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ABSTRACT

Cross-lingual alignment of word embeddings play an important role in knowl-
edge transfer across languages, for improving machine translation and other
multi-lingual applications. Current unsupervised approaches rely on similari-
ties in geometric structure of word embedding spaces across languages, to learn
structure-preserving linear transformations using adversarial networks and refine-
ment strategies. However, such techniques, in practice, tend to suffer from insta-
bility and convergence issues, requiring tedious fine-tuning for precise parameter
setting. This paper proposes BioSpere, a novel framework for unsupervised map-
ping of bi-lingual word embeddings onto a shared vector space, by combining
adversarial initialization and refinement procedure with point set registration al-
gorithm used in image processing. We show that our framework alleviates the
shortcomings of existing methodologies, and is relatively invariant to variable ad-
versarial learning performance, depicting robustness in terms of parameter choices
and training losses. Experimental evaluation on parallel dictionary induction task
demonstrates state-of-the-art results for our framework on diverse language pairs.

1 INTRODUCTION AND BACKGROUND

With the success of distributed word representation, like Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and FastText (Bojanowski et al., 2017), in capturing rich semantic
meaning, the use of these embeddings has permeated a wide range of Natural Language Processing
(NLP) tasks such as text classification, document clustering, text summarization and question an-
swering (Klementiev et al., 2012) to name a few. Unsupervised learning of such continuous high
dimensional vector representation for words rely on the distributional hypothesis (Harris, 1954).

Motivation. As a natural generalization, methods for obtaining multi-lingual word embeddings
across diverse languages have recently gained significant attention in the NLP research commu-
nity (Wang et al., 2020). Learning cross-lingual word embeddings (CLWE) entails mapping the
vocabularies of different languages onto a single vector space for capturing syntactic and semantic
similarity of words across languages boundaries (Upadhyay et al., 2016). Thus, CLWE provides an
effective approach for knowledge transfer across languages for several downstream linguistics tasks
such as machine translation (Artetxe et al., 2018a; Lample et al., 2018a;b), POS tagging (Zhang
et al., 2016), dependency parsing (Ahmad et al., 2019), named entity recognition (Xie et al., 2018;
Chen et al., 2019), entity linking (Tsai & Roth, 2016), language inference (Conneau et al., 2018b)
and low-resource language understanding (Xiao & Guo, 2014). In fact, word alignment across lan-
guages also finds interesting applications in the study of cultural connotations (Kozlowski et al.,
2019) and spatio-linguistic commonalities (Zwarts, 2017; Yun & Choi, 2018; Pederson et al., 1998).

Linguistic Correlation. Monolingual representation spaces learnt independently for different lan-
guages tend to exhibit similarity in terms of geometric properties and orientations (Mikolov &
Sutskever, 2013). For example, the vector distribution of numbers and animals in English show a
similar geometric constellation formation as their Spanish counterparts. Further, the frequency of
words across languages have been shown to follow the Zipf’s distribution 1, with nearly 70% most
frequent word overlap (Aldarmaki et al., 2018) and 60% synonym overlap (Dinu et al., 2015) across
language pairs. Existing techniques for extracting cross-lingual word correspondences rely on above
inter-dependencies to efficiently learn transformations across the monolingual embedding spaces.

1observed on 10 million words from Wikipages across 30 languages as shown in en.wikipedia.org/wiki/Zipf’s_law
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State-of-the-art & Challenges. Early approaches for directly obtaining multi-lingual word embed-
dings relied on the availability of large parallel corpora (Gouws et al., 2015) or document-aligned
comparable corpora (Mogadala & Rettinger, 2016; Vulić & Moens, 2016). However, such methods
are not scalable as annotations are expensive and large parallel datasets, especially for low-resource
languages, are scarce in practice. To address the above challenges, linear transformations between
two monolingual embedding space using small manually created bi-lingual dictionaries were pro-
posed (Mikolov & Sutskever, 2013; Artetxe et al., 2016). Words having similar surface forms across
languages were used to induce seed dictionaries and other augmented refinement strategies were
explored in the semi-supervised approaches of Artetxe et al. (2017); Zhou et al. (2019); Doval et al.
(2018). Subsequently, improvements in orthogonality and optimization constraints were explored
for generalization beyond bi-lingual settings for supervised cross-lingual alignment and joint train-
ing methods (Joulin et al., 2018; Jawanpuria et al., 2019; Alaux et al., 2019; Wang et al., 2020).

