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Abstract

Diffusion models have quickly become some of the most popular and powerful
generative models for high-dimensional data. The key insight that enabled their
development was the realization that access to the score—the gradient of the log-
density at different noise levels —allows for sampling from data distributions by
solving a reverse-time stochastic differential equation (SDE) via forward discretiza-
tion, and that popular denoisers allow for unbiased estimators of this score. In this
paper, we demonstrate that an alternative, backward discretization of these SDEs,
using proximal maps in place of the score, leads to theoretical and practical benefits.
We leverage recent results in proximal matching to learn proximal operators of
the log-density and, with them, develop Proximal Diffusion Models (ProxDM).

Theoretically, we prove that O(d/+/¢) steps suffice for the resulting discretization
to generate an e-accurate distribution w.r.t. the KL divergence. Empirically, we
show that two variants of ProxDM achieve significantly faster convergence within
just a few sampling steps compared to conventional score-matching methods.

1 Introduction

Within a remarkably brief period, diffusion models [72, 27] have overtaken generative artificial
intelligence, emerging as the de facto solution across diverse domains including medical imaging
[13], video [36] and audio [28], drug discovery [15], and protein docking prediction [12]. Diffusion
models combine a forward diffusion process that converts the data distribution we wish to sample
into noise and a reverse-time process that reconstructs data from noise. The forward process is easy
to simulate by progressively adding noise to data. The reverse process, which allows for sampling
data from noise, involves the so-called score function—the gradient of the log-density of the noisy
data at any time point. Though unknown in general, such a score can be estimated by common
denoising algorithms that approximate minimum mean-squared-error solutions. Various diffusion
algorithms have been recently proposed [75, 53, 81], all relying on forward discretizations of the
reverse stochastic differential equation, and allowing for impressive generative modeling performance.

Despite these capabilities, current state-of-the-art diffusion-based methods face drawbacks: high-
quality samples require a large number of model evaluations, which tends to be computationally
expensive, and they are sensitive to hyperparameter choices and the lack of regularity of the data
distribution [67, 35]. Naturally, computational cost, and sensitivity to hyperparameters and data
regularity are not unique to diffusion models. Many numerical analysis and optimization algorithms
grounded on forward discretizations of continuous-time processes share similar limitations. For
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instance, when optimizing a smooth convex function f, the go-to algorithmic solution, gradient
descent (GD), which updates =4 <— x—hV f(x), represents a forward Euler discretization of gradient
flow & = —V f(z) [1]. GD is known to converge when the learning rate h is on the order of 1/L
where L is the gradient Lipschitz constant. Consequently, when f approaches nonsmoothness (i.e., L
is large), GD must proceed with very small steps, thus converging slowly.

Backward discretization schemes for continuous-time processes offer a potential remedy to these
issues. For example, the backward Euler discretization for gradient flow updates iterates via the
implicit equation zy = 2 — hV f(x ). This algorithm is known as the Proximal Point Method, and,
remarkably, it converges for any positive i [62]. The tradeoff is that x is defined implicitly, requiring
solving an auxiliary sub-problem that is potentially as expensive as the original one. However, in
the context of generative models, where f represents the log-density of data distribution, one could
learn such an update directly from data via neural networks (instead of learning the score), making
the per-step complexity of a backward discretization comparable to that of a forward discretization.
This motivates the central question of this work.

Can backward discretization improve diffusion models?

In this paper, we give a partial affirmative answer to this question. We develop a diffusion sampler
based on an implicit, backward discretization scheme of the reverse-time stochastic differential
equation (SDE). Our approach leverages recent results that allow us to train proximal operators
from data via proximal matching [23]. We study two variants: one relying exclusively on backward
discretization, and another hybrid approach that combines backward and forward terms. Our methods
are competitive with score-based diffusion models—including those based on probability flow—
when using a large number of discretization steps, while significantly outperforming them with
fewer steps. Additionally, we provide supporting convergence theory that yields state-of-the-art
rates under the idealized assumption of having access to the exact implicit update or proximal
operator. Employing backward discretization of stochastic processes has been studied in both earlier
[60, 5, 20, 79, 66, 42, 68, 29] as well as more recent [11, 48, 22, 49, 85, 26, 39, 50, 58, 80] works,
mostly in the context of proximal version of Langevin dynamics. To our knowledge, no backward
discretization has yet been explored for diffusion models. We defer a more thorough discussion
of related works to after the introduction of the necessary background. Code for reproducing the
experiments in this work is available at https://github.com/ZhenghanFang/ProxDM.

2 Background

Diffusion and score-based generative models. Diffusion models perform generative modeling by
posing a reversed stochastic differential equation (SDE) of a process that transforms a sample from
the data distribution, Xo ~ pg, Xo € R4, into Gaussian noise [72, 27]. A widely adopted SDE for
the forward process is given by

X, = —1B(H)X,dt + \/BB)AW:, t€[0,T). M

where TV, is a standard Wiener process in R? (i.e. standard Brownian motion) [75]. At inference
time, one can produce a new sample from p, by reversing the SDE above, resulting in the stochastic
process

dXy = [-1B(t)X; — B(t)V Inp,(Xy)] dt + /B(t)dWr, 2)

where TV, is a reverse-time Brownian motion (with time flowing backwards from 7" to 0). This
process can be simulated as long as the score function, s;(x) = V Inp;(x), can be computed (or
approximated for unknown real-world distributions).

The continuous-time process in (2) must be discretized to be implemented. By far, the most common
strategy is applying the forward Euler-Maruyama discretization, leading to the score-based sampling
algorithm:

Xi—1 =Xk + v [%X}c + V]Ilptk (Xk)] + VVkZks (Euler-Maruyama)

where v, = B(tx)(tx — tr—1) and z; ~ N(0,I). Many variations of these processes have been
proposed. For instance, instead of the variance-preserving formulation of the process in (1), one
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could instead consider a variance-exploding alternative (by removing the drift) [72, 75]. Likewise,
instead of considering stochastic processes, one can find deterministic ordinary differential equations
(ODEs) that reverse the forward process and match the marginals of the reversed SDE, resulting in a
probability-flow ODE [75, 70].

In order to apply these sampling algorithms for generative modeling on real-world data, corresponding

score functions must be obtained for every distribution p;. The popular score matching approach

[32, 72, 74, 59] learns parametric regression functions sg(x, t) (with parameters ) by minimizing
—€

the objective
2
E JA(t —_— , 3
t:XO75{ () \/1—at 2} ()

where Xg ~ pg, € ~ N(0,14), oy = exp (f jot 6(s)d5>, X = oy Xo + /1 — e, and A(t) is
a function that weighs different terms (for different ¢) appropriately. It can be shown [75] that the
solution to such an optimization problem results in the desired score, s*(x,t) = V Inp;(x). There
are two important remarks about this approach: () such a function amounts to a denoiser—that is, it
seeks to recover a signal corrupted by (Gaussian) noise' —and (i) such a denoiser is a minimum
mean-squared error (MMSE) estimate, as it minimizes the reconstruction error with respect to a
squared Euclidean norm. This can also be seen alternatively by Tweedie’s formula [21, 61], which
relates the score to the conditional expectation of the unknown, clean sample ,/ca; Xo; namely
ElyaXo | X¢ = Xi + 02V Inp;(X;), where ¢ = /T — a;. Such a conditional mean is the
minimizer of the MSE regression problem [57], showing that MMSE denoisers provide direct access
to the score of the distribution p;. Fortunately, the design and development of denoising algorithms is
very mature, and strong algorithms exist [S7]. As an example, it is standard to employ convolutional
networks with U-net architectures [65] for score-matching in image generation [27, 75].

SQ(Xt,t) —

Proximal operators. Proximal operators are ubiquitous in optimization, signal and image process-
ing, and machine learning. For a functional f: R — R, the proximal operator of f is a mapping
from R? to R? defined by

proxf(x) = arg m&n flu) + %Hu - x||§ 4)

Intuitively, the proximal operator finds a point that is close to the anchor, z, and has low function
value in f. It is convenient to introduce an explicit parameter A € R to control the relative strength

of the functional f, and consider prox, ;() instead. In this way, prox,;(z) — x when A — 0,

whereas prox, ¢(x) — argmin, f(u) when A — oco. Further, when f is L-smooth and A\ < 1,
first-order optimality conditions yield that z* = prox, ;(z) if, and only if, 2" = x — AV f(z*),
which illustrates its relation to backward discretizations.

Importantly, proximal operators can be equivalently described as maximum-a-posteriori (MAP)
denoising algorithms under a Gaussian corruption model. Indeed, it is easy to verify” that when
y =z + ¢, for z ~ pg, Gaussian noise ¢ ~ N'(0,02%1;), and f = — Inpo, then prox,2(y) provides
the mode of the conditional distribution of the unknown z given the measurements y; i.e.,

prox,z;(y) = arg)r{nax po(X|y). %)

This view of proximal maps in terms of MAP denoising algorithms should be contrasted with that of
the score, which relies on MMSE denoising algorithms: unlike the latter, the former does not require
the function f = — In py to be differentiable nor continuous.® This has been extensively exploited
in nonsmooth optimization [3, 14, 18, 19], leading to speedups in convergence. The advantages
of employing proximal operators (instead of gradients) for sampling have also been recognized
in earlier works [60, 5, 20, 79, 26, 39], leading to faster convergence or less stringent conditions
on the parameters of the problem, like step sizes. More generally, MAP estimates are known to
provide samples that are closer to the support of the data distribution than MMSE denoisers [16]. In
the following section, we will harness proximal maps to develop a new discretization of denoising
diffusion models, leveraging MAP denoisers instead of MMSE ones.

"More precisely, (3) seeks to equivalently estimate the noise that has been added to the ground truth X.
2(5) follows since po (X |y) oc p(y| X )po(X) o exp(—|ly—X||?/(20?)) exp(— f(X)) and In is monotonic.
31t simply requires f to be weakly-convex or prox-regular [63].



Algorithm 1 Proximal Diffusion Model (ProxDM)

Input: Map prox_,,,,(+), function 3(-), grid {0 = to < t; < --- <ty = T'}, boolean hybrid.
Output: Sample Xj.
Generate Xy ~ N (0,1)

fork=Ntol
Generate z;, ~ N (0, I) and compute 7j, < j;tk: B(s)ds
if hybrid then
Update Xj—1 ¢ prox_,, 1y, [(1+ 57%) Xi + v/kzi]
else
Update X1 « PIOX_ o 1, [ﬁ (Xk + \/ﬁzk)}
return X

3 Proximal-based generative diffusion modeling

Recall from Section 2 that all score-based generative models apply forward discretization to the
reverse-time SDE, resulting in updates of the general form in (Euler-Maruyama), with the score
playing a central role. We now propose a different avenue to turn this SDE into a sampling algorithm.

3.1 From backward discretization to proximal-based sampling

Consider now the backward discretization of the reversed-time SDE from (2), that is:
Xp—1 =X+ [3Xk—1+ Vinpy, , (Xe-1)] + vVAk2k. (6)

Unlike the forward (Euler-Maruyama) discretization, this is an implicit equation of Xj_1. Itis easy to
verify that this update corresponds to the first-order optimality conditions of the problem min,, g(u),

2
where g(u) := —;jjk Inpy, ,(u)+3 Hu — g (X + szk)Hi precisely a proximal step. Such
an update can be written succinctly as
2
Xi—1 = DProx_ 2y, Inp |:(Xk + w/'yk.zk)] . (PDA)
2= te—1 |2 — Yk

We refer to this step as the proximal diffusion algorithm (PDA). It remains to define the discretization
of the step 74 : recall that for forward discretizations, one can take vy, = 3(¢x)Aty. Here, we instead

make the choice of setting v, = [, ::4 B(s)ds. Note that both are equivalent when Aty — 0.

