
Stochastic Approximation of Gaussian Free Energy
for Risk-Sensitive Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce a stochastic approximation rule for estimating the free energy from1

i.i.d. samples generated by a Gaussian distribution with unknown mean and vari-2

ance. The rule is a simple modification of the Rescorla-Wagner rule, where the3

(sigmoidal) stimulus is taken to be either the event of over- or underestimating a4

target value. Since the Gaussian free energy is known to be a certainty-equivalent5

sensitive to the mean and the variance, the learning rule has applications in risk-6

sensitive decision-making. In particular, we show how to use the rule in combina-7

tion with the temporal-difference error in order to obtain risk-sensitive, model-free8

reinforcement learning algorithms.9

1 Introduction10

Main contribution. Let N(x;µ, ρ) =
√

ρ
2π exp{−ρ2 (x− µ)2} be the Gaussian pdf with mean µ11

and precision ρ. Given a sequence x1, x2, . . . of i.i.d. samples drawn from N(x;µ, ρ) with unknown12

µ and ρ, consider the problem of estimating the free energy Fβ for a given inverse temperature β ∈ R,13

that is14

Fβ =
1

β
log

∫
R
N(x;µ, ρ) exp{βx} dx = µ+

β

2ρ
. (1)

This paper shows that (1) can be estimated using a surprisingly simple stochastic approximation rule.15

If v ∈ R is the current estimate and a new sample x arrives, update v according to16

v ← v + 2α · σβ(x− v) · (x− v), (2)

where α > 0 is a learning rate and σβ(z) is the scaled logistic sigmoid17

σβ(z) =
1

1 + exp{−βz} . (3)

The unique and stable fixed point of the learning rule (2) is equal to the desired free energy value18

v∗ = µ+ β
2ρ .19

Motivation. Risk-sensitivity, the susceptibility to the higher-order moments of the return, is neces-20

sary for the real-world deployment of AI agents. Wrong assumptions, lack of data, misspecification,21

limited computation, and adversarial attacks are just a handful of the countless sources of unforeseen22

perturbations that could be present at deployment time. Such perturbations can easily destabilize23

risk-neutral policies, because they only focus on maximizing expected return while entirely neglecting24

the variance. This poses serious safety concerns (Russell et al., 2015; Amodei et al., 2016; Leike25

et al., 2017).26
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Risk-sensitive control has a long history in control theory (Coraluppi, 1997) and is an active area27

of research within reinforcement learning (RL). There are multiple different approaches to risk-28

sensitivity in RL: for instance in Minimax RL, inspired by classical robust control theory, one derives29

a conservative worst-case policy over MDP parameter intervals (Nilim and El Ghaoui, 2005; Tamar30

et al., 2014); and the more recent CVaR approach relies on using the conditional-value-at-risk as a31

robust performance measure (Galichet et al., 2013; Cassel et al., 2018). We refer the reader to García32

and Fernández (2015) for a comprehensive overview. Here we focus on one of the earliest and most33

popular approaches (see references), consisting of the use of exponentially-transformed values, or34

equivalently, the free energy as the risk-sensitive certainty-equivalent (Bellman, 1957; Howard and35

Matheson, 1972).36

The certainty-equivalent of a stochastic value X ∈ R is defined as the representative deterministic37

value v ∈ R that a decision-maker uses as a summary of X for valuation purposes. To illustrate,38

consider a first-order Markov chain over discrete states S with transition kernel P (s′|s), state-emitted39

rewards R(s) ∈ R, and discount factor γ ∈ [0, 1). Typically RL methods use the expectation as the40

certainty-equivalent of stochastic transitions (Bertsekas and Tsitsiklis, 1995; Sutton and Barto, 2018).41

Therefore they compute the value V (s) of the current state s ∈ S by (recursively) aggregating the42

future values through their expectation, e.g.43

V (s) =

∫
P (s′|s){R(s′) + γV (s′)} ds′. (4)

Instead, Howard and Matheson (1972) proposed using the free energy as the certainty-equivalent,44

that is,45

V (s) = Fβ(s) =
1

β
log

∫
P (s′|s) exp

{
β[R(s′) + γV (s′)]

}
ds′, (5)

where β ∈ R is the inverse temperature parameter which determines whether the aggregation is46

risk-averse (β < 0), risk-seeking (β > 0), or even risk-neutral as a special case (β = 0). Indeed, if47

the future values are bounded, then Fβ(s) is sigmoidal in shape as a function of β, with three special48

values given by49

lim
β
Fβ(s) =


mins′{R(s′) + γV (s′)} if β → −∞;
E[R(S′) + γV (S′)|S = s] if β → 0;
maxs′{R(s′) + γV (s′)} if β → +∞.

