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Abstract

The rapid advancement of Multi-modal Lan-001
guage Models (MLLMs) has significantly en-002
hanced performance in multimodal tasks, yet003
these models often exhibit inherent biases that004
compromise their reliability and fairness. Tra-005
ditional debiasing methods face a trade-off be-006
tween the need for extensive labeled datasets007
and high computational costs. Model merg-008
ing, which efficiently combines multiple mod-009
els into a single one, offers a promising alter-010
native but its usage is limited to MLLMs with011
the same architecture. We propose 3DM, a012
novel framework integrating Distill, Dynamic013
Drop, and Merge to address these challenges.014
3DM employs knowledge distillation to har-015
monize models with divergent architectures016
and introduces a dynamic dropping strategy017
that assigns parameter-specific drop rates based018
on their contributions to bias and overall per-019
formance. This approach preserves critical020
weights while mitigating biases, as validated on021
the MMSD2.0 sarcasm detection dataset. Our022
key contributions include architecture-agnostic023
merging, dynamic dropping, and the introduc-024
tion of the Bias Ratio (BR) metric for system-025
atic bias assessment. Empirical results demon-026
strate that 3DM outperforms existing methods027
in balancing debiasing and enhancing the over-028
all performance, offering a practical and scal-029
able solution for deploying fair and efficient030
MLLMs in real-world applications.031

1 Introduction032

Recent advances in MLLMs (Liu et al., 2023; Chen033

et al., 2024; GLM et al., 2024; Zhu et al., 2024a)034

have shown remarkable performance in various035

multimodal tasks, ranging from image captioning036

(Wang et al., 2024) and visual question answering037

(Li et al., 2023) to a nuanced multimodal sarcasm038

detection (Tang et al., 2024). Despite the progress,039

MLLMs are prone to biased predictions (Cui et al.,040

2023; Han et al., 2024). For instance, Table 1 shows041

Model Acc Precision Recall F1
LLaVA-v1.5-7b 0.516 0.469 0.947 0.628
ChatGLM4-9b 0.689 0.725 0.450 0.555

Table 1: The performance of LLaVA-v1.5-7b with a
positive bias, and ChatGLM4-9b with a negative bias.
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Figure 1: Conceptual comparison of model merging
with fine-tuning and ensembling in the context of debi-
asing. Model merging is training-free and benefits from
efficient inference.

that LLaVA (Liu et al., 2023) favors classifying in- 042

puts as sarcastic (positive-biased model), whereas 043

ChatGLM (GLM et al., 2024) has the opposite 044

tendency (negative-biased model). This may be a 045

symptom of hallucinating answers from spurious 046

correlations seen in the dataset (Bai et al., 2024). 047

MLLMs’ inherent biases compromise their relia- 048

bility and fairness for deployment in real-world 049

applications. Thus, enhancing MLLMs’ accuracy 050

and ensuring minimal bias have significant practi- 051

cal implications. 052

In this paper, we present the first attempt, to the 053

best of our knowledge, at merging models (Yang 054

et al., 2024; Ramé et al., 2023; Lin et al., 2024) 055

to debias MLLMs and showcasing its general ef- 056

fectiveness. Existing debiasing or dehallucination 057

methods have relied on labeled datasets for fine- 058

tuning (Chen et al., 2021; Guo et al., 2022; Liu 059

et al., 2024) or repetitive inference for ensembling 060

predictions (Clark et al., 2019), both of which in- 061

cur non-trivial computational overhead. In contrast, 062

our approach collects a positive-biased model and a 063

negative-biased model, then merges them in the pa- 064
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rameter space without the need for additional train-065

