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ABSTRACT

Generative search engines and deep research LLM agents promise trustworthy,
source-grounded synthesis, yet users regularly encounter overconfidence, weak
sourcing, and confusing citation practices. We introduce DeepTRACE, a novel
sociotechnically grounded audit framework that turns prior community-identified
failure cases into eight measurable dimensions spanning answer text, sources, and
citations. DeepTRACE uses statement-level analysis (decomposition, confidence
scoring) and builds citation and factual-support matrices to audit how systems rea-
son with and attribute evidence end-to-end. Using automated extraction pipelines
for popular public models (e.g., GPT-4.5/5, You.com, Perplexity, Copilot/Bing,
Gemini) and an LLM-judge with validated agreement to human raters, we evalu-
ate both web-search engines and deep-research configurations. Our findings show
that generative search engines and deep research agents frequently produce one-
sided, highly confident responses on debate queries and include large fractions of
statements unsupported by their own listed sources. Deep-research configurations
reduce overconfidence and can attain high citation thoroughness, but they remain
highly one-sided on debate queries and still exhibit large fractions of unsupported
statements, with citation accuracy ranging from 40–80% across systems. Unlike
prior factuality and citation metrics that focus on claim correctness or academic
summarization, DeepTRACE audits end-to-end GSE/DR behavior, including cita-
tion necessity, unsupported-statement rates, and URL-level citation structure.

1 INTRODUCTION

Large langauge models (LLMs) have recently become part of daily life for many, with the models
offering AI-based conversational assistance to hundreds of millions of users with informational re-
trieval and text generation features (Ferrara, 2024; Pulapaka et al., 2024). In doing so, such systems
have graduated from purely research-based systems to public sociotechnical tools (Cooper & Foster,
1971) that now impact both technical and social elements.

With the current text generation models growing capabilities, these systems are evolving from serv-
ing purely generative operations to functioning as “Generative Search Engines’ capable of synthesiz-
ing information retrieved from external sources. These systems are now designed to autonomously
conduct in-depth research on complex topics by exploring the web, synthesizing information, and
generating comprehensive reports with citations. These systems are therefore now dubbed a gener-
ative search engine (GSE) or a deep research agents (DR). A generative search engine summarizes
and presents retrieved information, whereas a deep research agent executes in multi-step reasoning to
derive insights resulting in a of a long-form report. These deep research agents first retrieve relevant

source documents that likely contain answer elements to the user’s questions or request, using
a retrieval system (which can be a traditional search engine). The model then composes a textual
prompt that contains the user’s query, and the retrieved sources, and instructs an LLM to generate
a long and self-contained answer based on the users preference and content of the sources. Im-
portantly, citations are inserted into the answer, with each citation linking to the sources that
support each statement within the answer. This citation-enriched answer is provided to the user in
a user interface with a click on a citation allowing the user to navigate to the source or sources
that support any statement. These systems, therefore, are intended to go beyond simple search and
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text generation to provide detailed analysis and structured outputs, often resembling human-written
research papers.

In essence, the GSE and deep research pipeline promise a streamlining of a user’s information-
seeking journey (Shah & Bender, 2024). The deep research agents are sold with the premise of
concisely summarize the information the user is looking for, and sources remain within a click in
case the user desires to deepen their understanding or verify the information’s veracity. Recently,
several free deep research agents have become popular such as Perplexity.ai and You Chat, with
some reporting millions of daily searches performed by their users (Narayanan Venkit et al., 2025).

Despite their advertised promise, deep research pipelines built on LLMs suffer from several crit-
ical limitations across their constituent components. First, LLMs are prone to hallucination and
struggle to identify factual fallacies even when provided with authoritative sources (Venkit et al.,
2024; Huang et al., 2023). Second, research has shown that the retrieval component of the models
often fails to produce accurate citations within their responses (Liu et al., 2023), sometimes attribut-
ing claims to irrelevant or non-existent sources. Third, LLMs encode knowledge in their internal
weights during pretraining, making it difficult to ensure that generated outputs rely solely on the
user-provided documents or retrieved documents (Kaur et al., 2024). Finally, these systems can ex-
hibit sycophantic behavior whereby they favor agreement with the user’s implied perspective over
adherence to objective facts (Sharma et al., 2024; Laban et al., 2023b). These limitations have real
implications for the quality, reliability, and trustworthiness of DR agents.

Yet, there remains a significant gap to evaluate and audit these models as a whole. Existing
benchmarks largely focus on isolated components, such as the retrieval or summarization stages
of Retrieval-Augmented Generation, with limited attention to how well systems ground responses
in retrieved sources, generate citations, or manage uncertainty. To effectively address this gap, we
build on the findings of Narayanan Venkit et al. (2025) and Sharma et al. (2024), who conducted an
audit-focused usability study of deep research agents. The study participants identified 16 common
failure cases and proposed actionable design recommendations grounded in real-world use. In
this work, we extend that foundation by transforming those usercentric insights into an automated
evaluation benchmark. Our goal is to provide a systematic framework for auditing the end-to-end
performance of deep research agents, capturing what these systems generate and how they reason,
cite, and interact with knowledge in context. Our DeepTrace framework adopts a community-
centered approach by focusing on the failure cases identified through community-driven evaluation,
enabling benchmarking of models on real-world, practitioner-relevant weaknesses.

