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Abstract

Bayesian neural networks attempt to combine the strong predictive performance of neural
networks with formal quantification of uncertainty of the predicted output in the Bayesian
framework. In deterministic deep neural network, the confidence of the model and the
predictions at inference time are left alone. Applying randomness and Bayes Rule to the
weights of a deep neural network is a step towards achieving this goal. Current state of the
art optimization methods for training Bayesian Neural Networks are relatively slow and
inefficient, compared to their deterministic counterparts. In this paper, we propose HWA
(Hyperparameters Weight Averaging) algorithm that exploits an averaging procedure in
order to optimize faster and achieve better accuracy. We develop our main algorithm
using the simple averaging heuristic and demonstrate its effectiveness on the space of the
hyperparameters of the networks random weights. Numerical applications are presented to
confirm the empirical benefits of our method.

1. Introduction

While Deep Learning methods have shown increasing efficiency in various domains such
as natural language processing, computer vision or robotics, sensible areas including au-
tonomous driving or medical imaging not only require accurate predictions but also un-
certainty quantification. In (Neal, 2012), authors develop a bayesian variant of plain feed-
forward multilayer neural networks in which weights and biases are considered as random
variables. For supervised learning tasks, deterministic models are prone to overfitting and
are not capable of estimating uncertainty in the training data which results in making overly
confident decisions about the correct class, also known as miscalibration (Guo et al., 2017;
Kendall and Gal, 2017). Nevertheless, representing that aforementioned uncertainty is cru-
cial for decision making. Bayesian methods display a hierarchical probabilistic model that
assume a (prior) random distribution over the parameters of the parameters and are useful
for assessing the uncertainty of the model via posterior predictive distribution quantifica-
tion (Blundell et al., 2015; Kingma et al., 2015). Current training methods for Bayesian
Neural Networks (BNN) (Neal, 2012) include Variational Inference (Graves, 2011; Hoffman
et al., 2013) or BayesByBackprop (Blundell et al., 2015) based on the Evidence Lower
Bound (ELBO) maximization task. Naturally, Bayesian methods, and in particular BNNs,
are highly sensitive to choice of the prior distribution parameters. Besides, current state-
of-the-art models are not as efficient and robust as traditional deep learning models.

In this paper, we introduce a new optimization algorithm to alleviate those challenges.
Our main contributions read as follows:
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• We introduce Hyperparameter Weight Averaging (HWA), a training algorithm
that leverages stochastic averaging techniques (Polyak and Juditsky, 1992) and pos-
terior sampling methods to efficiently train bayesian neural networks.

• Given the high nonconvexity of the loss landscape, our method finds heuristic expla-
nation from theoretical works on averaging and generalization such as (Keskar et al.,
2016; He et al., 2019) and more practical work on Deep Neural Networks (DNN)
optimization such as (Izmailov et al., 2018).

• We provide numerical examples showcasing the effectiveness of our method on simple
and complex supervised classification tasks.

The remaining of the paper is organized as follows. Section 2 presents the related works in
the fields of optimization, Variational Inference and posterior sampling. Section 3 introduces
our main contribution, namely the HWA algorithm. Section 4 highlights the benefits of our
procedure on various classification tasks. Section 5 concludes our work.

2. Related Work

Posterior Prediction. Due to the nonconvexity of the loss landscapes involved in mod-
ern deep learning tasks, sampling directly from the posterior distribution of the weights is
not an option. Depending on the nature and the dimensionality of the problem, Markov
Chain Monte Carlo (MCMC) methods have been employed to overcome this intractabil-
ity issue. The samples drawn at convergence of the Markov chain are guaranteed to be
drawn from the target distribution. Hamiltonian Monte Carlo (HMC) (Neal et al., 2011)
or Metropolis Hastings (MH) (Hastings, 1970) are two standard solutions used in practice.
Their stochastic gradients counterpart are extensively studied in (Ma et al., 2015).

Variational Inference (VI). When tackling an optimization problem, exact posterior
sampling may be computationally involved and not even required. Variational inference
was proposed in (Graves, 2011), in the particular case of BNNs, in order to fit a Gaussian
variational posterior approximation over the weights of neural networks. Via a simple
reparameterization trick (Blundell et al., 2015), several methods have emerged to train
BNNs leveraging the ease of use and implementation of VI (Kingma et al., 2015; Blundell
et al., 2015; Molchanov et al., 2017). Though, those methods appear to be inefficient for
large datasets and newer ones were proposed to alleviate this issue such as normalizing
flows (Louizos and Welling, 2017), deterministic VI (Wu et al., 2018) or dropout VI (Gal
and Ghahramani, 2016).

