
Scalable Representation Learning for
Multimodal Tabular Transactions

Natraj Raman, Sumitra Ganesh and Manuela Veloso
JPMorgan AI Research

first.last@jpmorgan.com

Abstract

Large language models (LLMs) are primarily designed to understand unstructured
text. When directly applied to structured formats such as tabular data, they may
struggle to discern inherent relationships and overlook critical patterns. While
tabular representation learning methods can address some of these limitations,
existing efforts still face challenges with sparse high-cardinality fields, precise
numerical reasoning, and column-heavy tables. Furthermore, leveraging these
learned representations for downstream tasks through a language based interface is
not apparent. In this paper, we present an innovative and scalable solution to these
challenges. Concretely, our approach introduces a multi-tier partitioning mecha-
nism that utilizes power-law dynamics to handle large vocabularies, an adaptive
quantization mechanism to impose priors on numerical continuity, and a distinct
treatment of core-columns and meta-information columns. To facilitate instruc-
tion tuning on LLMs, we propose a parameter efficient decoder that interleaves
transaction and text modalities using a series of adapter layers, thereby exploiting
rich cross-task knowledge. We validate the efficacy of our solution on a large-scale
dataset of synthetic payments transactions.

1 Introduction

Digital transactions facilitate the instantaneous exchange of payments across the globe, and analyzing
them effectively requires sophisticated AI models. Transactions are typically organized as tabular
data, comprising a mixture of categorical (e.g., currency), numerical (e.g., amount), and textual (e.g.,
account name) columns. Developing efficient representations for transaction records is crucial for a
range of tasks [1], including fraud detection, transaction tagging, and process optimization.

Recent successes of Large Language Models (LLMs) have led to a growing temptation [2] to serialize
tabular transaction data into a textual format to leverage the reasoning capabilities of these models.
However, this approach comes with several disadvantages such as a loss of structural information,
increased sequence length leading to computational inefficiency, difficulties with precise numerical
reasoning and a lack of domain specific nuances. Instead, the potential of transformer architectures [3]
can be better realized by adapting them specifically to the distinctive characteristics of tabular data.

Several recent works [4, 5] have proposed tabular representation learning by harnessing the strengths
of transformers. However, these approaches often fail to address the unique challenges posed
by transaction data. For example, transaction data includes millions of account identifiers. The
conventional method of assigning a uniqueD dimensional embedding vector to each categorical value
will result in gigantic embedding tables. This not only increases the model size but also encounters
issues with long-tailed distributions, where many identifiers are infrequent and lack sufficient data for
effective parameter learning. Tokenizing these identifiers into sub-words is not beneficial, as unlike
traditional English words, the subword components of identifiers do not possess meaningful semantic
similarities. Transaction data also contains several auxiliary columns and including them directly

Table Representation Learning Workshop at NeurIPS 2024.

Figure 1: Scalable multimodal foundation model for transaction data. (1) Sparse yet large vocabulary
categorical features are learned using multi-tier partitions. (2) Meta-column features are pre-learned
offline, with only selected segments integrated. (3) Numerical values are quantized into a coarse
vocabulary to emphasize ranges. (4) Compact transaction embeddings are interleaved with verbose
instruction text. (5) A limited set of alignment parameters are fine-tuned for task-specific adaptation.

during representation learning can lead to significantly increased sequence lengths. Furthermore, the
standard tokenization of numerical values ignores their distributional continuity [6].

To address the aforementioned challenges, we propose a scalable approach for self-supervised
transaction representation learning. Specifically, we introduce a partitioning embedder that leverages
power-law distributions [7] to allocate the embedding space non-uniformly, granting larger subspaces
to frequently occurring vocabulary items. Additionally, we distinguish between core columns and
meta-columns, pre-learning the latter offline and employing summary representations to enhance
modularity and computational efficiency. For numerical features, we implement adaptive quantization
to improve resolution and mitigate noise. In order to encourage globally coherent representation
space, we formulate a composite loss in a metric learning setting.