It is worth remarking that the discretization in (6) is a fully backward discretization: one where both
terms depending on the time-continuous X (t) are discretized as X _1. Yet, one can also consider a
hybrid approach by considering the updates given by X1 = Xx+vx [%Xk +Vinp,, , (Xk,l)] +
Yk 2k, where both X and X1 are employed in the discretization of the drift term. In this case,
the resulting update can be concisely written as

Xp—1 = ProX_y 1np,, | [(T+ 37) Xe + V2] - (PDA-hybrid)

The resulting hybrid approach is akin to a forward-backward method in nonsmooth optimization [3],
is complementary to the update in (PDA), and will have advantages and disadvantages, on which we
will expand shortly. For now, we have everything we need to formally define our sampling algorithm
for Proximal Diffusion Models (ProxDM), as presented in Algorithm 1.

Remarks. First, we note that this technique for deriving proximal versions of diffusion models via
backward discretization is quite general and widely applicable to other variants of diffusion sampling
schemes. We have shown this idea for a variance preserving (VP) SDE and the Euler-Maruyama
solver, but the same can be done for the reverse diffusion sampler and the ancestral sampler (see [75,
Appx. E]), as well as variance exploding (VE) SDE and probability flow ODE [75]. In each case,
one would obtain a new proximal-based sampling algorithm that mirrors the diversity of score-based
sampling algorithms (see further discussions in Appendix F).



Compare now the update in (PDA) to the score (gradient)-based update in (Euler-Maruyama). First,
both algorithms call a denoiser of the data distribution at each step; the score-based method uses
an MMSE denoiser based on gradients, whereas PDA uses a MAP denoiser via proximal operators.
Second, both updates consist of a denoising step and a noise addition step, but in switched order: the
forward version applies denoising first, followed by noise addition. As a result, the final samples from
score-based models do contain small amounts of noise, requiring an additional, ad-hoc denoising step
at the end to mitigate this and improve sampling performance (see e.g., [75, Appx. G]). In contrast,
PDA performs denoising after noise injection. This avoids the need for extra modifications and yields
a more principled and general scheme.

Given the benefits of backward discretization, why should one bother with a hybrid approach
(PDA-hybrid)? As we will see in the next section, (PDA) enjoys faster convergence rates. However,
this comes at the cost of a limitation in the minimal number of sampling steps: one can verify
from (PDA) that we must ensure 7, < 2 (as otherwise the regularization parameter, 22—7% , would
be negative), resulting in an upper-bound on the step size and thus a lower-bound to the number
of sampling steps. The hybrid approach in (PDA-hybrid) does not suffer from this hard constraint,
resulting in practical benefits, albeit at the expense of a slower theoretical rate.

The reader should note that the connection between backward discretization and proximal-based
algorithms is not new and has been explored in different contexts across optimization and sampling.
For example, while forward discretization of the gradient flow leads to the gradient descent algorithm,
backward discretization corresponds to the proximal point method [62]. In the context of sampling,
forward discretization of the Langevin dynamics yields the (unadjusted) Langevin algorithm (ULA),
whereas backward discretization leads to the proximal Langevin algorithm (PLA) [60, 5, 20, 79]. It
is interesting to note that, in this context, proximal algorithms that leverage backward discretizations
often provide benefits that the simple forward ones do not have: they are often more stable to the
choice of hyper-parameters and can do away with requiring differentiability of the potential function
[60, 79]. A less related but interesting connection between forward-backward methods (in the space
of measures) and sampling has also been studied in recent works [77, 42, 68, 11, 80], and can provide
unbiased asymptotic samples (which ULA does not provide) [80]. These advances, however, have
all been provided in the context of Langevin dynamics and, to the best of our knowledge, our PDA
approach in Algorithm 1 is the first instantiation of these ideas in the context of diffusion processes.

Lastly, score-based methods need the gradient of the log-density at time ¢;, V In py, , which can be
easily estimated via score-matching. On the other hand, both proximal updates in Algorithm 1 require
PIOX_)\ inp,, i.e. the proximal operator for the log-density at time ¢;_1. Next, we show how to

estimate such proximal operators.

3.2 Proximal matching for proximal operator estimation

Learning data-dependent proximal operators has only recently begun to receive attention [30, 56,
47, 23]. We will make use of recent work by Fang et al. [23], who presented a general approach
to obtaining learned proximal networks (LPNs). They present a proximal-matching loss function
that ensures the recovery of the proximal of the log-density* of continuous distributions at arbitrary
regularization strengths from i.i.d. samples from that distribution. In a nutshell, proximal-matching
augments the random samples X ~ pg with Gaussian noise, Y = X + e, fore ~ N (0, 14). Then,
it performs a regression using a special loss function and schedule to learn a MAP denoiser for
the data distribution, with the noise level dependent on the desired regularization strength A in the
proximal. To learn prox_ y,,,,,» one minimizes the problem ExEy|x [pm(fo(Y), X; ()] with the
proximal-matching loss

_ 2
EPM(«”L';:U;C) =1—exp <_de<§/|2> )

Fang et al. [23, Theorem 3.2] showed that, in the limit of ( — 0, the problem above’ recovers
the proximal operator of the log density of the distribution with regularization strength o2; i.e.

*The work in [23] also proposes a specific parametrization of neural networks based on gradients of convex
functions (such as those arising from ICNNs [2]) that guarantees exact proximal operators for any obtained
network.

SWe remark that the form of £py used here differs slightly from the definition in [23], but it does not change
the optimization problem nor its guarantees.



Jor = pProx_ 21, .- Intuitively, the proximal matching loss can be interpreted as a smoothed version
of the ¢y pseudo-norm. In one dimension, minimizing the (non-differentiable) ¢, loss recovers the
mode of a distribution. The proximal matching loss generalizes this idea to higher dimensions and
differentiable functions, making it amenable to first-order optimization methods. Fig. 6 visualizes the
proximal matching loss along with the mean-squared error and ¢; losses to illustrate their difference.

Here, we extend proximal-matching to a setting that will enable us to learn a set of proximals for
varying densities and regularization strengths, as needed for ProxDM: the set {prox_,, pt} for a
range of ¢ and \’s. Our generalization of the proximal matching objective for proximal diffusion
model is

6" = argminE, {Ex,Eyx, [lpar (fo(Y5t,0), Xi; O]} O

where X; ~ p; and Y|X; ~ N(X;, M) are clean and noisy samples for the forward process,
respectively. Intuitively, with sufficient data and model capacity (just as in score-matching networks),
the optimal solution to (7), denoted by fo- (¢, A), approximates prox_,,, () as ¢ — 0.

3.3 Practical considerations and implementation details

Although this proximal matching framework is conceptually simple, translating it into practice
requires careful implementation. Herein, we present a few important methodological details.

Sampling of (¢, \) pair. Optimizing (7) requires sampling (¢, A) pairs, and the sampling distribution
should ideally match the distribution to be used after training. As in score-based models, a reasonable
choice for the time step ¢ is uniform in [0, T]. The values of X is less obvious, however. Recall
that this regularization strength depends on the step size (%) and, thus, also on time ¢;_; and k.
We adopt a heuristic for sampling (¢, A) according to the candidate number of steps to be used at
inference time (see Appendix E.2 for further details and motivation), which in practice enables the
trained model to be applied for a range of different numbers of steps. We note that this sampling
scheme is not universally optimal, and we leave the optimization of sampling schemes to future work.

Parameterization of the proximal network fy(x;t, \). We parameterize the proximal operator
ProX_y,,, Using a neural network denoted by fp(+;¢, A). Notably, while the score network is
conditioned on a single time scalar ¢ [27, 75], the proximal network is conditioned on two scalars, ¢
and \. Similar to score networks, conditioning is implemented by adding learned embeddings for ¢
and A to the intermediate feature maps. Moreover, the score network indirectly parameterizes the score

via sp(x,t) = % [27], where sg(x,t) is the (learned) score and ey(x, t) is a neural network.

Analogously, we parameterize the proximal indirectly by letting fo(z;t, \) = 2 — VAeg(z;, \),
where eg(x;t, A) is a neural network that predicts the residual of the proximal operator: eg(z;t, A) =
[ — fo(x;t, A\)]/V/A. This parameterization led to better empirical results at large step numbers in
our experiments and coincides naturally with the balancing of objective across different choices of
(t, \)’s, which we discuss next.

Balancing contributions of different (¢, \) in the objective. Score matching uses a weighing
function to balance the loss at different times (see [75, A(¢) in Eq. (7)]). For proximal matching, a
proper weighing should also be used for balanced learning, and the weighing should be based on
both ¢ and A (c.f. (7)). A general rule of thumb would choose these weights such that the objective of
the inner expectation in (7) has similar magnitude across different ¢ and A. Score model achieves this
by weighing according to the square of the magnitude of the target in the objective [75, Sec. 3.3],
which is reasonable when the magnitude of the target can be estimated based on ¢ and when the loss
function is (2-)homogeneous. Unfortunately, none of these are true for proximal-matching. Thus,
instead of weighing the objective, we transform the target to align its magnitude across different
(t, A)’s. Specifically, we rewrite the problem in (7) as follows (but without changing the objective):

Y — fo(Yit,A) Y — Xt_Cﬂ }

\/X ) \/X ) )
where € := Y\_/g‘ is the new target. Since Y ~ A (Xy, AI), we have € ~ N (0, I). Notably, the mag-
nitude of e is independent of (t, \), allowing for a natural balance. Plugging in the parameterization

®

9* = argmeinEt’)\ {EXtEYXt l:EPM (




of fo(z;t,\) = & — V/Aeg(z; t, \), the final objective reduces to:
0" = argmin .\ {ExtEe [EPM <69 (Xt Ve t, )\) Y g)} } . ©)

Recall that €g is a neural network, fo(;t, \) is the learned approximation of prox_ 1, ,, (%), (¢, A)
are sampled according to a predefined distribution, and ( is a hyperparameter that should decrease
through training. Note that this objective is similar to that of diffusion models with analogous param-
eterization [27, Eq. (12)]. We include pseudo-code for proximal-matching training in Algorithm 2,
noting that it simply boils down to optimizing (9) in a stochastic manner, allowing for any solvers of
choice (stochastic gradient descent, Adam, etc).

It is worth comparing the resulting method with score matching. First, score matching samples
Gaussian noise only once (to compute X;). In contrast, our approach samples noise twice: once
to construct X; and once for proximal matching training. Second, score matching aims to learn
the MMSE denoiser for X (more precisely, /a; Xo) with noise level v/1 — oy, whereas proximal

matching searches for the MAP denoiser for X, with noise level v/A. Lastly, the loss in proximal
matching is parameterized by (, which decreases via a scheduler, whereas score matching uses a
fixed MSE loss throughout.

4 Convergence theory

In this section, we establish a convergence guarantee for Algorithm 1 under the idealized assumption
that the proximal operator we use is exact instead of learned. Our results provide a bound on the
number of steps needed by the two discretizations we proposed—backward and hybrid—to achieve
a KL-divergence of less than . We consider the canonical Ornstein—Uhlenbeck (OU) process as
the forward process, that is 5(¢) = 2 in (1), as is standard in both practical implementations of
diffusion models and theoretical analyses of convergence. Further, we consider a uniform time grid
tr = kT /N. With this choice, letting h := T/ N, the step sizes 7 in Algorithm I reduce to v = 2h.

We now state an informal version of our main result. The formal statement requires additional
technical details that we defer to Appendix C. Recall that pg is the target distribution.

Theorem 1 (Informal). Suppose that B, || X ||? is bounded above by My < oo. Further, assume

for all t > 0, the potential In p; is a three-times differentiable function with L-Lipschitz gradient

and H-Lipschitz Hessian, the moment Ey, ||V Inp;(X)||? is bounded above by C,, < 0o, and certain
1

regularity conditions hold. Set the step size and time horizon to satisfy h < gy and T' > 0.25. Let

qr be the distribution of the output of Algorithm 1. The following two hold true.

(Hybrid) If the hybrid flag is set to true, then
KL(pollgr) < (d+ My)e™ ™ + hTdL? + h*T [(d + M + C,)L? + d*H?| + h*Td*L*H?.