(6)

These limit values highlight the sensitivity to the higher-order moments of the return. Because of this50

property, the free energy has been used as the certainty-equivalent for assessing the value of both51

actions and observations under limited control and model uncertainty respectively, each effect having52

their own inverse temperature. The work by Grau-Moya et al. (2016) is a demonstration of how to53

incorporate multiple types of effects in MDPs.54

The present work addresses a longstanding problem pointed out by Mihatsch and Neuneier (2002).55

An advantage of using expectations is that certainty-equivalents such as (4) are easily estimated56

using stochastic approximation schemes. For instance, consider the classical Robbins-Monro update57

(Robbins and Monro, 1951)58

v ← v + α · (x− v) (7)
where x ∼ P (x) is a stochastic target value, α is a learning rate, and v is the estimate of E[X].59

Substituting x = R(s′) + γV (s′) and v = V (s) leads to the popular TD(0) update (Sutton and Barto,60

1990):61

V (s)← V (s) + α(R(s′) + γV (s′)− V (s)). (8)
However, there is no model-free counterpart for estimating free energies (5) under general unknown62

distributions. The difficulty lies in that model-free updates rely on single (Monte-Carlo) unbiased63

samples, but these are not available in the case of the free energy due to the log-term on the r.h.s.64

of (5). This shortcoming led Mihatsch and Neuneier (2002) to propose the alternative risk-sensitive65

learning rule66

v ← v + α · u · (x− v), where u =

{
(1− κ) if (x− v) ≥ 0

(1 + κ) if (x− v) < 0
(9)

and where κ ∈ [−1; 1] is a risk-sensitivity parameter. While the heuristic (9) does produce risk-67

sensitive policies, these have no formal correspondence to free energies.68
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Figure 1: Update rule and its error function. a) shows the update f(x) to the estimate v caused by
the arrival of a sample x, weighted by its probability density. The expected update is determined
by comparing the integrals of the positive and negative lobes. b) Illustration of weighted update
functions f(x) for different values of the current estimate v. The positive lobes are either larger,
equal, or smaller than the negative lobes for a v that is either smaller, equal, or larger than the free
energy respectively. c) Error function implied by the update rule. For a risk-neutral (β = 0) estimator
the error function is equal to the quadratic error e(δ, 0) = 1

2δ
2. For a risk-averse estimator (β < 0),

the error function is lopsided, penalizing under-estimates stronger than over-estimates. Furthermore,
e(δ, β) is an even function in β.

As anticipated, our work contributes a simple model-free rule for estimating the free energy in the69

special case of Gaussian distributions. Starting from the Rescorla-Wagner rule70

v ← v + α · u · (x− v), (10)

where u ∈ {0, 1} is an indicator function marking the presence of a stimulus (Rescorla, 1972), we71

substitute u by twice the soft-indicator function σβ(x− v) of (3), which activates whenever v either72

over- or underestimates the target value x, depending on the sign of the risk-sensitivity parameter β.73

Using the substitutions appropriate for RL, we obtain the risk-sensitive TD(0)-rule74

V (s)← V (s) + 2α · σβ(δ) · δ, (11)

where δ = R(s′) + γV (s′) − V (s) is the standard temporal-difference error. The learning rule is75

trivial to implement, works as stated for tabular RL, and is easily adapted to the objective functions76

of deep RL methods (Mnih et al., 2015). Finally, the learning rule is also consistent with findings in77

computational neuroscience (Niv et al., 2012), e.g. predicting asymmetric updates that are stronger78

for negative prediction errors in the risk-averse case (Gershman, 2015).79

2 Analysis of the Learning Rule80

Our central result is the following lemma, which implies that the unique and stable fixed point of the81

expected learning dynamics of (2) is given by the desired free energy.82

Lemma 1. If x1, x2, . . . are i.i.d. samples from P (X) = N(x;µ, ρ), then the expected update J(v)83

of the learning rule (2) is twice differentiable and such that84

J(v) = 2E
[
σβ(X − v) · (X − v)

]
< 0, if v > Fβ ;

= 0, if v = Fβ ;

> 0, if v < Fβ .