Integrating tabular representations with a language model is crucial for efficiently executing down-
stream tasks. Traditional instruction tuning [8] often involves billions of parameters, making it
resource-intensive. Although parameter-efficient tuning methods [9] reduce the number of parame-
ters, they may fall short in sharing information across tasks, which is vital for effective knowledge
transfer. To address this, we propose a scalable solution that keeps the parameters of both the tabular
encoder and the LLM frozen. Instead, we introduce a set of adapter layers designed to efficiently
handle variable number of rows, interleave the different modalities and learn cross-modal alignment.

We conduct extensive experiments on a synthetic dataset comprising millions of transactions, charac-
terized by complex account structures. In summary, our core contributions are: (i) a tabular encoder
that scales seamlessly for large vocabularies, wide tables and granular numerical values. (ii) a
multimodal decoder that utilizes a limited set of parameters to optimize downstream tasks. Figure 1
provides an overview.

2 Related Work

Self-supervised representation learning for tabular data is an active research field [10], with recent
works [11, 12, 13] focusing on pre-training paradigms common in transformer based architectures.
Auto-encoder frameworks that reconstruct masked segments of tables is a popular approach [14],
although auto-regressive approaches are not uncommon [15]. Some efforts [16, 17] also linearize
tables into a text format. Despite attempts to pretrain on various types of tables [4], generalizing
across tables remain a challenge. Embedding compression techniques to handle large sparse features
have been explored [18, 19], although they are more commonly used in recommender systems rather
than tabular data. Tabular data has been integrated with other modalities [20], but these approaches
are tailored for specialized applications. In the absence of a universally applicable tabular foundation
model [21], domain specific representation learning, such as ours, is often necessary.

2

3 Tabular Encoder

Let x = (xc)
C
c=1 denote a tabular row with C columns, and D = {xi}Ni=1 be the tabular dataset.

The table may be semi-structured, containing different types of columns, including a numerical
column xnumc ∈ R, a categorical column xcatc ∈ ZVcat and a text column xtextc = (xc1 , . . . , xcT),
where a text is a sequence of tokens xct ∈ ZVtxt . Here Vcat and Vtxt denote the vocabularies of the
categorical and text columns, respectively. For instance, in a transaction table, the transacted amount
is an example of a numerical column, while the country and names of the transacting parties are
examples of categorical and text columns, respectively.

The primary objective of the encoder is to learn a function f : x→ RC×D that maps the columns
into a D dimensional space. A compact representation for the entire record can be obtained by either
pooling the representations across the columns or by maintaining a specific summary column. Most
tabular representation learning methods treat the combined sequence of columns as a set of tokens
and employ a language modeling approach [22] to learn the representations.

In this work, we address the challenges associated with columns that have large categorical vocabu-
laries. Our approach also leverages factorizations inherent to tabular data, employs discretization
techniques to incorporate domain knowledge, and avoids representation localization. These enhance-
ments aim to improve the efficiency and effectiveness of tabular data representation learning.

3.1 Partitioning Embedder

In traditional language modeling, each token Vi in the vocabulary of categorical items is assigned a
unique embedding vector ei ∈ RD in the embedding space using an embedding matrix E as follows:

ei = E[i, :] ∀i ∈ 1, . . . , V , E ∈ R|V |×D. (1)

This approach presents a significant challenge for large vocabularies, as the number of parameters
required for learning the embedding matrix increases linearly with the vocabulary size.

We propose a scalable solution with reduced linear complexity. Specifically, we divide the vocabulary
into B bins such that V = V 1 ∪ . . . ∪ V B . A critical question arises: how should we assign the
vocabulary items to the bins? The left side of Figure 2 displays the number of embedding parameters
required for different vocabulary sizes under various distributions for a fixed D and B. We adopt a
power-law strategy, as many real-world datasets exhibit power-law distribution in the frequency of
vocabulary items. Consequently, the number of items in adjacent bins decreases rapidly, reflecting
the steep drop-off characteristic of power-law distributions. Formally,

|V b| = |V | · b−αv∑B
j=1 j

−αv

∀b ∈ 1, . . . , B (2)

where the exponent parameter α controls the rate of decay. By assigning fewer items to bins
corresponding to the most frequent vocabulary items, important items can receive more representation
capacity and therefore achieve better scalability and robustness.