Unsupervised framework for bi-lingual word alignment was first proposed by Barone (2016); Zhang
et al. (2017a;b) using adversarial training. The use of post-mapping refinements were shown to
produce high quality results in the MUSE framework (Conneau et al., 2018a) across diverse lan-
guages, and was used for machine translation system in (Lample et al., 2018a;b). Parallel dictionary
construction using CSLS (Conneau et al., 2018a) (adopted in this paper) or inverted softmax (Smith
et al., 2017) was shown to tackle the “hubness problem” (Radovanović et al., 2010) caused due
to highly dense vector space regions (called hubs), which adversely affects reliable retrieval of bi-
lingual word translation pairs. However, the performance of adversarial learning techniques have
been shown to suffer from instability, convergence issues, and dependence of precise parameter
settings. Further, Søgaard et al. (2018) found the above unsupervised approaches to fail for morpho-
logically rich languages. Hence, optimization formulations using Gromov-Wasserstein, Sinkhorn
distance, and Iterative Closest Point were explored (Grave et al., 2019; Alvarez-Melis & Jaakkola,
2018; Xu et al., 2018; Hoshen & Wolf, 2018). Recently, adversarial auto-encoders using cyclic loss
optimization in latent space supplemented with refinements (Mohiuddin & Joty, 2019; 2020) has
achieved state-of-the-art results for bi-lingual word embedding alignment on diverse languages.

Proposed Approach. In this paper, we propose BioSpere (Bi-Lingual Word Translation via Point
Set Registration), a novel framework for fully unsupervised bi-lingual word correspondence induc-
tion. Given two independently learnt monolingual word embedding space, BioSpere uses a combi-
nation of adversarial training, refinement procedure, and point set registration approach to efficiently
extract word translations. Specifically, the input vector spaces are initially aligned using CycleGAN,
a Generative Adversarial Network (GAN) trained using cycle-consistency loss optimization criteria,
as word translation pairs are symmetric, i.e., if word wx is a translation of wy , then wy is also a
translation of wx. The cyclic loss criteria has been shown to be better in capturing bi-directional dis-
tributional similarities (Xu et al., 2018) and in training adversarial networks in (Mohiuddin & Joty,
2020) (auto-encoders with a latent space of the embeddings). The word alignments obtained from
CycleGAN are then refined via symmetric re-whitening or spherical transformation (Artetxe et al.,
2018b) to remove correlations among the different components of the language embeddings. It is
interesting to note that extracting word correspondences is akin to point set registration (Zhu et al.,
2019) in image processing. To this end, BioSpere finally utilized the Coherent Point Drift (CPD)
algorithm (Myronenko & Song, 2010) to compute an affine transformation between the aligned and
refined vector spaces. Our choice of CPD hinges on two key insights: (i) CPD inherently works
on the concept of Gaussian Mixture Model (GMM), which has been shown to tackle the “hub-
ness” problem (Zhou et al., 2019); and (ii) CPD being an unsupervised approach might reduce
error propagation from the adversarial or refinement steps, as opposed to the supervised Procrustes
refinement (Schönemann, 1966) (extensively used in the literature) that requires an intermediate
synthetic (possibly erroneous) dictionary creation from the adversarial training stage. Extensive em-
pirical results on diverse languages (reported in Section 3) demonstrate that the proposed BioSpere
framework outperforms existing approaches in terms of accuracy for parallel dictionary creation.
We further show that BioSpere can robustly handle adversarial convergences issues, sub-optimal
parameter settings, as well as morphologically rich and low-resource languages.

Contributions. In a nutshell, the key contributions of this paper can be described as follows:

• BioSpere, an unsupervised framework for learning bi-lingual word translations from two
independent monolingual embedding spaces – thus aligning the vocabularies to a common
vector representation for capturing semantic similarities between words across languages;
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Figure 1: Toy illustration (on en-ro language pair) of the different modules of BioSpere – (a) Align,
(b) Correspond, (c) Transform, and (d) Generate – for unsupervised parallel dictionary construction.