Proof. The expected update of v is85

J(v) := 2

∫
N(x;µ, ρ)σ(x− v)(x− v) dx, (12)

where we have dropped the subscript β from σβ for simplicity. Using the Leibnitz integral rule it86

is easily seen that this function is twice differentiable w.r.t. v, because the integrand is a product of87

twice differentiable functions.88
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The resulting update direction will be positive if the integral over the positive contributions outweight89

the negative contributions and vice versa. The integrand of (12) has a symmetry property: splitting90

the domain of integration R into (−∞; v] and (v; +∞), using the change of variable δ = x− v, and91

recombining the two integrals into one gives92

J(v) := 2

∫ ∞
0

{
N(v + δ;µ, ρ)σ(δ)−N(v − δ;µ, ρ)σ(−δ)

}
δ dδ. (13)

We will show that the integrand of (13) is either negative, zero, or positive, depending on the value93

of v. Define the weighted update f(x) as94

f(x) = f(v + δ) := N(v + δ;µ, ρ)σ(δ)δ.

This function is illustrated in Figure 1a. We are interested in the ratio95

f(v + δ)

f(v − δ) =
N(v + δ;µ, ρ)

N(v − δ;µ, ρ)

σ(δ)

σ(−δ) , (14)

which compares the positive against the negative contributions to the integrand in (13). The first96

fraction of the r.h.s. of (14) is equal to97

N(v + δ;µ, δ)

N(v − δ;µ, ρ)
= exp

{
−ρ

2
(v + δ − µ)2 +

ρ

2
(v − δ − µ)2

}
= exp{−2ρδ(v − µ)}.

Using the symmetry property σ(δ) = 1− σ(−δ) of the logistic sigmoid function, the second fraction98

can be shown to be equal to99

σ(δ)

σ(−δ) =
σ(δ)

1− σ(δ)
= exp{βδ}.

Substituting the above back into (14) results in100

f(v + δ)

f(v − δ) = exp{−2ρδ(v − µ) + βδ}


> 1 for v < µ+ β

2ρ ,

= 1 for v = µ+ β
2ρ ,

< 1 for v > µ+ β
2ρ ,

also illustrated in Figure 1b. Therefore, the integrand in (13) is either positive (v < µ + 2
2ρ ), zero101

(v = µ+ β
2ρ ), or negative (v > µ+ β

2ρ ), allowing to conclude the claim of the lemma.102

3 Additional Properties103

We discuss additional properties in order to strengthen the intuition and to clarify the significance of104

the learning rule; some practical implementation advice is given at the end.105

Associated free energy functional. The Gaussian free energy Fβ in (1) is formally related to the106

valuation of risk-sensitive portfolios used in finance (Markowitz, 1952). It is well-known that the free107

energy is the extremum of the free energy functional, defined as the Kullback-Leibler-regularized108

expectation of X:109

Fβ
[
p(x)

]
:= Ep[X]− 1

β
KL
(
p(x)

∥∥N(x;µ, ρ)
)
. (15)

This functional is convex in p for β < 0 and concave for β > 0. Taking either the minimum (for110

β < 0) or maximum (for β > 0) w.r.t. p(x) yields111

Fβ = extr
p(x)

Fβ
[
p(x)

]
=
[
µ+

β

ρ

]
− 1

β

[β2

2ρ

]
= µ+

β

2ρ
= E[X] +

β

2
Var[X], (16)

that is, the Gaussian free energy is a linear function of β, where the intercept and the slope are equal112

to the expectation and half of the variance of X respectively. The extremizer p∗(x) is the Gaussian113

p∗(x) = arg extr
p(x)