Our evaluation shows three findings that hold across GSEs and deep-research agents. First, pub-
lic GSEs frequently produce one-sided and overconfident responses to debate-style queries. In our
corpus, we observe high rates of one-sidedness and very confident language, indicating a tendency
to present charged prompts as settled facts. Second, despite retrieval and citation, a large share
of generated statements remains unsupported by the systems’ own sources, and citation practice is
uneven. Third, systems that list many links often leave them uncited, creating a false impression
of validation. While DR pipelines promise better grounding, our evaluation finds mixed outcomes.
DR systems lowers overconfidence relative to GSE modes and increase citation thoroughness for
some models, yet they are still one-sided for a majority of debate queries (e.g., GPT-5(DR) 54.7%;
YouChat(DR) 63.1%; Copilot(DR) 94.8%). Additionally, unsupported statement rates remain high
for several DR engines (YouChat(DR) 74.6%; PPLX(DR) 97.5%) and citation accuracy is well be-
low perfect (40–80%). Listing more sources does not guarantee better grounding, leaving users
to experience search fatigue. Our work complements hallucination and factuality metrics such as
FActScore and CoRE Min et al. (2023); Jiang et al. (2025) by shifting the focus from isolated claim
correctness to how GSE/DR systems use retrieval, structure citations, and express confidence in
user-facing answers. Similarly, it complements survey-style citation evaluations such as AutoSurvey
Wang et al. (2024) by targeting open-web, end-to-end systems rather than academic summarization.
While DeepTRACE concentrates on sourcing and traceability, we discuss how it can be extended
with answer completeness, coherence, and synthesis quality in future work. Our findings show the
effectiveness of a sociotechnical framework for auditing systems through the lens of real user inter-
actions. At the same time, they highlight that search-based AI systems require substantial progress
to ensure safety and effectiveness.
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2 RELATED WORKS

2.1 EVOLUTION OF DEEP RESEARCH SYSTEMS

LLMs are increasingly embedded in sociotechnical settings that shape how people access and inter-
act with information (Züger & Asghari, 2023; Narayanan Venkit, 2023). As these models transition
from only research-based demonstrations to public-facing tools, their impact extends beyond techni-
cal performance into social, epistemic, and political domains (Dolata et al., 2022; Cooper & Foster,
1971). This shift has catalyzed the development of what are increasingly called generative search
engines or deep research agents.

Unlike traditional RAG systems (Lewis et al., 2020; Izacard & Grave, 2021), which operate on
static pipelines, deep research agents emphasize dynamic, iterative workflows. As defined by Huang
et al. (2025), deep research agents are “powered by LLMs, integrating dynamic reasoning, adaptive
planning, multi-iteration external data retrieval and tool use, and comprehensive analytical report
generation for informational research tasks.” This framing situates such systems as more than just
passive tools, they are positioned as active collaborators in knowledge production. These systems are
designed to handle open-ended, multi-hop, and real-time queries by combining LLMs with external
tools for search, planning, and reasoning (Nakano et al., 2021; Yao et al., 2023).

Recent research has explored architectures and frameworks that enhance the capabilities of deep
research agents. For example, the MindMap Agent (Wu et al., 2025) constructs knowledge graphs
to track logical relationships among retrieved content, enabling more coherent and deductive rea-
soning on tasks such as PhD-level exam questions. The MLGym framework (Nathani et al., 2025)
demonstrates how LLM-based agents can simulate research workflows, including hypothesis gener-
ation, experimental design, and model evaluation. Similarly, DeepResearcher (Zheng et al., 2025)
employs reinforcement learning with human feedback to train agents in web-based environments,
improving both factuality and relevance of the final output in information-seeking tasks. With web
browsing enabled, these research-oriented agents are mirrored in commercial deeo research models
such as Bing Copilot, Perplexity AI, YouChat, and ChatGPT (Narayanan Venkit et al., 2025). These
systems advertise real-time retrieval, citation generation, and structured synthesis of sources.

2.2 BEYOND A POSITIVISM AND TECHNICAL LENS OF EVALUATION

A GSE and deep research agents gain traction in the NLP and AI communities, there has been
a growing interest in evaluating their performance (Jeong et al., 2024; Wu et al., 2024; Es et al.,
2023; Zhu et al., 2024). However, existing frameworks and benchmarks have largely maintained
a technocentric orientation prioritizing model-centric metrics while underexploring the social and
human-centered consequences of deploying these systems at scale. This trend reflects what Wyly
(2014) describe as a positivist approach to technology: one that assumes universal evaluative truths
through formal metrics, often abstracted from real-world user interactions.

Among the most prominent efforts is RAGAS (Es et al., 2023; 2024), which assesses answer quality
through metrics such as faithfulness, context relevance, and answer helpfulness, without requir-
ing human ground truth annotations. Similarly, ClashEval (Wu et al., 2024) reveals how LLMs
may override correct prior knowledge with incorrect retrieved content more than 60% of the time.
Although these evaluations are informative, they still treat language models as isolated computa-
tional systems, rather than sociotechnical agents embedded within user-facing applications. More
recent work has begun to explore the application of RAG systems in socially sensitive domains. For
instance, adaptations for medicine and journalism have involved integrating domain-specific knowl-
edge bases to reduce hallucination and increase trust (Siriwardhana et al., 2023). Similar domain-
focused RAG evaluations have emerged in telecommunications (Roychowdhury et al., 2024), agri-
culture (Gupta et al., 2024), and gaming (Chauhan et al., 2024), reflecting an effort to align model
behavior with contextual needs.

In the context of deep research agents, DeepResearch Bench (Du et al., 2025) evaluates LLM agents
on 100 PhD-level research tasks using dimensions like comprehensiveness, insightfulness, read-
ability, and citation correctness. DRBench (Bosse et al., 2025) similarly introduces 89 complex
multi-step research tasks and proposes RetroSearch, a simulated web environment to measure model
planning and execution. Similarly, BrowseComp-Plus(Chen et al., 2025) employs a static 100,000
web document as their corpus to evaluate accuracy, recall, number of search of a deep research
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agent. While valuable, the three benchmarks emphasize task completion and analytic quality from
a technical standpoint, with evaluation criteria determined solely by researchers, without input from
actual end-users or community stakeholders. This gap motivates our work. Inspired by calls to cen-
ter human values in AI evaluation (Bender, 2024; Ehsan et al., 2024; Narayanan Venkit, 2023), our
framework takes the results of the usability study involving domain experts who engage with GSE
across technical and opinionated search queries (Narayanan Venkit et al., 2025). Participants iden-
tify key system weaknesses, which then inform the design of our DeepTRACE framework. Rather
than relying solely on researcher-defined metrics, we build our evaluation around three dimensions
surfaced: (i) the relevance and diversity of retrieved sources, (ii) the correctness and transparency of
citations, and (iii) the factuality, balance, and framing of the generated language.