Stochastic Averaging. Averaging methods include the seminal papers of (Polyak, 1990)
and (Ruppert, 1988), both based on the combination of past iterates along a stochastic
approximation trajectory. For nonconvex objectives, this averaging procedure has been
adapted to Stochastic Gradient Descent (SGD) trajectory in (Zhou and Cong, 2017). In
particular, for recent deep learning examples, Izmailov et al. (2018) develops a method
that averages snapshots of a DNN through the iterations leading to a better empirical
generalization. Those experimental discoveries are then backed by theoretical understanding
of the multilayer neural network loss landscape in (Keskar et al., 2016; He et al., 2019).
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3. Hyperparameters Averaging in Bayesian Neural Networks

In this section, we introduce the basic concepts of bayesian neural networks and their asso-
ciated loss function which plays a key role in this paper. From an optimization perspective,
we first review the Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) procedure,
which can be seen as an approximation of the mean trajectory of the SGD iterates and then
introduce our method – namely HWA. While SWA averages snapshots of the weights of the
neural networks from successive past iterations, our method HWA only captures snapshots
of the hyperparameters, and not of the weights that are sampled at each training itera-
tion. We then discuss the uncertainty estimation prediction of such method and how our
proposed extra step, combining posterior sampling and optimization, can lead to better
generalization of the trained model on test sets. Based on the idea of ensemble learning, as
in (Garipov et al., 2018), averaging procedure leads to a similar ensemble effect. Indeed,
popular Bayesian methods for training BNNs tend to focus on a single mode, leading in
general to mode collapse, whereas, as stated and exhaustively tested in (Fort et al., 2019),
ensembles tend to explore diverse modes in function space, so are SWA and HWA.

3.1. Bayesian Neural Networks and ELBO Maximization

Let ((xi, yi), i ∈ [1, n]) be i.i.d. input-output pairs and w ∈ W ⊆ Rd be a latent variable.
When conditioned on the input data x = (xi, i ∈ [n]), the joint distribution of y = (yi, i ∈
[n]) and w is given by:

p(y, w|x) = π(w)
∏n
i=1 p(yi|xi, w) . (1)

In the particular case of BNN, this likelihood function is parameterized by a multilayer
neural network, which can be convolutional or not. The latent variables w are thus the
weights and the biases of the model and are considered as latent (and random) variables.
Training such hierarchical models involves sampling from the posterior distribution of the
weights w conditioned on the data (x, y), noted p(w|y, x). In most cases, this posterior
distribution p(w|y, x) is intractable and is approximated using a family of parametric dis-
tributions, {q(w,θ),θ ∈ Θ}. The variational inference (VI) problem (Blei et al., 2017) boils
down to minimizing the Kullback-Leibler (KL) divergence between q(w,θ) and the posterior
distribution p(w|y, x). The objective is the ELBO (Evidence Lower BOund) and reads:

L(θ) := −Eq(w;θ)
[

log p(y|x,w)
]

+ Eq(w;θ)
[

log q(w;θ)/π(w)
]
. (2)

Directly optimizing the objective function in (2) can be difficult. First, with n � 1, eval-
uating the objective function L(θ) requires a full pass over the entire dataset. Second,
for some complex models, the expectations in (2) can be intractable even if we assume a
simple parametric model for q(w;θ). Thus, the computation of the gradient requires an
approximation step usually invoking a Monte Carlo (MC) approximation step.

