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ABSTRACT

World models predict future states and rewards by learning compact state rep-
resentations of the environment, thereby enabling efficient policy optimization.
World-model-based reinforcement learning (RL) algorithms have demonstrated
significant advantages in complex tasks. However the scenarios in real world ap-
plication are always partially observable (i.e., image based RL and multi-agent
RL), and contain non-stationary dynamics. To address the challenges in Partially
Observable Markov Decision Processes (POMDP) scenarios, we propose a novel
memory guided world model named PO-Dreamer. Besides current observation,
we adaptively extract meaningful cues from memory which is helpful to model
the environmental dynamics. Then, the features of current observation and mem-
ory are fused by the fusion mechanism to predict state transition and future re-
wards. Extensive experiments on both single-agent (Atari 100K) and multi-agent
(SMAC) tasks demonstrate that our method achieves state-of-the-art (SOTA) per-
formance compared to existing strong baselines.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) Moerland et al. (2023); Luo et al. (2022) enhances
sample efficiency through the explicit construction of environment dynamics models. Known as
world models Ha & Schmidhuber (2018), these environment models learn compact state representa-
tions and predict rewards, effectively capturing the environment’s dynamics. World models enable
agents to improve their behavior by operating within the imagined latent space, significantly reduc-
ing the dependence on expensive real-world interactions.

Although world models demonstrate remarkable sample efficiency in complex control tasks with
high-dimensional observations Schrittwieser et al. (2020); Hafner et al. (2025), real-world environ-
ments are often partially observable. Such environments are often modeled as Partially Observable
Markov Decision Processes (POMDPs) Kaelbling et al. (1998), which exhibit non-stationary char-
acteristics Zhu et al. (2023), especially in complex dynamic systems or multi-agent scenarios. That
is, the same observations may receive different observation transitions and rewards under the same
action. The reason is that an observation may correspond to different states in a POMDP. This
characteristic poses a bottleneck in applying MBRL to the real world. Two illustrative examples
are presented in Fig. 1. In the Atari Bellemare et al. (2013) Breakout scenario, the agent relying
solely on the current observations can detect the instantaneous positions of the paddle and ball,
while critical dynamics like the ball’s velocity vector remain unobserved. Similarly, in the StarCraft
Multi-Agent Challenge (SMAC) Samvelyan et al. (2019) 2m vs 1z scenario, decentralized agents
receive only static unit positions from single-frame observations, lacking critical motion vectors and
action intentions. Such partial observability poses significant challenges for environment modeling
and RL. To address this limitation, a promising solution involves leveraging memory to construct a
robust world model that effectively integrates past experiences and dynamically adapts to environ-
mental changes. For instance, agent can infer the velocity and direction of the ball from consecutive
frames in Atari Breakout, while SMAC agents can predict other agents’ strategies by leveraging
relevant or similar past interactions retrieved from memory. This approach is both highly effective
and intuitive, as it mirrors how humans extract critical information from real-world environments by
drawing relevant past experiences from memory.
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Due to the predictive nature, world models inherently rely on sequential networks. Most existing
approaches Hafner et al. (2019a; 2020; 2023; 2025); Micheli et al. (2022); Chen et al. (2022); Zhang
et al. (2023); Robine et al. (2023) adopt Recurrent Neural Networks (RNN) Zaremba et al. (2014)
or Transformer Vaswani et al. (2017) as their architectural backbone, and historical information has
been involved. However, these methods suffer from two limitations: Firstly, existing approaches
typically only process memory information through native and direct mechanisms. Consequently,
these valuable memory traces remain underutilized, and the challenge of how to adaptively extract
the most valuable cues from them has not been fully explored. Secondly, existing methods only
focus on the recent history in the same episode, and the valuable but far memory is ignored. Hence,
we propose a novel algorithm called PO-Dreamer, a memory guided world model for POMDPs.
Specifically, our architecture introduces an additional memory encoder as well as the convention
encoder Hafner et al. (2023; 2025), which focuses on memory and current observation respectively.
For the memory encoder, the historical observations and actions of the current and past episodes are
constructed as memory firstly. Then, the current observation provides the query, while the observa-
tions and actions from memory compute the key and value. The multi-head attention Vaswani et al.
(2017) is used to extract key cues from the memory. Since the unobservable parts are always non-
deterministic and the collected samples are not complete, hence we model the memory features as a
learnable Gaussian distribution by a variational autoencoder (VAE) Kingma et al. (2013); Rezende
et al. (2014), which could avoid fast overfitting and enhance the robustness of PO-Dreamer against
the environment’s non-stationarity. Based on two encoders, the fused sequence model and dynamics
predictor are performed to jointly construct an implicit representation of state, and further used to
better predict the state transitions and future rewards.

Figure 1: Visualization of the Atari Breakout and the SMAC 2m vs 1z, decision-making based
on the current observation is challenging due to the environment is partially observable. However,
extracting key information from memory can effectively assist the agent in making decisions.

The key contributions of our work are as follows:

• A memory guided world model, PO-Dreamer, is proposed to extract key temporal informa-
tion to infer unobservable aspects of the environment, effectively addressing the challenges
of non-stationarity in POMDPs.

• A novel fusion mechanism is designed to integrate memory and current observations, en-
abling a more comprehensive modeling of environmental dynamics.