ing and repeated inference. Through this process,066

biases in opposite directions are canceled out effi-067

ciently. See Fig. 1 for the conceptual comparisons068

between merging and the traditional approaches.069

However, merging MLLMs for debiasing faces070

several challenges: (1) Merging models often re-071

quires the same architecture across models to al-072

low for parameter-wise operations, a condition073

rarely satisfied in the rapidly evolving ecosystem074

of MLLMs (Zhang et al., 2024); (2) Reducing the075

bias alone does not always translate to improved076

accuracy—debiased models may struggle with task077

performance. This highlights the need to refine ex-078

isting merging methods (Ilharco et al., 2022; Yadav079

et al., 2024; Yu et al., 2024) through the lens of080

reducing bias and enhancing accuracy.081

We propose 3DM (Distill, Dynamic Drop082

and Merge), an architecture-agnostic merging083

framework designed to address these challenges.084

First, knowledge distillation (Gou et al., 2021)085

bridges architectural gaps between models, en-086

abling parameter-level merging even for hetero-087

geneous MLLMs. Second, we introduce a dynamic088

dropping strategy that assigns parameter-specific089

drop rates based on their influence on bias and090

accuracy. This is motivated by a recent merging091

method—DARE (Yu et al., 2024)—that sparsifies092

parameters by a uniform chance of dropout and093

treats all parameters equally.094

We first conduct experiments on the MMSD2.0095

(Qin et al., 2023) sarcasm detection dataset and096

measure models’ bias with our newly proposed097

metric, Bias Ratio (Sec. 3). The results demon-098

strate that (1) merging methods are in common099

effective in reducing bias, and that (2) 3DM sig-100

nificantly outperforms DARE and other baselines101

in accuracy, F1-score, and Bias Ratio. In addition,102

experiments on MMSD1.0 (Cai et al., 2019) further103

validate that 3DM generalizes well across different104

datasets. Compared with methods requiring hyper-105

parameter search over the validation data, 3DM106

does not contain such hyperparameters, making it107

convenient for implementation.108

In essence, our contributions are as follows:109

1. Architecture Alignment: A distillation110

pipeline that aligns MLLM architectures, pre-111

serving their original bias and accuracy.112

2. Dynamic Dropping: A merging strategy that113

adaptively adjusts drop rates to reduce biases114

and improve accuracy.115

3. Bias Ratio: A metric for quantifying bias 116

direction and magnitude, contributing to on- 117

going efforts in bias quantification. 118

4. Empirical Validation: Extensive experi- 119

ments demonstrating 3DM’s effectiveness in 120

terms of both debiasing and accuracy enhance- 121

ment. 122

2 Related Work 123

2.1 Model Debiasing 124

Existing debiasing mechanisms in the literature 125

can be classified into two primary categories 126

(Mehrabi et al., 2021; Pessach and Shmueli, 2022): 127

training-based debiasing and training-free debi- 128

asing. Training-based debiasing approaches ne- 129

cessitate modifications to the training dataset (Li 130

and Vasconcelos, 2019), demonstrating notable ef- 131

fectiveness while requiring extensively annotated 132

training data. Conversely, training-free debiasing 133

methodologies primarily focus on altering the out- 134

put distribution (Kamiran et al., 2012), with en- 135

sembling emerging as a crucial technique in this 136

domain (Clark et al., 2019). 137

A notable example of ensembling is the blind- 138

folding strategy proposed by Zhu et al. (2024b), 139

which involves masking specific portions of the in- 140

put and computing the final output score as the dif- 141

ference between traditional inference, fully blind- 142

folded inference, and partially blindfolded infer- 143

ence. Although ensembling methods eliminate the 144

need for training processes, they incur substantial 145

computational overhead due to the requirement for 146

multiple inference operations. In light of these 147

considerations, we propose our merging strategy 148

as an effective compromise between these two ap- 149

proaches, offering the dual advantages of eliminat- 150

ing excessive inference requirements while main- 151

taining a label-free training process. 152

2.2 Model Merging 153

Garipov et al. (2018); Draxler et al. (2018) demon- 154

strated that two models trained from different ini- 155

tializations can be connected by a path of non- 156

increasing loss in the loss landscape, referred to 157

as model connectivity. If the two models share a 158

significant part of the optimization trajectory (e.g., 159

pre-trained model), they are often connected by a 160

linear path (Frankle et al., 2020; Neyshabur et al., 161

2020; Mirzadeh et al., 2021), where interpolating 162

along the path potentially leads to better accuracy 163

and generalization (Izmailov et al., 2018). This 164
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property has been exploited as simply averaging the165