Training solutions simply include using SGD (Bottou and Bousquet, 2008) where the
gradient of the individual ELBO (2) is computed using Automatic Differentiation (Kucukel-
bir et al., 2017). The final update goes in the opposite direction of that gradient up to a
learning rate factor. In the sequel, we develop an improvement over baseline SGD, invoking
averaging virtue of several successive snapshots of the gradients. The method, called Hy-
perparameters Weight Averaging (HWA), aims at improving the generalization property of
the trained model on unseen data.
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3.2. Averaging model snapshots through hyperparameters loss landscapes

Consider a deterministic deep neural network, the idea behind the Stochastic Weight Aver-
aging (SWA) procedure, developed in (Izmailov et al., 2018), is to run several iterates of the
classical SGD procedure, starting from a pre-trained model. At each timestep noted Tavg,
the model estimate is set to be the the average of the last Tavg iterates. After establishing
the connectivity between several modes (point estimates of minimal loss) of the same deep
neural network (after different training procedures) in (Garipov et al., 2018), the ability to
average over all those iterates probably traversing several models, or at least model esti-
mates that belong to low loss region, would make the resulting trained model more robust
and thus generalize better to unseen data. Several theoretical papers such as (He et al.,
2019) or (Keskar et al., 2016) provide justifications of this empirical phenomena.

– Hyperparameters Weight Averaging: Based on the probabilistic model devel-
oped Section 3.1, the loss function (2) is defined on the space of the hyperparameters, i.e.
the mean and the variance of the variational candidate distribution. Regarding the parame-
terization choice of the variational candidate q(w;θ), we choose for simplicity a scalar mean
µ` depending on the layer ` ∈ [1, L] and constant between each neuron of the same layer.
Classically, the covariance of this variational distribution is diagonal, see (Kirkpatrick et al.,
2017; Blundell et al., 2015), yet this assumption can be too restrictive. We follow the direc-
tion taken in (Maddox et al., 2019), where the covariance of q(w,θ) is a diagonal matrix.
As a result, the averaging procedure practically occurs on the set of hyperparameters and
requires updating the mean and the variance of the variational candidate distribution, at
iteration k + 1, if k, the iteration index, is a multiple of the cycle length c, as below:

µHWA
` =

nmµ
HWA
` + µk+1

`

nm + 1
and σHWA =

nmσ
HWA + (µk+1

` )2

nm + 1
− (µHWA

` )2 , (3)

where for all ` ∈ [1, L], µk+1
` and σk+1 are obtained via Stochastic VI (Hoffman et al., 2013).

Algorithm 1 HWA: Hyperparameters Weight Averaging

1: Input: Iteration index k. Trained hyperparameters µ̂` and σ̂. LR γk. Cycle length c.
Gradient vector ∇Lik(θk)

2: γ ← γ(k) (Cyclical LR for the iteration)
3: SVI updates:
4: µk+1

` ← µk` − γk∇µ`Lik(µk` )
5: σk+1 ← σk − γk∇σLik(σk)
6: if mod(k, c) = 0 then
7: nm ← k/c (Number of models to average over)

µHWA
` ←

nmµ
HWA
` + µk+1

`

nm + 1
and σHWA ←

nmσ
HWA + (µk+1

` )2

nm + 1
− (µHWA

` )2

8: end if
9: Return: if mod(k, c) = 0, ({µHWA

` }Ll=1, σ
HWA) else, ({µk` }Ll=1, σ

k)

Our main contribution lies in Algorithm 1. Stochastic Variational updates are executed
Line 4. The stochastic averaging procedure happens every c iterations, and consists in
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computing the weighted sum between the latest model estimate and the running average
noted by the superscript HWA. Once the parameter estimates are updated via (3), the
network weights are then sampled according to the updated variational candidate distribu-
tions in order to compute the next iteration approximate stochastic gradient, see Alg. 2 in
supplementary material for more details on the end-to-end VI procedure embedding HWA.

Note that in the above procedure, the variational candidate q(w,θ) has a diagonal
covariance matrix where the scalar standard deviations are obtained through Algorithm 1.
Yet, it is also possible build a non diagonal proposal covariance to bypass the restriction
of such structure. Besides, given the nonconvexity and high dimensionality of the true
posterior distribution, adding a low rank non diagonal structure to the covariance of our
proposal would yield a gain in efficiency in the VI procedure. Of course the ideal option
would be to construct a curvature-informed covariance for our proposal but at a higher cost.
The low-rank plus diagonal posterior approximation matrix, noted Σ of q(w,θ) introduced
in (Maddox et al., 2019) reads:

Σ =
1

2
Σdiag +

D̂D̂>

2(R− 1)
(4)

where µHWA = (µHWA
` , ` ∈ [1, L]), R is the maximum number of columns in the low rank

deviation matrix D̂ and Σdiag is the diagonal covariance defined above. The r-th component

of the low rank deviation matrix D̂ is defined as the gap between the current estimate and
the running average: D̂r = θr−θHWA

r . It quantifies how far the current estimate parameter
deviate from the current average. Several hyperparameters are worth highlighting here. The
standard learning rate γk plays a key role and is either a constant or cyclical, see (Zhang
et al., 2019). The cycle length c, monitoring the number of times snapshots of the model
estimates are being averaged, is also of utmost importance and needs careful tuning.