• A novel combination of adversarial training, refinement procedure, and point set registra-
tion algorithm – coupling the advantages of cycle-consistence loss and Gaussian Mixture
Model – to alleviate the challenges for word embedding space alignment;
• Unsupervised stopping criterion incorporating cycle-loss consistency measure, with better

correlation with mapping quality, for selection of adversarial training model parameters;
• Experimental evaluation on diverse language pairs showcasing enhanced accuracy (nearly

at par with supervised approaches) compared to existing techniques, for parallel dictionary
construction task, even for small vocabulary sizes; and,
• Robustness study of BioSpere framework in efficiently handling hubness problem, depen-

dencies on adversarial learning convergence and precise parameter choice, as well as mor-
phologically rich or low-resourced languages.

2 FRAMEWORK

We assume the existence of two setsX = {xn}Nn=1 and Y = {ym}Mm=1 of word embeddings trained
independently on monolingual data from a source and a target language, respectively. The aim of
our BioSpere framework is to map each word in the source language to its translation in the target
language, in a manner that does not require any cross-lingual supervision. Equivalently, we wish to
align the two embedding sets in such a way that words that are semantically similar across languages
are close to each other.

To achieve this, we hinge on 4 modules, namely Align, Correspond, Transform and Generate
(ACTG) 2 A pictorial depiction of the overview of the functionality of the different modules is
presented in Figure 1. We now look at each module individually.

2.1 ALIGN

Our first module estimates an initial mapping using a domain-adversarial approach (Ganin et al.,
2016). Let x ∼ pdata(x) and y ∼ pdata(y) be the data distributions. We learn two linear mappings
F : X → Y and G : Y → X , that we refer to as forward and backward generators, respectively.
We then train a model DY to discriminate between synthetic target embeddings Ysyn = FX =
{Fxn}Nn=1, and real ones Y . Similarly, we train DX to discriminate between synthetic source
embeddings Xsyn = GY = {Gym}m=1M and X . Note the notation overloading: we have used F
and G to refer both to the parametric linear operators, as well as to the matrices of their parameters.
We continue this way for simplicity, unless the context makes the reference ambiguous.

This results in a two-player game, where the discriminators aim to distinguish real and synthetic
embeddings, while the generators aim at making their image as close to their codomain as possible,
prevent discriminators from making accurate predictions.

We resemble this game in our training objective, which includes two categories of terms. The
adversarial loss, formulated for matching the distribution of the synthetic embeddings to the real

2Inspired by the 4 bases (Adenine, Cytosine, Thymine & Guanine) in DNA, the building block of life.
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distribution. For the forward generator F : X → Y , and its corresponding discriminator DY , our
adversarial loss is:

Ladv(F,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (F (x))] (1)

We use a similar adversarial loss Ladv(G,DX , Y,X) for the backward generator G : Y → X and
its corresponding discriminator DX .

The second objective category is in line with the work of Mohiuddin & Joty (2020). Similar to them,
we note that an adversarial generator could map the same set of source embeddings to any random
permutation of target embeddings, as long as the synthetic distribution matches the target distribu-
tion. To account for this possibility, we argue that the learned generators should not contradict each
other, but should be cycle-consistent. That is, given a source embedding x, the forward translation
cycle should attempt to produce an output that coincides with x, i.e. G(F (x)) ≈ x. Analogously
for the backward translation cycle, G(F (y)) ≈ y. We capture this endeavour with the addition of a
cyclic loss to our objective:

Lcyc(F,G) = Ex∼data(x) ‖G(F (x))‖2 + ‖F (G(y))‖2 (2)

Following Conneau et al. (2018a), we make sure F andG remain roughly orthogonal during training
by alternating model parameter update with F ← (1 + β)F − β(FFT )F , proceeding analogously
for G. Intuitively, this preserves the monolingual quality of our embeddings by preserving their dot
product and l2 distances.

The output of this module are the two sets XA = F (X) and YA = G(Y ) of aligned embeddings
(the images of the learned transformations).

2.2 CORRESPOND

Our vanilla CPD results, despite better than previous adversarial networks, are not au par with su-
pervised work. To address this, we perform a set of refinement steps. In Correspond, the first
refinement module, we perform symmetric re-weighting, successfully applied in previous work
for word embedding alignment refinement(Artetxe et al., 2018a; 2016; 2017; Mohiuddin & Joty,
2020). This requires a seed parallel dictionary. We induce such a dictionary by considering mu-
tual nearest neighbours across the the original and mapped embeddings in both directions. That
is, given mappings f : X → Y and g : Y → X , the similarity between xn and ym is
σnm = δ(f(xn), ym) + δ(xn, g(ym)), where δ is a metric in both X and Y . Our metric of choice
is cross-domain similarity local scaling (CSLS) (Conneau et al., 2018a), shown by (Conneau et al.,
2018a) to effectively address the hubbness problem, stereotypical especially when working in high-
dimensional spaces. Using the bidirectional nature of our adversarial network when computing the
similarity has not been done in previous, work to our knowledge, and we found it to considerably
improve word translation performance. During dictionary induction, we only consider the 25K most
frequent words from the source and target languages.