Fβ
[
p(x)

]
= N(x;µ+ β

ρ , ρ). (17)

The above gives a precise meaning to the free energy as a certainty-equivalent. The choice of a114

non-zero inverse temperature β reflects a distrust in the reference probability density N(x;µ, ρ) as a115

reliable model for X . Specifically, the magnitude of β quantifies the degree of distrust and the sign of116

β indicates whether it is an under- or overestimation. This distrust results in using the extremizer (17)117

as a robust substitute for the original reference model for X .118
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Game-theoretic interpretation. In addition to the above, previous work (Ortega and Lee, 2014;119

Eysenbach and Levine, 2019; Husain et al., 2021) has shown that the free energy functional has an120

interpretation as a two-player game which characterizes its robustness properties. Following Ortega121

and Lee (2014), computing the Legendre-Fenchel dual of the KL regularizer yields an equivalent122

adversarial re-statement of the free energy functional (15), which for β > 0 is given by123

max
p(x)

min
c(x)

{∫
p(x)[x− c(x)] dx+

∫
N(x;µ, ρ) exp{βc(x)} dx,

}
, (18)

where the perturbations c(x) ∈ R are chosen by an adversary (Note: for the case β < 0 one obtains a124

Minimax problem over p(x) and c(x) rather than a Maximin). From this dual interpretation, one sees125

that the distribution p(x) is chosen as if it were maximizing the expected value of x′ = x − c(x),126

the adversarially perturbed version of x. In turn, the adversary attempts to minimize x′, but at the127

cost of an exponential penalty for c(x). More precisely, given the distribution p(x), the adversarial128

best-response (ignoring constants) is129

c∗(x)
(a)
=

1

β
log

p(x)

N(x;µ, ρ)

(b)
=

1

2β

{
ρ(x− µ)2 − ρ̄(x− µ̄)2 + log

ρ̄

ρ

}
(c)
= x− Fβ , (19)

where the equality (a) is true for any choice of p(x); (b) holds if p(x) = N(x; µ̄, ρ̄) for some mean µ̄130

and precision ρ̄; and where (c) holds if p(x) is the extremizer (17). Here we see that the adversarial131

perturbations can be arbitrarily bad if p(x) is not chosen cautiously: for instance, for the (Gaussian)132

Dirac delta133

p(x) = N(x;µ, ρ̄)
ρ̄→∞−−−→ δ(x = µ) we get c∗(x) = O

(
log

ρ̄

ρ

)
ρ̄→∞−−−→ +∞. (20)

Error function. Let δ = x−v be the instantaneous difference between the sample and the estimate.134

If the update rule (2) corresponds to a stochastic gradient descent step, then what is the error function?135

That is, if136

v ← v − α · ∇δe(δ, β) = v + 2α · σβ(δ) · δ,
then what is e(δ, β)? Integrating the gradient ∇δe(δ, β) with respect to δ gives137

e(δ, β) = 2

∫
σ(δ)δ dδ =

2δ

β
log(1 + exp{βδ}) +

2

β2
li2(− exp{βδ}) +

π2

6β2
, (21)

where log(1 + exp(z)) is the softplus function (Dugas et al., 2001) and li2(z) is Spence’s function138

(or dilogarithm) defined as139

li2(z) = −
∫ z

0

log(1− z)
z

dz,

and where the constant of integration π2

6β2 was chosen so that limδ→0 e(δ, β) = 0 for all β ∈ R. This140

error function is illustrated in Figure 1c for a handful of values of β. In the limit β → 0, the error141

function becomes:142

lim
β→0

e(δ, β) =
1

2
δ2,

thus establishing a connection between the quadratic error and the proposed learning rule.143