(Backward) If the hybrid flag is set to false and further h < 1, then
KL(pollgr) < (d+ Ma)e " + h*T [(d + M + Cy,)L* + d°H?| + h*Td*L* H>.

A few remarks are in order. First, the uniform bounds on H and C), can be relaxed to a much weaker
bound on an appropriate running average on t—we elaborate on the more general assumptions in the
formal statement of the result. Second, the regularity conditions mentioned above—made precise in
the appendix—are necessary to guarantee that certain boundary conditions are met. Interestingly,
similar conditions seem to be implicitly assumed in many existing results [6, 79, 41, 78], and we
defer a longer discussion to the appendix. Third, note that we do not require the distribution to
be log-concave, nor do we impose that it satisfies the log-Sobolev inequality. Finally, the proof
strategy is inspired by the analysis of the Proximal Langevin algorithm from [79], in combination
with techniques from [6, 7, 40, 41, 78]. To better illustrate this result, the following corollary bounds
the number of steps necessary to achieve an e-accurate distribution in KL divergence.

Corollary 1. Consider the setting of Theorem 1. Moreover, assume that My < d,C,, < dL?. The
following two hold true.

(Hybrid) If the hybrid flag is set to true, then KL(pol||qr) < € provided that
T2L? | [TH(dL'+ 2%V (TPdrrE\ Y
' | (%)

3

T210g<d> and N 2
€ €



(Backward) If the hybrid flag is set to false and further h < 1, then KL(po||lgr) < € provided that

3 4 2 7727 1/2 5 372772\ 1/4
TZI()g(cgl) and NZ[T(dL —&—dH)} +(TdLH) .

9 9

The dimension dependence on M and C), is standard and is, e.g., satisfied by Gaussian distributions.
With this result, the benefits of the full backward discretization become clear: the hybrid discretization
requires O(de 1) steps, while the backward discretization requires only O(ds~2) steps. This benefit
comes at the expense of the additional condition that h < 1, since otherwise the regularization
coefficient of the proximal operator would become negative. This translates into a hard lower bound on
the number of steps one can take, as we discussed above and will see shortly again in the experiments
section. In comparison, the most competitive rates for score-based samplers in terms of convergence
in KL divergence are O(de ") for a vanilla method [6, 4] and O(die~2) for an accelerated strategy
[81]. Note that these rates are not directly comparable, as the underlying assumptions and algorithmic
setups (e.g., smoothness, boundedness, or early stopping) differ across works. In particular, [6]
assumed L-Lipschitzness for the score function, similar to our work but without the additional
smoothness assumption on the Hessian as used here. On the other hand, [4] lifted the smoothness
assumptions entirely but instead analyzed the KL with respect to a slightly noise-perturbed version of
the target distribution. We point interested readers to the broader body of work on the convergence
theory of diffusion models, including both SDE-based samplers [7, 40, 41, 6, 4, 44, 45, 43] and
ODE-based samplers [9, 8, 46]; see [44, Section 4] and [43] for a comprehensive review.

S Experiments

Target Score Score
distribution Standard Euler Denoising, eps=1e-3

10°F Score, Standard Euler

Score, Denoising, eps=1e-3

+
-®- Score, Denoising, eps=1le-5
—8— PDA-Hybrid (Ours)

—®— PDA (Ours)

Score
Denoising, eps=1e-5

o

Wasserstein-2 Distance

Figure 1: Sampling from a distribution supported on a discrete set of points in 2D using exact score
and proximal operators. LEFT: the target distribution and samples generated by various samplers
using 5 sampling steps; RIGHT: Wasserstein-2 distance between sample and target across varying
step numbers (NFE, number of function evaluations). Standard Euler-Maruyama without denoising
fails when using only 5 steps. Score-based sampler with a denoising step at the end, as is common
[75], requires tuning e: the step size for the last denoising step. Both PDA variants perform well
without additional hyperparameters.

Synthetic example. We begin with an example in cases where the scores and proximals can be
computed to arbitrary precision. We set pg as a uniform distribution over a discrete set of points
(dataset from [55]), and run score-based diffusion sampling, as well as (PDA) and (PDA-hybrid)
(see Algorithm 1). We include both the standard Euler-Maruyama method (“‘Standard Euler”), as
well as the popular modification that includes an ad-hoc final denoising step after the last iterate
[75]. As shown by the results in Fig. 1, both variants of ProxDM provide faster convergence with
a closer final sample to the ground truth pg, and require less hyperparameters to tune and no ad
hoc modification. To further study the impact of the smoothness of the distribution on sampling
performance, we perform an experiment to sample from 1D distributions with different levels of
smoothness at the boundary of their support (see details and results in Appendix H.1). Although the
relation between sample quality and smoothness of the distribution is relatively subtle-likely due to
smoothing effect inhere in the forward diffusion process—it is clear that ProxDM recovers the support
of the distribution more accurately than score-based samplers.
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Figure 2: Left: MNIST samples generated by the score SDE sampler, score ODE sampler, and our
hybrid ProxDM. Right: the resulting FID score as a function of the number of sampling steps.

MNIST. We now move to a real, simple case for digits [17], where we must train score-networks
(through score matching) as well as our learned proximal networks for ProxDM. The §(t) in forward
process is set as linear, 5(t) = Bmin + (Bmax — Pmin) t, for t € [0, 1], with Bpin = 0.1, Bmax = 20,
as is standard [75]. ProxDM is pre-trained with an ¢; loss, followed by proximal matching loss with
¢ = 1 in the first half and decayed to 0.5 in the second half. Both networks are trained for the same
number of epochs (see more details in Appendix E.3).

We compare with two score-based sampler: Euler-Maruyama for the reverse-time SDE (denoted
as “SDE”) and the Euler sampler for the probability flow ODE (resp.“ODE”) [75]. We show the
FID score by NFE (number of function evaluations, i.e. sampling steps) and uncurated samples in
Fig. 2 (right and left, respectively). ProxDM provides significant speedup compared to both the score
samplers based on the reverse-time SDE and probability-flow ODE.

T

Score SDE
—8— Score ODE
—®— Prox Hybrid (Ours) |

CIFAR10. We perform a similar experiment on the CIFAR10
dataset [37]. The score model uses the same U-Net as in [27].
The network for ProxDM is the same as the score network, ex-
cept that it has two parallel conditioning branches for ¢ and
A respectively, with a comparable total number of parameters.
Score matching follows the standard setup in [27] with learning
rate warm-up, gradient clipping, and uniform ¢ sampling as in-
troduced in [75]. For proximal matching, the proximal network
is pretrained with ¢; loss, followed by proximal matching loss
with ¢ = 2 in the first half and { = 1 in the second half (see
more details in Appendix E.3). Fig. 3 shows the FID score vs.
NFE curves. It is worth noting that the score SDE sampler’s
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FID at 1000 steps matches the value reported in the original
paper [27]. It is clear that our ProxDM outperforms score-based
samplers and enables faster sampling. Notably, the FID of
ProxDM at 10 steps matches that of the score ODE sampler at

The dashed lines correspond to
models trained specifically for 5, 10
and 20 steps, as opposed to the full-
range models in solid lines.

20 steps and surpasses the score SDE sampler even at 100 steps.

Uncurated samples are shown in Fig. 4, demonstrating sharper and cleaner samples by ProxDM with
fewer sampling steps. Furthermore, when trained specifically for small step numbers (5, 10 and 20),
the advantage of ProxDM over score-based samplers becomes more significant (see Fig. 3, dashed
lines). If one is specifically interested in a very small number of steps, disregarding some of the
heuristics described in Section 3.3 can lead to even better results (see Fig. 9). Additionally, we report
the precision and recall metrics [38], which measure the quality of generated samples and coverage
of the real data distribution, respectively (see detailed definitions in Appendix E.3). The results
are presented in Fig. 10, further illustrating the improved sample quality and coverage achieved by
ProxDM. Finally, the FID of ProxDM at 1000 steps appears worse than that at 100 steps—we discuss
on this in Appendix A.3.

CelebA-HQ (256 x 256). We further evaluate our approach for high-resolution image synthesis
using the CelebA-HQ dataset at 256 x 256 resolution [34]. Because of the higher dimensionality of
this data, both the score and proximal approaches operate in the latent space of a pretrained VAE,
following the standard latent-diffusion setup [64]. As shown in Fig. 11, the hybrid ProxDM achieves
improved FID compared to the score SDE sampler and performs competitively with the score ODE
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Figure 4: CIFAR10 samples from score SDE, score ODE, and hybrid ProxDM samplers.

Score SDE Score ODE ProxDM

Figure 5: CelebA-HQ (256 x 256) samples from score SDE, score ODE, and hybrid ProxDM samplers
using 20 sampling steps.

sampler across all step counts. Uncurated visual samples using 20 sampling steps are provided in
Fig. 5; samples at other step numbers can be found in Fig. 12.

6 Conclusions and limitations

Diffusion models represent a paradigm shift in generative modeling. Since a reversed-time SDE
drives sampling, discretization strategies are needed to turn these into practical algorithms. To our
knowledge, all diffusion models have so far relied on forward discretizations of these SDEs, relying
on the distribution score at each step. Here, we have shown that backward discretizations can be
greatly beneficial, both in theory and practice. For the former, our full backward ProxDM requires only

O(d/+/¢) steps to produce a sampling distribution e-away from the target in KL divergence (assuming
perfect proximal steps). In practice, we show that neural networks trained with proximal matching
allow for practical methods that generate accurate samples far faster than alternative score-based
algorithms, and even faster than score-based ODE samplers.

Our work has several limitations. First, our theoretical analysis assumes access to an oracle proximal
operator. While we demonstrated that such models can be approximately obtained in practice,
incorporating this discrepancy (say, at an a-accuracy level) as done in other works [7, 6, 31] remains
open. Second, our convergence results also require additional regularity conditions. While these are
arguably mild (see discussion in the appendix), we conjecture that these could be removed with a
more careful analysis. On the practical side, we provided a first instantiation of learned proximal
networks for ProxDV, but many open questions remain, including how to choose the optimal weighing
strategy for different sampling points across training, optimal ways to schedule the ¢ hyper-parameter
in the proximal-matching loss, and employing networks that provide exact proximal operators for any
sampling time.
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A Discussions

A.1 Comparison to Existing Accelerated Methods of Diffusion Models

Since the introduction of diffusion models, numerous attempts have been made to developing
accelerated methods, including those based on deterministic samplers [70, 8], higher-order solvers
[53, 82, 45, 81], consistency models [76, 71], distillation methods [67, 10, 84, 83], flow matching
[51, 52], and shortcut models [24]. Our aim was not merely to accelerate inference within score-based
models, however, but to propose a new and principled framework for diffusion models based on new
discretization schemes with convergence guarantees.

In particular, we demonstrate that backward discretization schemes lead to a new class of diffusion
models based on proximal operators (instead of scores), and show that this formulation leads to
immediate gains in sampling efficiency compared to vanilla score-based SDE samplers. Given
its simplicity and generality, the same principle can be naturally extended to existing accelerated
methods—for example, by applying backward discretization to probability flow ODEs and flow
matching. Our approach thus represents an orthogonal direction to prior advancements, offering a
general pathway to improve existing methods. Notably, our approach requires no distillation and is
trained directly from data. Moreover, our method enjoys provably favorable convergence properties
over score-based counterparts.

Finally, we believe the findings of ProxDM could lead to novel understandings of recent empirical
heuristics. For example, recent works have shown the benefits of training generative models using
MAP-promoting losses rather than the conventional MSE loss [71, 25]. Our framework employs the
proximal matching loss, which also seeks a MAP estimate, but arises naturally from the perspective
of learning proximal operators. This connection offers new theoretical insights for understanding the
effectiveness of such losses and may inspire future methodological improvements.