4. Numerical Experiments

We provide experiments on classification tasks with various neural network architectures
and datasets to demonstrate the effectiveness of our method, namely HWA.

Methods. We consider three baselines: vanilla BayesByBackprop (BBB) developed
in (Blundell et al., 2015), the Stochastic Gradient Langevin Dynamics (SGLD) method
introduced in (Welling and Teh, 2011) and its cyclical variant in (Zhang et al., 2019). The
algorithms are initialized at the same point and the results are averaged over 5 repetitions.

Datasets. We compare the different algorithms on MNIST (LeCun, 1998) and CI-
FAR10 (Krizhevsky and Hinton, 2009) datasets.

Network architectures. (MNIST) We train a Bayesian variant of LeNet-5 convo-
lutional neural network (LeCun et al., 1998) on the MNIST dataset. Under the prior
distribution π, see (1), the weights are assumed independent and identically distributed ac-
cording to N (0, 1). We also assume a Gaussian variational candidate distribution such that
q(·;θ) ≡ N (µ, σ2I), where I is the identity matrix. The variational posterior parameters
are thus θ = (µ, σ) where µ = (µ`, ` ∈ [d]) with d the number of weights in the neural
network. (CIFAR-10) We train the Bayesian variant of the VGG neural network (Simonyan
and Zisserman, 2014) on the CIFAR-10 dataset. As in the previous example, the weights
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are assumed i.i.d. according to N (0, I). Standard hyperparameters values found in the
literature, such as the annealing constant or the number of MC samples, were used for the
benchmark methods. For better efficiency and lower variance, the Flipout estimator (Wen
et al., 2018) is used to compute the MC approximation of the gradient of the loss function.

Results. Results for both datasets and network architectures are reported Figure 1.
While for the MNIST dataset, the runs for HWA and SGLD are comparable both in terms
of train and testing loss and accuracy, they both highlights better convergence properties
compared to BayesByBackprop (BBB). It is worth mentioning that our method HWA
displays a similar behavior as a gradient based method, such as SGLD, by only leveraging
the average of past snapshots of the variational candidate hyperparameters. Regarding the
CIFAR10 experiment, our method shows the lowest training loss and generalize better to
unseen data (cf. last figure on bottom line in Figure 1). In conclusion, HWA achieves state-
of-the-art results for either small or large bayesian variants of standard network architectures
while using a simple and efficient averaging update at each cycle.
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Figure 1: Comparison for Bayesian LeNet CNN architecture on MNIST dataset (top) and
Bayesian VGG architecture on CIFAR-10 dataset (bottom). The plots are aver-
aged over 5 repetitions.

5. Conclusion

We present in this paper an averaging procedure on the hyperparameters of the weights
of a bayesian neural network architecture. Based on both empirical and theoretical results
regarding stochastic averaging, we propose the HWA algorithm in order to increase the gen-
eralization ability of a BNN. The procedure is easily implementable on top of any vanilla
optimizer with standard design choices for prior and candidate distributions, crucial quan-
tities in variational inference. Numerical experiments show the advantage of our method
matching and sometimes surpassing baselines such as SGLD or CSGMCMC, which require
additional expensive gradient computation.
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Appendix for HWA: Hyperparameters Weight Averaging in
Bayesian Neural Networks

A Comparison with other classical averaging procedures in nonconvex
optimization

From Alg. 1, we note that the averaging procedure happens once at each cycle c, a tuning
hyperparameter, on the parameter estimates resulting from a simple stochastic gradient
descent update. Yet, another natural averaging step would be to keep K snapshots of the
past stochastic gradients and compute an aggregated sum used as the drift term in the
general update rule, see (Zhou and Cong, 2017). Nevertheless, in our setting, the objective
function while being nonconvex is (possibly) parameterized by a high dimensional neural
network making it computationally involved to store those K gradients.