• PO-Dreamer could be used for both single-agent and multi-agent tasks. Experiments on
Atari and SMAC both demonstrate that our method offers significant advantages in both
performance and sample efficiency.

2 RELATED WORK

2.1 MODEL BASED REINFORCEMENT LEARNING (MBRL)

MBRL improves the sample efficiency and planning capabilities of RL by explicitly learning a
model of the environment dynamics Sutton (1991); Chua et al. (2018); Janner et al. (2019), which
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are also referred to world models. The development of PlaNet Hafner et al. (2019b) made a sig-
nificant advancement through the Recurrent State Space Model, enabling policy learning within
compact latent space representations. This work was extended by the Dreamer series Hafner et al.
(2019a; 2020; 2023; 2025), which systematically developed the paradigm of “world model learning
+ trajectory imagination + policy optimization.” MuZero Schrittwieser et al. (2020) advanced the
field by learning implicit environment and value representations combined with Monte Carlo Tree
Search for planning. Based on Dreamer, recent methods have incorporated various architectures for
world modeling to improve effectiveness for complex environments, such as Transformer Micheli
et al. (2022); Zhang et al. (2023); Robine et al. (2023) or Diffusion Alonso et al. (2024). Compared
with these methods, we primarily focus on POMDPs and aim to infer the unobservable informa-
tion from memory. A novel memory encoder is introduced to extract key clues adaptively using the
attention mechanism. Consequently, our approach demonstrates superior performance in POMDPs
settings, including image-based single agent RL and multi-agent RL. Although ISO-Dream Pan et al.
(2022) similarly employs a multi-branch world model, our approaches are fundamentally different
in motivation. ISO-Dream operates on the assumption that environments contain decision-irrelevant
information, and thus aims to decouple controllable from non-controllable dynamics in observations.
In contrast, our method tackles POMDPs by explicitly reconstructing latent states through memory.
Furthermore, several studies have extended world models to multi-agent learning scenarios. For ex-
ample, MAMBA Egorov & Shpilman (2022) employs attention mechanisms to enable information
sharing among multi-agents’ world models. Building upon this foundation, MAG Wu et al. (2023)
enhances predictive capability by integrating Model Predictive Control (MPC) for multi-step state
forecasting, while MACD Venugopal et al. (2023) utilizes latent variable world model to separately
model global states and local observations. Unlike these methods requiring agent communication
during world model training, our approach maintains decentralized world model for each agent. This
improves our applicability in realistic scenarios.

2.2 HISTORY USED FOR POMDPS

The effectiveness of historical observation utilization in POMDPs has been established in prior
works. DRQN Hausknecht & Stone (2015) enhanced DQN Mnih et al. (2015) by incorporating
LSTM networks to process sequential observations. Building upon this foundation, DDRQN Fo-
erster et al. (2016) extends this approach to multi-agent scenarios and ADRQN Zhu et al. (2017)
further integrates action information into the agent’s historical observation sequence. LSTM-TD3
Meng et al. (2021) augments TD3 Fujimoto et al. (2018) for continuous control tasks. DTQN
Esslinger et al. (2022) replaces traditional LSTM with Transformer to encode the agent’s historical
observation information. In multi-agent setting, the sequential models such as RNNs are often cho-
sen as the backbone Foerster et al. (2018); Rashid et al. (2020). Especially in a decentralized multi-
agent learning setting, the history trajectory is also widely used to overcome the non-stationarity
Zhai et al. (2023); Hu et al. (2023); Pritz & Leung (2025). R2I Samsami et al. (2024) integrates State
Space Models (SSMs) into the world model to capture dependencies in long sequences. WorldMem
Xiao et al. (2025) addresses the challenges of long-term 3D consistency in world simulation by in-
troducing a memory bank with a state-based attention mechanism. Our PO-Dreamer differs from the
above methods in two key aspects: Firstly, the memory information utilized in our method exhibits
cross-episode persistence, encompassing not only the historical trajectory of the current episode but
also integrating long-term memory from past interactions. Secondly, these methods merely pro-
cess the current observation or historical information in isolation, without effectively designing a
mechanism to leverage valuable information from memory based on the current observation.

3 METHOD

Considering the image-based RL task and multi-agent RL task as POMDPs, our method contains
two integrated components: world modeling and behavior learning. The world modeling component
employs a fusion architecture to predict state transitions and rewards from partial observations.
Subsequently, the behavior learning is adopted on this learned model, which is applicable to both
single-agent and multi-agent RL scenarios. MBRL learns a policy to maximize the final returns
within the world model, which predicts the dynamics and reward function of the environment.
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Figure 2: The architecture of our PO-Dreamer. The framework consists of two key components: the
world model learning and behavior learning. The former employs dual branches to extract critical
features from both current observations and memory, learning environment dynamics and reward
functions. The latter performs RL based on the world model.