A.2 Connection to Maximum Likelihood Training

It has been shown that minimizing the denoising score matching objective is equivalent to maximizing
a lower bound on the likelihood of the observed data [27]. In contrast, our proximal matching loss
does not naturally admit such a Maximum-likelihood (MLE) interpretation, since it is derived from a
continuous-time SDE perspective rather than the discrete Markov chain formulation. It remains an
open question whether such an equivalence exists between proximal matching and MLE training.
Notably, since our ProxDM differs fundamentally from score-based diffusion models in both the
transition kernel (non-Gaussian vs. Gaussian) and training objective (non-MSE vs. MSE), we
anticipate that establishing such an equivalence is nontrivial—if at all possible.

Despite this, the samples generated by our method enjoy strong theoretical guarantees. In this work,
we bound the KL divergence between the samples generated by our proximal diffusion algorithm and
the true data distribution. Combined with existing theoretical results for proximal matching [23], our
ProxDM provides provable guarantees for its generated samples.
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A.3 Bottleneck of Convergence at Large Step Numbers

Our results showed that the FID score of ProxDM deteriorates at large step numbers (see Fig. 3). We
conjecture that this behavior arises because ProxDV, unlike score-based methods, relies on solving
an implicit equation that in turn defines a proximal map. In practice, we use proximal matching
to train networks to approximate the corresponding proximal operators, rather than implementing
exact proximals at each step. As a result, the computed updates may violate the optimality conditions
that define such updates, introducing inaccuracies that accumulate. Empirically, we observe that
these inaccuracies appear more problematic than the approximation errors of scores in score-based
samplers. Better network architectures and training strategies will provide more accurate and stable
approximation of the proximal operators, leading to even higher empirical accuracy at high step
counts.

B Notation

In this section, we introduce the notation we use and some necessary technical background.

Glossary. Let us summarize the symbols used throughout the appendix:

* h: Discretization step size.

* T': Time horizon of forward process.

* N: Number of discretization steps N = T'/h.

* p;: Distribution of the forward process at time .

J }?t: Distribution of the reverse-time process at time ¢, i.e., Et: PT—t.

* ¢;: Distribution of samples from the algorithm at time ¢. The density of the samples after k
steps is qxp,. The density of the final samples is g7. The density of the initial samples ¢ is a

standard Gaussian.

. pi ): Distribution of the reverse-time process within the k-th step of the algorithm, where

ke€{0,1,...,N —1}andt € [0, h]. That is Eik):(ﬁkmrt: PT—kh—t-

. q,gk): Distribution of the interpolating process of the sampling algorithm within the k-th step

(see Lemmas 1 and 2 and surrounding discussion). Note that q,gk) = Qkh+t-

Remarks on terminology. We abuse notation by using the same symbols to denote distributions
and their probability density function. We call the distribution we wish to sample from the target or
data distribution. We use the word “process” to refer to a stochastic process.

Linear algebra. The symbols R?, R?*4, S and R?*?*4 denote the set of real d-dimensional
vectors, d x d matrices, and d X d symmetric matrices, and d x d x d tensors. We endow R with the

standard inner product (z,y) = = "y, which induces the ¢ norm via ||z|| = \/(z, z). For a matrix
A € R we et ||Al|,,, denote the operator norm induced by the £5 norm and || A|r the Frobenius
norm. In particular, if A is symmetric with eigenvalues A(A4) € RY, then ||Allop, = max; |\
and ||Allp = ||A(A)|. Thus, [|Allp < Vd||Alop. For a symmetric matrix Q € S¢ with positive
eigenvalues (i.e., a positive definite matrix), we write ||| = /(x, Qz) for the associated norm.

Calculus. Given a differentiable map ¢: R? — RF, we use Vi(z) to denote its gradient or
Jacobian at  if k = 1 or k > 1, respectively. Similarly, given a C* function ¢: R? — R, we use the
symbols V2 (z) € R4 and V3¢(x) to denote its Hessian and tensor of third-order derivatives at
x whose components are given by

*p(x) P p(x)

2 R 3 B o S A
v (,0(3?)” 8.%18.%] and (,0(%‘)”]@ Gxié)xjc‘)xk’

respectively. We denote the Laplacian of ¢ via

d 2 .
Aole) = (el = 3 D e
=1 ¢
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The symbol V- denotes the divergence operator, which acts on a vector field v: RY — R? via
-y e

8:132

Note that with this notation in place we have the identity V - (V) = Ay. For a matrix-valued

function G: R? — R?*9 and a differentiable function ¢: R? — R, let Tr(V3p(2)G(z)) € RY
denote the vector whose i-th component is Tr(V;V?¢(z)G(x)) where

2 9 () x
ViViele) = 5,V el@) = (amzaxjaxk) € RV,

We use the symbol V - G to denote the divergence operator broadcast to the rows of G, i.e.,

V-G(z):=[V -Gi(x),...,V-Gq(z)]" € R?
where G;(z) € R? is the i-th row of G(z). For brevity, we write G in place of G(z) when the
argument is clear from context.

Finally, given a function ¢: X — ) between finite dimensional vector spaces and a norm-one vector
v we define the directional derivative of ¢ with respect to v at the point x as

. p(x +sv) = p(2)
v - 1 .
Voo(z) lim "

Further, given a canonical basis {e1,...,eqim x} of X we let V¢ be a shorthand for V,, ¢ for
ke{l,2,..,dimX}.

Lipschitzness of the Hessian. For a function f: R? — R, we define

Hy(z) = max{||v,»v2f(a;)|| i = 1,2,...,d} ER. (10)

op
The condition Hf(x) < oo is weaker than a global Lipschitzness for the Hessian.® Indeed, if

op S Hllz =yl forallz,y e RY,

V2 f(z) = V2f ()|
then for all z € RY,
V.V f(@)],, <H  forallv € R |jv]| =1,
which implies
||V7;V2f(cc)||0p <H fori=12,...,d

Comparing the above with (10), we can see that H¢(x) is weaker than H in two aspects: (i) the
quantity H,(x) is local, and (47) it only concerns the directional derivative with respect to canonical
basis vectors e;, not all directions. We use this definition because it suffices for our convergence
analysis. We define the shorthand

Hi(x) := Hinp, (x) fort € R. (11)

where p; is the density along the forward process at time ¢.

C Formal statement of the convergence guarantee

Before introducing the formal statement, we sketch the proof strategy, which motivates some of the
technical assumptions. We present the sketch here regarding the fully backward discretization, but the
strategy for the hybrid method is analogous. This proof strategy is based on the analysis of Proximal
Langevin Algorithm [79].

8[79] assumes that the Hessian of the target potential has a global Lipschitz constant.
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We consider the Ornstein—Uhlenbeck (OU) process as the forward process:
dX; = —X,dt +V2dW,, X~ po, tel0,T], (12)

and use p; to denote the distribution of X,. For simplicity, we will consider reverse-time processes
with time flowing forward. That is, although the original reverse time process evolves via

dX; = [-X; — 2V Inp,(X,)] dt + V2dW, where t flows from T to 0 (13)
and W, is the backward Brownian motion, we consider the more intuitive
dX; = [X; 4 2V Inpr_(X,)] dt + V2dW, (14)

where ¢ flows from 0 to T". We use Et: pr— for the distribution of the process in (14) to distinguish
it from that of the process in (13). We consider the backward discretization Xy evolving via the
recursion

X(k-&-l)h — Xy = h)?(k+1)h + 20V Inpr_(ky1)n (X(k+1)h> + V2hz, (15)

here k goes from 0 to N — 1, 2, ~ N(0, I;) and Xy ~ N(0, I). This is equivalent to ProxDM with
the hybrid flag set to false (with the only difference that £ traverses from 0 to N — 1 as opposed to
the reverse). When the hybrid flag is set to true, the discretization reads

)?(lc+1)h — Xpn = hXp + 20V Inpr_(k+1)n ()?(kJrl)h) + V2hzg. (16)

Our goal is to bound the KL divergence KL(pT llgr) between P, the target distribution (note that
pT Po), and g7, the distribution of XT If XT was defined by a continuous time process with
sufficient regularity, then one could apply the fundamental theorem of calculus to get

T «—

b b OKL(p
KL(Pr |lgr) = KL(Po ||q0)—|—/ %dt
0

In turn, bounding the derivative of the KL divergence as time evolves would yield a bound on
the quantity of interest. To execute this plan in our discretized setting, we construct interpolating

a7

stochastic processes flowing from X kh tO X (k+1)n- Define the stochastic processes ()A(t(k)> 0]
te[0,h

given by
XM = X 41 X® 4 24V Inpr_pn— t( )+\th (18)

starting at )?(()k) =X kr for all k. The next lemma gives an explicit formula for the SDE governing
the dynamics of this stochastic process; we defer its proof to Appendix D.1.

Lemma 1 (Interpolating Process for Backward Algorithm). Suppose that h < 5 L 11 Then, the
discrete algorithm in (15) has a continuous interpolating process evolving according to the SDE

dX® = 5 (X® ¢ dt + 2Gk( (k) t)dW te 0, (19)

where
Gr(z,t) = [(1—t)Is — 2tV Inpr_gn—(2)] 2. and

~ s 0
bk(x, t) = \/ Gg(z,t) (:17 +2Vnpr_pn—i(z) + Qt&V lnpr_pn—i(x)
+2t Tr [V?’ lin_kh_t(x)@k (z, t)] ) .
We shall compare the distributions of these processes with the equivalent pieces of (14), i.e.,
ax® = [Xt(k) + 2V Inpr_ gt (Xt(k))] dt+vV2 I AW, telo,h]  (20)
— (k)
— <X,§k),t) =Gy (th ’t)
To derive a bound on the time derivative of KL divergence in (17), we leverage the Fokker-Planck

equation in tandem with a boundary condition that allows us to apply an integral by parts. This
motivates the assumptions we impose next.
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Assumption 1 (Regularity of the potential). The following hold.

(Smoothness) There exists L > 1, such that for all t > 0, Inp; is three-times differentiable and
L-smooth, i.e. the gradient V In p; is L-Lipschitz.

(Data second moment) The expected energy Mo := E, [||z||*] < oo is finite.
(Score second moment) The running average C, := = fo o IV Inpe(2)]|2]dt < oo is finite.

(Lipschitz Hessian) For any x and t, let H,(z) = max{HVZ-VQ lnpt(:r)Hop li=1,2,..., d} .
The running average H? := T fo po [Hi(x )2]dt < oo is finite.
We highlight that we do not require the distribution to be log-concave, nor do we impose that it
satisfies the log-Sobolev inequality. Smoothness of the potential and bounded second moments are

standard assumptions in the literature [6, 81]. Lipschitz continuity of the Hessian is not as common
for diffusion models, but has been used to study Langevin-type methods [54, 79].

Additionally, we assume regularity conditions for the analysis of time derivative of KL. We first state
it in its general form.

Assumption 2 (Regularity of KL time derivative). Consider the SDEs

dY; = f(Vi, t)dt + /2 (Yy, t)dW,

and
4y, = f(fq,t) dt + 2J(ﬁ,t)th

where Y;,i/\} € R and f, j/':: R? x R — RY and J, J:RIxR — Sjl_.7 Let p; and v, be the
distributions of Yy and Y; respectively. The following two conditions hold.

(Boundary condition) For all t,

/Rdv' {IHZ[V'(PtJ)—ptf}}dxzo

and / V-{pz[v-(ytj)—utﬂ}dm:
Rd v,

Here, we write py, vy, f, f, J and J in place of p(x), ve(x), f(x,t), flx,t), J(x,t) and J(z,1),
respectively.

(Dominated convergence) There exist two integrable functions 0, k: R® — R such that

2 (i) v =

< r(z)

0
apt(ﬂf)

for all t and almost every x.8

To analyze the backward algorithm (ProxDM with hybrid flag set to false), we instantiate Assump-
tion 2 for the reverse-time and interpolating processes.

