
Under review as a conference paper at ICLR 2022

WHEN DO CONVOLUTIONAL NEURAL NETWORKS
STOP LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional Neural Networks (CNNs) is one of the most essential architectures
that has shown impressive performance in computer vision tasks such as image
classification, detection, and segmentation. In general, an arbitrary number of
epochs is used to train such neural networks. In a single epoch, the entire train-
ing data—divided by batch size—are fed to the network. However, the optimal
number of epochs required to train a neural network is not well established. In
practice, validation data is used to identify the generalization gap. To avoid over-
fitting, it is recommended to stop training when the generalization gap increases.
However, this is a trial and error based approach. This raises a critical question:
Is it possible to estimate when neural networks stop learning based on only the
training data? In this research work, we introduce a hypothesis that analyze the
data variation in a layer to predict its near optimal learning capacity. Based on
this hypothesis, we predict the near optimal epoch number to train a CNN without
using any validation data. We experiment our hypothesis on six different CNN
models and on three different datasets (CIFIR 10, CIFIR 100, and SVHN). We
save on average 58.49% computational time to train a CNN model. Our code is
available at https://github.com/PaperUnderReviewDeepLearning/Optimization.

1 INTRODUCTION

“Wider and deeper are better” has become the rule of thumb to design deep neural network archi-
tecture (Guo et al., 2020; Huang et al., 2017; He et al., 2016b; Szegedy et al., 2015; Simonyan &
Zisserman, 2014b). Deep neural network requires large amount of data to be trained but how much
data we should feed to a deep neural network to gain optimum performance is not well established.
Deep neural networks behave “double-descent” curve while traditional machine learning models
stuck to the “bell-shaped” curve as deep neural networks have larger model complexity (Belkin
et al., 2019). However, in deep neural network the data interpolation is reduced as the data are fed
into the deeper layers of the network. This raises a critical question: Can we predict whether the
deep neural network keeps learning or not based on the training data behavior?

Convolutional Neural Network (CNN) gains impressive performance on computer vision task (He
et al., 2016a). Deeper layer based CNN tends to achieve higher accuracy on vision task (e.g., image
classification) (Sinha et al., 2020). In terms of computational time saving, light-weighted CNN
architectures are introduced which have a trade-off between speed and accuracy. However, when a
CNN architecture reaches its’ model capacity and stops significant learning from the training data
remains unclear.

In training phase, all training data are fed into the CNN as an epoch. Current practice is to use many
epochs (e.g., 200∼500) to train a CNN model. The optimum number of epochs required to train a
CNN model is not well researched. To infer whether the model keeps learning or not in each epoch,
validation data are used alongside training data. Traditionally, training of the model is stopped when
the validation error or generalization gap starts to increase (Goodfellow et al., 2017). Generalization
gap indicates model’s capability to predict unseen data. However, this current approach is based on
trial-and-error. Our research objective is to replace this trial-and-error based approach by algorithmic
approach.

We hypothesize that a layer after convolution reaches its near optimal learning capacity if the pro-
duced data have significantly less variation. We use our hypothesis to identify the epoch where all

1



Under review as a conference paper at ICLR 2022

the layers reach their near optimal learning capacity which also represents the model’s near optimal
learning capacity. Thus, our hypothesis predicts the near optimal epoch number to train a CNN
model without using any validation data set.

The selection of optimal epoch number to train a deep neural network is not well established. Fol-
lowings are some of the recent works that use different epoch number for their experiments: Zhang
& He (2020) use 186 epochs, Piergiovanni & Ryoo (2020) use 256 epochs, Peng et al. (2020) use 360
epochs, Khalifa & Islam (2020) use 150 epochs. For CIFIR10 and CIFIR100 dataset Li et al. (2020)
and Reddy et al. (2020) use 200 epochs. For ResNet and VGG architecture, Kim et al. (2020) use
200 epochs. Dong et al. (2020) and Liu et al. (2020) also use 200 epochs for their experiment. Huang
et al. (2020) use 50∼500 epochs as a range. Curry et al. (2020) use 1000 epochs for their custom
dataset. In short, most deep neural models adapt a safe epoch number.