Similarly, the embedding space is also divided into B different subspaces1 using a power-law
distribution, controlled by αd, such that RD = RD1 ⊕ . . .⊕ RDB

. Assuming |V 1| ≪ . . .≪ |V B |
and D1 ≫ . . . ≫ DB , the non-uniform partitioning mechanism assigns each item in V b a Db

dimensional subspace. Thus, preferred bins are allocated a larger portion of the embedding space, as
shown on the right side of Figure 2. In contrast to equation (1), we now have

ebi = Eb[i, :] ∀i ∈ 1, . . . , V , Eb ∈ R|V b|×Db

, (3)

and the number of embedding parameters reduces from |V |D to
∑

b |V b|Db.

3.2 Meta Column Representations

Tabular data often contains meta-columns that provide additional contextual information about core
columns. In practice, meta-columns, such as account-related attributes, are often stored in separate

1For simplicity, we assume the same number of partitions for both the vocabulary and embedding space.

3

Figure 2: Preferential partitioning of the embedding space. Left: Embedding parameter size can
increase dramatically with a large vocabulary. Right: A non-uniform partitioning mechanism where a
preferred bin with fewer vocabulary items is allocated a larger portion of the embedding space.

tables as part of database normalization. Instead of flattening these columns, it is preferable to learn
their representations offline and utilize a summarized form in the tabular encoder. This approach
offers several benefits: (a) An increase in the number of meta-columns does not affect the tabular
encoder, thereby making the table representation learning process more scalable. (b) The modular
structure allows for enhanced capturing of intricate relationships within the meta-columns. (c) A
pooled summary representation of these meta-columns can be used, thereby reducing the sequence
length of the encoder.

Formally, let xg ⊂ x denote a row with a subset of columns from x. We first use a separate function
Ξg : xg → RCg×D to learn the representations for this subset, and then augment their embeddings
with those from other columns as

embedding(x) = (Ξ(x1), . . . ,Ξg(xg), . . . ,Ξ(xC)), (4)

where Ξ is an embedding function2. By ensuring that Cg < |xg|, the sequence length used for table
representation learning can be reduced.

3.3 Numerical Quantization

Language models use general tokens to represent numerical values, often resulting in subpar per-
formance in tasks that require numerical reasoning [6]. While directly incorporating a continuous
value can capture precise numerical information, they are more sensitive to noise and outliers and
are challenging to scale. A quantized approach, which maps continuous values to discrete bins (e.g.
1028 and 1036 to 1000), and employs a custom vocabulary of numerical tokens offer a convenient
alternative. It reduces the complexity of the input space, enhances robustness to noise and leads to
more stable predictions. Formally, we define a numerical vocabulary Q that adapts to resolution,
featuring finer spacing for smaller numbers and progressively larger spacing for larger numbers. We
assign a continuous value y to token Qi as argmini |x−Qi|. This adaptive quantization ensures the
model captures essential numerical information while maintaining stability and scalability.

3.4 Composite Loss

The reconstruction loss employed in self-supervised learning excels at capturing the local structure of
the data. However, it falls short in sharing information across samples, thereby neglecting the global
structure. To overcome this limitation, we include an additional batch hard triplet loss [23] term that
considers the relative distances between samples within a batch. Specifically, the distance between
similar samples are minimized while the distance between dissimilar ones are maximized. This
composite loss formulation encourages our model to learn a globally coherent representation space,
effectively capturing relationships across different rows in the table. In the scenario where explicit
labels for similarity are unavailable, we generate two different perturbed versions of x to serve as
similar examples. This strategy ensures that the model not only understands the fine-grained details of
individual samples but also grasps the broader context, leading to a more robust and comprehensive
understanding of the data.

