Let’s Reinforce Step by Step

Sarah Pan Vladislav Lialin
MIT Primes University of Massachusetts Lowell
Phillips Academy vlialin@cs.uml.edu

span24@andover.edu

Sherin Muckatira Anna Rumshisky
University of Massachusetts Lowell University of Massachusetts Lowell
smuckati@cs.uml.edu arum@cs.uml.edu
Abstract

While recent advances have boosted LM proficiency in linguistic benchmarks, LMs
consistently struggle to reason correctly on complex tasks like mathematics. We
turn to Reinforcement Learning from Human Feedback (RLHF) as a method with
which to shape model reasoning processes. In particular, we explore two reward
schemes, outcome-supervised reward models (ORMs) and process-supervised
reward models (PRMs), to optimize for logical reasoning. Our results show that the
fine-grained reward provided by PRM-based methods enhances accuracy on simple
mathematical reasoning (GSM8K) while, unexpectedly, reducing performance in
complex tasks (MATH). Furthermore, we show the critical role reward aggregation
functions play in model performance. Providing promising avenues for future
research, our study underscores the need for further exploration into fine-grained
reward modeling for more reliable language models.

1 Introduction

While the linguistic ability of language models (LMs) as measured by NLP benchmarks has increased
in recent years, [Brown et al., 2020, [Touvron et al.| 2023 improving their proficiency in complex
reasoning tasks like mathematics remains a challenge [Yao et al.| [2023a]]. When prompted with a
math problem, LMs will often generate solution steps that seem plausible but are neither correct
nor follow logically from previous steps. We believe that the process used to train LMs is partially
responsible for these hallucinatory, or in other words fallacious, responses [Maynez et al., 2020,
Uesato et al.| 2022} |[Lightman et al., [2023} | Yang et al.| 2023]].

“Chain of Thought” (CoT) methods, which aim to instill step-wise reasoning at generation-time,
increase mathematical performance [Wei et al.| [2023]]. Simultaneously, CoT prompting does not
guarantee a logical response — little incentive is placed on logic or factual correctness in the original
language modeling objective. Reinforcement Learning from Human Feedback (RLHF) [Ziegler
et al.,[2020], however, allows us to specify the criteria we optimize for, which in this case is logical
reasoning. We explore the two reward schemes that have emerged recently — outcome-supervised
reward models (ORMs) and process-supervised reward models (PRMs) [Uesato et al.| 2022]. While
Lightman et al.| [2023]] show that PRMs can identify correct solutions better than ORMs, they did not
update a generator model. It is also important to note that our method differs from that of |Yang et al.
[2023]],|Wu et al.| [2023]] as we seek not to increase performance directly but rather to improve the
logical stepping stones upon which a final answer is generated.

In lieu of using reward models as verifiers [Cobbe et al., 2021} Lightman et al.,|2023]], we combine
CoT and RLHF to guide the internal reasoning process of the LM. We show that accuracy on

RO-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.



Step 1 Step 2 Step 3

Train a supervised policy Train reward models F”'_‘efmne supetrlvlsed‘ policy using
reinforcement learning

Train
classifiers on PRMBOOK

PRM800K sample
Fine-tune on + GSMBK, MATH prompt

AMPS ¥

v

Alibrary has six identical copies
of a certain book..

Step 1: The library... Cereeicy
Step 2: By adding four and...
Step 3: Therefore, there are...

Fine-tune on
MATH fx)

<\

Figure 1: A visual guide to our method, which follows InstructGPT [Ouyang et al., [2022].

mathematical benchmarks MATH and GSM8K [Hendrycks et al.,[2021} |Cobbe et al., | 2021]], improves
after policy optimization using ORMs and PRMs. Though PRM-based methods lead to decreases in
MATH performance, they notably also increase performance on GSMS8K by 33% (relative). Using
outcome-supervised reward models does not improve performance on GSM8K but increases accuracy
on MATH by 18%.

2 Method

Our overall framework resembles that of [Ouyang et al.| [2022]]. Shown in Figure [T} the stages are
supervised training, reward model training, and reinforcement learning with the learned reward
model.

When performing RLHF, we look at the effects of various PRM reward aggregation schemes. We note
that our exploration of aggregation methods is not exhaustive but provides insight into particularly
promising methods. We hypothesize that the more fine-grained feedback provided by the PRM
provides better signals than that from an ORM. When aggregated effectively, we expect that the PRM
improves policy performance on mathematical benchmarks.