As illustrated by Figure 1, our hypothesis can be deployed as a plug-and-play to any CNN architec-
ture. Our hypothesis does not introduce any additional trainable parameter to the network. At the
end of each epoch, our hypothesis verifies the models’ learning capacity. The training is terminated
when the model reaches its near optimal learning capacity.

The main contributions of this paper can be summarized as:

• We introduce a hypothesis regarding near optimal learning capacity of CNN architecture.

• We examine the data variation across all the layers of a CNN architecture and correlate to
its near optimal learning capacity.

• The proposed hypothesis can predict the near optimal epoch number to train a CNN model
without using any validation dataset.

• The implementation of the proposed hypothesis can be deployed as plug-and-play to any
CNN architecture and does not introduce any additional trainable parameter to the network.

• To test our hypothesis, we conduct image classification experiments on six CNN architec-
tures and three datasets. Adding the hypothesis to the existing CNN architectures save 32%
to 78% of the computational time.

• Finally, we provide detail analysis of our hypothesis on different phases of training and
how we obtain the near optimal epoch number.

2 RELATED WORK

Figure 1: Black doted box represents tra-
ditional steps of training a CNN architec-
ture. At each epoch, our plugin (blue doted
box) measures data variation after convo-
lution operation. Based on all layers data
variation, the plugin decides the continuity
of training.

Validation data are used along side training data to
identify generalization gap (Goodfellow et al., 2017).
Generalization refers the model’s capability to predict
unseen data. Increasing generalization gap indicates
that the model is going to overfit. It is recommended
to stop training the model at that point. However, this
is a trial and error based approach that has been widely
used in current training strategy. In order to use this
strategy, validation dataset is required.

In terms of model complexity, modern neural net-
works have more complexity compared to the clas-
sical machine learning methods. In terms of bias-
varience trade off for generalization of neural net-
works, traditional machine learning methods behave
the “bell-shaped”, and modern neural networks behave
the “double descent curve” (Belkin et al., 2019).

To the best of our knowledge, there is no previous
work that investigates at what optimal epoch a CNN
model stops learning. However, there are CNN archi-
tectures that aim at obtaining best possible accuracy under a limited computational budget based
on different hardware and/or applications. This results a series of works towards light-weight

2



Under review as a conference paper at ICLR 2022

CNN architectures and have speed-accuracy trade-off, including Xception (Chollet, 2017), Mo-
bileNet (Howard et al., 2017), ShuffleNet (Zhang et al., 2018), and CondenseNet (Huang et al.,
2018). They use FLOP as an indirect metric to compare computational complexity. Shuf-
fleNetV2 (Ma et al., 2018) uses speed as a direct metric while considering memory access cost,
and platform characteristics. However, considering epoch number as metric to analyze computation
on CNN or at what optimal epoch CNN reaches optimal learning capacity is not well researched.

For a specific dataset and CNN architecture, the usual practice is to adapt a safe epoch number.
However, the epoch number selection is random and an arbitrary safe number is picked for most
of the experiments. This inspires us to conduct our research work to find out when CNN almost
stops learning and to predict near optimal epoch number to train any CNN architecture regardless of
dataset.

3 TRAINING BEHAVIOR ON DEEP NEURAL NETWORK

3.1 CONVOLUTIONAL NEURAL NETWORK (CNN)

Figure 2: Computing stability vector elements
α1t, α2t, . . . , αnt for n layers at t-th iteration.

In deep learning, a typical CNN is composed
of stacked trainable convectional layers (Le-
Cun et al., 1998). In one epoch (e), the en-
tire training data is sent by multiple iteration
(t) in batch size (N). The entire training data
sent in one epoch is expressed as e = Nt.
The input tensor X is organised by batch size
N , channel number c, height h, and width w
as X(N, c, h, w). A typical CNN convolution
operation on n-th layer can be mathematically
represented by Equation 1, where θw are the
learned weights of the convolutional kernel.