2We have slightly abused the notation here for brevity. Ξ can be different for each column.

4

Figure 3: Instruction tuning workflow. Transaction records, textual instructions, and task information
are combined and fed into an LLM. All layers are frozen (shown in blue) except for the adapter layers
(shown in green). These adapter layers learn to align the transaction and text embeddings with the
specified task, enabling the LLM to generate response instructions.

4 Multimodal Decoder

Let S = {({x}Mi
i,j=1, ti, ki,yi)}Ni=1 be an instruction tuning dataset, where an example i comprises a

tuple of Mi different transaction records x, an instruction text t, a task identifier k ∈ 1...K and a
desired text response y. Given a tabular encoder f and a language model LLM with an embedding
layer ΞLLM : Z+ → RD, the objective is to perform instruction tuning using S.

This setting presents several challenges compared to traditional instruction tuning: (a) An example
might contain more than one transaction record. (b) The language model must learn to explicitly
reference specific records when generating responses. (c) The parameters of the language model or
the tabular encoder cannot be updated to ensure scalability and to prevent catastrophic forgetting. (d)
Transaction records are not native to the language model, necessitating the learning of their alignment
with the language model vocabulary. (e) It is essential to leverage commonalities across tasks.

To address the first two challenges, we augment each transaction record with a row sentinel s (e.g.
s(1) = [R1]) that uniquely identifies a record. This sentinel is part of the language model vocabulary.
Consequently, the inputs passed to the language model are interleaved with text tokens followed
by transaction tokens, and then text tokens again and so on (see equation 5). The third challenge is
tackled by freezing the parameters of both f and LLM . The subsequent challenges are addressed by
introducing new layers, which we detail below. Figure 3 provides an overview of the instruction
tuning components.

4.1 Adapter Layers

Instead of directly using the representation obtained from f(x), we introduce a function ϕ to transform
the tabular encoder representation. Typically, ϕ consists of a small set of transformer layers, and its
parameters Φ are learned during instruction tuning. Intuitively, these transaction adapter layers aim to
modify the transaction representations in a manner that the language model can comprehend, without
altering the core structure captured by the original representations.

We also introduce a new embedding layer Ξtask : 1...K → RD with parameters ψ to convert a task
id ki into a task embedding. The task embedding contains subspaces unique to each task, as well
as a subspace shared across all the tasks. Finally, we augment each layer of LLM with additional
parameters φ, similar to prompt tuning [24].The following loss is minimized during instruction
tuning:

zi = ΞLLM(s(1))⊕ ϕ(f(xi1))⊕ . . .ΞLLM(s(Mi))⊕ ϕ(f(xiMi))⊕ ΞLLM(ti)⊕ Ξtask(ki) (5)

LLLM = −
∑
i

logP (yi|zi; Φ, ψ, φ) (6)

5

Figure 4: Sample synthetic transaction record.

Table 1: Pretraining results for tabular encoder showing reconstruction accuracy for different model
variants. The source and target fields of a transaction are combined for brevity.

Large Vocab Categorical Numeracy
Model Type Size Account ID Parent ID Industry Country Currency Amount

Partitioned Embeds 100M 54.5 57.7 83.1 67.4 83.8 55.3
Classical Embeds 185M 58.7 61.8 84.9 70.4 86.9 60.4
Partitioned + MetaCols 100M 60.7 62.6 84.7 76.3 85.8 60.2
Classical Loss 100M 46.3 51.6 81.2 70.5 80.4 48.1
Autoregressive Mask 120M 53.1 48.6 80.6 67.3 80.7 49.8

5 Experiments

5.1 Transactions Dataset

Our experiments focus on large-scale financial transactions conducted between businesses. These
transactions are characterized by high value, substantial volume, and complex account structures,
necessitating a precise and nuanced understanding. Due to the sensitive nature of real data and the
extensive volume of information involved, we utilize a synthetically constructed dataset comprising
10 million transaction records. A sample record is illustrated in Figure 4. Of particular interest are
the Account ID and Parent ID fields, which together encompass a vocabulary of nearly 125,000 items.