Practical considerations. The free energy learning rule (2) can be implemented as stated, for144

instance either using constant learning rate α > 0 or using an adaptive learning rate αt > 0 fulfilling145

the Robbins-Monro conditions
∑
t αt > 0 and

∑
t α

2
t <∞.146

A problem arises when most of the data falls within the near-zero saturated region of the sigmoid,147

which can occur due to an unfortunate initialization of the estimate v. Since then σβ(x− v) ≈ 0 for148

most x, learning can be very slow. This problem can be mitigated using an affine transformation of149

the sigmoid that gaurantees a minimal rate η > 0, such as150

σ̃β(z) = η + (1− 2η)σβ(z), (22)

which re-scales the sigmoid within the interval [η, 1− η]. We have found this adjustment to work151

well for |β| ≈ 0, especially when it is only used during the first few iterations.152

If one wishes to use the learning rule in combination with gradient-based optimization (as is typical153

in a deep learning architecture), we do not recommend using the error function (21) directly. Rather,154
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Figure 2: Estimation of the free energy from Gaussian (left panel) and uniform samples (right panel).
Each plot shows 10 estimation processes (9 in pink, 1 in red) per choice of the inverse temperature,
where β ∈ {−4,−2, 0, 2, 4}. The true free energies are shown in black. The estimation of the free
energy is accurate for Gaussian data but biased for uniform data.

we suggest absorbing the factor 2σ̃β(δ) directly into the learning rate (where as before, δ = x− v).155

A simple way to achieve this consists in scaling the estimation error E(δ) by said factor using a156

stop-gradient, that is,157

Ẽ(δ) := StopGrad(2σ̃β(δ)) · E(δ), (23)
since then the error gradient with respect to the model parameters θ will be158

∇θẼ(δ) = −2σ̃β(δ) · ∂E
∂δ

∂v

∂θ
. (24)

Finally, a large |β| chooses a target free energy within a tail of the distribution, leading to slower159

convergence. If one wishes to approximate a free energy that sits at n standard deviations from the160

mean, then β should be chosen as161

β(n) = 2n
√
ρ. (25)

However, since β(n) is not scale invariant and the scale ρ is unknown, a good choice of β must be162

determined empirically.163

4 Experiments164

Estimation. Our first experiment is a simple sanity check. We estimated the free energy in an165

online manner using the learning rule (2) from data generated by two i.i.d. sources: a standard166

Gaussian, and uniform distribution over the interval [−2, 2]. Five different inverse temperatures167

were used (β ∈ {−4,−2, 0, 2, 4}). For each condition, we ran ten estimation processes from 4000168

random samples using the same starting point (v = 1.5). The learning rate was constant and equal to169

α = 0.02.170

The results are shown in figure 2. In the Gaussian case, the estimation processes successfully stabilize171

around the true free energies, with processes having larger |β| converging slower, but fluctuating172

less. In the uniform case, the estimation processes do not settle around the correct free energy values173

for β 6= 0; however, the found solutions increase monotonically with β. These results validate the174

estimation method only for Gaussian data, as expected.175

Reinforcement learning. Next we applied the risk-sensitive learning rule to RL in a simple grid-176

world. The goal was to qualitatively investigate the types of policies that result from different177

risk-sensitivities. Shown in Figure 3a, the objective of the agent is to navigate to a terminal state178

containing a reward pill within no more than 25 time steps while avoiding the water. The reward pill179

delivers one reward point upon collection, whereas standing in the water penalizes the agent with180

minus one reward point per time step. In addition, there is a very strong wind: with 50% chance in181

each step, the wind pushes the agent one block in a randomly chosen cardinal direction.182

We trained R2D2 (Kapturowski et al., 2018) agents with the risk-sensitive cost function (23) using183

five uniformly spaced inverse temperatures β ranging from −0.8 to 0.8. The architecture of our184

6



= -0.8 = -0.4 = 0.0 = 0.4 = 0.8

0.00

0.05

0.10

0.15

0

1
Return

0

10
Violations %a) b)

c)

Figure 3: Comparison of risk-sensitive RL agents. a) The task consists in picking up a reward located
at the terminal state while avoiding stepping into water. A strong wind pushes the agent into a random
direction 50% of the time. b) Bar plots showing the average return (blue) and the percentage of
violations (red) for each policy, ordered from lowest to highest β. c) State visitation frequencies for
each policy, plus the optimal (deterministic) policy when there is no wind (black paths).