Xn = (θw ~ Xn−1) (1)

3.2 STABILITY VECTOR

Figure 3: At e-th epoch, the process of construct-
ing stability vectors S1e, S2e, . . . , Sne for n layers.

During training phase, we examine whether the
deep leaning model is learning or not by mea-
suring data variation after convolution opera-
tion. We introduce stability vector S to mea-
sure data variation. In every epoch, we con-
struct stability vector for each layer of the deep
neural network. The stability vector for e-th
epoch and n-th layer is denoted by Sne. At
each epoch and each layer, we construct sta-
bility vector Sne by computing stability value
for all the iterations (t) of an epoch. At t-th it-
eration, after the convolution of n-th layer, we
measure stability value (element of a stability
vector) αnt by computing the standard devia-
tion value of Xnt as αnt = σ(Xnt). The pro-
cess of constructing the elements of stability vector is shown in Figure 2.

After t iterations at n-th layer and e-th epoch, we have the stability vector Sne =
[αn1, αn2, . . . , αnt]. The process of constructing stability vectors for all the layers (i.e., layers 1
to n) after t number of iterations at epoch e is shown in Figure 3. At every epoch, we have n number
of stability vectors (i.e., based on number of layers) where each vector has size t.

3



Under review as a conference paper at ICLR 2022

3.3 LAYER AND MODEL STABILITY

We compute the mean of stability vector, µe
n, at e-th epoch and n-th layer by the following equation:

µe
n =

1

t

t∑
i=1

αni (2)

We define a function pr that rounds a number to decimal places r. Thus, if µe
n = 1.23456, p2(µe

n)
will return 1.23. For each layer n, we compare the mean of stability vector with previous epoch by
rounding to decimal places r by using the following equation:

δn = pr(µe
n)− pr(µe−1

n ) (3)

At n-th layer and e-th epoch, if δn equals zero, we consider that the n-th layer is stable on e-th
epoch. If all layers shows the stability by

∑n
i=1 δi = 0, then it indicates the possibility that the

CNN model becomes stable (i.e., reaches its near optimal learning capacity) and it cannot extract
significant information from the training data. To make sure that the CNN model reaches its near
optimal learning capacity, we verify the

∑n
i=1 δi = 0 for two more epochs and if the result remains

same, we reach to the conclusion that the model reaches near optimal learning capacity and we
terminate the training phase. The trained model is now ready for testing environment.

All the variables we use in our hypothesis are not trained via back-propagation, and do not introduce
any trainable parameter to the network.

3.3.1 RESNET18 STABILITY ON CIFAR100 DATASET

On CIFAR100 dataset, the total number of training sample is 50000. We consider 64 as the batch
size for training (i.e., N = 64). So, we need 50000

64 = 782 iterations (i.e., t = 782) in an epoch (e)
to use entire training data.

At epoch e and layer n, the first iteration constructs the first element (i.e., αn1) of stable vector Sne.
In ResNet18 architecture, at epoch e, there are 18 layers and for each layer we construct one stability
vector, so we have in total 18 stability vectors (i.e., S1e, S2e, . . . , S18e). The length of each stability
vector is 782 because each epoch consists of 782 iterations (Figure 3). Table 1 shows the p2(µe

n)
values for epoch 73 to 76. As the δn is 0 for four consecutive epochs, our hypothesis terminates the
ResNet18 training on CIFAR100 dataset at epoch 76.

Table 1: p2(µe
n) values across epoch 73 to 76 for ResNet18 on CIFAR100 dataset (p2(µe

n)) values
are from Figure 5d)

Layer p2(µe=73
n ) p2(µe=74

n ) δn p2(µe=75
n ) δn p2(µe=76

n ) δn
Layer 1 0.14 0.14 0 0.14 0 0.14 0
Layer 5 0.19 0.19 0 0.19 0 0.19 0
Layer 9 0.14 0.14 0 0.14 0 0.14 0
Layer 13 0.09 0.09 0 0.09 0 0.09 0
Layer 18 0.44 0.44 0 0.44 0 0.44 0

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of our hypothesis on six different CNN
architectures such as ResNet18 (He et al., 2016a), ResNet18+CBS (Sinha et al., 2020), CNN (Le-
Cun et al., 1998), CNN+CBS (Sinha et al., 2020), VGG (Simonyan & Zisserman, 2014a), and
VGG+CBS (Sinha et al., 2020). We test these CNN architectures on three different datasets
(CIFIR10, CIFIR100 (Krizhevsky et al.), and SVHN (Netzer et al., 2011)) and analyze the Compu-
tational Time Saving (CTS) and Top-1 classification accuracy by using our hypothesis. We further
provide an ablation study to analyze the influence of our strategy.