In the first step of this module we length-normalise and mean-center X and Y , then apply a linear
transformation with corresponding whitening matrices Wx = (XTX)−1/2 and Wy = (Y TY )−1/2,
i.e. Xw = XWx and Yw = YWy . This makes the embedding dimensions ucorrelated among
themselves.

Next, let Xd and Y d be two matrices that reflect our seed dictionary, with Xd
i being the embedding

of a source word Y di being the embedding of its translation. We perform an orthogonal transforma-
tion with symmetric re-weighting. Specifically, we compute Xo = XwUS

1/2 and Yo = YwV S
1/2

where U , S, and V come from the singular value decomposition USV T = (Xd
w)
TY dw . This trans-

poses the source and target embeddings into a common vector space.

In a final step, we perform de-whitening, to restore the original covariance in the embedding
dimension distributions. That is, this module outputs XC = XoU

T (XTX)1/2U and YC =
YoV

T (Y TY )1/2V .

2.3 TRANSFORM

In this module we perform a further refinement of the transformed embeddings XC and YC using
affine Coherent Point Drift (CPD), a probabilistic framework suggested by Myronenko & Song
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(2010) to perform point set registration, particularly in computer vision applications. The main idea
is to consider the task of aligning the two embedding sets as a density estimation problem, where
one set represents Gaussian mixture model (GMM) centroids, and the other the data points. With
the two sets aligned, word translations can be obtained using the maximum of the GMM posterior
probability, given a source embedding. Specifically, we consider the embeddings in YC as GMM
centroids and the ones in XC as data points, generated by the GMM. The GMM density has has the
form:

p(x) =

M+1∑
m=1

p(m)p(x|m) (3)

where p(x|m) = 1
(2πσ2)D/2 exp

(
‖x−ym‖2

2σ2

)
and x ∈ XC , ym ∈ YC . We also add a uniform distri-

bution p(x|M + 1) = 1/N to account for outliers, resulting in a Uniform-Gaussian mixture model.
Following the authors, we use equal isotropic covariances σ2, and equal membership probabilities
P (m) = 1/M for all GMM components. We estimate the GMM centroid locations θ by minimising
the negative log-likelihood function:

L(θ, σ2) = −
N∑
n=1

log

M∑
m=1

P (m)p(x|m). (4)

We use the Expectation Maximization (EM) algorithm (Dempster et al., 1977). to find the parame-
ters θ and σ2. We direct the interested reader to a more detailed description of CPD provided by its
original authors(Myronenko & Song, 2010).

We use the affine version of CPD, which provides a tuple (R, t, s), where R is a rotation matrix, t is
a translation vector, and s is a scaling constant. The transformed source embedding set is computed
as XT = (RXT

C ∗ s + t)T . We run CPD twice for each language pair, once in each directions,
providing us with XT and YT .

2.4 GENERATE

We iterate between Correspond and Transform modules until an model selection criterion degrades
for two consecutive iterations. The criterion is specified in Section 2.5. Equipped with the final
XT and YT , we compute the final estimated parallel dictionary using the same procedure as in
Section 2.2. We compare this with ground truth parallel dictionaries to compute word translation
accuracy.

2.5 UNSUPERVISED MODEL SELECTION

Being in an unsupervised setting, we cannot use a validation set to direct us in choosing the best
performing setting of our framework. We follow approaches suggested in previous work to address
this issue, that we adapt to our framework. We follow Conneau et al. (2018a) in considering the
closeness of the source and target mapped embedding spaces. Specifically, we consider the 25K
most frequent source words, use CSLS to generate a translation for each of them, and compute the
average cosine similarity between these pairs. In our scenario, we consider similarity in both the
source and target spaces, as specified in Section 2.2, criterion that we found to be better linked to
word translation accuracy, compared to the unidirectional setting used in previous work (Conneau
et al., 2018a; Mohiuddin & Joty, 2020).