3.1 WORLD MODEL LEARNING FOR POMDPS

POMDP is formally defined by a 7-tuple ⟨S,A,O, T, Z,R, γ⟩. S, O, and A denote the state space,
observation space, and action space respectively. The dynamics function T : S ×A → S specifies
the state transition dynamics as p(st+1 | st, at), the observation function Z : S → O describes the
observation probability p(ot | st), the reward function R : S × A → R computes the immediate
rewards, and γ ∈ [0, 1] is the discount factor. Based on RSSM architecture Ha & Schmidhuber
(2018), our world model takes the memory and current observation into account and aims to achieve
the collaboration between them. Suppose the encoding of current observation and memory at time t
are zcot and zmg

t respectively, and they could generate the recurrent state hco
t and hmg

t . We argue that
zcot and hco

t correspond to the current observation, while zmg
t and hmg

t represent the memory of the
state. And the latent state of the world model can be represented as st

.
= CAT(hco

t , zcot , hmg
t , zmg

t ).
Considering zcot and zmg

t are calculated from hco
t and hmg

t by the dynamics predictor, the state
transition could be:

p(st|st−1, at−1) = p(hco
t , zcot , hmg

t , zmg
t |h

co
t−1, z

co
t−1, h

mg
t−1, z

mg
t−1, at−1)

= p(zcot , zmg
t |h

co
t , hmg

t )p(hco
t , hmg

t |h
co
t−1, z

co
t−1, h

mg
t−1, z

mg
t−1, at−1).

(1)

During the learning, the world model receives the observation ot at each time step t, with the mem-
ory mt = {ôt̂, ât̂}τt̂=1

of previous observation and action sequences. Firstly, the observation encoder
and the memory encoder are used to process the current observation and the memory respectively:

Observation Encoder:zcot ∼ qϕ(z
co
t | hco

t , ot), Memory Encoder:zmg
t ∼ qϕ(z

mg
t | hmg

t ,mt). (2)
We designed a fusion mechanism that integrates the features extracted by the two encoders: At each
timestep t, the fused sequence model generates the recurrent state ht based on the previous recurrent
state hco

t−1, h
mg
t−1, stochastic representation zcot−1, z

mg
t−1 and action at−1. And the dynamics predictor

infers the stochastic representation ẑcot , ẑmg
t .

Fused Sequence model: hco
t , hmg

t = fϕ(h
co
t−1, z

co
t−1, h

mg
t−1, z

mg
t−1, at−1),

Fused Dynamics predictor: ẑcot , ẑmg
t ∼ pϕ(ẑ

co
t , ẑmg

t | hco
t , hmg

t ).
(3)

The implementation of the observation encoder is the same as the encoder in Hafner et al. (2025),
here we mainly describe the memory encoder, fused sequence model, and fused dynamics predictor.

3.1.1 MEMORY ENCODER

Firstly, the current observation paired with a memory window of τ time steps is encoded through
fo(·) separately to generate fo(ot) and a sequence of memory observation embedding {fo(ôt̂)}τt̂=1

,
the t̂ is the time step in the memory. The embedding of the current observation is set as fc

t = fo(ot).
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During environmental interaction, an agent can accumulate memories spanning tens of thousands of
steps. Using all this memory for training would be computationally intensive and time-consuming.
Considering that most of the memory has weak relevance to the current state, we introduce an
adaptive dropout mechanism to identify key frames from massive memory and perform attention
computation based on these key frames. This mechanism dynamically selects the most relevant
memory fragments by computing the cosine similarity S between memory embeddings and the
current observation embedding.

Mot = arg max
{ti}η

i=1⊆[1,τ ]

η∑
i=1

S(fo(ot), fo(ôt̂i)) = {fo(ôt̂)}
η

t̂=1
(4)

where Mot represents the subset of top-η memory selected for the current observation ot. It ensures
that only the most relevant memory information is utilized for world modeling. Subsequently, an
attention mechanism is employed to capture the dependencies between the current observation and
the memory, thereby aiding the world model in constructing a more robust state transition function.

Simultaneously, the action sequence is encoded via fa(·) separately, producing the action embed-
dings {fa(ât̂)}

η

t̂=1
. In addition, the positional encoding of t̂ ∈ {1, η} is computed as Vaswani

et al. (2017), denoted as {Post̂}
η

t̂=1
. We construct the memory embeddings through element-

wise addition of observation embeddings, action embeddings, and positional encoding as f c
t̂

=

fo(ot̂) + fa(at̂) + Post̂ where t̂ ∈ (1, η).

Suppose fc
t ∈ R1×d, and F c ∈ Rη×d who concertante {f c

t̂
}η
t̂=1

together. Since we focus on
the current state, hence the current context embedding f c

t provides the query Q, while memory
embeddings F c are used to compute the keys K and values V . The Multi-head Attention (MHA)
Vaswani et al. (2017) is used:

MultiHead(Q,K, V ) = CAT(head1, . . . , headh)W
O,

headi = Attention(fc
t W

Q
i , FcW

K
i , FcW

V
i ),

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V.

(5)

where WQ
i , WK

i and WV
i are the the weight matrices of queries, keys and values in the ith head.

Subsequently, N blocks, where each contains a feed forward layer, a layer normalization and a
residual connection, are employed to calculate ft from MultiHead(Q,K, V ).

Since the non-stationary nature of the POMDPs, we employ a Variational Autoencoder (VAE)
Kingma et al. (2013); Rezende et al. (2014) to model the latent dynamics as a Gaussian distribu-
tion. It could make the state transition and reward prediction of our world model more robust.
Specifically, the mean µϕ(ft) and standard deviation σϕ(ft) are calculated based on ft using VAEϕ,
and then fv

t is sampled from N (µϕ(ft), σϕ(ft)). To make the gradient backpropagation available,
the reparameterization trick Kingma et al. (2013) is used instead:

fv
t = µϕ(ft) + σϕ(ft) · ϵ, where ϵ ∼ N (0, 1). (6)

Subsequently, the encoder Encmg encodes fv
t into the latent representation zmg

t , which is the final
output of the memory encoder in Eq. 4.