Assumption 3 (Regularity Condition for Interpolating Process of Backward Algorithm). For

each k € {0,. — 1}, let py, Gy, and X( ) be defined as in (20) and let pg ) be the density

of Xt( Slmllarly, let iy, Gk, and X( be defined as in (19) and let q§ ) be the density ofX
Assumption 2 holds for f = uk,f = U, J = Gk,J = Gk,pt =p 1(5 ) and vy = q(k).

The boundary condition is required for applying an integral by parts in the analysis of time derivative
of KL (see Appendix C.2). Similar conditions are implicitly assumed in proofs in prior works
[6, 79, 41, 78]. These conditions are met when the functions inside the divergence operator decay

"Recall that Si denotes the set of d x d symmetric positive semidefinite matrices.
¥By integrable we mean [ 6(x)dx < oo and [ k(z)dz < co.
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sufficiently fast at infinity, which is satisfied by distributions with regular tail behaviors. The
domination condition is required to apply the Leibniz integral rule in the analysis of time derivative
of KL (see Lemma 20).

To state an analogous assumption for the hybrid algorithm we require a slightly different interpolating
SDE, which we introduce in the next result. The proof of this lemma is deferred to Appendix D.2.

Lemma 2 (Interpolating Process for Hybrid Algorithm). Suppose that h < i Then, the discrete
algorithm in (16) has a continuous interpolating process evolving according to the SDE

dX® = e (XP, 4 XP) dt + ,/2G), ()?,f’”,t) AW, e [0,h] @1

@k(x, t)=[Ia— 2tV2 Inpr—in—t(z)] -2 , and

where

~ ~ 0
bk (z,t;a) = \/ Gi (2, 1) (a +2Vinpr_gn—i(x) + QtEVIHpT,kh,t(x)

+2t Tr {VS lin_kh_t(x)@k(x,t)} > .

With this hybrid interpolating process in place, we introduce analogous regularity conditions.
Assumption 4 (Regularity Condition for Interpolating Process of Hybrid Algorithm). For each

ke {0,...,N — 1}, let ui, Gy, and Xt(k) be defined as in (20) and let igiﬁ)) (- | @) denote the

conditional density oth(k) given Xék) = a. Similarly, let iy, @k, and )A(t(k) be defined as in (21)

and let qt(‘ko) (- | @) be the conditional density of)A(t(k) given )A(ék) = a. Assumption 2 holds for f = ux,

Fla,t) = An(w,ta), J = Gy, T = G, po =D\jo (- | @) and vy = q{f) (- | a).

Equipped with these assumptions, we are ready to state our main result.

Theorem 2 (Convergence guarantee). Suppose that Assumption I holds. Set the step size and time
horizon to satisfy h < ﬁ and T > 0.25. The following two hold true.

(Hybrid) If the hybrid flag is set to true and Assumption 4 holds, then

KL (Pr |lgr) S (d+ Mo)e™ T + hTdL? + h2T [(d + My + C,)L? + d*H?] + h*Td*L*H?.
(22)

(Backward) If the hybrid flag is set to false and Assumption 3 holds, then
KL (Pr llgr) S (d+ Mo)e™ ™ + 12T [(d + Mo + Cp)L? + d*H?| + R*Td®L2H?.  (23)
Proof. The proof strategies for both hybrid and backward are completely analogous and follow
from the identity (17). The two proofs diverge slightly in how we upper bound the derivative of the
KL divergence. The core of the argument appears in the next proposition, whose proof is deferred

to Appendix C.1.

Proposition 1. The following two hold for any k € {0,..., N — 1}.
(Hybrid) If the hybrid flag is set to true and Assumption 4 holds, then
(k)

h
~(k —(k
KL (2, fla") — KL (7 14§ ) < h2dL* + h2L2/0 Egoo |2l + V10 ;" 2] at

h
+ (h*d® + h*d’L?) / Egw [Hr-wn—(z)°] dt.
0 t
24
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(Backward) If the hybrid flag is set to false and Assumption 3 holds, then
h
<(k <(k <(k
KL (B 101) - KL (P07 1a”) <1222 | By [l + 191051 | at
0 t
h
+ (h*d® + h*d®L?) / Egw [Hr—gn—i(z)?] dt.
0 t
(25)

The main difference arises from the first term in the upper bound of the hybrid case. From now on,
we will continue only with the hybrid scenario, as the rest of the argument is analogous to purely
backward discretization. Taking the sum of the inequalities in Proposition 1 from 0 to N — 1 yields

KL (5r lar) — KL (o lao) — 3° (KL (3% 1) — Ko (5" 140°))
k=0

T
< Nh2dL? +h2L2/ Eg, [llz]? + IVIn by 2] de @O
0

T
+ (P?d® + h*d°L?) /0 Es. [Hy(x)?] dt.

To finish the argument, we invoke the following two results, whose proofs are standard, but we
include them for completeness in Appendix D.3 and Appendix D.4, respectively.

Lemma 3. The second moment of Et is bounded
Es, [|z]I°] < 2(d+ M) forallt € [0,T].

Lemma 4 (Lemma 9 in [6]). Let q¢ be the standard normal distribution in d dimensions. For
T > 0.25, we have

KL(Po ||qo) < 2(d + Mp)e .
Substituting these two into (26), using N = T'/h and Assumption | and reordering yields
KL (Pr |lgr) S (d+ My)e T  hTdL? + h*TL? (d + Ms + Cp) + (h2d? + h'd>L?) TH?.
Thus, (22) follows. The argument for (23) is analogous, which completes the proof. O

The rest of this section is devoted to proving Proposition 1.

C.1 Proof of Proposition 1

Once more, the goal is to use the identity (17) by bounding the time derivative of the KL discrepancy.
The crux of this proof lies in the following lemma, which we will instantiate twice, once for the
hybrid discretization and once for the backward discretization. We defer its proof to the end of this
section (Appendix C.2).

Lemma 5 (Time derivative of KL between SDEs). Suppose Assumption 2 holds.

Then, for allt > 0 we have
+E, Kf - f,vmpt>]
Vi

+E,, K(j— J)Vlnpt—i-v'(j—J),Vlnp>} (27)

t
vt

d 2

L K Lipl) = —E,, [va’j
t

dt

J

where the arguments for f, f, J and J are omitted.

We consider two cases. We start with the fully backward discretization since the argument is slightly
more straightforward.
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Case 1:  Suppose that hybrid flag is set to false. Fix k € {0,..., N — 1}. Let )?t(k), 11 and Gr
defined as in Lemma 1. First, we state some properties of G, with their proof deferred to Ap-
pendix D.5.

Lemma 6. Let @k defined as in Lemma 1. Then, we have that

~

(1—4tL) < Gy < (1+18tL)] and (1 —2tL)I < \/Gj, < (1 + 6tL)I.

We instantiate Lemma 5 with f = uyg, f: i, J = Gy, and J= @k. In which case, p; :'ﬁﬁ’“) and

v = qik) and the lemma yields

d e SR) | (k)
—KL(p
SRLE o)
5® |12 pk)
= —Eﬂm Vln% ) "HE‘EE“ <Mk — g, Vin (tk)>1
4t Gr
~ (k) ~ pgk)
+Esw |{ (Gx —I)VInp, V- (Gy—1),VIn—~ O]
t qt
(k)
1 P - A 50|
< —5E5m HVI fk) +2E50 {HM—MH +2E 500 {H(Gk ~)Vin | )H }
50 |1?
+2E5 0 [HV (Gr — H ] + E*(k) VIn fk)
R ~ (k
< Q]Ezik) [Hu—u”z—i— H(Gk —I)Vin pt )H + HV GkH ] (28)

where the second relation uses Cauchy-Schwarz and Young’s inequalities to bound (a, b) < 2||a||? +
£(|b]|? and the fact that | - ||> < || - H2é since 31 =< G, thanks to Lemma 6 and the constraint on
k

t<h< &. The following two lemmas will help us bound the first and last terms in the expected
value in (28). Their proofs are deferred to Appendices D.7 and D.9, respectively.

Lemma 7. Forallk € {0,..., N — 1}, the difference between uy, and iy is bounded by
e — fi))? < £2L2 (363 ]2 + 2187 |V 1n p.¥) (x)||2) + 24300 t*d3 L2 Hop_ oy ()2
Lemma 8. Forallk € {0,...,N — 1}, the norm of V - Gy, is bounded by
IV - Gi(@)|| < 364 tdHr_ ¢ ().

Furthermore, Lemma 6 gives |Gy, — I 2, < (18tL)* = 324t L?. Substituting all of these bounds
into (28) gives

d k k
KL [107) S B [PL2(I0)2 + [V in B} @)]) + (£ + 14d* L Hr_n—i(2)?) |

Upper bounding ¢ < h and integrating from ¢ = 0 to ¢ = h yields the desired inequality (25);
finishing the proof for the fully backward discretization.

Case 2: Suppose that hybrid flag is set to true. Let )?t(k), i and @k defined as in Lemma 2. The
proof of this case is slightly different: we use the following chain rule [33, 6], before applying the
fundamental theorem of calculus

KL (5 10) ~ KL (3 14) <E, g0 [KL (5 1) 1aC 10)] @9

where qt‘0 ( | a) denote the conditional density of X, X*) given )?é ) = q,and pt|0 (| @) denote the

conditional density of Xt(k) in (20) given X, é ) = a. Notice that we can express the KL divergence
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on the right-hand side by applying the fundamental theorem of calculus in a similar fashion as in (17).
However, in this case the value at ¢ = 0 satisfies KL (pém (-]a)ll q0\0< | a)) =KL (d,]|6a) =0

Thus, the right-hand side is bounded by E@N‘ﬁg’“ [ o SKL (pt‘o (-]a)ll qth( \ a)) dt}. Next, we

bound the time derivative. Paralleling the proof in Case 1, we introduce relevant properties of Gr;
their proof is deferred to Appendix D.6.

Lemma9. Let @k be defined as in Lemma 2. Then, we have that

~

(1—4tL)I = Gy < (14+12tL)] and (1 —2tL)I < \/ Gy, < (1 +4tL)1.

We 1nV0ke Lemma 5 with f = pi, f(z,t) = fik(z, t;a), J = Gi, J = Gy, py ZEEB (- | a) and
vy = qt‘0 ( | a). The lemma yields

d
ZKL (Pl o) gl (-] )
< (k) 2
Pyo (] a)
= E5w VIHW
qt|0 ij
(k)
p a
+E<—(k)(‘ ) Mk_ﬁ]wvln%
" G (- | @)
(k)
~ P -la
FERG G (G Gk)VlnPﬂo (la)+V- (Gk—Gk),Vl %
t|0 qtlo( )

Applying %I = @k—thanks to Lemma 9—in tandem with the analogous argument we used for the
purely backward method (28) we derive

d (k) (k)
ZKL (Pl @) g4l (- )

i 2 ~ 12
< 21 [l =+ |G- DV B o)+ v 6]

Integrating over ¢ € [0, h] and taking expectation over a N(ﬁék), we have

E, 5o [KL (P30 (1) g 1a))]

h ~ - 2 2
<2 [ B, 0B, 5m 0, [nuk — il + [ (Go = 1) Vi b @ o)+ | V- G } dt.
0 t
(30)

The following two lemmas will help us bound the first and last terms in the expected value above.
Their proofs are deferred to Appendices D.8 and D.10, respectively.

Lemma 10. Forall k € {0,..., N — 1}, the difference between py, and iy, is bounded by
e — Akl < tL (8 ||z]| + 20 |V Inpr_pn—i(z)|]) + 48 d* 2 LHp_pp—o(2) + 2||a — 2.
Lemma 11. Forall k € {0,...,N — 1}, the norm of V - Gy, is bounded by

Hv : @k(x)H <192 tdHp_ oy ().