weights of numerous models fine-tuned from differ-166

ent hyperparameters to improve accuracy (Worts-167

man et al., 2022), popularizing model merging as168

an efficient alternative to ensemble in combining169

models without additional instruction tuning.170

The success of averaging fine-tuned models has171

led to a surge of merging methods, aimed at steer-172

ing models’ behavior in desired way. A prominent173

example is multi-task learning via merging, where174

accounting for parameter importance (Matena and175

Raffel, 2022) and minimizing prediction differ-176

ences to the fine-tuned models (Jin et al., 2022)177

are shown to be effective. While these methods178

relies on statistics that are expensive to compute,179

Task Arithmetic (Ilharco et al., 2022) presents a180

cost-effective and scalable method of adding the181

weighted average of task vectors (i.e., fine-tuned182

part of parameters) to the pre-trained model. Subse-183

quent studies are dedicated to pre-processing task184

vectors to reduce interference across models (Ya-185

dav et al., 2024; Yu et al., 2024; Deep et al., 2024).186

Moreover, distillation is proposed for architecture187

alignment by FUSECHAT (Wan et al., 2024). Our188

distill-merge pipeline and dynamic dropping strat-189

egy aligns with this line of research, however we190

are focused on editing task vectors to reduce bias191

and improve accuracy.192

3 Bias Ratio193

The metrics used to evaluate a model’s bias (or fair-194

ness) remain a subject of ongoing dialogue, with195

no clear consensus yet (Caton and Haas, 2024).196

Previous studies have employed various evaluation197

metrics to assess bias. In this work, we introduce198

the Bias Ratio (BR) as a measure of a model’s bias,199

which is based on the quantities of True Positives200

(TP), False Positives (FP), True Negatives (TN),201

and False Negatives (FN).202

BR =
FP

FP + TN
− FN

FN + TP
(1)203

The Bias Ratio (BR) ranges from −1 to 1, where204

its absolute value indicates the magnitude of bias,205

and its sign denotes the direction. For instance, a206

BR value of 0.8 reflects a relatively high degree207

of positive bias, whereas a BR of −0.1 suggests208

a relatively low degree of negative bias. While209

previous studies have primarily conducted qualita-210

tive analyses of bias based on TP, TN, FP, and FN,211

we propose a quantitative metric to systematically212

assess both the degree and direction of bias.213

4 Method 214

Focusing on a two-way classification task (e.g., 215

sarcasm detection), suppose we are given two 216

MLLMs, a positive-biased model and a negative- 217

biased model: A positive-biased model tends to 218

classify an input as positive sample, represented by 219

high recall and low precision (Table 1). Likewise, 220

a negative-biased model is inclined to classify an 221

input as negative sample, represented by low recall 222

and high precision (Table 1). 223

Then we apply our proposed 3DM framework 224

following three steps, as illustrated in Fig. 2: (1) 225

knowledge distillation for architecture alignment; 226

(2) dynamic dropping strategy that filters out delta 227

parameters based on the contribution to accuracy 228

and bias; (3) merging the positive-biased delta pa- 229

rameters and negative-biased delta parameters to 230

cancel out predictive bias. 231

4.1 Architecture Alignment via Distillation 232

An intuitive way to mitigate bias is to merge a 233

positive-biased model and a negative-biased model 234

to cancel out the bias. However, the diverse ecosys- 235

tem of MLLMs makes it challenging to guaran- 236

tee those two models to share the same architec- 237

ture, blocking them from being merged through 238

parameter-wise operations. Knowledge distillation 239

provides a viable solution by reshaping the two 240

models into the same architecture, while preserv- 241

ing the predictive accuracy and bias of each model. 242

Hence we start by distilling the two types of mod- 243

els and proceed to model merging (Sec. 4.2, 4.3) 244

on the basis of compatible architecture. 245

Knowledge distillation (Gou et al., 2021) typi- 246

cally follows a teacher-student structure, where the 247

teacher model’s output (generated by the prompt 248

proposed in Sec. 5.1.2) supervises the student 249

model such that the student model inherits the be- 250

havior of the teacher model. Note that the student 251

model is not required to be smaller than the teacher 252

model in our case, as our goal of knowledge distil- 253

lation does not lie in compression. 254

Specially, we fine-tune the pre-trained model us- 255

ing pseudo labels generated by a teacher model (i.e., 256

either positive-biased model or negative-biased 257

model). We minimize cross-entropy loss evaluated 258

on the pseudo labels: 259

Lce = −
m∑
t=1

logP (ŷt | x, ŷ<t) (2) 260
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2. Dynamic Dropping for debiasing1. Distillation for architecture alignment 3. Merging