3.1.2 FUSED SEQUENCE MODEL

The fused sequence model learns to predict the recurrent state sequence in the world model, which
enables it to plan in imagination. The sequence model predicts hco

t and hmg
t from the last latent state

st−1
.
= CAT(hco

t−1, z
co
t−1, h

mg
t−1, z

mg
t−1) and the last action at−1. We implement the sequence model

as GRUs Cho et al. (2014) with recurrent state hco
t and hmg

t respectively:

hco
t = GRUco(st−1, at−1), h

mg
t = GRUmg(st−1, at−1). (7)

3.1.3 FUSED DYNAMICS PREDICTOR

Given hco
t and hmg

t produced by the fused sequence model, the fused dynamics predictor aims to
calculate ẑcot and ẑmg

t according to Eq. 4. To achieve this, a cross attention module (CA) Vaswani
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et al. (2017) is introduced to make hco
t and hmg

t interact with each other:

hco′
t , hmg′

t = CA(hco
t , hmg

t ). (8)

After processing the fused recurrent states through the attention mechanism, we pass hco′

t and hmg′

t

into the dynamics predictors to obtain the stochastic latent representations ẑcot and ẑmg
t :

ẑcot ∼ pϕ(ẑ
co
t | hco′

t ), ẑmg
t ∼ pϕ(ẑ

mg
t | hmg′

t ). (9)

3.1.4 LEARNING

The world model compresses the information into latent representation, we can reconstruct the
observation to ensure informative representations for learning. Set the latent state as st

.
=

CAT(hco
t , zcot , hmg

t , zmg
t ), the decoder and predictors are used. Besides, a memory decoder is de-

signed to reconstruct memory information:

Observation decoder: ôt ∼ pϕ(ôt | st), Memory decoder: f̂t ∼ pϕ(f̂t | st),
Reward predictor: r̂t ∼ pϕ(r̂t | st), Continue predictor: ĉt ∼ pϕ(ĉt | st).

(10)

We denote the categorical cross entropy loss as catxent(·), and the binary cross entropy loss as
binxent(·), which follows the set of DreamerV3 Hafner et al. (2023; 2025). And then the predictive
loss Lpred(ϕ) is the sum of the prediction losses to contrast the prediction with ground truth:

Observation loss: Lo = ∥ôt − ot∥22, Memory loss: Lf = catxent(f̂t, ft),
Reward loss: Lr = catxent(r̂t, rt), Continue loss: Lc = binxent(ĉt, ct).

(11)

For the fused dynamics predictor, we aim to make the ẑt and zt as close as possible, the KL loss is
performed. Similar to DreamerV3 Hafner et al. (2023; 2025), the dynamics loss Ldyn and represen-
tation loss Lrep are employed with the stop-gradient operator sg(·):

Ldyn(ϕ)
.
= max(1,KL

[
sg(zcot ) ∥ ẑcot

]
+ KL

[
sg(zmg

t ) ∥ ẑmg
t

]
),

Lrep(ϕ)
.
= max(1,KL

[
zcot ∥ sg(ẑcot )

]
+ KL

[
zmg
t ∥ sg(ẑmg

t )
]
).

(12)

Finally, the world model parameters ϕ are optimized end-to-end to minimize the total loss with
hyperparameter βdyn = 0.5, βrep = 0.1, following the set of DreamerV3 Hafner et al. (2023; 2025):

L(ϕ) .
= Eqϕ

[
T∑

t=1

(Lpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
. (13)

3.2 BEHAVIOR LEARNING

The behavior learning is based on the latent space ŝt = CAT(hco
t , ẑcot , hmg

t , ẑmg
t ) imagined by the

world model. We conducted experimental validation in both multi-agent and single-agent scenarios.

In single-agent scenario, we adopt the Actor-Critic architecture of Hafner et al. (2023; 2025). The
actor seeks to learn the policy which could maximize the cumulative return Rt

.
=

∑∞
τ=0 γ

τrt+τ ,
and the critic approximates the return distribution under the actor’s policy.

Actor: at ∼ πθ(at | ŝt)

Critic: Rt ∼ vθ(Rt | ŝt)
.
= Eπ

(
∞∑

τ=0

γτrt+τ | ŝt

)
(14)

In multi-agent scenario, each agent maintains an individual world model and shares the same net-
work weights, and learns from the joint latent state sequences {ŝit}ni=1 across all n agents. As for
RL policy learning, we adapt the Multi-Agent Transformer (MAT) framework Wen et al. (2022)
with two key components: (1) an attention-based mechanism enabling inter-agent communication
through latent state, (2) autoregressive action generation that preserves decentralized execution.
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Table 1: Results on the Atari 100k benchmark, along with human-normalized aggregate metrics.
Bold values denote the best-performing methods. Our approach significantly outperforms other
world model baselines in mean score over 5 random seeds.