25



Furthermore, Lemma 9 gives that H@ r—1 < 12tL. Substituting all of these bounds into (30)

op
gives

o (k) k
E, 5o [KL (1 ¢ 1) lafy o))
h
< [ P18, g [Iel? + 19 mpr—sn-o ()] d
0 t

h
+ / ('L + Pd*)E, s [Hr—gn—i(2)?] dt
0 t

h
+ [ B ) Dl ol

h
—(k
+/ t2L2E(a I)N<§ék) ?gk)) [V In pg‘o) (z | a)} dt. 3
0 3 s g

We now establish two lemmas that bound the last two terms on the right hand side above. Lemma 12
is adapted from [6, Lemma 10]. We defer the proof of Lemma 13 to Appendix D.11.

Lemma 12. Forallk € {0,...,N — 1} we have

o (1217

E o oy (50 500 [le —all’] < 4td+26°E

Proof of Lemma 12. For ease of notation, we let vg 213(()]6), vy :}—)ik)’ and vgs =‘z_>é’|“2 within this
proof. Applying the triangle inequality and (a + b)? < 2a? + 2b? yields
Eam)~(on) 10 = Zl*] < 2BeniiBanug, 12y [la = €72)*] + 2Eon, [le™"x — [|] .
Next we bound each term in this sum. Since vop(- | ) = N(e~ 'z, (1 — e~ ")I), we have
EorviBamvgp, (|2) [lla—e'z|?] =d(1 —e?) < 2td.
For the second term, factorizing and using the fact that (1 — e~*)2 < #2 for all ¢ > 0 gives
By, [He_tx - 37||2] =(1- e_t)2 By, [HJU”Q] < t? Egznv, [||x||2] .

Combining the previous three bounds finishes the proof of Lemma 12. O
Lemma 13. Forallk € {0,...,N — 1} we have

t*L’E

—~(k
(wr(50.50) IV P10 (2 [ )] S 0?4 PLE g [V prpnel@)]

Applying Lemmas 12 and 13 into (31), using the chain rule (29), and recalling that ¢ < hand L > 1
yields inequality (24), finishing the proof of Case 2.

This concludes the proof of Proposition 1. O

C.2 Proof of Lemma 5

Proof. By the Fokker-Planck equation,

%:V-[V~(th)—l/tﬂ7
%:v-[v(pd)—pt.ﬂ.

We now use a result on the time derivative of KL from prior work [78, Section 8.1.2]; see also
[79, 6]. For completeness, we provide a full statement of the result in Lemma 20 and a proof in
Appendix D.12, which relies the domination conditions. By Lemma 20, the time derivative of KL,

satisfies
d Opt , pr Ovgpy
—KL = —In— — —— ] dx.
g KLPellve) /<8t ST TI R
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Plugging in the Fokker-Planck equations,

Sxtpn) = [ {719 (u) = g1 9[- (1) ~] 2}

dt
:/{—<V-(th)—ptf,Vlnpt>+<V (e J) — i f, V'Ot>}dx (32)
147

where in the second equality we used integration by parts, which holds because of the boundary
conditions. In the rest of the proof, we will transform the integrand in the equation above to show the
desired result. For better readability, we omit the subscript ¢ in p; and v, from this point onward.

For the integrand, we have
- <v (pJ) — pf,VIn? >
S <v (pJ) — pf,VIn 2 >

_ <V'(p )—pf,v1n;> n <§v-(u )—pf,Vln§>
:<p(f—]?),V1n§>+<gv~(l/j)—v'(pJ),V1n§> (33)
where the first equality is by V2 = £V In £. The derivation above splits %KL into two terms: one

depends on the drifts fand f, while the other depends on the diffusion terms J and .J. Observe that
the drift-related term matches the second term in the final result, which vanishes when f = f.

<v W) — v, v’ >
<v w]) —v], Vln§>

We now focus on the remaining, diffusion-related term:
P = P
<;v- (I/J) —V~(pJ),Vln;>
=<3 (fvu+uv-f) —va—pv-J,v1n3>
v v
=p<fv1ny+v-f— JVlnp—V-J,Vln§>
:p<—fv1n§+(f— JWVinp+v-(J - J),Vln§>

2
—pHV]nB _t+p
vily

<(j—J)V1np+V~(j—J),V1n§>. (34)

Here, the first equality is by V - (z/f) = JVv+vV-Jand V- (pJ) = JVp+ pV - J, and the

second equality uses -V = VInv and %Vp = VInp. Combining Egs. (32) to (34) yields the
desired result. O

D Proofs of auxiliary lemmata

D.1 Proof of Lemma 1 — Interpolation SDE for the Backward Algorithm

For ease of notation, within this proof we omit the step index k in )?t(k), [, and @k Fort > 0, let
Xt = (1 - t) th =2tV Inpr_gn—¢ ()?t)

s0 Xy = )Afo, and we can write (18) as
X = Xo + V2W;.
That is, )N(t evolves following the SDE
dX, = V2dW,. (35)

Suppose that the process ()?t)te[o,h] evolves via an SDE of the form

dX, =1 ()?t, t) dt + 1/2G ()?t,t) AW,
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for some functions zi and G. In what follows, we solve for the form of these two functions. Let
Ti(x) = (1 —t)x — 2tV Inpr_gn_¢(x) € R Then, we have

oT; 0
8—;(@ =—x—2VInpr_gp_i(z) — QtQVlin_kh_t(x),

VTi(x) = (1 —t) Iy — 2tV2Inpr_pn_¢(x), and
Vth(x) = —2tV?3 Inpr_gp—i(x).

We now apply high-dimensional 1t6’s lemma [86, Chapter 4.2] to X, =T ()?t> and obtain the
following

dX, = dT, (f(t)

= O (%)) dt 4 VT (%) d%, + Xd: ;a;z;;g;)

o dX!dX)

ij=1
02T, ()?t) ~

oT,
_ ~edr, Cridt

o ()’(:t) dt + VT, (Xt) udt + VT, <)/€t> \/ﬁth + 'ji_l

= <a;;t ()A(t> + VTt()A(t)ﬁJr Tr {Vth ()A(f) @]) dt + V2VT, ()?t> \/éth. (36)

where the third equality is by plugging in dX ¢ = pdt + Vv QGth and noting that
dX}dX] = 2G; ;dt,
and the last step uses Tr(ABT) = 7, - A; jB; ;. Note that in the equations above, T3(-) € R? is
a vector and therefore, giTéi) € R, V2T, (1) € R¥*4xd and Tr[V2T;(-)G] € RY are obtained by
iOTj

broadcasting the corresponding operator to each entry in 73 (-).
Matching (35) and (36), we must have

0T, . ~

(@) + VT (@) + Ir [v?z;(@c} —0,
VT (2)VG = I

which implies
Gla,t) = [VTi(x)] 7

i(e,t) = VG {—%::t(x) T {VQTt(Q:)@} } .

Plugging in % (z), VT;(x), and V2T, (x) completes the proof. O

D.2 Proof of Lemma 2 — Interpolation SDE for the Hybrid Algorithm

Observe that the next iterate of (16), X (k+1)h- 1S the value at time ¢ = h of the stochastic process
~(k ]

(Xt( ))te[o,h] given by

)?t(k) = Xék) + tffék) + 2tV linfkhft(Xt(k)) +V2Wy, X(gk) = Xih- (37

Fort > 0, let
X, =x" - tX(gk) — 2tV hlpT—kh,—t(Xt(k))

5o Xo = 20 and T = X® 1 /3w,

The rest of the argument is analogous to the proof of Lemma | (see Appendix D.2), but with
Ty(z) =2 — tXF — 20V Inpr_pp_s(z) € RY O
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D.3 Proof of Lemma 3 — Second Moment of OU Process

This is a standard property of the OU process. We include a proof here for completeness. Along the
OU process (12), we have

X, L et Xo+V1—e 227, Z~N(0,I).

Therefore,
2
E[|X)*] =E [He—fxo +V1- e*thH }
< 2¢7E (| Xo|*] +2(1 — e )E ||| 2]
=2¢"2E [|| Xo[?] +2(1 — e~%)d
< 2K [|Xo|?] +2d
where the second line follows by Young’s inequality, completing the proof of Lemma 3. O

D.4 Proof of Lemma 4 — Bound on Initialization Mismatch

Proof. Recall that p; denotes the density of the OU process at time ¢, thus pr :50. We have

KL(pt|lqo) = /Rd pe(2) In py(2)da — /Rd pe(z) Ingo(z)dw

= T)n xTr)ax xT H:E”z é nlzm X
— [ meymp@as+ [ o) (L5 + S ) a
< [ pe)p(@)de + 5B, [lalP) + § n2n).

For the first term, letting py|o be the conditional density of Xy given Xy, we have

[ anmpiorae= [ ([ iotalimias) ([ pootels my) az

< [ peatel ot sy s

= [, ([ pontelsp (el e ) oy

where the inequality is by Jensen’s inequality and that x +— z Inx is a convex function for z > 0.
Since X; | Xo ~ N (et Xy, (1 — e=2*)I), by entropy of Gaussian distributions, we have

d _ d
[ peolaly) pofaly) de = =5 In(2(1 - &) - 5.
Rd
Therefore,
d _ d 1 d
KL(ptllo) < 3 In(27(1 — e %)) - 5t iEm[HxHQ} t3 In(2m)
1 . d 1
= 5]Ep,[||m|| |+ 3 (ln T2t 1>
d 1

where the last inequality is by Lemma 3. Taking ¢’ = 5 In(;%5) =~ 0.229, we have In —— =1,
thus

KL(pelqo0) < M2 +d.
By exponential convergence of the OU process, we have for all T > ¢/,

KL(prqo) < e 2T~ KL(py|lqo) < e 2T~ . (M, + d) < 2¢72T (My + d)

as desired.
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D.5 Proof of Lemma 6 — Bounds on the Diffusion Matrix G r for Backward Algorithm

Since pr_kn_¢ is L-smooth,
—LI < V*Inpr_gn_¢(z) < LI

So
(1—t—2tL)I < (1 —t)Iq—2tV?Inpr_pn_t(x) < (1 —t 4+ 2tL)1.

Checkthat0 <1 —t—2tL <1 —t+ 2tLsincet < Therefore,

1
2(2L+1)"
(1=t 4+2L) 2T 2 G =[(1 = )Ig — 2tV I pr_gn_¢ (x)] 2 = (1 — t — 2tL) 21
and

(1=t +2L) "I =\ G =[(1 = )Iq — 2tV Inpr_p—e(2)] 7" =< (1 — ¢ — 2tL) 1.

We collect some useful facts:

(1-2z)"2<1+6z 1f0<x§%
1—-z)2>1422 ifz<l,
1-z)"'<1422 1f0<x§%
A—-z)"'>142 ifzr<l

Since t —2tL < £,0<t+2tL < },and L > 1,
(1—4tL)I < [1+2t(1 —2L)|I = Gy,

| A

[+ 6t(1 + 2L0)]1 < (1 + 18tL)]

and

(1—2tL)I < [1+t(1—2L)|I = \/ Gy < [1+2t(1 + 2L)]I = (1 + 6tL)T

as desired.

PN

D.6 Proof of Lemma 9 — Bounds on the Diffusion Matrix G . for Hybrid Algorithm

The proof is analogous to that of Lemma 6 (see Appendix D.5). The resulting bound is identical up
to changes in constant factors.

D.7 Proof of Lemma 7 — Bound on the Drift Difference 1, — /iy for Backward Algorithm

We start by establishing a few auxiliary lemmas (Lemmas 14 to 16). We let [b;]%, € R? denote a
vector whose ¢-th entry is b;.

Lemma 14. The following two equalities hold true.

0
pn Inp; = [|[VInp|> + (Vinps, ) + A(lnp;) +d, and

o ~
EVIHPT h—t(2) = =Te(VInpr_pn—t(x)Gr) — V (|[VInpr_pn—|*)

(VI pr_pht, ) + [Tr(ViVZ 1 pr—ins (2)(Cr — 1)) ‘

i=1

Proof. Applying the Fokker-Planck equation to (12) yields % ap t =V - [p: (Vinp, 4+ 2)] . Therefore,
0 1 1 apt
Zlap, = — £t
ot be Dt ot
1
¢

1
= — ((Vp,VInp; +2) +p; V- (Vinp; + 1))

t

= (Vinp:, Vinp:) + (Vinps, ) + A(lnp;) +d
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where the second equality uses V - (fG) = (Vf,G) + fV - G, for f: RY — Rand G: RY — R
We have shown the first result.