3 EMPIRICAL EVALUATION

In this section, we evaluate the performance of the proposed BioSpere framework in mapping the
input word embeddings onto a shared vector space, such that semantically similar words across
languages are close to each other (in terms of distance) in the common space. We benchmark
the accuracy of BioSpere against several existing approaches on the tasks of bi-lingual dictionary
induction and sentence translation retrieval across a diverse set of languages.

5
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3.1 EXPERIMENTAL SETUP

Dataset. Our experimental setup closely follows that of Conneau et al. (2018a), extensively used
in the literature. As input vocabulary, we use the FastText monolingual vector embeddings (with
a dimensionality of 300) (Bojanowski et al., 2017) of the top 200K most frequent words in each
language. We consider seven different language pairs including morphologically rich and low-
resourced languages. Specifically, we use English (en), German (de), French (fr), Spanish (es),
Russian (ru), Hebrew (he), Finnish (fi), and Romanian (ro) – a diverse mix of isolating, fusional and
agglutinative language with dependent and mixed marking as reported in Søgaard et al. (2018).

Evaluation. We report the Precision@1 (P@1) accuracy scores based on the CSLS criteria (Con-
neau et al., 2018a) for our empirical evaluations. In the word translation task, we use the gold dic-
tionary with 1,500 source test words (and full 200K target vocabulary) for different language pairs
(obtained from github.com/facebookresearch/MUSE). We also perform the above evaluations
with a smaller input vocabulary, to simulate scenarios of limited domain-specific resources.

Baselines. The performance of BioSpere is compared with the following unsupervised approaches:
(1) MUSE (Conneau et al., 2018a) – GAN (Goodfellow et al., 2014) trained for extracting a syn-

thetic parallel dictionary to learn transformations via Procrustes refinement (Schönemann, 1966) 3;
(2) Adv-Auto (Mohiuddin & Joty, 2020) – Current state-of-the-art using adversarial auto-encoder

to create synthetic dictionary, which is refined by symmetric re-whitening & Procrustes strategies 4;
(3) VecMap (Artetxe et al., 2018a) – Robust self-learning iterative algorithms exploiting structural

similarities between embedding spaces for alignment 5;
(4) SinkHorn (Xu et al., 2018): GAN trained using a combination of cyclic consistency loss and

Sinkhorn distance (Cuturi, 2013) as objective function;
(5) Non-Adv (Hoshen & Wolf, 2018) – Proposes an alternative approach using dimensionality re-

duction with Iterative Closest Point (Besl & McKay, 1992) algorithm to find word correspondences;
(6) Was-Proc (Grave et al., 2019) – A bi-stochastic matrix is computed using the assignment prob-

lem by jointly optimizing Wasserstein distance (Mémoli, 2011) and Procrustes transformation;
(7) GW-Proc (Alvarez-Melis & Jaakkola, 2018) – Word translation is formulated as an optimal

flow problem across different domains using Gromov-Wasserstein distance (Mémoli, 2011); and
(8) UMH (Alaux et al., 2019) – Uses correlation between multiple languages for jointly learning

embedding alignment using constraint optimization.

For completeness, we also report the accuracies achieved by state-of-the-art supervised approaches:
(1) RCSLS (Joulin et al., 2018): State-of-the-art supervised method for training a learning architec-

ture based on optimizing the CSLS criteria (Conneau et al., 2018a);
(2) GeoMM (Jawanpuria et al., 2019): Language specific geometric rotations are learnt, and subse-

quently a network architecture is trained to align the languages; and
(3) DeMa-BME (Zhou et al., 2019): Provides a weakly-supervised approach for learning a Gaussian

Mixture Model by characterizing the probability density between embeddings spaces.

Despite obtaining state of the art results, we emphasize that achieving the best possible accuracy
was not our focus. Rather, we aimed to build a framework robust to adversarial instability and data
noise. Most parameters were set to fixed values. As such, following Conneau et al. (2018a), we
only fed the adversarial discriminator with the 50K most frequent words; the discriminator had an
input dropout layer with rate 0.1. Production deployments may consider further parameter tuning.
In our experiments, we only tuned the weight assigned to the cyclic loss between 5 and 10, and ran
the framework under different random seeds, always picking the best model using the unsupervised
criterion.

3.2 RESULTS AND DISCUSSION

Word Translation. Similar to machine translation, this task involves the retrieval of the translation
of a given source word for a target language (from the target vocabulary). Observe, polysemy of
words and hubness in embedding space provide a significant challenge in this setting. We evaluate
the approaches using a similar setting and the ground-truth dictionaries from Conneau et al. (2018a).