Game Random Human SimPLE TWM IRIS DreamerV3 MuDreamer STORM∗ HarDream DIAMOND∗ Ours

Alien 227.8 7127.7 616.9 674.6 420.0 959.0 951.0 983.6 890.0 744.1 1265.1
Amidar 5.8 1719.5 74.3 121.8 143.0 139.0 153.0 204.8 141.0 225.8 151.7
Assault 222.4 742.0 527.2 682.6 1524.4 706.0 891.0 801.0 1003.0 1526.4 678.1
Asterix 210.0 8503.3 1128.3 1116.6 853.6 932.0 1411.0 1028.0 1140.0 3698.5 1244.3
BankHeist 14.2 753.1 34.2 466.7 53.1 649.0 156.0 641.2 1069.0 19.7 958.2
BattleZone 2360.0 37187.5 4031.2 5068.0 13074.0 12250.0 12080.0 13540.0 16456.0 4702.0 18693.0
Boxing 0.1 12.1 7.8 77.5 70.1 78.0 96.0 79.7 80.0 86.9 89.8
Breakout 1.7 30.5 16.4 20.0 83.7 31.0 34.0 15.9 53.0 132.5 85.3
ChopperCommand 811.0 7387.8 979.4 1697.4 1565.0 420.0 808.0 1888.0 1510.0 1369.8 2011.6
CrazyClimber 10780.5 35829.4 62583.6 71820.4 59324.2 97190.0 96128.0 66776.0 82739.0 99167.8 96214.5
DemonAttack 152.1 1971.0 208.1 350.2 2034.4 303.0 553.0 164.6 203.0 288.1 572.3
Freeway 0.0 29.6 16.7 24.3 31.1 0.0 5.0 33.5 0.0 33.3 19.0
Frostbite 65.2 4334.7 236.9 1475.6 259.1 909.0 1652.0 1316.0 679.0 274.1 2033.7
Gopher 257.6 2412.5 596.8 1674.8 2236.1 3730.0 1500.0 8239.6 13043.0 5897.9 6049.9
Hero 1027.0 30826.4 2656.6 7254.0 7037.4 11161.0 8272.0 11044.3 13378.0 5621.8 12158.4
Jamesbond 29.0 302.8 100.5 362.4 462.7 445.0 409.0 509.0 317.0 427.4 525.7
Kangaroo 52.0 3035.0 51.2 1240.0 838.2 4098.0 4380.0 4208.0 5118.0 5382.2 5573.9
Krull 1598.0 2665.5 2204.8 6349.2 6616.4 7782.0 9644.0 8412.6 7754.0 8610.1 8261.6
KungFuMaster 258.5 22736.3 14862.5 24554.6 21759.8 21420.0 26832.0 26182.0 22274.0 18713.6 25173.8
MsPacman 307.3 6951.6 1480.0 1588.4 999.1 1327.0 2311.0 2673.5 1681.0 1958.2 2481.3
Pong -20.7 14.6 12.8 18.8 14.6 18.0 18.0 11.3 19.0 20.4 20.5
PrivateEye 24.9 69571.3 35.0 86.6 100.0 882.0 1042.0 7781.0 2932.0 114.3 1109.4
Qbert 163.9 13455.0 1288.8 3330.8 745.7 3405.0 4061.0 4522.5 3933.0 4499.3 4325.9
RoadRunner 11.5 7845.0 5640.6 9109.0 9614.6 15565.0 8460.0 17564.0 14646.0 20673.2 22518.2
Seaquest 68.4 42054.7 683.3 774.4 661.3 618.0 428.0 525.2 665.0 551.2 815.5
UpNDown 533.4 11693.2 3350.3 15981.7 3546.2 9234.0 26494.0 7985.0 10874.0 3856.3 26521.6
#Superhuman (↑) 0 N/A 1 8 10 9 11 10 11 11 11
Mean (↑) 0.000 1.000 0.332 0.956 1.046 1.097 1.264 1.266 1.366 1.459 1.516
∗ These methods are implemented with advanced network backbones such as Transformer and Diffusion for world models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 BENCHMARKS

We evaluate our approach on two representative POMDP domains: image-based single agent RL
and multi-agent RL. The former is evaluated on the well-established Atari 100K benchmark Kaiser
et al. (2019), which consists of 26 distinct games, and each agent is only allowed to take 100k
actions. To ensure statistical reliability, we conduct all experiments using five independent random
seeds, consistent with the evaluation methodology of Alonso et al. (2024). For multi-agent RL, we
employ the SMAC benchmark Samvelyan et al. (2019), which features a highly complex setup with
multi-agent interactions and includes various adversarial scenarios. Following established practices
in multi-agent RL Wen et al. (2022), we evaluate our method on 12 representative scenarios shown
in Fig. 3, which span diverse learning difficulties.

4.2 RESULTS

4.2.1 ATARI

We conduct comprehensive comparisons with strong MBRL methods on the Atari benchmark, in-
cluding DIAMIND (diffusion-based) Alonso et al. (2024), HarmonyDream Ma et al. (2023), Mu-
Dreamer Burchi & Timofte (2024), STORM (transformer-based) Zhang et al. (2023), DreamerV3
Hafner et al. (2023; 2025), IRIS Micheli et al. (2022), TWM Robine et al. (2023), and SimPle Kaiser
et al. (2019). As evidenced in Table 1, PO-Dreamer achieves superior overall performance with
state-of-the-art mean HNS (Human Normalized Score) of 1.516, surpassing human-level perfor-
mance in 11 out of 26 games. Notably, our method exhibits remarkable performance in temporally
extended scenarios like ChopperCommand, Frostbite, and UpNDown where memory processing is
crucial for aiding the agent in decision-making. Especially compared to the baseline DreamerV3,
our algorithm shows significant performance improvements in 24 out of 26 scenarios, which demon-
strates PO-Dreamer’s effectiveness in POMDPs.
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Figure 3: Performance comparisons on SMAC. Solid curves represent the mean of runs over 5
different random seeds, and shaded regions correspond to standard deviation.