The synthetic transaction generation process is outlined in Algorithm 1. The algorithm takes as input
the number of parent companies for defining the account structure and the number of transactions
to generate. It further requires a function that can create the account columns (e.g. account names,
country etc.) and a set of probabilistic models to sample from. For instance, MComp models the
number of accounts corresponding to a company using a Gaussian Mixture Model withK components
that can capture the variations in account structure across different types of companies. Similarly,
MDest models the number of target accounts a source account can transact with, MTxns the number
of transactions between a (source, target) pair, and MAmount and MDate the amount and date values
respectively. Figure 5 describes the variables involved in plate notation.

For instruction tuning, we generate 100,000 template-based instructions and corresponding desired
responses for four distinct tasks. These tasks include tagging a transaction with its risk level (Low,
Medium, or High), geographic span (US, Americas, EMEA, Asia, or International), expense type
(Capital, Operational, Technology, or Other), and recurrence category (Yes/No and identifying specific
transactions). Figure 8 presents a few sample instructions and responses.

5.2 Tabular Encoder Evaluation

We compare different variants of the models to assess our solution. These include the Classical
Embeds setting, where vocabularies are treated traditionally; the Classical Loss setting, which uses
standard reconstruction loss instead of a composite loss; the Partitioned Embeds setting, where
accounts and embedding space are sub-divided; and the Partitioned + MetaCols setting, which
incorporates prelearned embeddings from account columns while excluding name columns during
transaction representation learning. All models employ a bi-directional transformer with column
masking in the standard BERT [22] configuration, except for the Autoregressive Mask setting, which

6

Algorithm 1: Generation process for the synthetic transactions
Require :Number of Parent Companies C, Number of Transactions T
Require :Models MComp,MDest,MTxns,MAmount,MDate to sample from
Require :Function CreateAccount that creates a synthetic account with name, country, etc.
accs← [];
for each c in C do

Nc ∼ MComp ; ▷ Sample number of accounts in a company
for each n in Nc do

accs← accs⊕ CreateAccount();

txns← [];
while size(txns) < T do

src ∼ accs ; ▷ Sample a source account
Nd ∼ MDest ; ▷ Sample number of target accounts
for each n in Nd do

dest ∼ accs ; ▷ Sample a target account
Nt ∼ MTxns ; ▷ Sample number of txns between source and target
µa, σ

2
a ∼ MAmount ; ▷ Sample mean and variance of amount

µd, σ
2
d ∼ MDate ; ▷ Sample mean and variance of dates

for each t in Nt do
amt ∼ N (µa, σ

2
a) ; ▷ Sample amount

dte ∼ N (µd, σ
2
d) ; ▷ Sample date

txns← txns⊕ (src, dest, amt, dte);

Figure 5: Mixture models in plate notation. These models are used for sampling the number of
accounts in a company, the number of accounts a given account can transact with, the number of
transactions between a (source, target) pair, and the amount and date values.

uses a causal mask. The models are trained for 1 epoch, with a learning rate of 0.0001 using a cosine
scheduler. For the partitioning embedder, we set B = 4, αv = −3 and αd = 2.25.

The models are evaluated based on their ability to accurately reconstruct the masked columns. For
instance, all Source columns such as Source Account ID and Source Country, may be masked. Given
the remaining columns, we assess whether the top three predictions of the masked columns match the
true column values.

Table 1 presents the reconstruction accuracy for the different settings. The Partitioned + MetaCols
setting consistently ranks first or second across all columns. Although the Classical Embeds setting
performs well, it uses the highest number of parameters, making it impractical for real-world scenarios
with millions of account identifiers. The partitioning mechanism, despite using 50% fewer parameters,
achieves better or comparable performance. Additionally, the improvement over the Classical Loss
setting indicates that incorporating metric learning in the loss function can be advantageous.