agents consisted of a first convolutional layer with 3-by-3-kernels and 128 channels, a dense layer185

with 128 units, and a logit layer for the four possible actions (i.e. walking directions). The discount186

factor was set to γ = 0.95. Each agent was trained for 500K iterations with a batch size of 64, using187

the Adam optimizer with learning rate 10−4 (Kingma and Ba, 2014). The target network was updated188

every 400 steps. The inputs to the network were observation tensors of binary features representing189

the 2D board. Note these agents didn’t use any recurrent cells and therefore no backpropagation190

through time was used. To train all the agents in this experiment we used 154 CPU core hours at 2.4191

GHz and 22.5 GPU hours.192

To analyze the resulting policies, we computed the episodic returns and the percentage of time the193

agents spent in the water (i.e. the “violations”) from 1000 roll-outs. The results, shown in Figure 3b,194

reveal that the risk-neutral policy (β = 0) has the highest average return. However, the percentage of195

violations increases monotonically with β. Figure 3c shows the state-visitation probabilities estimated196

from the same roll-outs. There are essentially three types of policies: risk-averse, taking the longest197

path away from the water; risk-neutral, taking middle path; and risk-seeking, taking the shortest198

route right next to the water. These are even more crisply revealed when the wind is de-activated.199

Interestingly, the risk-averse policy (β = −0.8) does not always reach the goal, which explains why200

its return is slightly lower in spite of committing fewer violations.201

Bandits. In the last experiment we wanted to observe the premiums that risk-sensitive agents are202

willing to pay when confronted with a choice between a certain and a risky option. To do so, we203

used a two-arm bandit setup, where one arm (“certain”) delivered a fixed reward and the other arm204

(“risky”) a stochastic one—more precisely, drawn from a Gaussian distribution with mean µ and205

precision ρ = 2. Both the fixed payoff and the mean µ of the risky arm were drawn from a standard206

Gaussian distribution at the beginning of an episode, which lasted twenty rounds. To build agents207

that can trade off exploration versus exploitation, we used memory-based meta-learning (Wang et al.,208

2016; Santoro et al., 2016), which is known to produce near-optimal bandit players (Ortega et al.,209

2019; Mikulik et al., 2020).210

We meta-trained five R2D2 agents using risk-sensitives β ∈ {−1.0,−0.5, 0, 0.5, 1.0} on the two-211

armed bandit task distribution (also randomizing the certain/risky arm positions) with discount factor212

γ = 0.95. The network architecture and training parameters were as in the previous RL experiment,213

with the difference that the initial convolutional layer was replaced with a dense layer and an LSTM214

layer having 128 memory cells (Hochreiter and Schmidhuber, 1997). We used backpropagation215

through time for computing the episode gradients. The input to the network consisted of the action216
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Figure 4: Two-armed bandit policy profiles with different risk-sensitivities β. The certain arm 1 pays
a deterministic reward, while the risky arm 2 pays a stochastic reward drawn from N(r;µ, ρ) with
precision ρ = 2. The agents were meta-trained on bandits where the payoffs (i.e. arm 1’s payoff
and arm 2’s mean) were drawn from a standard Gaussian distribution. The plots show the marginal
probability of choosing the certain arm (blue) over the risky arm (red) after twenty interactions for
every payoff combination. Each point in the uniform grid was estimated from 30 seeds. Note the
deviations from the true risk-neutral indifference curve (black diagonal).

taken and reward obtained in the previous step. This setup allows agents to adapt their choices to past217

interactions throughout an episode. To train all the agents in this experiment we used 88 CPU core218

hours at 2.4 GHz and 10 GPU hours.219

Figure 4 shows the agents’ choice profile in the last (20th) time step. A true risk-neutral agent does220

not distinguish between a certain and risky option that have the same expected payoff (black diagonal).221

The main finding is that the indifference region (i.e. close to a 50% choice in white color) evolves222

significantly with increasing β, implying that the agents with different risk attitudes are indeed willing223

to pay different risk premia (measured as the vertical distance of the indifference region from the224

diagonal). We observe two effects. The most salient effect is that the indifference region mostly225

moves from being beneath (risk-averse) to above (risk-seeking) the true risk-neutral indifference226

curve as β increases. The second effect is that risk-averse policies (β = −1 and −0.5) contain a227

large region of a stochastic choice profile that appears to depend only on the risky arm’s parameter.228