4



Under review as a conference paper at ICLR 2022

4.1 DATASETS, TASKS, AND CNN ARCHITECTURES

To evaluate our hypothesis, we perform image classification task on two standard vision datasets
namely CIFAR10 and CIFAR100 which contain images for 10 and 100 classes, respectively. SVHN,
the other dataset, is a digit recognition dataset which consists of natural images of the 10 digits
collected from the street view. Table 2 shows more details about these datasets.

CNN demonstrated remarkable performance in computer vision task. Both ResNet and VGG are
based on CNN architecture and have different variations based on number of layers. We consider
ResNet18 and VGG16 variations in our experiment to compare our hypothesis with Sinha et al.
(2020). Curriculum by Smoothing (CBS) gains performance on the top of these architectures. CBS
controls the amount of high-frequency information during the training phase. CBS augments the
training scheme and increases the amount of information in the feature maps so that the network can
learn progressively better representation of the data.

Table 2: Dataset

Dataset Batch Size N Training Data Training Iteration t Validation Data Validation Iteration
CIFIR10 64 50000 782 10000 157

CIFIR100 64 50000 782 10000 157
SVHN 64 73257 1145 26032 407

4.2 COMPUTATIONAL TIME SAVING (CTS)

We report the Computational Time Saving (CTS) based on epoch and iteration numbers. We con-
sider 200 epochs as the benchmark number to compare with Sinha et al. (2020) use 200 epochs as
default parameter in CBS (Curriculum by Smoothing). Li et al. (2020) use 200 epochs on CIFAR10
and CIFAR100 datasets. Kim et al. (2020) use 200 epochs on VGG and ResNet architecture. As
we use CBS, VGG, and ResNet architectures on CIFAR10, CIFAR100 datasets, we compare the
complexity based on 200 epochs for all of our experiments (i.e., six CNN architectures, and three
datasets). The iteration number is different based on the dataset size but we use fixed batch size
number to obtain iteration number for a dataset (Table 2). In Table 2, we show the batch size (N ),
iteration number (t), training, and validation data. We keep the batch size constant (i.e., 64) for all
datasets. That is, in one iteration, the model uses 64 samples.

As an example, the training and validation iteration for CIFAR100 is 782 and 157, respectively
(Table 2). In order to run ResNet18 architecture on CIFIR100 dataset, it requires 200 × 782 +
200 × 157 = 187800 (Table 3) iterations. Our hypothesis predicts 76 as the near optimal epoch
number to train ResNet18 on CIFAR10. The updated architecture based on our hypothesis requires
76 × 782 = 59432 iterations which saves 68.35% computation and gains 0.29 top-1 classification
accuracy.

Table 3: Computational Time Saving (CTS) in percentage and Top-1 classification accuracy (Acc.)
on CIFAR10, CIFAR100, SVHN datasets. The bold numbers represent better scores.

DataSet CIFIR10 CIFIR100 SVHN
Model Training Total CTS Acc. Training Total CTS Acc. Training Total CTS Acc.