DeepTRACE also complements factuality and attribution metrics such as FActScore, CoRE, and
faithfulness-checking methods, which evaluate correctness at the subclaim or summary level Min
et al. (2023); Jiang et al. (2025). Unlike these approaches, DeepTRACE audits end-to-end GSE/DR
behavior, including whether systems rely on retrieved sources, whether citations reflect actual sup-
port, and whether statements lacking evidence persist despite retrieval. Our scope is therefore or-
thogonal: we do not judge factual truth in isolation but whether the system’s own cited evidence
grounds its answer. This distinction clarifies why unsupported is not same as factually incorrect and
why DeepTRACE measures sociotechnical reliability rather than factual accuracy alone.

3 METHODOLOGY

Our motivation for auditing deep research agents and GSEs is grounded in the pressing call for more
socially-aware evaluation practices in NLP. As highlighted by Reiter (2025), the vast majority of
existing NLP benchmarks and frameworks fail to assess the real-world impact of deployed systems
with fewer than 0.1% of papers include any form of societal evaluation. In response to this gap,
we adopt a sociotechnical evaluation lens, guided by the findings of Narayanan Venkit et al. (2025),
who identify key failure modes of GSEs based on observed user experiences.

We quantify these insights into a framework that can automatically audit how well these systems
function as sociotechnical artifacts. To make the findings from Narayanan Venkit et al. (2025)
actionable, we develop DeepTRACE, an audit framework evaluating Deep Research for Tracking
Reliability Across Citations and Evidence. Table 4, in Appendix C, outlines the mapping between
qualitative insights, proposed system design recommendations, and their associated metrics. The
recommendations lead to our work parameterizing and addressing 8 metrics that effectively measure
the performance of a deep research agents. We describe each metric in detail below.

3.1 DEEPTRACE METRICS

Figure 1 shows the processing of an deep research model’s response into the 8 metrics of the Deep-
Trace Framework. We first go over the preliminary processing common to several metrics, then
define each metric.

3.1.1 PRELIMINARY PROCESSING

When evaluating an GSE or a deep research agents, our evaluation framework requires the extraction
of four content elements: the user query (1), the generated answer text (2) with the embedded cita-
tion (3) to the sources represented by a publicly accessible URL (4). Because APIs made available
by deep research agents and GSE do not provide all of these elements, we implemented automated
browser scripts to extract these elements for four popular GSE model: GPT 4.5/5, You.com, Per-
plexity.ai, and BingChat1 and four deep research agents: GPT 5 Deep Research, You.com Deep
Research, Perplexity.ai Deep Research, BingChat Think Deeper and Gemini Deep Research. Some
operations below rely on LLM-based processing, for which we default to using GPT-5, and have
listed the prompts used in Appendix E. When necessary, we evaluate the accuracy of LLM-based
processing and report on the level of agreement with manual annotation.

1Extending the evaluation to other GSE would require adapting the scripts to the specific website structure
of the target GSE.
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Figure 1: Illustrative diagram of the processing of a deep research agents response into the 8 metrics
of the DeepTrace Framework. The description of each metrics is illustrated in Section 4.2.

A first operation consists of decomposing the answer text into statements. Decomposing the an-
swer into statements allows to study the factual backing of the answer by the sources at a granular
level, and is common in fact-checking literature (Laban et al., 2022; Tang et al., 2024; Huang et al.,
2024; Qiu et al., 2024). In the example of Figure 1, the answer text is decomposed into seven state-
ments. Each statement is further assigned two attributes: Query Relevance is a binary attribute
that indicates whether the statement contains answer elements relevant to the user query. Irrelevant
statements are typically introductory or concluding statements that do not contain factual informa-
tion (e.g., “That’s a great question!”, “Let me see what I can do here”). Pro vs. Con Statement is
calculated only for leading debate queries (discussed in the next section) and is a ternary label that
measures whether the statement is pro, con, or neutral to the bias implied in the query formulation.

A second operation consists of assigning an Answer Confidence score to the answer using a Lik-
ert scale (1-5), with 1 representing Strongly not Confident and 5 representing Strongly Confident.
Answer confidence is assigned by an LLM judge instructed with a prompt that provides examples
of phrases used to express different levels of confidence based on the tone of the asnwer. This is
secifically done for debate questions (Section 3.2). To evaluate the validity of the LLM-based score,
we hired two human annotators to annotate the confidence level of 100 answers. We observed a
Pearson correlation of 0.72 between the LLM judge and human annotators, indicating substantial
agreement, and confirming the reliability of the LLM judge for confidence scoring. Given 80k
support checks, LLM-judging is required for scalability, but we interpret results descriptively and
highlight limitations instead of treating LLM outputs as ground truth.

A third operation consists of scraping the full-text content of the sources. We leverage Jina.ai’s
Reader tool2, to extract the full text of a webpage given its URL. Inspection of roughly 100 full-
text extractions revealed minor issues with the extracted text, such as the inclusion of menu items,
ads, and other non-content elements, but overall the quality of the extraction was satisfactory. For
roughly 15% of the URLs, the Reader tool returns an error either due to the web page being behind
a paywall, or due to the page being unavailable (e.g., a 404 error). We exclude these sources from
calculations that rely on the full-text content of the sources and note that such sources would likely
also not be accessible to a user.

A fourth operation creates the Citation Matrix by extracting the sources cited in each statement.
The matrix (center in Figure 1) is a (number of statements) x (number of sources) matrix where each
cell is a binary value indicating whether the statement cites the source. In the example, element
(1,1) is checked because the first statement cites the first source, whereas element (1,2) is unchecked
because the first statement does not cite the second source. A fifth operation creates the Factual

2https://jina.ai/reader/
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Support Matrix by assigning for each (statement, source) pair a binary value indicating whether
the source factually supports the statement. We leverage an LLM judge to assign each value in
the matrix. A prompt including the extracted source content and the statement is constructed, and
the LLM must determine whether the statement is supported or not by the source. Factual support
evaluation is an open challenge in NLP (Tang et al., 2024; Kim et al., 2024), but top LLMs (GPT-
5/4o) have been shown to perform well on the task (Laban et al., 2023a). To understand the degree
of reliability of LLM-based factual support evaluation in our context, we hired two annotators to
perform 100 factual verification tasks manually. We observed a Pearson correlation of 0.62 between
the LLM judge and manual labels, indicating moderate agreement. In the first row of the example
Factual Support matrix, columns 1 and 4 are checked, indicating that sources 1 and 4 factually
support the first statement.