Figure 6 shows the results of an ablation study for different model sizes and training durations.
There is significant improvement in reconstruction accuracy between the small (25M parameters)
and medium (100M parameters) model sizes, but the gains plateau for the large model size (250M

7

Figure 6: Ablation study of reconstruction performance across different model sizes and training
durations. The relative gain over the previous counterpart is annotated. Left: Small, medium and
large model sizes. Right: 1, 3 and 5 training epochs.

Figure 7: Sensitivity analysis illustrating the trade-off between performance and model size for the
embedding space partitioning mechanism. Each point represents a model trained with a different
number of partitions (indicated by bubble size) and a distinct partitioning scheme (indicated by color).

parameters with 18 layers and 1024 hidden size). Similarly, training for three epochs yields substantial
gains over one epoch, while the improvements diminish beyond three epochs. Figure 7 illustrates the
trade-offs involved in selecting different bin sizes (B = 2, 4, 6), partitioning mechanisms (uniform,
logarithmic, or power-law), and exponent values for the power-law. The power-law dynamics using a
bin size of 4 seem to provide the desired balance between model size and performance.

5.3 Multimodal Decoder Evaluation

We employ a baseline CatBoost [25] classifier, and two different LLMs Falcon [26] and Phi [27] to
evaluate instruction tuning. The Recurrence task, which involves passing multiple transactions, is not
suitable for non-sequential classifiers and is therefore excluded from the CatBoost evaluation for a
fair comparison. For the full fine-tuning setting, we freeze the tabular encoder, while keeping the
LLM unfrozen. Label prediction accuracy, consolidated for each task, serves as the evaluation metric.
All LLMs were trained for 1 epoch and used the 3 epoch, 100M parameter, partitioned embeddings
version of the tabular encoder.

Table 2 presents the results of instruction tuning. The proposed adapter tuning approach conveniently
outperforms the other methods. Notably, despite using only a fraction of the parameters compared to
the fully-tuned model, it achieves substantial gains. Figure 8 provides qualitative examples of the
predicted responses. The results are all well-formed, demonstrating the model’s ability to distinguish
between transaction and text modalities. The recurrence tagging task seems particularly hard, as it
involves selecting row sentinels corresponding to the transaction modality.

5.4 Discussion

The results from tabular encoder confirm that partitioning the embedding space in a non-uniform
manner is an effective solution for handling large vocabularies of categorical items. Additionally, a

8

Table 2: Instruction tuning results for tasks such as risk tagging, geographic span tagging, expense
type tagging and identifying recurring transactions. Accuracy % is used as the metric.

Model Type Model Size Risk Geo Expense Recurrence
CatBoost N/A 60.9 71.6 50.0 N/A
Multimodal Falcon Adapter Tuning 122M 95.1 86.7 70.3 47.4
Multimodal Phi Adapter Tuning 122M 99.8 88.6 53.1 48.4
Multimodal Falcon Full Tuning 1.3B 82.9 92.4 50.0 47.3

Figure 8: Qualitative examples for risk, geo, expense and recurrence tagging tasks. Some tasks (e.g.
recurrence) accept multiple transaction records and use row sentinels (e.g. [R2]) to identify them.
Correct answers are highlighted in blue while incorrect answers are shown in red.

multi-faceted loss function is essential for addressing representation localization issues. Despite the
recent successes of autoregressive learning, bi-directional transformers remain relevant, especially
when dealing with permutation invariant data such as tabular transactions. The multimodal decoder
results indicate that parameter efficient tuning of the LLMs is the preferred solution for instruction
tuning. However, challenges remain in handling complex tasks such as recurrence tagging, which
requires deep cross-modal alignment.