4.2.2 SMAC

Given the limited number of model-based RL methods for multi-agent settings, we evaluate PO-
Dreamer against both established model-free baselines (MAT Wen et al. (2022), MARR Yang et al.
(2024), MAPPO Yu et al. (2022) and QMIX Rashid et al. (2020)), as well as MBRL approaches
including MAMBA Egorov & Shpilman (2022)) and MAG Wu et al. (2023). As shown in Fig.
3, the training curves exhibit our advantage in both efficiency and effectiveness, which is much
more clear in the hard scenarios 3s vs 5z and corridor. The significant improvement over MAT
quantitatively validates the benefits of world models for multi-agent RL. Unlike MAG Wu et al.
(2023) and MAMBA Egorov & Shpilman (2022) which require centralized training with global
state information, PO-Dreamer achieves superior performance through a decentralized manner. Our
superiority indicates Po-Dreamer could handle POMDPs more effectively.

4.3 ABLATION STUDY

We conduct ablation studies on 8 representative Atari games, following the set of DIAMOND
Alonso et al. (2024). The ablation studies specifically aim to validate 3 parts: (1) the effective-
ness of fusing current observations with memory, (2) the contribution of core components including
the VAE, action embeddings and positional encoding in the memory encoder, and cross-attention
mechanisms in the dynamical predictor, (3) the impact of memory window length τ and used mem-
ory length η. For detailed analysis of other experimental results (e.g., further discussion about VAE
and memory decoder), please refer to the Table 4.

Table 2: The Ablation Study for Fusion Analysis and Component Analysis
Game Random Human Fusion Analysis Component Analysis Ours

CE Only MG Only CO Only CO + CO W/o VAE W/o CA W/o Pos W/o Act

Amidar 5.8 1719.5 146.9 75.2 139.0 135.1 120.9 131.6 149.4 150.3 151.7
Asterix 210.0 8503.3 1276.7 691.4 932.0 981.4 1074.8 1126.3 1176.3 1255.4 1244.3
Breakout 1.7 30.5 81.4 45.3 31.0 62.1 73.2 84.6 78.5 80.1 85.3
Frostbite 65.2 4334.7 2006.1 1073.8 909.0 1706.2 1952.7 1793.5 1852.6 1936.8 2033.7
Hero 1027.0 30826.4 10532.0 8210.4 11161.0 11581.7 13247.4 9644.2 11368.2 11752.6 12258.4
Kangaroo 52.0 3035.0 5519.6 1249.5 4098.0 4716.5 4825.3 5139.7 5461.3 5637.2 5573.9
Krull 1598.0 2665.5 7973.9 7533.8 7782.0 7317.5 7421.0 7982.3 7358.2 8152.4 8261.6
RoadRunner 11.5 7845.0 21036.0 9347.1 15565.0 19376.2 19664.3 20176.9 16417.1 21896.3 22518.2
Mean (↑) 0.000 1.000 1.781 1.155 1.357 1.549 1.621 1.752 1.617 1.817 1.865

4.3.1 FUSION OF CURRENT OBSERVATION AND MEMORY

We conduct three key experiments to analyze the memory guided mechanism and our model com-
ponents: (1) We only use the historical observations from the current episode (CE Only), while not
utilizing long-term memory information. (2) Individual module evaluation where we isolate either
the observation encoder (CO Only) or memory encoder (MG Only); (3) Fusion validation where we
replace memory with duplicated current observations (CO+CO) to validate that the improvements
come from the fusion of current observation and memory rather than the complicated model.

As demonstrated in Table 2, “CE Only” shows weaker performance compared to our method, indi-
cating that utilizing long-term memory observations more effectively improves world model perfor-
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mance compared to relying solely on short-term historical information. “CO only” and “MG only”
are much inferior to the full model, and it indicates that they could be complementary to each other.
Even though the memory encoder also contains the current observation, it mainly focuses on ex-
tracting relative information from memory, which is different from the current encoder. “CO+CO”
performs better than “CO only” but still worse than the full model. It shows the complicated model
indeed improves performance, while the advantages of PO-Dreamer are from not only the compli-
cated model but also the fusion mechanism.

4.3.2 EFFECTS OF COMPONENTS

To evaluate the individual contributions of core model components in the model, we conduct a
comprehensive ablation study. The evaluated components include the VAE, action embeddings and
positional encoding in the memory encoder, and cross-attention in the fused dynamics predictor.
For each experiment, one component is removed at a time while keeping the rest of the architec-
ture unchanged. The results summarized in Table 2 indicate that all ablated variants consistently
underperform the complete model. This demonstrates that each component positively contributes to
overall performance.

Figure 4: (a) and (b) are the influence of memory window length τ and used memory length η on
HNS performance across eight games. (c) and (d) are the averages of latent mean and latent variance
computed across all 20 latent dimensions.

