) integration
noise. The former occurs before the en-
coding layer, while the latter occurs in en-
coding neuron’s membrane potential. Note
that we applied Gaussian noise N (0, σ)
into input and membrane potential (u in Eq. 1). Given VGG16 architecture, we compare the accu-
racy between ours and our baseline. As shown in Fig. 4, our encoding approach generally provides
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Table 2: Comparison with current state-of-the-art approaches in terms of classification accuracy
and the number of spikes. We experimented with different datasets and architectures. * denotes our
implementation.

Datasets Architectures Methods Time steps Accuracy (in %) # of Spikes (in k)

CIFAR10

VGG16

Diet-SNN (Rathi & Roy, 2021) 5 92.70 -

tdBN (Zheng et al., 2021)* 4 93.47±0.14 148±8
tdBN + H-Direct 4 93.67±0.06 (0.20↑) 144±6 (4↓)

RMP (Guo et al., 2023)* 4 93.59±0.03 155±2
RMP + H-Direct 4 93.69±0.05 (0.10↑) 133±7 (22↓)

IM (Guo et al., 2022a)* 4 93.73±0.03 142±1
IM + H-Direct 4 93.89±0.01 (0.16↑) 137±6 (5↓)

ResNet19

TET (Deng et al., 2022) 4 94.44±0.08 -
TAB (Jiang et al., 2024) 4 94.76 -
LOCALZO (Mukhoty et al., 2023) 4 94.89 -

RMP (Guo et al., 2023)* 4 95.23±0.13 963±29
RMP + H-Direct 4 95.23±0.13 (0.00↑) 955±26 (8↓)

tdBN (Zheng et al., 2021)* 4 95.61±0.03 825±12
tdBN + H-Direct 4 95.72±0.18 (0.11↑) 781±11 (44↓)

IM (Guo et al., 2022a)* 4 95.76±0.06 1116±13
IM + H-Direct 4 95.78±0.14 (0.02↑) 1075±26 (41↓)

ResNet20

Diet-SNN (Rathi & Roy, 2021) 5 91.78 -

RMP (Guo et al., 2023)* 4 94.77±0.07 619±14
RMP + H-Direct 4 94.79±0.10 (0.02↑) 586±20 (33↓)

tdBN (Zheng et al., 2021)* 4 94.99±0.02 480±11
tdBN + H-Direct 4 95.09±0.04 (0.10↑) 463±5 (17↓)

IM (Guo et al., 2022a)* 4 95.16±0.13 752±18
IM + H-Direct 4 95.23±0.06 (0.07↑) 646±7 (106↓)

CIFAR100

VGG16

Diet-SNN (Rathi & Roy, 2021) 5 69.97 -

tdBN (Zheng et al., 2021)* 4 69.03±0.13 160±0.6
tdBN + H-Direct 4 69.29±0.05 (0.26↑) 151±1 (9↓)

RMP (Guo et al., 2023)* 4 69.35±0.13 715±5
RMP + H-Direct 4 69.49±0.14 (0.14↑) 157±2 (558↓)

IM (Guo et al., 2022a)* 4 69.68±0.05 174±3
IM + H-Direct 4 69.74±0.17 (0.06↑) 161±2 (13↓)

ResNet19

LOCALZO (Mukhoty et al., 2023) 4 74.13 -
TET (Deng et al., 2022) 4 74.47±0.15 -
TAB (Jiang et al., 2024) 4 76.81 -

RMP (Guo et al., 2023)* 4 76.13±0.08 1147±13
RMP + H-Direct 4 76.43±0.07 (0.3↑) 1104±8 (43↓)

tdBN (Zheng et al., 2021)* 4 76.86±0.05 1003±8
tdBN + H-Direct 4 77.07±0.10 (0.21↑) 987±7 (16↓)

IM (Guo et al., 2022a)* 4 76.94±0.11 1309±11
IM + H-Direct 4 77.15±0.23 (0.21↑) 1284±9 (25↓)

ResNet20

Diet-SNN (Rathi & Roy, 2021) 5 64.07 -

tdBN (Zheng et al., 2021)* 4 74.92±0.03 629±5
tdBN + H-Direct 4 75.13±0.12 (0.21↑) 624±1 (5↓)

RMP (Guo et al., 2023)* 4 74.38±0.16 715±5
RMP + H-Direct 4 74.60±0.25 (0.22↑) 703±7 (12↓)

IM (Guo et al., 2022a)* 4 74.94±0.16 797±8
IM + H-Direct 4 75.41±0.08 (0.47↑) 764±2 (33↓)