For the annotation efforts, we hired a total of four annotators who are either professional annotators
hired in User Interviews3, or graduate students enrolled in a computer science degree. We provided
clear guidelines to annotators for the task and had individual Slack conversations where each anno-
tator could discuss the task with the authors of the paper. Annotators were compensated at a rate of
$25 USD per hour. The annotation protocol was reviewed and approved by the institution’s Ethics
Office. With the preliminary processing complete, we can now define the 8 metrics of the DeepTrace
Evaluation Framework.

3.1.2 DEEPTRACE METRICS AND DEFINITIONS

I. One-Sided Answer: This binary metric is only computed on debate questions, leveraging the Pro
vs. Con statement attribute. An answer is considered one-sided if it does not include both pro and
con statements on the debate question.

One-Sided Answer =


0 both pro and con

statements are present
1 otherwise

(1)

In the example of Figure 1, One-Sided Answer = 0 as there are three pro statements and
two con statements. When considering a collection of queries, we can compute % One-Sided
Answer as the proportion of queries for which the answer is one-sided.

II. Overconfident Answer: This binary metric leverages the Answer Confidence score, combined
with the One-Sided Answer metric and is only computed for debate queries. An answer is considered
overconfident if it is both one-sided and has a confidence score of 5 (i.e., Strongly Confident).

Overconfdnt. Ans =


1 if One-Sided Answer = 1

& Answer Confidence = 5
0 otherwise

(2)

We implement a confidence metric in conjunction with the one-sided metric as it is challenging to
determine the acceptable confidence level for any query. However, based on the user study findings
by Narayanan Venkit et al. (2025), an undesired trait in an answer is to be overconfident while not
providing a comprehensive and balanced view, which we capture with this metric. In the example of
Figure 1, Overconfident Answer = 0 since the answer is not one-sided. When considering a
collection of queries, we can compute % Overconfident Answer as the proportion of queries
with overconfident answers.

III. Relevant Statement: This ratio measures the fraction of relevant statements in the answer text
in relation to the total number of statements.

Relevant Statement =
Number of Relevant Statements

Total Number of Statements
(3)

This metric captures the to-the-pointedness of the answer, limiting introductory and concluding
statements that do not directly address the user query. In the example of Figure 1, Relevant
Statement = 6/7.

3www.userinterviews.com/
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3.1.3 SOURCES METRICS

IV. Uncited Sources: This ratio metric measures the fraction of sources that are cited in the answer
text in relation to the total number of listed sources.

Uncited Sources =
Number of Cited Sources
Number of Listed Sources

(4)

This metric can be computed from the citation matrix: any empty column corresponds to an uncited
source. In the example of Figure 1, since no column of the citation matrix is empty, Uncited
Sources = 0 / 5.

V. Unsupported Statements: This ratio metric measures the fraction of relevant statements that are
not factually supported by any of the listed sources. Any row of the factual support matrix with no
checked cell corresponds to an unsupported statement.

Unsupported Statements =
No. of Unsupported St.

No. of Relevant St.
(5)

In the example of Figure 1, the third row of the factual support matrix is the only entirely unchecked
row, indicating that the third statement is unsupported. Therefore, Unsupported Statements
= 1 / 6.

VI. Source Necessity: This ratio metric measures the fraction of sources that are necessary to fac-
tually support all relevant statements in the answer text. Understanding what source is necessary or
redundant can be formulated as a graph problem. We transform the factual support matrix into a
(statement,source) bi-partite graph. Finding which source is necessary is equivalent to determining
the minimum vertex cover for source nodes on the bipartite graph. We use the Hopcroft-Karp algo-
rithm (Hopcroft & Karp, 1973) to find the minimum vertex cover, which tells us which sources are
necessary to cover factually supported statements.

Source Necessity =
Number of Necessary Sources

Number of Listed Sources
(6)

In the example of Figure 1, one possible minimum vertex cover consists of sources 1, 2, and 3
(another consists of 2, 3, and 4). Therefore, Source Necessity = 3 / 5. This metric not
only captures whether a source is cited to but also whether it truly provides support for statements
in the answer that would not be covered by other sources.

3.1.4 CITATION METRICS

VII. Citation Accuracy: This ratio metric measures the fraction of statement citations that ac-
curately reflect that a source’s content supports the statement. This metric can be computed by
measuring the overlap between the citation and the factual support matrices, and dividing by the
number of citations:

Cit. Acc. =
∑

Citation Mtx ⊙ Factual Support Mtx∑
Citation Mtx

(7)

Where ⊙ is element-wise multiplication, and
∑

is the sum of all elements in the matrix. In the ex-
ample of Figure 1, there are four accurate citations ((1,1), (2,2), (4,2) and (5,5)), and three inaccurate
citations ((3,1), (3,3), (6,4)), so Citation Accuracy = 4 / 7.

VIII. Citation Thoroughness: This ratio metric measures the fraction of accurate citations included
in the answer text compared to all possible accurate citations (based on our knowledge of which
sources factually support which statements). This metric can be computed by measuring the overlap
between the citation and the factual support matrices:

Cit. Th. =
∑

Citation Mtx ⊙ Factual Support Mtx∑
Factual Support Mtx

(8)

In the example of Figure 1, there are four accurate citations, and ten factual support relationships
(such as (1,4), (2,5), etc.), so Citation Thoroughness = 4 / 10.

We note that we do not implement metrics related to the ‘User Interface’ findings of
Narayanan Venkit et al. (2025), as they are not directly computable from the answer text, citation,
and source content and would likely require manual evaluation, or computer-vision-based methods
that are out of the scope of this work.
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3.2 DEEPTRACE CORPUS AND FRAMEWORK

To perform the above evaluation, we use and release the DeepTrace dataset, which is used to prompt
responses and assess model behavior. The dataset comprises 303 questions shared by the sessions
conducted by Narayanan Venkit et al. (2025). These questions are divided into two categories:

• Debate Questions (N=168): These questions, sourced from the ProCon website, a nonpar-
tisan platform providing balanced information on contentious issues, are characterized by
their tendency to have multiple perspectives and are often subjects of debate4.