Figure 2: Overview of 3DM framework. First, positive-biased model and negative-biased model are distilled to a
base student model to share an identical architecture. Second, dynamic dropping assigns a drop rate to each delta
parameter based on the discrepancy between the positive-biased model and the negative-biased model. Then, sparse
task vectors after dropping are added to the base model to build a debiased model.

where {ŷi}mi=1 is the pseudo label of length m gen-261

erated by teacher model. In the context of sarcasm262

detection, x is a pair of input text and image and263

{ŷi}mi=1 is an answer sequence indicating whether264

the input pair contains sarcasm.265

4.2 Dynamic Dropping266

Merging a positive-biased model and a negative-267

biased model is in general effective in alleviating268

the bias. In this section, we further propose dy-269

namic dropping, aiming to improve accuracy and270

F1-score while simultaneously reducing bias.271

In model merging, delta parameters are defined272

as the subtraction of parameters of base model from273

the fine-tuned model, and they can be understood as274

task vectors (Ilharco et al., 2022). Findings by Yu275

et al. (2024) suggest that one could randomly zero-276

out delta parameters of an LLM with a drop rate of277

p and re-scale the remaining ones by 1/(1−p) with-278

out impacting the model’s performance. This spar-279

sification strategy—coined as DARE—has been280

shown to be helpful in reducing parameter inter-281

ference among the models to be merged. How-282

ever, DARE assigns the same drop rate for all delta283

parameters. Conversely, the drop rate of a delta284

parameter should ideally be determined by its con-285

tribution to improving accuracy and reducing bias.286

That is, "important" delta parameters should be287

preserved by a higher probability.288

Delta Parameters We merge the distilled289

positive-biased model and negative-biased model290

by editing their respective delta parameters and 291

combining those to the base student model. Delta 292

parameters are defined as: 293

dPij = WP
ij −W base

ij (3) 294

295
dNij = WN

ij −W base
ij (4) 296

where W base ∈ Rm×n is a parameter matrix of the 297

base model and WP and WN are the ones distilled 298

from positive-biased model and negative-biased 299

model, respectively. i and j denotes position (i, j) 300

of the parameter in W . 301

Classification of Delta Parameters. In terms of 302

which delta parameters are more responsible for 303

boosting model’s accuracy and suppressing bias, 304

we suggest the following criteria for classifying 305

delta parameters into three categories: 306

1. Bias-free Delta (Fig. 3(a)), where dPij and dNij 307

have the same sign, i.e. dPijd
N
ij > 0. 308

2. Unidirectional Delta (Fig. 3(b)), where dPij 309

and dNij have the opposite sign, and the mag- 310

nitude of one dominates the magnitude of the 311

other, i.e. dPijd
N
ij < 0 and |dPij + dNij | > c 312

where c is a threshold. 313

3. Bidirectional Delta (Fig. 3(c)), where dPij and 314

dNij have the opposite signs, and the magni- 315

tudes of both are comparable, i.e. dPijd
N
ij < 0 316

and |dPij + dNij | < c. 317
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Figure 3: Configurations of delta parameters under
different conditions. The delta parameter from the
positive-biased model (blue) and the negative-biased
model (pink) can exhibit (a) the same sign, (b) opposite
signs with a large magnitude difference, or (c) opposite
signs with comparable magnitudes (dashed).