2.1 Supervised Finetuning and Reward Model Training

We first fine-tune the generator model on multi-step math solutions. Next, we train our reward models.
To train the outcome-supervised reward model, an n-token long question and step-by-step solution
are passed in as context. Only the logits corresponding to the last token are taken into account. The
label denotes whether that solution contains an incorrect reasoning step.

— Ly logp; i€S
ci:{ e (1)

0 ¢S
The process-supervised reward model is trained on a similar classification objective, but as shown in

Equation (T)), there exists a set S that contains indices corresponding to the last token in a reasoning
step. All other tokens are masked when calculating the loss.

2.2 Reward Aggregation Methods

Using the ORM and PRM trained in phase two, we fine-tune our generator model using PPO
[Schulman et al.l 2017]]. Our study delves into five distinct reward delivery paradigms: vanilla ORM,

IThis is similar to GPT-1 [Radford and Narasimhanl 2018]], where the hidden state of the last token is used as
a representation vector for the entire text.



PRM-Avg, PRM-Prod, PRM-Max, and PRM-Min. For all the hyperparameters we use, look to
Appendix [A]

Vanilla ORM For the vanilla ORM method, we denote the probability of there being a misstep as
rorm- While all other tokens receive an estimate of the KL divergence from the original policy as a
reward, the last token in the response additionally receives rorm. This is shown in Equation (2)) for
an n-token long response.

vy = {t #n  KL-div; )

t =n KL-div; + 7orMm

Aggregated PRMs The general equation for reward aggregation is shown by Equation (3). The
PRM-Avg method uses aggregate = % >, for an n-token long sequence. Similarly, the PRM-

Prod method uses aggregate =[] .

The PRM-Max approach uses aggregate = max, where the largest per-step reward is used for the
entire generation. This method explores the idea that one decisively good reasoning step might be all
that is needed to produce a correct final answer. Conversely, PRM-Min uses aggregate = min and
penalizes the model according to the worst reasoning step.

{t #n  KL-div,
Ty =

3
t =n KL-div; + aggregate(PRM) 3

3 Experiments

3.1 Experimental Setup

We fine-tune OPT-1.3B [Zhang et al., 2022]| as our generator model. We first train on the Auxiliary
Mathematics Problems and Solutions (AMPS) dataset and MATH [Hendrycks et al., [2021]] for one
and ten epochs, respectively. Like |Lewkowycz et al.|[2022], we find that supervised fine-tuning is
necessary to produce meaningful responses. We evaluate this model as the SFT Base model.

Then, we train two 300M-parameter DeBERTaV3E] reward models as a sequence-level classifier and a
reasoning-step-level classifier, respectively. Both of these models are trained on the PRM800K dataset
[Lightman et al.,|2023]], which consists of prompts from MATH [Cobbe et al., 2021]], step-by-step
responses generated by a model, and step-level labels from human labelers on whether each step is
correct.

Following |Yao et al.| [2023b], we initialize the value function from a reward model with the same
tokenizer. We use an OPT-1.3B [Zhang et al.l 2022]] model trained on the ORM objective. We
choose to train our critic with the ORM objective to avoid the unnecessary complexities of using a
PRM. During RLHF, we utilize prompts from both MATH and GSMS8K. This provides the generator
with greater exposure to math with varying levels of difficulty. Lastly, because PRM80OK contains
examples from the MATH test set, we filter the overlap to arrive at approximately five hundred
questions. We evaluate on the GSMSK test set as is.

3.2 Results

Our main results are presented in Figure[2] We see that providing feedback on LM reasoning process
through RLHF is a promising method with which to improve mathematical performance as judged by
the accuracy of the final answer (up to 17% on MATH 33% on GSMSK, relative).

We find a strong dependence of accuracy on the reward aggregation method. The best performance
on GSMBS8K results from the use of the PRM-Max method, and the best score on MATH comes
from the vanilla ORM method. Though PRM-based methods (excluding PRM-Avg and PRM-Min)
increase performance on GSM8K, they consistently decrease performance on MATH. The significant

’DeBERTav3 accuracy on the reward modeling dataset was much better than OPT-350M/1.3B in all our
experiments.



I Base SFT PRM Avg PRM Max
I Vanilla ORM Bl PRM Prod W8 PRM MIN 4.00

3.30
3.00 3.00

Accuracy

MATH GSM8K

Figure 2: Results on MATH and GSM8K. PRM-based methods degrade performance on MATH but
improve accuracy on GSM8K. ORM-based methods improve accuracy on MATH but decrease that
on GSMS8K.

decrease in performance after using PRM-Avg and PRM-Min points to the importance of choosing
an appropriate aggregation method when using a process-supervised reward model.