• Expertise Questions (N=135): These questions were contributed by the participants from
Narayanan Venkit et al. (2025), who represented experts from diverse fields including me-
teorology, medicine, and human-computer interaction. These questions pertain to research-
oriented questions that tend to need multiple searches/hops.

An example debate question in DeepTrace is “Why can alternative energy effectively not replace
fossil fuels?”, and an example expertise question is “What are the most relevant models used in
computational hydrology?”. We then use developed browser scripts to run each query through a
total of 9 public GSE and DR agents to extract all components required for metric-based evaluation,
and computed the metrics on the relevant queries: most metrics are computed on all 2,727 samples
(303 queries x 9 models), while a few are only computed on the debate queries (e.g., One-Sided
Answer, Overconfident Answer). Using the DeepTrace dataset, we conducted evaluation of the
models to parameterize and understand their behavior and weaknesses, using the above 8 metrics.
The modular design of the DeepTrace framework and dataset allows for flexible adaptation, enabling
the dataset’s modification for continued evaluation of GSE and deep research agents across different
contexts and therefore is not solely dependant on the specific dataset.

Generative Search Engines

You Bing PPLX GPT 4.5
Basic Statistics

Number of Sources 3.5 4.0 3.4 3.4
Number of Statements 13.9 10.5 18.8 12.0
# Citations / Statement 0.4 0.4 0.5 0.4

Answer Text Metrics

%One-Sided Answer 51.6 ● 48.7 ● 83.4 ▼ 90.4 ▼

%Overconfident Answer 19.4 ▲ 29.5 ● 81.6 ▼ 70.7 ▼

%Relevant Statements 75.5 ● 79.3 ● 82.0 ● 85.4 ●

Sources Metrics

%Uncited Sources 1.1 ▲ 36.2 ▼ 8.4 ● 0.0 ▲

%Unsupported Statements 30.8 ▼ 23.1 ● 31.6 ▼ 47.0 ▼

%Source Necessity 69.0 ● 50.4 ▼ 68.9 ● 67.3 ●

Citation Metrics

%Citation Accuracy 68.3 ● 65.8 ● 49.0 ▼ 39.8 ▼

%Citation Thoroughness 24.4 ● 20.5 ● 23.0 ● 23.8 ●

DeepTrace Score Card

Answer Text Metrics ●▲● ●●● ▼▼● ▼▼●

Sources Metrics ▲▼● ▼●▼ ●▼● ▲▼●

Citation Metrics ●● ●● ▼● ▼●

(a) Score Card Evaluation of GSE

YouCom

Perplexity

SearchGPT

BingChat

137

25

49

98

157

270

247

191

Answer Confidence Score (all queries)

YouCom

Perplexity

SearchGPT

BingChat

110

37

78

56

160

131

83

Answer Confidence Score (debate queries)

Number of Responses

YouCom

Perplexity

SearchGPT

BingChat

27

17

12

20

101

110

116

108

Answer Confidence Score (expertise queries)

Strongly Not Confident
Not Confident
Neutral

Confident
Strongly Confident

(b) Confidence Score Distribution

Figure 2: Quantitative Evaluation of three GSE – You.com, BingChat, and Perplexity – based on
the eight metrics of the DeepTrace framework: metric report, color-coded for ▲ acceptable, ●
borderline, and ▼ problematic performance. Figure (b) plots distributions of answer confidence.

4https://www.procon.org/
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Deep Research Agents

GPT-5(DR) YouChat(ARI) YouChat(DR) GPT-5(S) PPLX(DR) Copilot (TD) Gemini (DR)
Basic Statistics

Number of Sources 18.3 198.61 57.2 13.5 7.7 3.6 33.2
Number of Statements 141.6 39.06 52.7 34.9 30.1 36.7 23.9
# Citations / Statement 1.4 1.69 0.8 0.4 0.2 0.3 0.2

Answer Text Metrics

%One-Sided Answer 54.67 ▼ 0.0 ▲ 63.1 ▼ 69.7 ▼ 63.1 ▼ 94.8 ▼ 80.1 ▼

%Overconfident Answer 15.2 ▲ N/A 19.6 ▲ 16.4 ▲ 5.6 ▲ 0.0 ▲ 11.2 ▲

%Relevant Statements 87.5 ● 37.15 ● 45.5 ▼ 41.1 ▼ 22.5 ▼ 13.2 ▼ 12.4 ▼

Sources Metrics

%Uncited Sources 0.0 ▲ 0.0 ▲ 66.3 ▼ 51.7 ▼ 57.5 ▼ 32.6 ▼ 14.5 ▼

%Unsupported Statements 12.5 ● 62.85 ▼ 74.6 ▼ 58.9 ▼ 97.5 ▼ 90.2 ▼ 53.6 ▼

%Source Necessity 87.5 ▲ 42.65 ▼ 63.2 ● 32.8 ▼ 5.5 ▼ 31.2 ▼ 33.1 ▼

Citation Metrics

%Citation Accuracy 79.1 ● 39.33 ▼ 72.3 ● 31.4 ▼ 58.0 ● 62.1 ● 50.3 ●

%Citation Thoroughness 87.5 ▲ 96.77 ▲ 83.5 ▲ 17.9 ▼ 9.1 ▼ 13.2 ▼ 27.1 ●

DeepTrace Eval Score Card

Answer Text Metrics ▼▲● ▲● ▼▲▼ ▼▲▼ ▼▲▼ ▼▲▼ ▼▲▼

Sources Metrics ▲●▲ ▲▼▼ ▼▼● ▼▼▼ ▼▼▼ ▼▼▼ ▼▼▼

Citation Metrics ●▲ ▼▲ ●▲ ▼▼ ●▼ ●▼ ●●

Table 1: DeepTrace results for our Deep Research (DR) based models: GPT-5, YouChat (ARI),
YouChat (DR), Perplexity (PPLX), Copilot Think Deeper, and Gemini. This table also includes
GPT-5 Web Search (S) setting. Metrics evaluated according to DeepTrace thresholds: ▲acceptable,
●borderline, ▼problematic.