4.3.3 PARAMETER ANALYSIS

As shown in Fig. 4(a)(b), the HNS value increases with the memory window length τ , plateauing
after τ = 800 and eventually stabilizing. This suggests that a longer memory window enriches the
agent’s historical information, leading to better decision-making. However, when the used mem-
ory length η exceeds 40, HNS begins to decline, indicating that while moderate memory enhances
performance, excessive information introduces noise and impedes training. To balance performance
and efficiency, we set τ = 800 and η = 40.

To understand the VAE’s behavior in the memory encoder, we visualize the mean and variance of
the latent variable during learning (Fig. 4(c)(d)). The mean gradually stabilizes and the variance
converges to 0, suggesting that the VAE initially promotes exploration of the world model, then
shifts toward exploitation as predictions stabilize. This aligns with the exploration–exploitation
trade-off in reinforcement learning.

5 CONCLUSION

We propose a novel memory guided world model algorithm that extracts critical temporal fea-
tures from memory sequences, effectively handling the incomplete and noisy state information in
POMDPs. Notably, we design a fusion mechanism to integrate current observations with memory,
learning a more robust world model. We conduct extensive experiments in both multi-agent and
single-agent scenarios, and the results demonstrate that our method exhibits significant advantages
in sample efficiency and performance. Building upon the current work, we will explore more ad-
vanced network architectures to enhance the modeling capabilities of world models.

9
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A APPENDIX

A.1 PO-DREAMER ALGORITHM

PO-Dreamer is a world model-based reinforcement learning algorithm that incorporates a memory
guided dual-branch state space model. The algorithm consists of two main components: world
model learning and reinforcement learning.

Algorithm 1: Pseudocode for PO-Dreamer
1 Initialize: World model parameters ϕ, Reinforcement learning parameters θ, Replay buffer B.
2 while not converged do
3 // Collect experience

4 {(ot, at, rt, ct,mt)
T
t=1} ∼ Sample(B)

5 // World model learning
6 for update step c = 1 . . . C do
7 // Initialize the hidden state
8 hco

0 , hmg
0 ← Initialize()

9 for time step t = 1 . . .T do
10 // Observation Encoder
11 zcot ∼ qϕ(z

co
t |hco

t , ot)
12 // Memory Encoder
13 zmg

t ∼ qϕ(z
mg
t |h

mg
t ,mt)

14 // Fused Sequence model
15 hco

t , hmg
t = fϕ(h

co
t−1, z

co
t−1, h

mg
t−1, z

mg
t−1, at−1)

16 // Fused Dynamics predictor
17 ẑcot , ẑmg

t ∼ pϕ(ẑ
co
t , ẑmg

t | hco
t , hmg

t )
18 // Compute latent state
19 st = CAT(hm

t , zmt , hp
t , z

p
t )

20 // Update world model
21 Compute the total loss L(ϕ) using Eq. 13
22 Update ϕ
23 end
24 // Behavior learning

25 Roll-out within the imagination {ŝt}i+l
t=i

26 for time step j = i . . . i+ l do
27 // Imagine an action
28 at ∼ πθ(at | ŝt)
29 // Imagine in world model
30 ŝt+1 ∼ pϕ(ŝt+1 | ŝt, at)
31 Update the policy and value models in Eq. 14 using estimated rewards and values.
32 end
33 end
34 // Environment interaction
35 s0← Initialize()
36 for time step t = 1 . . .T do
37 Sample at ∼ πθ(at | ŝt−1)
38 st, ot, rt, ct← env.step(at)
39 end
40 B ← B ∪ {(ot, at, rt, ct)

T
t=1}

41 end

A.2 IMPLEMENTATION DETAILS

A.2.1 NETWORK DESIGN

Since the implementation of the current encoder and the decoders are the same as the set in Dream-
erV3 Hafner et al. (2023; 2025), here we mainly describe the memory encoder, fused sequence
model, fused dynamics predictor and history decoder.
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Memory Encoder is used to encode the current observation paired with a memory window τ = 800
time steps are encoded through fo(·) separately to generate fo(ot) and a sequence of observation
embedding {fo(ot̂)}τt̂=1

. The observation embedding is a four-layer CNN, characterized by kernel=
4, stride = 2, and padding = 1, the output channels of each layer is {(32 × 32 × 32), (64 × 16 ×
16), (128 × 8 × 8), (256 × 4 × 4)}. Every layer is combined with a batch normalization layer and
a ReLU activation. As the input image ot is 3 × 64 × 64, it is transformed into 256 × 4 × 4 by
the CNN. It is then flattened into a 4096-dimensional vector and then mapped through a linear layer
into a 512-dimensional fo(ot) observation embeddings. And then the adaptive dropout mechanism
is used to select the most relevant memory fragments by computing the cosine similarity S between
memory embeddings and the current observation embedding to select top-η memory, we set the
selected memory length η = 40. The action embedding is a two-layer MLP, combined with a batch
normalization layer and a ReLU activation. The action vector is mapped into a 512-dimensional
fa(at̂) action embeddings. In addition, the positional encoding of memory embeddings t̂ ∈ {1, η}
is computed as Vaswani et al. (2017), denoted as {Post̂}

η

t̂=1
with the dimension of 512. Then, we

construct the context embedding through element-wise addition of observation embedding, action
embeddings, and positional encoding as f c

t̂
= fo(ot̂) + fa(at̂) + Post̂ where t̂ ∈ (1, η), and

the context embedding of current observation is set as f c
t = fo(ot). That, is fc

t ∈ R1×512, and
F c ∈ Rη×512 which concertante {fc

t̂
}η
t̂=1

together. The Multi-head Attention (MHA) Vaswani et al.
(2017) is used in Eq 5. In the transformer blocks, the number of blocks is 3 and transformer head
is 8 with the hidden dimension is 512. And then we obtain ft with the dimension of 512. Then it
is encoded by the VAE Kingma et al. (2013) block, which contains a two-layer MLP with BN and
ReLU, the first layer maps ft into 256. And then it is mapped to the 20-dimensional mean µϕ(ft)
and standard deviation σϕ(ft) by two MLPs respectively.