The above criteria follows from our hypothe-318

sis about the roles of delta parameters: (1) Delta319

parameters with the same sign indicates a consis-320

tent direction in parameter updates by the positive-321

biased model and negative-biased model, poten-322

tially implying salient deltas that are associated323

with accuracy; (2) Given that positive-biased model324

and negative-biased model are best distinguished325

by their bias, those delta parameters with the oppo-326

site sign have greater contribution to bias, in which327

bidirectional delta may lead to severer interference328

while merging than unidirectional delta.329

Towards Adaptive Drop Rate via Dynamic Drop-330

ping. Our classification of delta parameters moti-331

vates us to assign increasing drop rates for bias-free332

delta, unidirectional delta, and bidirectional delta.333

In light of this, we present dynamic dropping,334

a strategy of applying adaptive drop rate pij at a335

parameter-level:336

pij =

0 if dPijd
N
ij ≥ 0

1− |dPij+dNij |
|dPij |+|dNij |

if dPijd
N
ij < 0

(5)337

Here, pij is the drop rate betwen 0 and 1. Intu-338

itively, Eq. 5 excludes bias-free delta from dropout339

operation, and for dPijd
N
ij < 0, Eq. 5 imposes higher340

drop rate on bidirectional delta than on unidirec-341

tional delta. Noted, we implement a synchronized342

dropping mechanism where delta parameters at the343

same position are either dropped or retained simul-344

taneously.345

After dynamic dropping, each remaining delta346

parameter is rescaled by 1/(1 − pij) to preserve347

the expectation of input embeddings, as elaborated348

in Yu et al. (2024).349

MMSD1.0 All Positive Negative

Train 19816 8642 11174
Validation 2410 959 1451

Test 2409 959 1450

Table 2: Composition of MMSD1.0 dataset.

MMSD2.0 All Positive Negative

Train 19816 9572 10240
Validation 2410 1042 1368

Test 2409 1037 1372

Table 3: Composition of MMSD2.0 dataset.

4.3 Parameter Merging 350

Let the delta parameters after dynamic dropping 351

and re-scaling be d̂Pij and d̂Nij . Then the average of 352

d̂Pij and d̂Nij is added to the base model parameter 353

to derive the merged parameter W ∗
ij : 354

W ∗
ij = 0.5d̂Pij + 0.5d̂Nij +W base

ij (6) 355

W ∗ is the final model weights of our 3DM method, 356

where bias is reduced and the overall perforamnce 357

is boosted. 358

5 Experiments 359

In this section, we first introduce the experimental 360

setup, including the datasets, prompts, base models, 361

and baselines. Then, we design experiments to 362

validate our method. Distillation (5.2), merging 363

(5.3), ensembling (5.5), and generalizability (5.6) 364

are analyzed in this section. 365

5.1 Experimental Setup 366

5.1.1 Dataset 367

We validate our approach on MMSD2.0 (Qin 368

et al., 2023), a multi-modal sarcasm detection 369

dataset whose test set contains 2409 sentences 370

along with images, and we test the generalizability 371

on MMSD1.0 (Cai et al., 2019). See Table 3 for 372

dataset statistics. 373

5.1.2 Implementation Details 374

Prompt Template. We use a fixed template to 375

format the prompt. The template is carefully de- 376

signed to ensure consistency across all samples 377

and to minimize any potential bias introduced by 378

expression. The following prompt template is used: 379

"<image>This is an image with: ” as the cap- 380

tion. Is the image-text pair sarcastic?First answer 381

the question with yes or no, then explain your rea- 382

sons." 383
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Figure 4: Visualization of the percentage of different
types of parameters we encounter when merging. Blue
and red represent the sign of dPij and dNij being same and
different. The y axis represents the last y layers in the
model.