ImageNet

ResNet18
RMP (Guo et al., 2023) 4 63.03±0.07 -

tdBN (Zheng et al., 2021)* 4 64.07±0.08 2175±15
tdBN + H-Direct 4 64.30±0.03 (0.23↑) 2051±7 (124↓)

ResNet34

RMP (Guo et al., 2023) 4 65.17±0.07 -
IM (Guo et al., 2022a) 4 67.43±0.11 -
TAB (Jiang et al., 2024) 4 67.78 -

tdBN (Zheng et al., 2021)* 4 68.29±0.06 3079±9
tdBN + H-Direct 4 68.43±0.02 (0.14↑) 2908±17 (171↓)

better robustness against both types of noise. This suggests that the homeostasis-aware encoding
approach may enhance overall training performance and efficiency, while also improving robustness
to noise.
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Table 3: Comparisons with the current state-of-the-art approaches on the neuromorphic dataset, i.e.,
CIFAR10-DVS. We report the classification accuracy (in %) and the number of spikes (in k).

Architectures Methods Time Accuracy # of All Spikes
steps (in %) (in k)

ResNet19 STBP-tdBN (Zheng et al., 2021) 10 67.80 -

ResNet20 RMP (Guo et al., 2023) 10 75.60±0.30 -

VGG16 STBP-tdBN (Zheng et al., 2021) 4 75.10±0.08 413±1
Ours 4 76.15±0.31 (1.05↑) 273±2 (140↓)

Comparison with Current SOTA Approaches. Further, as shown in Tab. 2, we conducted a more
extensive comparison with the current SOTA approaches, including RMP (Guo et al., 2023), LO-
CALZO (Mukhoty et al., 2023), TAB (Jiang et al., 2024), IM (Guo et al., 2022a), Diet-SNN (Rathi
& Roy, 2021), tdBN (Zheng et al., 2021), and TET (Deng et al., 2022). Similar to our previous
analysis, we report the overall classification accuracy and the number of spikes. Note that an ideal
model may have higher classification accuracy with fewer spikes. Following conventions, we con-
ducted experiments with various architectures, i.e., VGG16, ResNet19, and ResNet20 for CIFAR10
and CIFAR100 datasets while ResNet18 and ResNet34 for ImageNet. We observe that our proposed
method, which is built upon the baseline (STBP-tdBN), shows promising scores that are matched
or better than the current SOTA approaches. Further, we applied our H-Direct approach to other
alternatives (i.e., IM (Guo et al., 2022a) and RMP (Guo et al., 2023)), which consistently provides
improved accuracy and efficiency. Moreover, we conducted experiments with the neuromorphic
dataset, CIFAR10-DVS, as shown in Tab. 3. We observed that a model with our encoding approach
achieved the SOTA-level performance with better efficiency. This may suggest that our method ef-
fectively improves performance and efficiency across diverse datasets, architectures, and methods.

5.2 ABLATION STUDIES

Baseline
Ours

6%5%5%6%
5%5%5%6%
13%12%11%15%

13%12%11%
16%

64%66%68%57%

Base 0     1K     2K    3K    4KDFE DFE+AT Ours
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Figure 5: (a) Proportion and (b) distributions of
spike counts of encoding neurons and channels,
respectively (VGG16, CIFAR10). The y-axis of
(b) is set to a log scale.

We further conducted ablation studies to
demonstrate the individual contribution of three
proposed main components: (i) dynamic fea-
ture encoding (DFE) loss, (ii) adaptive thresh-
old (AT), and feature diversity (FD) loss. As
summarized in Tab. 4, we compare the vari-
ant of our models in terms of the accuracy and
the number of all spikes and encoded spikes.
Note that our experiments are based on the CI-
FAR10 dataset with VGG16 and ResNet20. We
observe in Tab. 4 that applying DFE only sig-
nificantly improves the model’s efficiency, po-
tentially due to selective encoding. Further, ap-
plying other building blocks, AT and FD, en-
hances the overall classification accuracy with
marginal sacrificing efficiency. This is due to
the fact that DFE generally improves efficiency by leaving only neurons with appropriate firing,
while AT and FD provide tension by encouraging feature diversity.

To understand in more detail the impact of the proposed method on spike encoding, we investigated
the encoding patterns of neurons and channels within the encoding layer. The spike count proportion
of the encoding neurons for each ablation is shown in Fig. 5-(a). As can be seen in the figure, DFE
reduces the proportion of neurons with low spike counts (one or two) and increases the proportion of
non-spiking neurons. This shows that dynamic selectivity only affects low-firing neurons. DFE+AT
assists in the firing of non-firing neurons, slightly increasing the proportion of neurons with one
spike count. However, since DFE aims to maintain an appropriate firing rate, it does not cause
significant changes. Consequently, ours, with the addition of FD, makes the spike counts distribution
of DFE+AT more diverse, contributing to enhanced feature diversity and improved performance.