3Code available at github.com/facebookresearch/MUSE
4Code from ntunlpsg.github.io/project/unsup-word-translation is updated as in Mohiuddin & Joty (2020)
5Code obtained from github.com/artetxem/vecmap
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Table 1: CSLS@1 results on well-resourced languages for the dataset of Conneau et al. (2018a).

Algorithm en-es en-de en-fr en-ru

→ ← → ← → ← → ←
Supervised Approaches

Non-Adv (Hoshen & Wolf, 2018) 81.4 82.9 73.5 72.4 81.1 82.4 51.7 63.7
DeMa-BME (Zhou et al., 2019) 82.8 85.4 77.2 75.1 83.2 83.5 49.2 63.6
GeoMM (Jawanpuria et al., 2019) 81.4 85.5 74.7 76.7 82.1 84.1 51.3 67.6
RCSLS (Joulin et al., 2018) 84.1 86.3 79.1 76.3 83.3 84.1 57.9 67.2

Unsupervised Approaches
SinkHorn (Xu et al., 2018)∗∗ 79.5 77.8 69.3 67.0 77.9 75.5 - -
Non-Adv (Hoshen & Wolf, 2018) 82.1 84.1 74.7 73.0 82.3 82.9 47.5 61.8
Was-Proc (Grave et al., 2019) 82.8 84.1 75.4 73.3 82.6 82.9 43.7 59.1
GW-Proc (Alvarez-Melis & Jaakkola, 2018) 81.7 80.4 71.9 72.8 81.3 78.9 45.1 43.7
MUSE (Conneau et al., 2018a) 81.7 83.3 74.0 72.2 82.3 82.1 44.0 59.1
VecMap (Artetxe et al., 2018a)†† 82.3 84.7 75.1 74.3 82.3 83.6 49.2 65.6
UMH (Alaux et al., 2019) 82.5 84.9 74.8 73.7 82.9 83.3 45.3 62.8
Adv-Auto (Mohiuddin & Joty, 2020) 83.0 85.2 76.2 74.7 82.3 83.5 47.6 -
BioSpere 83.1 85.0 75.7 75.2 82.4 83.8 49.5 66.1
∗∗ Uses cosine similarity instead of CSLS and failed to reasonably converge for en-ru as reported in Zhou et al. (2019)
†† Results taken from Zhou et al. (2019)

Table 2: CSLS@1 results on morphologically rich and
low-resource languages for Conneau et al. (2018a) data.

Algorithm en-fi en-he en-ro

→ ← → ← → ←
MUSE 43.7 53.7 36.9 - 57.8 66.0
VecMap 49.9 63.1 44.6 57.5 64.2 71.8
Adv-Auto 49.8 65.7 46.1 58.6 61.8 71.9
BioSpere 49.7 67.3 46.3 59.1 65.4 74.3

Table 3: CSLS@1 results for limited vocabulary word
translation on Conneau et al. (2018a) data.

Algorithm en-de en-fi en-ro

→ ← → ← → ←
MUSE 71.0 77.5 - 71.7 72.7 75.5
VecMap 72.5 78.4 62.4 76.7 77.2 78.9
Adv-Auto - - - - - -
BioSpere 72.8 79.4 60.0 73.3 76.3 80.7

From Table 1, we observe that our BioSpere framework provides state-of-the-art translation results
in nearly all of the language pairs. In fact, for certain language pairs like fr→en, the performance of
BioSpere is almost at par with existing supervised methods (83.8 compared to 84.1 by RCSLS).

However, the challenges in word translation are compounded for morphologically rich and low-
resources languages due to high vocabulary variation and limited accuracy of word embeddings
respectively. To this end, we explore the performance of the competing algorithms on Finnish,
Hebrew and Romanian – generally identified as “difficult” languages in the literature (Søgaard et al.,
2018). From Table 2 it can be seen that BioSpere significantly outperforms the existing approaches
with an accuracy improvement of 1.5% on average across the languages.

Limited Vocabulary. An interesting application for cross-lingual word embedding alignment is
translation tasks in domain-specific context. For example, an organization expanding its scale of
operations to geographically distributed markets and consumers. This would necessitate the efficient
expansion of supporting languages for existing documents like manuals, FAQs, etc. as well as for
customer services like Chatbots (Qiu et al., 2017; Massaro et al., 2018). Observe, that in such
cases, the domain-specific vocabulary is relatively small, depending on the organization’s range of
business range and limited training resources. We simulate such application scenario in this setting,
and observe the performances of the algorithms in face of with limited vocabulary.