Then, note that

0 0

—1 Ckh— = ——1Inpy

7 LPT—kh t(z) o Pt () e
= —|VInpr—gn—e|® = (VInpr_gn—t,z) — A(npr—ga—s) — d.

Therefore,

0
Y <8t 1DPT—kh—t(£)> = =V (IVInpr_gn—ll?) = V((VInpr_gn—i,2)) = V (A(Inpr_gn—1))

d
=V (IVInpr—gn—tll’) = V (VInpr_gn—s, x)) — [Tr(V;V? pr_kn—t)],_, -
Recall that

~ . qd
Te(V3 n pr_pn—i(2)C) = [Tr(ViVQ In pT_kh_t(x)Gk)]
Adding the two equations above yields the second result. O

Lemma 15. The following inequality holds.

2

~ d
H {Tr(ViVQ Inpr_pn—i(2)(Gr — 1))} < 324°dPL*Hy it (2)2.

i=1

Proof. For each entry, we have

~ 2 ~
T(ViV2 I pr—n-o(2) (G = D) < IViV2 I pr—pn-o(@) [E1Gr — 1113

9 |~ 2
< & || ViV npr_p—i(@)]| ‘Gk —1I
op
< 3241°d*L*Hy it (2)2.
Summing over the entries yields the desired result. O

Lemma 16. The following inequality holds.

1o ~
HatVlinkht(x) +Te(V3Inpr_pn_o(x)G)|| < QL + 1) |V Inpr_pn_¢|| + L||z| + 18td%LHT,kh,t(x).

Proof. By Lemma 14, we have

o ~
H EV linfkhft (CL’) + Tr(V3 h’lpT,kh,t(.’E)Gk)

d
< [V (19 0 =) | + IV (V Ipr—n-s,2)) | +

[Te(Vi V2 I pr i o(2)(Gr — D)

i=1

From this point onward, we let v; = pp_jp—; for ease of notation. Next, we bound the three terms in
this sum For the first term, we have

V([VIny?) = V((VIny, Viny)) =2V In iy Viny,

where the second equality uses V((f,g)) = J{ g + J; f, where f,g: R® — R™, and J; is the
Jacobian of f. Therefore,

HV (HVIthH2)H <2 HV2 lnytHOp IVIny || < 2L||VInv.

To bound the second term, note that V ((V In vy, z)) = Viny, + V2 Iny, 2. So
IV (VInve, )| < [VInw | +[[VZ nwf| floll < [V Inw | + L]

Lemma 15 gives a bound on the third term. Combining the three upper bounds finishes the proof
of Lemma 16. O
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We are ready to prove Lemma 7. We start by decomposing fix, — pix as

P — i = (\/ Gy — I) (x4 2VInpr_pn—¢(z))
+ 20\ G ( Vinpr_gn—¢(x) + Tr (V3 1ﬂpT—kh—t(’I)@k)> .

Next, we bound the two terms on the right-hand side. For the first term, we have

L S

< 6tL (||| + 2||v1in_kh_t(x)II)

||.’L‘ + 2V lin_kh_t(fL‘) H

where the second inequality uses the bound H VG -1

< 6tL by Lemma 6.

op
For the second term, we have

HZt\/>< VI pr—pn_s (@) + Tr (v31inkht(x)@k)>

<2t

VIHPT kh—t(z) + Tr (V3 IHPT—kh,—t(l’)ék>

<5t [(2L + 1) IV Inpr—pn—e|| + L] + 18td%LHT,kh,t(m)] .

< % from Lemma 6.

where the second inequality is by Lemma 16 and H A/ G k
op

The desired bound follows from combining the above, noting that L > 1 and using (a + b + ¢)? <
3a® + 3b% + 3¢ fora, b, c € R. O

D.8 Proof of Lemma 10 — Bound on the Drift Difference 1, — Ji;, for Hybrid Algorithm

The proof follows the same structure as that of Lemma 7 (see Appendix D.7). We start by decomposing
Hi — pu as

Hr — p = (\/CAT —1I)(z +2VInpr_pn—t(x))

+2t\/>< Vinpr_pp—i(z) + Tr (V3 lin_kh_t(:r)(A?k)>
+ \/a(a —x).

The first two terms are bounded analogously to the proof of Lemma 7 (see Appendix D.7). The last

Ja

D.9 Proof of Lemma 8 — Bound on the Divergence of Diffusion Matrix V - G, for Backward
Algorithm

term is bounded by < 2 thanks to Lemma 9. This completes the proof.

op

In this section, we prove Lemma 8, which provides a bound on ||V - G||. The derivation in this
section is largely inspired by [79, Proof of Lemma 6], but we improved the technique to obtain a
tighter bound in terms of d and with weaker assumptions.

Before proving Lemma 8, we show a few general lemmas related to matrix perturbation (Lemmas 17
and 18) and divergence of matrix-valued functions (Lemma 19). These results are then used to prove
Lemma 8. The next two lemmas are folklore; we include their proofs for completeness. Recall that a
matrix norm || - || is sub-multiplicative if for all A, B we have

IAB|| < [|A[I|BI|-
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Lemma 17. Let A and B be real invertible matrices. Let ||-|| be a sub-multiplicative matrix norm.
Then, the following three inequalities hold true

|42 - B?|| < 2|4~ B|| (|| + | BI),
|A7 =B < A= BI |7 [[B7],  and
|42 = B=2| < 2|4 - Bl (Il + I1BI) |4~ |B?|.

Proof. We start with the first inequality. By the triangular inequality and sub-multiplicativity, we
have

|4% = B = [|(B+ A - B)* - B
=|[(A-B)*+ B(A-B)+ (A— B)B]|
<|A-BI’ +2)1A- BB

A combination of symmetry and the triangle inequality yields
|4% = B2|| < |4 = BI* + 2||A — B| min (|| All, || B])
< [|A= Bl (1Al + 1 B]l + 2min([| Al , | B]]))
<2[lA= B[ (Al + Bl

as desired.

The second inequality follows from the identity A=' — B=! = A=1(B — A)B~! and the sub-
multiplicativity of the operator norm.

Iteratively applying the first and second results gives the final inequality

a7t = 2] < 142 = B a5 < 204 B Al + 12l 4~ 5
this concludes the proof of Lemma 17. [
Lemma 18. Let A: R"™ — R™*"™ be a matrix-valued function. Assume at a point x, A is continuous

and differentiable, and [A(z)]~? exists within a neighborhood of x. Let ||-|| be a sub-multiplicative
matrix norm. Let o(x) = A(z)~? and fix a norm-one vector v € R, then

V(@) < 41A@)| |[A@) 2] IV A@)]-

Proof. Let p(x) = [p(x)]~2. We have

. r+uv) — p(x

O e

i @+ u0) — o(@)]
u—0 u
< i 2IAE +w) — A@)| (A + )| + [|A@)]]) oz + w)|| lp()]
— u—0 u
. A(x +uv) — A(x
= 4@ ola) | i 1AL Z AL
= 4[| A@)| llp(@)|* | Vo A=)
where the inequality is by Lemma 17. O

Next, we establish a general result that bounds the divergence of a matrix-valued function by the

norm of its derivatives.

Lemma 19. Let M : R? — RY*4 be a matrix-valued function. (Note that M (x) does not need to be
2 d

V- M(@)|" <d);_, [IViM(x)

a symmetric matrix.) Then, ||(2)p .
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Proof. Denote the 4, j-th entry of a matrix A by A;;. Recall that the £ norm of each row or column
vector of a matrix is upper bounded by the operator norm of the matrix. Thus,

d

d 2
5 (ng(m ) =Y (VM (@) < VM),

i=1 i=1
Hence, applying ||u||? < d||u||3 for all u € R? yields

2

OM;;(x d 4 (z
VoM@ =3 Z T gdZZ( ><dZ||VM

=1 =

as desired. This concludes the proof of Lemma 19. O

Finally, we prove Lemma 8.

N 2
Proof of Lemma 8. By Lemma 19, we have |V - G||? < dZ?:l HVij
op

. We now claim that

foreachj =1,...,d,
|ViG

S 364 tHTfkhft(‘T)

op

which will imply the desired bound ||V - Gy|| < 364 tdHp_pp_i(x). Let T(x) = (1 — t)I; —
2tV?Inpr—gn—(x) so that Gy () = [T'(z)] 2. We invoke Lemma 18 with v = ¢; (note that [|-,
is sub-multiplicative) to obtain

ijék(x)Ho < 4||T(z

lop [Get)[ 1957@))

op ’

Note that both ||7'(z)||,,, and |G () |lop are bounded by constants. On the one hand, Lemma 6

ensures ||@;€||0p < % On the other, since HV2 lin,kh,tHop < L we have

3
IT(@)llgy < 1—t+2L <1+2L < 5

where the last inequality follows since ¢ <
[IT()lop, and |G (2)llop gives

2(2L+1) and so tL < 1/4. Plugging in the bounds for

ijék(x) o

<182V, T(2)],, = 3641 ||V, V? npr_pn—i(@)||,, < 364tHr_pn—i(z)

as desired; concluding the proof Lemma 8. O

D.10 Proof of Lemma 11 — Bound on the Divergence of Diffusion Matrix V - G  for Hybrid
Algorithm

The proof follows the same structure as that of Lemma 8 (see Appendix D.9). The key difference is
that we let

T(x) = I — 2tV Inpr_pn—i(x)
so that G, (x) = [T'(x)]~2. The resulting bound only differs in the constant factor.

D.11 Proof of Lemma 13

. <(k <(k <(k ck) Lo
For ease of notation, we let 1 zp(() ), vy :pi ), Vijo :pg‘o) and vy zpé|t) within this proof.

By Bayes rule, we have

Velnyo(z | a) =V, [ln voje(a | ) +1In l/t(.’L‘)] )
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Let g(z; i1, X2) denote the density of N'(u, ¥) at 2. Then,
Vou(a | x) = pT—kh\T—kh—t(a | )
=g(a;e ta, (1 — e 2H)I).
Therefore,
la — e *a|?
Vm lny0|t(a | $) = VI |:_2(1€2t)
e ta—etx)
1—e 2

Plugging the above into the Bayes rule identity, we have
e (a—etr)

= + Vo Iny(x).

Velnyyo(z | a) =

Therefore,

e ta—etx)

= + V. Inw(x)

E(wa)tnu) |[Vo lnoio(@ | || = o l

2]
e~t(a—e~tz)|?
T2 ’ + Ve vy ()|

S.z E(a,m)w(uo,vt) [

67215

= mE(a,z)N(uo,w) [Ha - eftasHﬂ +E,, [HVT In I/t(x)||2] .

Then, since v (- | ) = N(e~fx, (1 — e~ 2)I), we have

]E(a,z)w(l/o,ut) [HC(, — eftg;”ﬂ — ]EwNVzEaNVon('la:) [Ha — e*txHQ}

=d(1 - e_2t).
Therefore,
t’L°E [HV] (z | )”2] < 4212 ﬁ+E [HV 1 ( )”2]
(a,z)~(vo,vt) N Vol | @ S =T v zInv(x
2 -2t

t“e
= dLQl—ie_% + t2L2]Ew [”Vm h’l l/t(fE)Hz]

Note that for0 <t < h < 8% < %, it holds that 1 — e~2* > t. Therefore,
t2672t t2
—_ < — =
1—e 2t = ¢

The claim has been proved.

D.12 A General Lemma for Time Derivative of KL

We restate the following lemma from prior work [78, Section 8.1.2]; see also [79, 6], and include a
proof for completeness.

Lemma 20 (Time derivative of KL). Let p;, q;: R? — R be probability density functions and t > 0.
Suppose the following conditions hold.