We also analyzed the effect of the proposed method at the feature level with spike count distributions
of each channel, as shown in Figs. 5-(b), 6, and 7. When DFE is applied, low-firing features are
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Table 4: Ablation study results to evaluate the individual contributions of our components, i.e., DFE
(dynamic feature encoding loss), AT (adaptive threshold), and FD (feature diversity loss). Data:
CIFAR10, Baseline: STBP-tdBN.

Architectures Methods Accuracy (in %) # of Total Spikes (in k) # of Encoded Spikes (in k)

VGG16

Baseline 93.47±0.14 148±8.0 59±2.0

w/ DFE only 93.53±0.11 135±4.0 48±1.0
w/ DFE+AT 93.55±0.14 135±7.8 52±5.9
w/ DFE+AT+FD (ours) 93.67±0.06 144±6.0 52±0.8

ResNet20

Baseline 94.99±0.02 480±11.0 92±1.0

w/ DFE only 94.82±0.03 444±5.0 33±0.7
w/ DFE+AT 94.88±0.05 455±8.3 34±0.7
w/ DFE+AT+FD (ours) 95.08±0.05 460±8.5 39±0.5

Table 5: Ablation studies to compare variants of our method with and without AT (adaptive
threshold), FD (feature diversity loss), and DFE (dynamic feature encoding loss). Data: CI-
FAR10, Baseline: STBP-tdBN.

Model Methods Cross-
correlation

# of
Channels

Proportions (in %)

OFE UFE DSE PE

VGG16

Baseline 0.231 51.55 0.39 10.16 50.00 39.06

w/ DFE 0.203 56.77 0.00 0.00 66.80 33.20
w/ DFE+AT 0.230 56.99 0.00 0.00 63.67 36.33
w/ DFE+AT+FD (ours) 0.218 59.51 0.00 0.00 62.89 37.11

ResNet20

Baseline 0.433 62.07 0.00 2.34 47.66 50.00

w/ DFE 0.221 62.83 0.00 0.00 73.83 26.17
w/ DFE+AT 0.241 63.25 0.00 0.00 69.53 30.47
w/ DFE+AT+FD (ours) 0.237 63.27 0.00 0.00 73.44 26.56

suppressed (Fig. 6-(b)). The model with DFE+AT encourages features to be encoded with small
spikes (i.e., <1k) (Fig. 6-(c)). Our method promotes low-firing features while preventing high-firing
features, thereby achieving both diversity and efficiency in encoding (Fig. 5-(b)).

For further analysis, we measured the correlation between features (Jin et al., 2020), the average
number of channels used for encoding, and the proportions of each channel type, which are pre-
sented in Tab. 5. DFE shows the lowest cross-correlation, but this is due to insufficient encoding
that does not fully utilize the encoding channels. The proportion of DSE is the highest compared
to the others. In DFE+AT, the firing of non-encoded channels is promoted, which leads to an in-
crease in encoded channels. Lastly, our method demonstrates the highest utilization of encoding
channels. Despite the increase in the number of encoding channels, it effectively reduces redun-
dant features, thereby decreasing cross-correlation compared to DFE+AT. In the case of ResNet20,
the overall trend is similar to that of VGG16. However, due to structural differences such as resid-
ual connections, ResNet20 utilizes more channels for encoding, and the proportion of DSE is also
higher compared to VGG16.

6 CONCLUSION

In this work, we proposed a novel homeostasis-aware direct spike encoding called H-Direct, which
we demonstrated with extensive experiments that applying H-Direct is indeed able to improve the
efficiency and efficacy of deep SNNs together. Our work starts with a thorough analysis of conven-
tional direct encoding approaches, which led to the conceptualization of brain-inspired homeostasis
in spike encoding. To offer homeostasis-aware direct spike encoding, we proposed the following
three main components: (i) dynamic feature encoding loss, (ii) adaptive threshold, and (iii) fea-
ture diversity loss. Our extensive experiments showed that our method could improve the efficiency
and stability of spike encoding, enhancing the overall training performance and efficiency of deep
SNNs. In addition, we demonstrated that our method is compatible with a wide range of datasets,
models, and spike encoding approaches, potentially making it well-suited for broader applications
in energy-efficient AI using deep SNNs.
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