We do not have a clear explanation for this effect. Our hypothesis is that risk-averse policies assume229

adversarial environments, which require playing mixed strategies with precise probabilities. Finally,230

the risk-neutral agent (β = 0) appears to be slightly risk-averse. We believe that this effect arises due231

to the noisy exploration policy employed during training.232

5 Discussion233

Summary of contributions. In this work we have introduced a learning rule for the online estima-234

tion of the Gaussian free energy with unknown mean and precision/variance. The learning rule (2) is235

obtained by reinterpreting the stimulus-presence indicator component of the Rescorla-Wagner rule236

(Rescorla, 1972) as a (soft) indicator function for the event of either over- or underestimating the237

target value. In Lemma 1 we have shown that the free energy is the unique and stable fixed point of238

the expected learning dynamics. This is the main contribution.239

Furthermore, we have shown how to use the learning rule for risk-sensitive RL. Since the free240

energy implements certainty-equivalents that range from risk-averse to risk-seeking, we were able241

to formulate a risk-sensitive, model-free update in the spirit of TD(0) (Sutton and Barto, 1990),242

thereby addressing a longstanding problem (Mihatsch and Neuneier, 2002) for the special case of243

the Gaussian distribution. Due to its simplicity, the rule is easy to incorporate into existing deep RL244

algorithms, for instance by modifying the error using a stop-gradient as shown in (23). In Section 3245

we also elaborated on the role of the free energy within decision-making, pointing out its robustness246

properties and adversarial interpretation.247

We also demonstrated the learning rule in experiments. Firstly, we empirically confirmed that248

the online estimates stabilize around the correct Gaussian free energies (Section 4–Estimation).249

Secondly, we showed how incorporating risk-attitudes into deep RL can lead to agents implementing250

qualitatively different policies which intuitively make sense (Section 4–RL). Lastly, we inspected the251

premia risk-sensitive agents are willing to pay for choosing a risky over a certain option, finding that252

agents have choice patterns that are more complex than we had anticipated (Section 4–Bandits).253
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Limitations. As shown empirically in Section 4–Estimation, an important limitation of the learning254

rule is that its fixed point is only equal to the free energy when the samples are Gaussian (or255

approximately Gaussian, as justified by the CLT). Nevertheless, agents using the risk-sensitive TD(0)256

update (11) still display risk attitudes monotonic in β, with β = 0 reducing to the familiar risk-neutral257

case.258

While Lemma 1 establishes the stable equilibrium of the expected update, it only guarantees conver-259

gence in continuous-time updates. To show convergence using discrete-time point samples, a stronger260

result is required. In particular, we conjecture that261 ∣∣J(v)
∣∣ = 2

∣∣∣∣∫ N(x;µ, ρ)σβ(x− v)(x− v) dx

∣∣∣∣ ≤ 2
∣∣Fβ − v∣∣ (26)

If (26) is true, meaning that J(v) is 2-Lipschitz, then this could be combined with a result in stochastic262

approximation theory akin to Theorem 1 in Jaakkola et al. (1994) to prove convergence.263

A shortcoming of our experiments using R2D2 agents is that they deterministically pick actions that264

maximize the Q-value. However, risk-averse agents see their environments as being adversarial, and265

these in turn require stochastic policies in order to achieve optimal performance.266

Conclusions. Because it is impossible to anticipate the many ways in which a dynamically-changing267

environment will violate prior assumptions, requiring the robustness of ML algorithms is of vital268

importance for their deployment in real-world applications. Unforeseen events can render their269

decisions unreliable—and in some cases even unsafe.270

Our work makes a small but nonetheless significant contribution to risk-sensitivity in ML. In essence,271

it suggests a minor modification to existing algorithms, biasing valuation estimates in a risk-sensitive272

manner. In particular, we expect the risk-sensitive TD(0)-learning rule to become an integral part of273

future deep RL algorithms.274
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