Incremental Aggregated Gradients methods: Popular optimization methods, such
as SAG (Schmidt et al., 2017) or SAGA (Defazio et al., 2014), make use of the past individual
gradient and compute a moving average of those vectors as the final drift term. Those
methods are proven to be faster than plain SGD in both convex and nonconvex cases,
leveraging among other reasons variance reduction effect, but suffer from a high storage
cost. Indeed the drift term is composed of the sum of the n past individual gradient where
n is equal to the size of the training set.

MISO (Mairal, 2015): Another important method invoking variance reduction through
incremental update of the drift term in a gradient descent step is the Minimization by
Incremental Surrogate Optimization method, namely MISO, developed in Mairal (2015).
Contrary to the method mentionned above, the accumulation does not happen on the gra-
dient but on the sum of individual surrogate objective functions. While this framework is
more general than SAG or SAGA, and also does not require storing n past gradients, it
is still computationally heavy to store those n past objective functions, rather their model
parameter estimates, when tackling deep neural networks training.

For all those reasons, HWA surely combines the virtue of the accumulation/aggregation
effect and the low computing cost of vanilla SGD.

B Embedding HWA in Variational Inference

Note that in the above procedure, the variational candidate q(w,θ) has a diagonal co-
variance matrix where the scalar standard deviations are obtained through Alg. 1. One
parameter estimates are updated via (3), the neural network weights are then sampled ac-
cording to the updated variational candidate distributions in order to compute the next
iteration approximate stochastic gradient ∇Lik(θ). Yet it is also possible build a non di-
agonal proposal covariance to bypass the restriction of such structure. Besides, given the
nonconvexity and high dimensionality of the true posterior distribution, adding even a low
rank non diagonal structure to the covariance of our proposal would yield a gain in effi-
ciency in the variational inference procedure. Of course the ideal option would be to build
a posterior curvature-informed covariance but at a higher cost. The trade-off between com-
putational costs and proposal efficiency is detailed in the following. The low-rank plus
diagonal posterior approximation matrix, noted Σ of q(w,θ) introduced in (Maddox et al.,
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2019) reads:

Σ =
1

2
Σdiag +

D̂D̂>

2(R− 1)
(5)

where µHWA = (µHWA
` , ` ∈ [1, L]), R is the maximum number of columns in the low rank

deviation matrix D̂ and Σdiag is the diagonal covariance defined above. The r-th component,

where r ∈ [R], of the low rank deviation matrix D̂ is defined as the gap between the current
estimate and the running average: D̂r = θr − θHWA

r . It quantifies how far the current
estimate parameter deviate from the current averaged parameter.

Then the covariance of the proposal q(·) in Alg. 2 is either set to (3) or (4).
Discussion on the choice of the variational candidate distribution: The general

aim of the update rules presented above is to construct an efficient variational candidate dis-
tribution that would provide an approximate shape of the true posterior. Our method acts
on the mean and covariance of a simple Gaussian distribution where the covariance matrix
is either diagonal or low rank. Nevertheless, other choice of proposal can be employed such
as the spike and slab variational distribution, in (Gal and Ghahramani, 2016), leveraging
dropout mechanism in VI. The other similar idea, namely concrete dropout in (Gal et al.,
2017) not only optimizes the hyperparameters of the weights but also the dropout proba-
bilities. We do not consider those variants as our work focuses on Gaussian approximations
of the posterior distribution and how their parameters are updated, see Section 4 for a
description of baseline methods used in our numerical experiments.

We now give in Alg. 2, the overall training algorithm of the bayesian neural network
using the proposed HWA algorithm to update the parameters.

Algorithm 2 Variational Inference with HWA for BNNs

1: Input: Trained hyperparameters µ̂` and σ̂. Sequence of LR {γk}k>0. Cycle length c.
K iterations.

2: for k = 0, 1, ... do
3: Sample an index ik uniformly on [n]
4: Sample MC batch of weights {wmk }

Mk
m=1 from variational candidate q(w, θk) with θk =

(µk,Σk) and the covariance is either diagonal (3) or low rank (4).
5: Compute MC approximation of the gradient vectors:

∇Lik(θk) ≈ 1

Mk

Mk∑
m=1

log p(yik |xik , w
k
m) +∇KL(q(w, θk)||π(w))

6: Update the vector of parameter estimates calling Alg. 1: (µK ,ΣK) =
HWA(k, c, γk,∇Lik(θk))

7: end for
8: Return Fitted parameters (µK ,ΣK).
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