The input mono-lingual word embeddings are limited to the 10K most frequent words (instead of
200K most frequent words) in each of the languages, which can potentially severely impact the
training stages of existing techniques. However, we initially study the word coverage of Wiki arti-
cles with varying vocabulary sizes. Figure 2 depicts the percentage of word coverage with varying
frequent word vocabulary sizes using the plain texts of Wikipedia articles from 2018 (Rosa, 2018).
It can be observed, that all the languages depict similar characteristics, with a plateau around 50-
75K vocabulary size. Recall, that our empirical setting is based on training the architectures on the
50K most frequent word embeddings. However, with around 10K vocabulary size, the coverage is
in general not overtly bad (around 5-10% lower), but provides valuable insights as to the robustness
to domain-specific or niche applications, and is hence used in this low vocabulary setting. From
Table 3, we see that BioSpere performs better than existing methods on most of the language pairs.

Ablation Study. Finally, to understand the effects of the different modules in BioSpere on the overall
performance, we perform ablation study by incrementally adding and removing the separate compo-
nents. Table 4 tabulates the obtained results on different language pairs (including morphologically
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Table 4: Ablation and Robustness Study: Effect of
the different modules on the overall word transla-
tion performance of BioSpere.

Algorithm en-de en-fi en-ro

→ ← → ← → ←
MUSE GAN 70.1 66.4 22.3 24.1 34.5 49.6
CycleGAN 71.2 70.7 28.7 48.7 43.5 48.7
CycleGAN 71.2 70.7 28.7 48.7 43.5 48.7
CycleGAN + Sym-Wh. 75.5 74.9 47.9 66.1 63.8 72.5
BioSpere 75.7 75.2 49.7 67.3 65.4 74.3
Bad-GAN 57.7 66.7 27.0 31.1 37.9 46.8
BioSpere with Bad-GAN 75.1 75.3 50.9 66.3 64.3 73.7
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rich and low-resourced). We observe, that the adversarial network, CycleGAN, using the cycle-loss
consistency optimization criteria, in general performs better than MUSE GAN, the traditional GAN
framework of Conneau et al. (2018a). In terms of refinement performed in the Correspond module
of BioSpere, we compared the performance of symmetric re-whitening (used in this work) with the
orthogonal Procrustes strategy. Both the refinement processes are seen to be comparable in perfor-
mance, however since Procrustes, by definition, is a supervised approach, errors from the adversarial
training in the Align module might be propagated, degrading the efficacy of the entire framework.
Finally, addition of the Coherent Point Drift point-set registration in the Transform module (i.e., the
complete BioSpere pipeline) is seen to further improve the results over the refinement strategy.

One important criticism for the performance adversarial training based alignment techniques is their
dependence on precise parameter settings to tackle convergence instability (reported previously in
our empirical results). Hence, we study the robustness of BioSpere to such issues, by intentionally
selecting a sub-optimal CycleGAN model (from the training epochs) as the final output from the
adversarial based Align module, denoted as Bad-GAN in Table 4. We observe BioSpere to robustly
handle such situations, and provide a final accuracy score that is comparable to that achieved with a
properly trained adversarial model selected based on our cyclic unsupervised criteria. Specifically,
for en → de and fi → en languages, the performance of Bad-GAN is around 15% worse than the
properly selected CycleGAN model, however, the final accuracy of BioSpere for word translation is
seen to differ by only 1% (Table 4) – depicting robustness to noisy training.

In summary, the above empirical evaluations showcase that our framework, BioSpere, provides bet-
ter unsupervised cross-lingual alignment of embedding spaces, by not only outperforming existing
techniques in terms of translation accuracy even on morphologically rich and low-resource lan-
guages, but also demonstrating robustness in gracefully handling potential adversarial training loss.

4 CONCLUSION

We introduced BioSpere, an unsupervised cross-lingual alignment framework for word embedding.
We use adversarial training with a cycle-consistency loss to induce a seed bidirectional mapping,
that we subsequently refine and generate word correspondences using point set registration method.
Extensive experiments on multiple languages for parallel dictionary creation not only demonstrate
state-of-the-art results for our framework, but also depict robustness to variable adversarial perfor-
mance, a considerable limitation of past work.
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