Epoch Iter. (in %) Epoch Iter. (in %) Epoch Iter. (in %)
CNN 200 187800 0 80.45 200 187800 0 48.27 200 310400 0 89.68
CNN+Our 78 60996 67.52 79.51 123 96186 48.78 49.20 99 113355 63.48 89.83
CNN+CBS 200 187800 0 77.38 200 187800 0 46.51 200 310400 0 89.48
CNN+CBS+Our 128 100096 46.70 77.25 139 108698 42.12 46.43 134 153430 50.57 89.25
ResNet18 200 187800 0 89.35 200 187800 0 64.34 200 310400 0 95.05
ResNet18+Our 59 46138 75.32 89.01 76 59432 68.35 64.63 56 64120 79.34 94.34
ResNet18+CBS 200 187800 0 89.39 200 187800 0 65.81 200 310400 0 96.17
ResNet18+CBS+Our 65 50830 72.82 89.06 74 57868 69.18 65.32 63 72135 76.76 95.96
VGG16 200 187800 0 82.06 200 187800 0 48.80 200 310400 0 93.87
VGG16+Our 109 85238 54.61 81.75 163 127466 32.12 48.04 113 129385 58.31 93.63
VGG16+CBS 200 187800 0 83.68 200 187800 0 49.11 200 310400 0 94.25
VGG16+CBS+Our 109 85238 54.61 83.55 148 115736 38.37 50.41 125 143125 53.89 94.57

5



Under review as a conference paper at ICLR 2022

4.3 ABLATION STUDY

The ablation study results are summarized in Table 3. To evaluate the Computational Time Saving
(CTS) and Top-1 classification accuracy (Acc.), we run 36 experiments, 18 of them are conducted
without our hypothesis and the rest 18 are conducted with our hypothesis. Our hypothesis predicts
the near optimal epoch numbers, which are significantly less than 200, for all the 18 experiments.
On these three datasets and across the six CNN architectures, the 200 epoch number is considered a
safe one by the respective researchers.

By using our hypothesis, computational time saving ranges from 32.12% to 79.34%. On average,
we save 58.49% computational time based on the 36 experiments. In terms of top-1 classification
accuracy, the result varies. Compared to the state-of-the-art frameworks, the maximum accuracy we
gain for VGG16+CBS architecture on CIFAR100 dataset is 1.3 and the maximum accuracy drop
for CNN on CIFAR10 dataset is 0.94. On average, the accuracy drops 0.106, based on the 36
experiments.

5 ANALYSIS OF OUR HYPOTHESIS

Figure 4: Data stability for five different layers of
ResNet18 on CIFAR100 dataset.

To analyze our hypothesis, we study the
data behavior at all the layers of CNN
architectures during the training phase.
We introduce data stability concept in
layers of CNN which identifies a CNN
model’s ability to learn from training
data. Our hypothesis predicts the near
optimal epoch number required to train
a CNN model. We perform ablation
study which supports our hypothesis.

5.1 TRAINING BEHAVIOR ANALYSIS

Figure 4 shows the Sne values (for lay-
ers 1, 5, 9, 13, and 18) for ResNet18 on
CIFAR100 datasets across 200 epochs.
Each epoch contains 782 data points for
each layer (Table 2). To explain the Sne

values behavior, we divide the training
phase into the following four different phases to identify near optimal epoch number where a CNN
model gets stable and stops learning: initial phase, curved phase, curved phase to stable phase, and
stable phase.

In Figure 5, we show the µe
n value which is the mean of Sne values for an epoch e and layer n. We

also show the µe
n behavior in these phases. Our goal is to identify the ‘stable phase’ to predict the

near optimal epoch number required to train a CNN architecture.

Figure 5 contains more detail explanation of our analysis during these four phases. Each data point
represents the mean of stability vector (µe

n). We use subplots for different layers to provide better
understanding.

Initial phase refers to the early stage of training. In this phase, Sne values are unstable across all the
layers (Figure 4). We also observe a sharp drop of µe

n values in most of the layers (Figure 5a). For
ResNet18 architecture on CIFAR100 dataset, the approximate range of initial phase is from epoch 1
to epoch 25. The range of all the phases can vary based on CNN architecture and dataset.

It is noteworthy that at layer 1, 5, 9, and 13 the µe
n values decrease but at layer 18 the µe

n values
increase with epochs (Figure 5a, 5b, 5c). The reason behind this is that there is an average pool
function used in the last layer of ResNet18 architecture.