Knowledge Distillation. To examine the validity384

of knowledge distillation in transferring both accu-385

racy and bias from the teacher models, we choose386

LLaVA-1.5-7b (Liu et al., 2023) and InternVL-2.5-387

8b (Chen et al., 2024) as student models (base mod-388

els), and select LLaVA-1.5-7b and ChatGLM4-9b389

(GLM et al., 2024) as teacher models. Our choices390

of small-sized MLLMs are intended to show that391

3DM does not necessitate any pre-existing sarcasm392

detection capabilities in the student models.393

Dynamic Dropping. To assess the effectiveness394

of dynamic dropping, we fix InternVL as the base395

model and obtain positive and negative delta param-396

eters distilled from LLaVA and ChatGLM, respec-397

tively. Choosing InternVL is informed by empirical398

observations (See Table 4), indicating that the pre-399

trained InternVL exhibits weak bias (BR = 0.185)400

relatively, and has no pre-existing knowledge of401

sarcasm detection (Acc ≈ 0.5), making it an ap-402

propriate candidate for our experiment.403

Hyperparameter Searching The fixed drop rate404

of DARE and our ablation study (unused in 3DM)405

is set to 0.7, which is the result of tuning on the406

validation set of MMSD2.0 (Table 8).407

5.1.3 Baselines408

We compare 3DM with merging baselines includ-409

ing Average Merging (Wortsman et al., 2022),410

TIES (Yadav et al., 2024) and DARE (Yu et al.,411

2024), in addition to ensembling. TIES merges412

models by drop-elect-merge operations, where the413

"drop" step mitigates interference by removing re-414

dundant delta parameters based on their magni-415

tudes.416

5.2 Distillation Experiments 417

Table 4 and Table 5 present the performance and 418

bias of both teacher models and student models 419

after distillation. As observed, the student models 420

effectively inherit the bias direction of their respec- 421

tive teacher models, while also achieving improved 422

performance, except for the F1-score of LLaVA 423

base model distilled from ChatGLM4. These re- 424

sults demonstrate that we can successfully prepare 425

models for merging-based debiasing through dis- 426

tillation, without the need for elaborate training 427

labels. 428

For the subsequent merging experiments, we 429

apply our proposed distill-merge pipeline for de- 430

biasing when LLaVA serves as the student model. 431

For InternVL as the student model, we further com- 432

pare our proposed dynamic dropping method with 433

baseline merging approaches, as InternVL itself 434

exhibits a weak bias and can therefore be used as 435

the base model. 436

5.3 Merging Experiments 437

This section analyzes the results on the testing set 438

of MMSD2.0 (Qin et al., 2023). 439

For the LLaVA base model, we compare the 440

performance of merged models against their orig- 441

inal counterparts. As shown in Table 5, the aver- 442

age merging strategy fails to surpass the negative- 443

biased model. However, applying DARE (fixed 444

dropping) leads to significant improvements, with 445

both accuracy and F1-score approximating those 446

of the zero-shot inference of teacher models, along- 447

side a substantial reduction in the absolute value 448

of BR. This highlights the potential of our distill- 449

merge pipeline for debiasing tasks when combined 450

with a well-designed merging method. 451

Similarly, Table 4 implies that all merging strate- 452

gies significantly reduce the absolute value of BR, 453

compared to student base models distilled from 454

biased models into InternVL, further demonstrat- 455

ing the effectiveness of our distill-merge pipeline. 456

Moreover, 3DM, which introduces a tailored drop- 457

ping mechanism in the "merge" phase, achieves 458

state-of-the-art performance in accuracy, F1-score 459

and BR across all merging approaches. This under- 460

scores the effectiveness and superiority of dynamic 461

dropping. 462

We provide insights into why 3DM outperforms 463

other merging approaches. While TIES mitigates 464

interference between delta parameters through sign 465

selection, it struggles in cases like Fig. 3(c), where 466
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Model Method Strategy Acc F1 TP FP TN FN Bias direction Bias Ratio

LLaVA-v1.5-7b / zero-shot inference 0.516 0.628 982 1110 262 55 + 0.765
ChatGLM4-9b / zero-shot inference 0.689 0.555 466 177 1195 571 - -0.422

InternVL-2.5-8b / zero-shot inference 0.499 0.509 625 796 576 412 weak 0.183

InternVL-2.5-8b

Distillation
positive learning 0.543 0.629 934 998 374 103 + 0.628
negative learning 0.644 0.428 321 141 1231 716 - -0.588

Merging

average merging 0.688 0.614 599 314 1058 438 weak -0.194
TIES 0.648 0.484 397 208 1164 640 - -0.466

DARE 0.684 0.609 592 316 1056 445 weak -0.199
3DM 0.697 0.643 658 351 1021 379 weak -0.110

Ensembling ensembling 0.663 0.516 431 205 1159 605 - -0.434

Table 4: Results of applying multiple debiasing methods, including average merging, fixed dropping (DARE), our
proposed 3DM and ensembling methods. "+" and "-" indicate that the model tends to give positive and negative
answers.