The increase in MATH performance with the outcome-supervised reward model may stem from its
holistic training, enabling better handling of complex problems, while its lack of exposure to simpler
reasoning hinders decisive signaling for GSMS8K problems. In contrast, the process-supervised reward
model, also trained on PRM800K, prioritizes correctness on the step level, resulting in improved
GSMSK performance but a decline in MATH performance. This hints that the fine-grained knowledge
possessed by a PRM may be more akin to “real math” and generalize better onto different levels
of complexity. Simultaneously, this implies potential limitations in the PRM’s ability to effectively
understand and reward complex mathematics. |[Lightman et al.| [2023]] use PRMs that are presumably
much larger than ours and thus may be better at understanding complex patterns. This study suggests
the need for deeper exploration into the trade-offs between ORM and PRM-based methods, especially
in terms of varying model scales.

Effects of dataset mixing To verify our strategy of mixing GSM8K and MATH training sets in
stage threes, we use either dataset with the PRM-Prod method and observe significant decreases in
model ability. When only training on MATH, a 0.5% accuracy on GSM8K and a 2.6% on MATH is
observed. Similarly, only training on GSMS8K produces an accuracy of 1.5% on MATH and 1.5%
on GSM8K. When compared with our results in Figure 2] it is clear that training on both datasets is
beneficial for performance.

4 Conclusion

We have shown that the use of reinforcement learning with outcome-supervised and process-
supervised reward can increase performance on complex reasoning tasks like mathematics. We
observe up to 33% accuracy increase on GSM8K and a 18% increase on MATH. Additionally, we
find a strong performance dependence on the reward aggregation function for PRM-based methods.
For example, maximum-aggregated PRM lead to the best result on GSM8K dataset but resulted in
worse-than-baseline performance on MATH. Moreover, the failure of the average-aggregated PRM
highlights the significance of choosing the right aggregation function. In future work, we plan to
explore the use of a non-aggregated step-by-step or, in general, fine-grained rewards directly in the
reinforcement learning objective. Additionally, as|Lightman et al.|[2023]] found model size to be
a crucial factor for step-by-step rewards to be beneficial, we plan to scale up our experiments to
larger models and datasets. We hope that our study encourages more research in fine-grained reward
modeling — especially in relation to the effectiveness of various aggregation methods — and brings us
closer to more reliable language models.




References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization, 2020.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training, 2023.



Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, and Mingyuan Zhou.
Preference-grounded token-level guidance for language model fine-tuning, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou,
Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuai-
wen Leon Song, and Yuxiong He. Deepspeed-chat: Easy, fast and affordable rlhf training of
chatgpt-like models at all scales, 2023b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022. URL https:
//api.semanticscholar.org/CorpusID: 248496292,

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.

Appendix

A Training Details

For all experiments, a weight decay of 0.1 and cosine learning rate scheduler is used. We initialize
the generator model from the pre-trained checkpoint of OPT-1.3b. We use a lr = 6e~° to train on
AMPS for one epoch using batch size of 152. We further fine-tune this model on MATH for ten
epochs using the same batch size.

For the PRM-Avg result, RLHF using prompts from both MATH and GSM8K was performed using
batch size 144 and Ir = 1e~* for both actor and critic models. Similar hyperparameters were used for
PRM-Prod with a batch size of 126 and Ir = 1e~* for both actor and critic models. The PRM-Max
result was achieved using batch size of 160 and Ir = 1e~* for the actor and Ir = 5¢~° for the critic.
Lastly PRM-Min used batch size 144, Ir = le—* for the actor, and Ir = 5e~° for the critic.

During RLHF, we found the coefficient for KL-divergence to have a nontrivial role in model stability.
After some experimentation we found that kl coeff = 0.2 provided optimal results for our setup.
Further, we clip our rewards at 0.7, and use 0.2 as our clip range when calculating the loss for both
the actor and critic model. Following |(Ouyang et al.| [2022]], we set A = 0.95 and 7 = 1.0 in the
generalized advantage estimate.


https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292

	Introduction
	Method
	Supervised Finetuning and Reward Model Training
	Reward Aggregation Methods

	Experiments
	Experimental Setup
	Results

	Conclusion
	Training Details