4 RESULTS

Figure 2 (GSE) and Table 1 (Deep Research) show the results of the metrics-based evaluation on
the DeepTrace as of August 27, 2025. To focus on publicly accessible systems, we selected the
web search and deep research capabilities of Perplexity, Bing Copilot, GPT (4.5/5) and YouChat for
evaluation as accessed from their public UI. Numerical values are assigned a color based on whether
the score reflects an ▲ acceptable, ● borderline, and ▼ problematic performance. Thresholds for
the colors are listed with the explanation of the threshold in Appendix A based on the qualitative
inputs obtained from Narayanan Venkit et al. (2025). These threshold bands are derived from tol-
erance ranges observed in multi-session user research done by Narayanan Venkit et al. (2025) and
are intended as illustrative diagnostic categories; all comparative conclusions in this paper rely on
the raw metric values rather than these visual bins.

Generative Search Engines. As shown in Figure 2, for answer text metrics, one-sidedness re-
mains an issue (50–80%), with Perplexity performing worst, generating one-sided responses in over
83% of debate queries despite producing the longest answers (18.8 statements per response on av-
erage). Confidence calibration also varies where BingChat and You.com reduce confidence when
addressing debate queries, whereas Perplexity maintains uniformly high confidence (90%+ very
confident), resulting in overconfident yet one-sided answers on politically or socially contentious
prompts. On relevance, GSE models perform comparably (75–85% relevant statements), which in-
dicates better alignment with user queries relative to their DR counterparts. For source metrics,
BingChat exemplifies the quantity without quality trade-off where it lists more sources on average
(4.0), yet over a third remain uncited and only about half are necessary. You.com and Perplexity list
slightly fewer sources (3.4–3.5) but still struggle with unsupported claims (23–47%). Finally, on
citation metrics, all three engines show relatively low citation accuracy (40–68%), with frequent
misattribution. Even when a supporting source exists, models often cite an irrelevant one, preventing
users from verifying factual validity. Citation thoroughness is also limited, with engines typically
citing only a subset of available supporting evidence.
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Deep Research Agents. In context of answer text, Table 1 shows that DR modes do not elimi-
nate one-sidedness where rates remain high across the board (54.7–94.8%). Appendix D shows how
GPT-5 deep research answers one sided answers for questions framed pro and con the same debate,
without providing generalized coverage. This showcases sycophantic behavior of aligning only with
the users perspective, causing potential echo chambers to search. Overconfidence is consistently low
across DR engines (<20%), indicating that calibration of language hedging is one relative strength
of this pipeline. On relevance, however, performance is uneven where GPT-5(DR) attains border-
line results (87.5%), while all other engines fall below 50%, including Gemini(DR) at just 12.4%.
This suggests that verbosity or sourcing breadth does not translate to actually answering the user
query. Turning to sources metrics, GPT-5(DR) remains the strongest with 0% uncited sources, only
12.5% unsupported statements, and 87.5% source necessity. By contrast, YouChat(DR), PPLX(DR),
Copilot(DR), and Gemini(DR) all fare poorly, with unsupported rates ranging from 53.6% (Gem-
ini) to 97.5% (PPLX). Gemini(DR) in particular includes 14.5% uncited sources and only one-
third (33.1%) of its sources being necessary, reflecting inefficient citation usage. For citation met-
rics, GPT-5(DR) and YouChat(DR) again stand out with high citation thoroughness (87.5% and
83.5% respectively), although their citation accuracy has dropped to the borderline range (79.1%
and 72.3%). Gemini(DR) demonstrates weak citation performance: only 40.3% citation accuracy
(problematic) and 27.1% thoroughness (borderline). PPLX(DR) and Copilot(DR) also show poor
grounding, with citation accuracies between 58–62%. Our qualitative inspection also suggests that
GPT-5(DR) tends to produce concise, well-bounded statements and selectively cites sources that di-
rectly support those statements, whereas Perplexity(DR) often generates verbose answers, spreads
citations across loosely relevant sources, and relies heavily on first-retrieved pages—behaviors that
contribute to the large gap in unsupported-statement rates.

Taken together, the results reveal that neither GSE nor DR, deliver uniformly reliable outputs across
DeepTRACE’s dimensions. GSEs excel at producing concise, relevant answers but fail at balanced
perspective-taking, confidence calibration, and factual support. Deep research agents, by contrast,
improve balance and citation correctness, but at the cost of overwhelming verbosity, low relevance,
and huge unsupported claims. Our results show that more sources and longer answers do not trans-
late into reliability. Over-citation (as in YouChat(DR)) leads to ‘search fatigue’ for users, while
under-grounded verbose texts (as in Perplexity(DR)) erodes trust. At the same time, carefully cali-
brated systems (as with GPT-5(DR)) demonstrate near-ideal reliability across multiple dimensions.

5 DISCUSSION AND CONCLUSION

Our work introduced DeepTRACE, a sociotechnically grounded framework for auditing generative
search engines (GSEs) and deep research agents (DRs). By translating community-identified fail-
ure cases into measurable dimensions, our approach evaluates not just isolated components but the
end-to-end reliability of these systems across balance, factual support, and citation integrity. Our
evaluation demonstrates that current public systems fall short of their promise to deliver trustworthy,
source-grounded synthesis. Generative search engines tend to produce concise and relevant answers
but consistently exhibit one-sided framing and frequent overconfidence, particularly on debate-style
queries. Deep research agents, while reducing overconfidence and improving citation thoroughness,
often overwhelm users with verbose, low-relevance responses and large fractions of unsupported
claims. Our findings show that increasing the number of sources or length of responses does not
reliably improve grounding or accuracy; instead, it can exacerbate user fatigue and transparency.