Model Method Strategy Acc F1 TP FP TN FN Bias direction Bias Ratio

LLaVA-v1.5-7b

Distillation positive learning 0.516 0.628 982 1110 262 55 + 0.765
negative learning 0.710 0.666 572 233 1139 465 - -0.279

Merging average merging 0.671 0.474 357 113 1259 680 - -0.573
DARE 0.714 0.649 617 290 1082 400 weak -0.189

Ensembling ensembling 0.716 0.693 773 421 951 264 weak 0.05

Table 5: Results of applying debiasing methods on LLaVA-based models. Because LLaVA itself has a positive bias,
we apply the original model to the "positive learning" row.

Model Ablation type Acc F1 TP FP TN FN Bias direction Bias Ratio

InternVL-2.5-8b

Bias-free 0.663 0.661 790 564 808 247 weak 0.173
Uni. & Bi. 0.649 0.477 386 195 1177 651 - -0.486

Async. 0.691 0.637 654 362 1010 383 weak -0.105
3DM 0.697 0.643 658 351 1021 379 weak -0.110

Table 6: Ablation study. In 3DM, we classify each position into two categories based on their signs. In this part, we
remove one of them, and test the method’s performance. We also examine the performance of the synchronized
dropping mechanism.

it may remain on the wrong side. DARE, on the467

other hand, applies a uniform drop rate to all delta468

parameters, disregarding their distinct roles. How-469

ever, as illustrated in Fig. 4, the proportion of bias-470

free delta parameters (blue) is comparable to that471

of unidirectional and bidirectional delta parameters472

(red), highlighting the necessity of dynamically as-473

signing drop rates based on their roles (Sec. 4.2)474

and merging conditions (Fig. 3).475

5.4 Ablation Study476

To better understand the role of dynamic dropping477

in 3DM, we conduct an ablation study by modify-478

ing key components of the mechanism.479

As shown in Table 6, Bias-free, which replaces480

the adaptive drop rates of unidirectional and bidi-481

rectional deltas in Eq. 5 with a fixed rate, results in482

lower accuracy, along with a higher absolute value483

of BR. This suggests that a fixed drop rate fails to484

effectively leverage the variations in dPij and dNij . 485

Similarly, Uni. & Bi., which follows DARE by ap- 486

plying a fixed drop rate to bias-free deltas instead of 487

fully preserving them, also performs suboptimally 488

compared to 3DM. 489

Additionally, we evaluate a less aggressive strat- 490

egy than 3DM (synchronized dropping), called 491

Async., which drops delta parameters individually 492

based on Eq. 5. This reduces the likelihood of si- 493

multaneously eliminating delta parameters1 in the 494

scenario shown in Fig. 3(c). While this approach 495

achieves a slightly lower BR, it suffers a small 496

drop in accuracy and F1-score. This could be due 497

to it tends to retain a delta parameter in a single 498

wrong direction, thus degenerating into TIES. This 499

reinforces the effectiveness of the synchronized 500

dropping mechanism, which not only preserves 501

1The final parameter at that position defaults to the base
model’s.
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Model Method Strategy Acc F1 TP FP TN FN Bias direction Bias Ratio

LLaVA-v1.5-7b / zero-shot inference 0.445 0.587 952 1331 119 7 + 0.911
ChatGLM4-9b / zero-shot inference 0.713 0.587 492 225 1225 467 - -0.332

InternVL-2.5-8b / zero-shot inference 0.483 0.473 559 846 604 400 weak 0.166

InternVL-2.5-8b

Distillation
positive learning 0.501 0.592 871 1113 337 88 + 0.676
negative learning 0.667 0.466 350 193 1257 609 - -0.502

Merging

average merging 0.691 0.619 605 390 1060 354 weak -0.100
TIES 0.676 0.519 422 244 1206 537 - -0.392

DARE 0.686 0.613 600 397 1053 359 weak -0.101
3DM 0.691 0.636 651 436 1014 308 weak -0.020