1. There is an integrable function §: R4 — R, i.e. f O(x)dx < oo, such that

2 (pt In %)’ < 6(x)
for all t and almost every x.

2. There is an integrable function r: RY — R, i.e. [ r(x)dx < oo, such that |%pt‘ < k(z) forall t
and almost every x.
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Then,

d _ [ (9P P Oap

Proof. We have

Dt 8pt Dt aQt 5pt
/(nqtat qt(’)t+8t) v

:/ ey P Oaepe .
ot ¢ Ot g ’

Here, the second equality uses the Leibniz integral rule, which holds because of the first domination

condition. The last step is by

8pt o d o
/de—dt/ptdx—o

which applies the Leibniz integral rule on p; thanks to the second domination condition.

E Method and Experimental Details
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Figure 6: One-dimensional visualization of the proximal matching loss ¢py;, in comparison with the

mean squared error (MSE) and mean absolute error (¢;) losses.
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Figure 7: Values of ¢ and A used by ProxDM-hybrid under varying numbers of sampling steps. Here,
we set 3(t) = Buin + (Bmax — Bmin) t, With Biin = 0.1, Bmax = 20, as used in experiments.

E.1 Pseudo-code for Proximal Matching Training

Algorithm 2 Proximal Matching Training

Input: Forward SDE noise schedule 5(t) (c.f. (1)); sampling distribution ¢ (¢, A) over (¢, A); data dis-
tribution py; annealing schedule Annealc (k) for ¢; optimization algorithm OptimizationStep
(e.g., SGD, Adam)

Initialize network parameters 6,

repeat
k+—k+1
Ck < Anneal; (k) > Update ¢ according to the annealing schedule
Sample t, A ~ ¢(t, \), Xo ~ po, and n,e ~ N(0, I') independently

ay — exp(— fof B(s) ds)

Xt — Vo Xo+V1—aun > Generate X; ~ p;
Y « Xt =+ \/X{-:
Compute loss £py < fpm (€0, (Y3, A), €5 Ck) > Proximal matching loss (cf. Eq. (9))

Or4+1 < OptimizationStep(fg, Volpm)
until convergence
Output: fo(z;t,\) =z — VXeg(x;t, \) > Approximated prox_ y,, ,, (%)

E.2 Sampling ¢t and A

We provide more details of the sampling strategy for ¢ and A used for proximal matching. To motivate
our design, Fig. 7 displays the (¢, \) pairs encountered by ProxDM-hybrid under different numbers of
sampling steps: 5, 10, 100, and 1000. The ¢ values are evenly distributed in [0, 1] regardless of the
step count, whereas the range of A varies by the number of steps. Based on this observation, we design
the following sampling scheme. We first sample a step number N from a predefined set of candidates.
Then, for the chosen N, we uniformly sample one of the possible (¢, \) pairs associated with that
step number. This procedure is repeated independently for each sample in the training batch and is
performed on-the-fly. For ProxDM-hybrid, the step number candidates are {5, 10, 20, 50, 100, 1000}.
For ProxDM-backward, we exclude 5 and 10 due to the instability associated with small step numbers.
To promote balanced learning across different step numbers, we apply weighted sampling, with
weights proportional to log(N') for MNIST and N''/3 for CIFAR-10.
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E.3 Image Generation

For CIFAR-10, we adopt the same U-Net architecture as in [27]. The ProxDM is trained for a total
of 375k iterations with a batch size of 512. We use the ¢; loss during the first 75k iterations as a
pretraining step, followed by proximal matching loss with ( = 2 for 150k iterations, and then { = 1
for the last 150k iterations. The learning rate is set to 10~*. For score models, we follow the standard
practice [27, 72, 75] of using a batch size of 128, and train for 1.5M iterations to ensure the number
of training samples (i.e., effective training epochs) matches that of the proximal model. We set the
learning rate to 2 x 10~* and use gradient clipping and learning rate warm-up, following [27, 75].
For both score and proximal models, the last checkpoint is used, without model selection.

For MNIST, we halve the number of filters in the U-Net, following [72]. The ProxDM is trained for a
total of 225k iterations with a batch size of 512, using ¢; loss with learning rate of 10~% during the
first 75k iterations, followed by proximal matching loss with ( = 1 and { = 0.5 for 75k iterations
each, with a learning rate of 10~5. For the score model, we use a batch size of 128 following the
standard practice [27, 72, 75] and train for 900k iterations to ensure the number of training samples
(i.e., effective training epochs) matches that of the proximal model, using a learning rate of 2 x 104,

Precision and recall metrics. Following [38], precision measures the proportion of generated
samples that fall within the manifold of real data. Specifically, real images are first embedded into a
feature space via a pre-trained VGG-16 network [69]. Then, a hypersphere is defined around each
feature vector with radius equal to the distance to its kth nearest neighbor, forming a volume that
approximates the data manifold. Precision is then computed as the fraction of generated samples
located within this volume, intuitively capturing sample quality and fidelity. Analogously, recall is
defined as the fraction of real samples that lie within the manifold of generated samples, reflecting
the diversity and data coverage of the generation.

F Extension of ProxDM to Other SDEs and ODEs

In this section, we demonstrate conceptually how the proximal diffusion model can be extended to
other SDEs and ODEs, such as the variance exploding SDE and probability flow ODE [75]. We leave
the theoretical and empirical study of these extensions to future work.

Besides the variance preserving (VP) SDE in (1), an alternative forward process used in diffusion
models is the variance exploding (VE) SDE [75], given by

dX, = dw,. (38)

Here we omit the time-dependent diffusion term for simplicity. This corresponds to the standard
Brownian motion initialized at the data distribution. The associated reverse-time SDE takes the form

dXt =-V h’lpt(Xt)dt + th

where time flows backwards from 7" to 0.

Given a time grid {0 = t; < ¢t < --- < ty = T}, applying forward discretization yields the
following score-based algorithms widely used in generative models [72, 73]

Xp—1 = Xp + v Inpy, (Xp) + k2

where v, = ¢, — tx_1 and z ~ N(0, T). Analogous to the derivation of ProxDM for the VP SDE, we
can apply backward discretization to the reverse-time VE SDE:

X1 =X +velnpy,  (Xi—1) + Vk2s

and obtain a new proximal sampling scheme:

X1 = ProxX, n,, (X +V72) -

Furthermore, consider a general forward SDE of the form

dX;, = f(Xy,t)dt 4 g(t)dWy,
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where f: R? x R — R? denotes the drift coefficient and g: R — R the diffusion coefficient. [75]
introduce the probability low (PF) ODE, given by

1
dXi = | f(Xe,t) — ig(t)QVhlpt(Xt) dt,

where time flows backwards from 7" to 0. The PF ODE shares the same marginal probability densities
as the forward process, and therefore, admits sampling algorithms analogous to those based on the
reverse-time SDE. Notably, the DDIM sampler [70] has been shown to correspond to a discretization
of the PF ODE [67, 53].

In particular, for the VP SDE (1), we have f(z,t) = —33(t)z and g(t) = \/B(t), which leads to
the following PF ODE

AX, = | =3 B()X, — 5BV Inpu(X,) | .

Applying backward discretization yields

Xp—1 =X+ %qu + %VInptk,l(kal)v

where v, = Lik,l B(s)ds. This, in turn, gives rise to a proximal-based ODE sampler:

2
Xk—l = pI‘OX_QZ’fYk lnptk71 (2 — Yk Xk») .

G Connection between Backward Discretization and Proximal Algorithms

In this section, we provide the detailed derivations for previously explored connections between
proximal algorithms and backward discretization, using two continuous-time processes as examples:
gradient flow and Langevin dynamics.

First, consider the gradient flow ODE
day = =V f(z)dt
whose forward (Euler) discretization gives the gradient descent algorithm
T =z - AtVf(z)

where x and 2 denote the current and the next iterates, respectively. On the other hand, backward
discretization yields the proximal point method [62]:

vt =z AtVf(x') — 2" =proxy,(z).

In the context of sampling, forward discretization of the Langevin dynamics

dX, = =V f(X,)dt + V2dW,.

leads to the unadjusted Langevin algorithm

XT =X - AtVF(X)+ V2Atz, 2z~ N(0,I)

while backward discretization leads to the proximal Langevin algorithm [60, 5, 20, 79]:

Xt =X - AtVF(XT)+V2Atz  — X' = proxa, (X + \/2Atz) .

H Additional Results

H.1 Ablation on Smoothness of Target Distribution in 1D

We further investigate how the smoothness of the target distribution affects sampling performance.
Specifically, we consider a one-dimensional target distribution given by p(x) o (0.5 + z)*(0.5 —
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)%,z € [—0.5,0.5], with varying smoothness parameters « € {0,0.5,1.0,2.0,5.0}. This family
starts from a uniform distribution over [0, 1] with non-smooth boundaries (o« = 0) and becomes
increasingly smooth as o grows. The score-based sampler uses the canonical Euler—-Maruyama
discretization (without the additional final denoising step), while the proximal sampler follows the
hybrid update in Algorithm 1. As shown in Fig. 8, both samplers recover the target distribution when
given sufficient sampling steps. The dependence of sample quality on the smoothness parameter
« is relatively subtle—likely due to the smoothing effect inherent in the forward diffusion process.
Nevertheless, ProxDM provides samples that consistently fall within the true support and achieves
better alignment with the target density, especially at smaller step counts.

10 05 00 05 10 1s5l5 10 05 00 05 10  1sl5 10 05 00 05 10  Lsls 10 05 00 05 L0 Lsl5 10 05

(a) 5 steps

a=0 a=05 a=10 a=20

0 5 00 05 L0 1sls 10 05 00 05 10 Lsls 10 05 00 05 10  Lsls 10 05 00 05 10 1515 10 05

(b) 10 steps

a=05 a=10 a=20 a=50

A h
10 155 10 05 00 05 10 185 10 05 00 05 L0 1slb 10 05 00 05 L0 Lsls 10 05 00 05 Lo L5

(c) 100 steps

Figure 8: Samples from score-based and proximal samplers using 5, 10, and 100 sampling steps for
distributions with varying level of smoothness at the boundary (controlled by «).
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H.2 Additional Results

Score SDE

Score SDE (Spec.)
—8— Score ODE
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-~ Prox Hybrid (Spec., No heur.)
7
: ]

i
10* 102 103
NFE

FID

Figure 9: FID vs. number of sampling steps (or number of function evaluations, NFE) on CIFAR10.
Dashed lines indicate models trained specifically for 5, 10 and 20 steps (“Spec.”), while solid lines
represent full-range models. The result labeled “Prox Hybrid (Spec., No Heur.)” is obtained without
applying the heuristics for network parameterization and objective balancing described in Section 3.3.
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Figure 10: Precision and recall metrics [38] for MNIST and CIFAR-10 datasets. Precision measures
the sample quality while recall reflects the coverage of the data distribution. Across most sampling
steps (NFE), ProxDM achieves higher precision and recall than score-based baselines, indicating
improved sample quality and diversity.
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Figure 11: FID vs. number of sampling steps (NFE) on CelebA-HQ (256 x 256) from score SDE,
score ODE and hybrid ProxDM samplers. FID is computed over 30,000 generated samples.
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Figure 12: Uncurated CelebA-HQ (256 x 256) samples from score SDE, score ODE and hybrid
ProxDM samplers. ProxDM produces cleaner and more coherent samples with fewer sampling steps.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the scope of the paper, its contribu-
tions, and results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full set of assumptions and proof are provided in appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on network architecture, loss function, training setups in
Sections 3 and 5, as well as in appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All data and models used in this paper are public. We make our code available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide all the details necessary to understand the results presented in
the main text. We include further details in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiments require significant amount of GPU time to run, so it is quite costly
to compute error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we specify the hardware details used to run experiments in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research complies with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts of our work in appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We will implement safeguards when releasing our model.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The sources of datasets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human is conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The method does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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