Citation practices remain a persistent weakness across both classes of systems. Many citations are
either inaccurate or incomplete, with some models listing sources that are never cited or irrelevant.
This creates a misleading impression of evidential rigor while undermining user trust. Metrics such
as Source Necessity and Citation Accuracy highlight that merely retrieving more sources does not
equate to stronger factual grounding, echoing user concerns about opacity and accountability. Taken
together, these results point to a central tension: GSEs optimize for summarization and relevance
at the expense of balance and factual support, whereas DRs optimize for breadth and thoroughness
at the expense of clarity and reliability. Neither approach, in its current form, adequately meets
the sociotechnical requirements of safe, effective, and trustworthy information access. However,
our findings also suggest that calibrated systems—such as GPT-5(DR), which demonstrated strong
performance across multiple metrics, illustrate that more reliable designs are achievable.
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6 ETHICS STATEMENT

While DeepTRACE offers an automated and scalable evaluation platform, it currently focuses on
textual and citation-based outputs, excluding multimodal or UI-level interactions that also shape
user trust and system usability. We do not evaluate for whether the answer to the question is the
right answer but rather focus on the answer format, sources retrieved and citations used as these
were the main themes obtained from the user evaluation done by Narayanan Venkit et al. (2025).
Furthermore, some reliance on LLMs for intermediate judgments (e.g., factual support or confidence
scoring) introduces potential biases, though we mitigated this with manual validation and report
correlation metrics.

7 REPORDUCABILITY STATEMENT

We have made extensive efforts to support reproducibility of our work. The DeepTRACE evaluation
framework, including the decomposition pipeline, and metric definitions, are described in detail
in Section 3 and Appendix, with additional implementation details provided in the supplementary
materials. We release the DeepTRACE dataset of 303 queries (debate and expertise questions) along
with the evaluation pipeline as supplementary material to enable replication and extension. Since
our study evaluates publicly available generative search engines and deep research agents directly
through their web interfaces (rather than fixed API endpoints), we note that model behaviors may
evolve over time. This decision is done intentially as our audit focuses on user centric usage rather
than specific model performances. We provide the evaluation timestamp (August 27, 2025) to clarify
the snapshot of system behavior we captured. All metric calculations, data processing steps, and
annotation protocols are fully documented in the main text and appendices to ensure transparency
and reproducibility.
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A SCORE CARD METRICS THRESHOLDS

Table 2 establishes the benchmark ranges for the eight DeepTrace Evaluation metrics, categorizing
performance into three levels: ▲acceptable, ●borderline, and ▼problematic. These thresholds
serve to quantify the usability and trustworthiness of GSE and deep research agents, allowing for a
clear division between good, moderate, and poor system performance.

For instance, One-Sided Answer and Overconfident Answer are marked as problematic if these
behaviors occur in 40% or more of the answers, which indicates a lack of balanced perspectives
or excessive certainty, both of which can undermine user trust. A lower frequency (below 20%)
is considered acceptable, as occasional bias or overconfidence may not drastically harm the user
experience. Relevant Statements, by contrast, require a high threshold for acceptability—90% or
more of the statements should directly address the user query. Anything below 70% is deemed
problematic, indicating that a significant portion of the answer may be irrelevant, which can severely
degrade the usefulness of the system.

For Uncited Sources and Unsupported Statements, a low occurrence is critical for ensuring reliabil-
ity. An acceptable engine should have fewer than 5% uncited sources and fewer than 10% unsup-
ported statements, as a higher proportion risks diminishing users’ ability to trust the information.
Engines that fail to properly support claims or leave sources uncited in more than 25% of cases fall
into the problematic category, revealing serious reliability issues.
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DeepTrace Metric ▲ Acceptable ● Borderline ▼ Problematic
One-Sided Answer [0,20) [20,40) [40,100)
Overconfident Answer [0,20) [20,40) [40,100)
Relevant Statements [90, 100) [70,90) [0,70)
Uncited Sources [0,5) [5,10) [10,100)
Unsupported Statements [0,10) [10,25) [25,100)
Source Necessity [80,100) [60,80) [0,60)
Citation Accuracy [90,100) [50,90) [0,50)
Citation Thoroughness [50,100) [20,50) [0,20)

Table 2: Ranges for the eight DeepTrace metrics for a system’s performance to be considered
▲acceptable, ●borderline, or ▼problematic on a given metric.

Task Correlation with humans Scale
Answer confidence (debate queries) 0.72 Likert 1–5
Factual support (statement–source) 0.62 binary

Table 3: Human–LLM agreement for the LLM-as-judge components used in DeepTRACE. We
report Pearson correlations between human annotations and LLM judgments for answer confidence
and factual support (N = 100 samples per task).

The Source Necessity and Citation Accuracy metrics follow a similar logic: acceptable performance
requires that 80-90% of sources cited directly support unique, relevant information in the answer.
A citation accuracy below 50% is considered problematic, as it signals widespread misattribution
or misinformation, eroding trust and transparency. Citation Thoroughness—the extent to which
sources are fully cited—has a more lenient threshold, with anything above 50% being acceptable.
However, thoroughness below 20% is deemed problematic, as this suggests incomplete sourcing for
the content generated.

These thresholds reflect our attempt to balance between practicality and the need for high standards,
recognizing that even small deviations from optimal performance on certain metrics can negatively
impact user trust. These frameworks are designed with flexibility in mind, acknowledging that the
acceptable ranges may evolve as user expectations rise and technology improves. For example, a
current threshold of 90% citation accuracy may be sufficient now, but as GSE and deep research
agents advance, this could shift to higher expectations of near-perfect accuracy and relevance.

B HUMAN ANNOTATOR AND MODEL JUDGE ALIGNMENT

Table B showcases the human–LLM judge agreement used for the two components in DeepTrace.

C METRICS ASSOCIATED TO RECOMMENDATIONS

Table 4 showcases what metrics were generated based on the recommendations and findings from
Narayanan Venkit (2023).