Ensembling ensembling 0.680 0.530 433 241 1200 526 - -0.381

Table 7: Performance of methods on MMSD1.0 dataset.

flexibility in handling unidirectional deltas but also502

forces the dropping of delta parameters in the bidi-503

rectional delta condition, where they may introduce504

greater bias or interference.505

5.5 Comparison with Ensemble506

We conduct a systematic comparison between our507

3DM method and ensemble approaches. For sar-508

casm detection, ensemble methods generate indi-509

vidual probability distributions and aggregate them510

for final predictions. While achieving acceptable511

performance, these methods incur substantial com-512

putational overhead, with inference costs scaling513

as O(n), compared to O(1) for merging methods.514

This establishes a fundamental advantage for merg-515

ing approaches.516

In our experiments, we implement basic averag-517

ing ensemble, where model distributions are arith-518

metically averaged. As shown in Table 4, Table519

5, and Table 7, this approach demonstrates limited520

effectiveness on the testing dataset. Although more521

sophisticated ensemble techniques might surpass522

3DM’s performance, they cannot overcome the in-523

herent computational limitations of all ensemble524

methods, which remain a fundamental constraint525

compared to merging approaches.526

5.6 Generalizability Analysis527

In order to test the generalizability of our method,528

we validate our method on the testing set of529

MMSD1.0 (Cai et al., 2019). We retain the check-530

points in Sec. 5.2, and apply average merging,531

TIES, DARE and 3DM in exactly the same way532

as Sec. 5.3, but on the MMSD1.0 dataset. Table533

7 presents the results of multiple methods, where534

3DM exhibits the highest accuracy, the highest F1-535

score, and the lowest absolute value of BR. More-536

over, all merging-based methods reduce the ab-537

solute value of BR. The results in Table 7 imply 538

comparable tendency with Table 4, demonstrating 539

the advanced generalizability of 3DM. 540

6 Conclusion 541

In this study, we present a comprehensive analy- 542

sis of biases in MLLMs, empirically demonstrating 543

that the majority of existing MLLMs exhibit signifi- 544

cant biases in sarcasm detection tasks, with varying 545

directional tendencies. Our work represents the 546

first systematic effort to develop an architecture- 547

agnostic merging framework specifically designed 548

to address and mitigate biases in models with di- 549

vergent bias orientations, particularly in debiasing 550

tasks. 551

The core contributions of our research include: 552

(1) a generalized distill-merge pipeline applicable 553

to both black-box and white-box MLLMs, and (2) a 554

novel dynamic dropping mechanism that assigns in- 555

dividualized drop rates to delta parameters based on 556

each parameter’s functional role in the model. No- 557

tably, our distill-merge pipeline serves as a general, 558

plug-and-play component that can be seamlessly 559

integrated into various merging methodologies. 560

This research establishes a new paradigm for 561

bias mitigation in MLLMs through advanced merg- 562

ing techniques, while simultaneously introducing a 563

parameter-specific analytical framework for under- 564

standing and utilizing delta parameters. We antici- 565

pate that our findings will stimulate further research 566

in this emerging area of MLLM optimization and 567

bias reducing. 568

7 Limitations 569

In this study, we introduce a distill-merge pipeline 570

designed for architectural alignment, alongside a 571

dynamic merging mechanism that assigns a unique 572

drop rate for each delta parameter. Nonetheless, 573
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the current implementation of assigning drop rates574

overlooks the intricate interplay of synergistic and575

antagonistic interactions among multiple delta pa-576

rameters, which could potentially influence the op-577

timization process and outcomes. For instance,578

several delta parameters altogether contributes to579

biases, while any one of them individually can not.580

This limitation suggests a fertile ground for future581

research to explore and integrate these complex582

parameter interactions, thereby refining the mecha-583

nism’s efficacy and robustness.584

Ethics Statement585

Use of AI Assistants We have employed Chat-586

GPT as a writing assistant, primarily for polishing587

the text after the initial composition.588

8 Appendix589

Hyperparameter Tuning for DARE We search590

the hyperparameter on the validation set of591

MMSD2.0, and report the result in Table 8. Based592

on the result, we select 0.7 as the drop rate for593

DARE in our experiment.594
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