Curved phase refers to the smooth changes of Sne values in training phase. We observe Sne values
gradually increase or decrease (Figure 4) in curved phase. For ResNet18 on CIFAR100 dataset, the

6



Under review as a conference paper at ICLR 2022

(a) µe
n values show the instability during the initial phase of training from epoch 1 to 25 for ResNet18 on

CIFAR100 dataset. The instability shows for layer 1, 5, 9, 13, and 18. The sharp drop of µe
n values can be

observed in the initial phase.

(b) µe
n values show the gradual increase or decrease from epoch 26 to 55 for ResNet18 on CIFAR100 dataset.

This smooth transition of µe
n values creates a curved shape across all layers.

(c) µe
n values show significantly low fluctuation as the model gets closer to its near optimal learning capacity.

(d) As the rate of change of µe
n values gets significantly low, the probability of getting stable p2(µe

n) values
for consecutive epochs gets higher. At stable phase, δn=0 indicates that the CNN reaches its near optimal
learning capacity and terminates the training. Our hypothesis predicts 76 as the near optimal epoch number for
ResNet18 on CIFAR100 dataset.

Figure 5: ResNet18’s data stability (µe
n) on CIFIR100 dataset. Figures 5a, 5b, and 5c show µe

n
values on initial phase, curved phase, and curved phase to stable phase. Figure 5d shows p2(µe

n)
values on stable phase.

7



Under review as a conference paper at ICLR 2022

Figure 6: Data stability for different layers of ResNet18, CNN, and VGG16 on CIFAR100 dataset.

approximate range of curved phase is from epoch 26 to epoch 55 (Figure 4). Figure 5b also shows
that µe

n values across all layers create a smooth shaped curve.

Curved phase to stable phase in the start of this phase, the µe
n values fluctuate but as training goes

on the fluctuation gradually decreases with epochs. Figure 5c shows the µe
n values for ResNet18 on

CIFAR100 dataset ranging epoch 56 to 72.

Stable phase refers to the range of epochs where the change of µe
n values are almost insignif-

icant across all the layers. For each layer n, we compare mean of stability vector with pre-
vious epoch by rounding to decimal places r using Equation 3 to compute δn. If there is no
significant difference between two epochs’ mean of stability vectors for all the layers, it indi-

8



Under review as a conference paper at ICLR 2022

cates the possibility that the CNN model may get stable. To make sure that the CNN model
reaches its near optimal learning capacity, we verify the

∑n
i=1 δi = 0 for two more epochs.

Figure 7: ResNet18, CNN, and VGG16’s testing accuracy on
CIFIR10 dataset based on training the models ranging 10–200
epochs. It also shows the testing accuracy based on the near
optimal epoch number predicted by our hypothesis to train the
models, marked by X (best viewed in color).

Figure 5c shows stable region
for ResNet18 architecture on CI-
FAR100 dataset. In the figure,
we can observe that after two
decimal points there is no change
in µe

n values from epoch 73 to 76
for all n layers. So, for ResNet18
architecture and on CIFAR100
dataset, the training is terminated
at epoch 76.

It is noteworthy that in the stable
phase, we compute δn by using
function pr and we choose the
value of r = 2. Choosing the
value of r = 1 causes very early
stop of the training, while r = 3
does not guarantee to stop train-
ing at the earliest optimal epoch.
Choosing r > 3 does not stop
training even if the epoch num-
ber is large enough1.

We observe data stability (Sne)
for six CNN architectures on CIFAR10, CIFAR100, and SVHN datasets. Figure 6 shows these
six CNN architectures’ Sne values during training phase on CIFAR100 dataset.

5.2 GENERALIZATION ABILITY

We also analyze the generalization ability of CNN architectures across wide range of epoch numbers
in training. Figure 7 shows the testing accuracy (top-1 classification) of ResNet18, VGG16, and
CNN on CIFIR10 dataset where 10 to 200 epochs are used for training. It also includes the testing
accuracy where the models are trained by the epoch number predicted by our hypothesis (marked
by X). From Figure 7, it is clear that all the models testing accuracy reach to a stable stage after
certain number of training epoch. Our hypothesis predicts that ResNet18, VGG16, and CNN reach
the near optimal learning capacity at epochs 59, 109, and 78, respectively. Figure 7 also supports our
hypothesis because all these models’ generalization ability (i.e., the ability to predict on unseen data)
does not significantly improve after the near optimal epoch number predicted by the hypothesis.