6 Conclusion

Transaction data, although systematically organized with a well-defined structure, presents unique
challenges distinct from conventional tabular formats. The presence of numerous sparsely distributed
identifiers, a vast number of columns, and the necessity for precise numerical awareness demand
scalable solutions tailored to these specific characteristics. In this paper, we addressed these chal-
lenges by developing embedders that reduce the complexity of large vocabularies, leverage inherent
factorizations in tabular data, and remain robust to numerical variability. Additionally, we introduced
an efficient mechanism to integrate transaction and text modalities using a language-based interface.
While our solution was specifically designed for transaction data, it is also applicable to other similar
formats. In future work, we aim to delve deeper into the representation space and the internal behavior
of the model to further enhance its capabilities and applicability.

Acknowledgments

This paper was prepared for information purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. J.P. Morgan makes no representation and warranty whatsoever and
disclaims all liability for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under

9

such jurisdiction or to such person would be unlawful. © 2023 JP Morgan Chase & Co. All rights
reserved.

References
[1] Alexander Diadiushkin, Kurt Sandkuhl, and Alexander Maiatin. Fraud detection in payments

transactions: Overview of existing approaches and usage for instant payments. Complex Systems
Informatics and Modeling Quarterly, pages 72–88, 2019.

[2] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In
International Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR,
2023.

[3] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[4] Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab:
Cross-table pretraining for tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

[5] Hangting Ye, Wei Fan, Xiaozhuang Song, Shun Zheng, He Zhao, Dandan Guo, and Yi Chang.
Ptarl: Prototype-based tabular representation learning via space calibration. arXiv preprint
arXiv:2407.05364, 2024.

[6] Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. Representing numbers in nlp: a
survey and a vision. arXiv preprint arXiv:2103.13136, 2021.

[7] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics,
46(5):323–351, 2005.

[8] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023.

[9] Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for
large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

[10] Wei-Yao Wang, Wei-Wei Du, Derek Xu, Wei Wang, and Wen-Chih Peng. A survey on self-
supervised learning for non-sequential tabular data. arXiv preprint arXiv:2402.01204, 2024.

[11] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34:18932–
18943, 2021.

[12] Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across
tables. Advances in Neural Information Processing Systems, 35:2902–2915, 2022.

[13] Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and
Jintai Chen. Making pre-trained language models great on tabular prediction. arXiv preprint
arXiv:2403.01841, 2024.

[14] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

[15] Tianping Zhang, Shaowen Wang, Shuicheng Yan, Jian Li, and Qian Liu. Generative table
pre-training empowers models for tabular prediction. arXiv preprint arXiv:2305.09696, 2023.

[16] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for
joint understanding of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020.

[17] Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular
data via language modeling. arXiv preprint arXiv:2406.12031, 2024.

10

[18] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin, Lichan Hong,
and Ed H Chi. Learning multi-granular quantized embeddings for large-vocab categorical
features in recommender systems. In Companion Proceedings of the Web Conference 2020,
pages 562–566, 2020.

[19] Shiwei Li, Huifeng Guo, Xing Tang, Ruiming Tang, Lu Hou, Ruixuan Li, and Rui Zhang.
Embedding compression in recommender systems: A survey. ACM Computing Surveys, 56(5):1–
21, 2024.

[20] Paul Hager, Martin J Menten, and Daniel Rueckert. Best of both worlds: Multimodal contrastive
learning with tabular and imaging data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23924–23935, 2023.

[21] Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a
research priority. arXiv preprint arXiv:2405.01147, 2024.

[22] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[23] Kaiwei Zeng, Munan Ning, Yaohua Wang, and Yang Guo. Hierarchical clustering with hard-
batch triplet loss for person re-identification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13657–13665, 2020.

[24] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[25] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

[26] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxan-
dra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867,
2023.

[27] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

11

	Introduction
	Related Work
	Tabular Encoder
	Partitioning Embedder
	Meta Column Representations
	Numerical Quantization
	Composite Loss

	Multimodal Decoder
	Adapter Layers

	Experiments
	Transactions Dataset
	Tabular Encoder Evaluation
	Multimodal Decoder Evaluation
	Discussion

	Conclusion