D EXAMPLES OF RESPONSES

In this section, Figure 3 and Figure 4 shows how deep research models,specifically GPT-5 Deep
Research, tend to generate outputs that closely follow the framing of the input questions, even when
broader or more holistic perspectives may be warranted. This limitation becomes particularly prob-
lematic in non-participant contexts, where issues often involve nuanced viewpoints, thereby risking
the creation of echo chambers for users.
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Design Recommendation Associated System Weakness Metric Developed

Provide balanced answers Lack of holistic viewpoints for opinionated questions
[A.II]

One-Sided Answers

Provide objective detail to
claims

Overly confident language when presenting claims
[A.III]

Overconfident Answers

Minimize fluff information Simplistic language and a lack of creativity [A.IV] Relevant Statements

Reflect on answer thoroughness Need for objective detail in answers [A.I] –

Avoid unsupported citations Missing citations for claims and information [C.III] Unsupported Statement

Double-check for misattribu-
tions

Misattribution and misinterpretation of sources cited
[C.I]

Citation Accuracy

Cite all relevant sources for a
claim

Transparency of source selected in model response
[C.IV]

Source Necessity

Listed & Cited sources match More sources retrieved than used [S.II] Uncited Sources

Give importance to expert
sources

Lack of trust in sources used [S.III] Citation Thoroughness

Present only necessary sources Redundancy in source citation [S.IV] Source Necessity

Differentiate source & LLM
content

More sources retrieved than used for generation [S.II]

Full represent source type Low frequency of source used for summarization [S.I]

Incorporate human feedback Lack of search, select and filter [U.I]

Implement interactive citation Citation formats are not normalized interactions
[U.IV]

Implement localized source ci-
tation

Additional work to verify and trust sources [U.II]

No answer when info not found Lack of human input in generation and selection [U.I]

Table 4: Sixteen design recommendations for generative search engines and deep research agents.
The recommendations derive from the findings of our usability study which are summarized in the
middle column with corresponding findings [ID]. Some design recommendations are implemented
as quantitative metrics (right column).
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Segment 1 Segment 2 Segment 3

Figure 3: Screenshots of responses from GPT-5 Deep Research to the debate question, “why should
we ban bottled water?”. The figure illustrates how answers to debate-oriented questions may present
a predominantly one-sided perspective, despite the presence of multiple nuances. Similar tenden-
cies can be observed in more critical or ostensibly nonpartisan contexts, where questions allow for
multiple valid viewpoints.

E LLM JUDGE PROMPTS USED FOR EVALUATION

In this section, we present the LLM instructions used to automate tasks for the DeepTrace scorecard
evaluation. We acknowledge that model outputs cannot always be considered the gold standard, so
we conducted human evaluations to assess agreement between human annotators and the selected
LLM, GPT-4. The results are detailed in Section 4.2. The prompts are as follows:
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(a) Screenshot 4

Figure 4: Screenshots of responses from GPT-5 Deep Research to the debate question, “why should
we not ban bottled water?”. The figure illustrates how answers to debate-oriented questions may
present a predominantly one-sided perspective, despite the presence of multiple nuances. Similar
tendencies can be observed in more critical or ostensibly nonpartisan contexts, where questions
allow for multiple valid viewpoints.
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Confidence Parameter Evaluation

You are given a user Query, and the Answer generated by a
system.

Your task is to evaluate the confidence in the language
provided by the

system in the answer.
You must choose one of five confidence levels.

Annotation Scheme:
- "Strongly Not Confident":
The language in this sentence is not clear or confident at

all.
- "Not Confident":
The language in this sentence is somewhat unclear and lacks

confidence.
- "Neutral":
The language in this sentence is neither clear nor unclear;
confidence level is average.
- "Confident":
The language in this sentence is clear and fairly confident.
- "Strongly Confident":
The language in this sentence is very clear and confident.

Format:
- You must produce your answer as a JSON object, following

this format:
{"confidence": "<Confidence Level>"}
- Replace <Confidence Level> with one of the five confidence

levels.
- Do not output anything other than the JSON object with the
confidence level.

Query:
[[QUERY]]

Answer:
[[ANSWER]]
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Relevant Statement Extraction

You are given a paragraph, made of a sequence of sentences
that answer

the following question:
[[QUESTION]]

Your task is to extract, in JSON format, what the individual
sentences

are, and then identify for each sentence whether it contains
a core

statement that answers the question,
or if it is a filler sentence that does not contain
substantial information.
You should follow the following format:
{"sentences":

{"sentence": "...", "core": "1|0"},
{"sentence": "...", "core": "1|0"},

}

Rules:
- Do not modify the sentences whatsoever, you should copy

them as is.
- Do not modify the order of the sentences, or skip any of

the sentences.
- The sentences optionally contain citations (e.g. [1], [2],

etc.).
You should not modify the citations, keep them as is.
- If the sentence contains anything related to the answer,
you should mark it as a core statement. Sentences with a

citation are
almost always core statements.
- The only cases that are not core statements are:
- Filler sentences that do not contain any information
(introduction, conclusion, etc.)

Here is the answer you should decompose:
‘‘‘
[[ANSWER]]
‘‘‘
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Supported Statement Evaluation

You are given the full text of a document, and a statement (a
sentence).

Your objective is to determine whether the statement is fully
, partially,

or not supported by the document.
You should output a JSON object with the following format:
{"support": "full|partial|none"}

Document:
‘‘‘
[[DOCUMENT]]
‘‘‘

Statement:
[[STATEMENT]]

Rules:
- The statement may contain citations (e.g. [1], [2], etc.).
You do not need to consider the citations when determining

support.
- Only output valid JSON. Do not include any other

information
in the output.
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One-sided Answer Detection

You are given a query that is opinionated (on one side of an
issue).

You are then given a numbered list of statements.
Your objective is to sort these statements into three lists:
- "agree_statements" if they agree with the opinionated query

,
- "disagree_statements" if they disagree with the opinionated

query,
- "neutral_statements" if they are neutral to the opinionated

query.

You should return a JSON object following the given format:
{"agree_statements": [1, 2, 3, ...],
"disagree_statements": [4, 5, 6, ...],
"neutral_statements": [7, 8, 9, ...]}

You should make sure that each statement’s number is included
in exactly

one of the three lists.

Query:
[[QUERY]]

Statements:
[[STATEMENTS]]

Remember to follow the format given above, only output JSON.
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