6 CONCLUSION

In this work, we introduce and analyze the data stability of CNN architectures in layers. We discover
similar data stability pattern in six CNN architectures on three datasets. We propose a hypothesis
that can identify near optimal epoch number where CNN architecture stops learning. We also show
that current practices select random and safe epoch number to conduct experiment, whereas our
hypothesis predicts the near optimal epoch number which is significantly less than the safer option.
The proposed hypothesis does not require validation dataset as well as does not introduce any train-
able parameter to the network. The implementation of the hypothesis can easily be attached to any
existing CNN architecture. We also provide ablation study that shows the computational time saving
across six CNN architectures on three datasets. Identifying near optimal epoch number as well as
computational time saving support the effectiveness of our hypothesis. Future work is to identify
other statistical properties of the data in deeper layers of deep learning model. It will help us to
better understand the insight about how data change its’ behavior in deeper layers.

1We checked with r = 4 for ResNet18 architecture on CIFAR 100 dataset and for VGG16 architecture on
SVHN dataser and the models do not stop training even after 350 epoch

9



Under review as a conference paper at ICLR 2022

REFERENCES

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Michael Curry, Ping-Yeh Chiang, Tom Goldstein, and John Dickerson. Certifying strategyproof
auction networks. Advances in Neural Information Processing Systems, 33, 2020.

Jiangxin Dong, Stefan Roth, and Bernt Schiele. Deep wiener deconvolution: Wiener meets deep
learning for image deblurring. In 34th Conference on Neural Information Processing Systems,
2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2017.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization
to train compact convolutional networks. Advances in Neural Information Processing Systems,
33, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2752–2761, 2018.

Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, and Austin Benson. Better set
representations for relational reasoning. Advances in Neural Information Processing Systems,
2020.

Muhammad Khalifa and Aminul Islam. Will your forthcoming book be successful? predicting book
success with cnn and readability scores. arXiv preprint arXiv:2007.11073, 2020.

Woojeong Kim, Suhyun Kim, Mincheol Park, and Geunseok Jeon. Neuron merging: Compensating
for pruned neurons. Advances in Neural Information Processing Systems, 33, 2020.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Guilin Li, Junlei Zhang, Yunhe Wang, Chuanjian Liu, Matthias Tan, Yunfeng Lin, Wei Zhang, Jiashi
Feng, and Tong Zhang. Residual distillation: Towards portable deep neural networks without
shortcuts. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020), pp.
8935–8946, 2020.

10

http://www.cs.toronto.edu/~kriz/cifar.html


Under review as a conference paper at ICLR 2022

Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with bandit sampling for deep learning. Advances
in Neural Information Processing Systems, 2020.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao Liu,
Adam Kraft, Chen Liang, and Quoc Le. Pyglove: Symbolic programming for automated machine
learning. Advances in Neural Information Processing Systems, 33, 2020.

AJ Piergiovanni and Michael S Ryoo. Avid dataset: Anonymized videos from diverse countries.
Advances in Neural Information Processing Systems, 2020.

Manish Vuyyuru Reddy, Andrzej Banburski, Nishka Pant, and Tomaso Poggio. Biologically inspired
mechanisms for adversarial robustness. Advances in Neural Information Processing Systems, 33,
2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014a.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014b.

Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. Advances in
Neural Information Processing Systems, 33, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. In NeurIPS, 2020.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

11


	Introduction
	Related Work 
	Training Behavior on Deep Neural Network 
	Convolutional neural network (CNN)
	Stability vector
	Layer and model stability
	ResNet18 stability on CIFAR100 dataset


	Experiments
	Datasets, tasks, and CNN architectures
	Computational time saving (CTS)
	Ablation study

	Analysis of our hypothesis
	Training behavior analysis
	Generalization Ability

	Conclusion