Fused sequence model models the recurrent state sequence in the world model, the sequence model
is implemented as two independent GRUs respectively. The input is the concatenation of latent state
and action CAT(hco

t , zcot , hha
t , zcot , at). The output dimensions of both GRU networks are 512.

Fused dynamics predictor learns to predict the ẑcot and ẑhat according to the Eq. 3. There is a
cross-attention mechanism block to fuse the outputs of two GRUs. The cross-attention is an 8-heads
MHA Vaswani et al. (2017) with 512-dimension hidden feature. Then the outputs hco′

t , hha′

t are
mapped to ẑcot , ẑhat , which follows the set of DreamerV3 Hafner et al. (2025), and the dimension of
outputs ẑcot , ẑhat is 1024.

Memory decoder is designed to reconstruct memory information ft, which is a 3-layer MLPs (each
with BN and ReLU) to map the latent state st

.
= CAT(hco

t , zcot , hha
t , zcot ) into the memory f̂t, where

the dimension of st is 3072 and the dimension of f̂t is 512.

A.2.2 HYPERPARAMETERS

A.2.3 IMPLEMENTATIONS DETAILS

Table 3: Hyperparameters. This configuration aligns with the setup used in DreamerV3 Hafner
et al. (2023; 2025).

Name Symbol Value

Replay capacity — 5× 106

Batch size B 16
Batch length T 64
Imaginationhorizon L 16
Learning rate — 4× 10−5

Optimizer — Adam
Imagination horizon H 15
Dropout probability p 0.1
Representation loss scale βrep 0.1
Dynamics loss scale βdyn 0.5
Return lambda λ 0.95
Memory window length τ 800
Selected memory length η 40
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Building upon the DreamerV3 framework, our method maintains the original architecture and train-
ing hyperparameters unless specified in previous sections. The model processes environmental in-
puts using specialized modules: a 5-layer CNN for Atari’s visual observations and a 5-layer MLP
for StarCraft’s vector data. We set the memory window length τ = 800 and the used length η = 40
timesteps across all experiments and employ the Adam optimizer. We conduct independent training
runs per environment using 5 distinct random seeds, which is the same as DIAMOND Alonso et al.
(2024). The details of the used hyperparameters refer to Table 3.

A.3 MORE COMPONENT ANALYSIS

Here we conduct two additional ablation studies to validate: (1) the role of the VAE in modeling the
stochasticity of unobservable components, and (2) the effectiveness of the memory decoder.

The results are summarized in Table 4. Since the contribution of the VAE in the memory encoder
has already been validated in the “W/o VAE” experiment, we here introduce the VAE into the cur-
rent observation encoder, denoted as the “CO + VAE”. The results show that adding the VAE to
the current encoder degrades performance. This suggests that a naive application of the VAE is
ineffective, and that incorporating it into the memory encoder better aligns with the characteristics
of partially observable environments. Furthermore, when the memory decoder is removed (“W/o
MD”), performance drops compared to the full model, confirming the positive contribution of the
memory decoder. This is because the current observation decoder alone cannot fully represent the
complete state.

Table 4: Additional ablation study results, where MD is the memory decoder.
Game CO + VAE W/o MD Ours

Amidar 133.5 143.1 151.7
Asterix 913.1 1114.2 1244.3
Breakout 41 73.3 85.3
Frostbite 1270.8 1796.8 2033.7
Hero 10774.3 11704.1 12258.4
Kangaroo 4778.3 5297.3 5573.9
Krull 6921 7961.4 8261.6
RoadRunner 16804.3 19468.2 22518.2
Mean (↑) 1.355 1.752 1.865

A.4 QUANTITATIVE ANALYSIS COMPARISON WITH DREAMERV3

Figure 5: The curves of the averaged losses (including model loss, dynamics loss, reward loss, and
image loss) across eight games in the Atari benchmark.

For a precise evaluation of world model accuracy, we compare the training loss curves of our al-
gorithm with DreamerV3Hafner et al. (2023; 2025). The comparison is based on experiments con-
ducted on eight Atari games, with each game run five times using different random seeds to ensure
reliable and consistent results. The average loss curves are presented in Fig. 5. A direct comparison
shows that our method converges more rapidly and to a lower asymptotic value on every loss com-
ponent—namely the model (Eq. 13), reward, image (Eq. 11), and dynamics losses (Eq. 12). The
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consistent superiority across these metrics underscores that our approach learns a more accurate and
robust world model, which is critical for effective decision-making in POMDPs.

A.5 QUALITATIVE VISUAL COMPARISON WITH DREAMERV3

We now compare to DreamerV3 Hafner et al. (2023; 2025),

We further complement the quantitative results with a qualitative visualization to more directly com-
pare the world model accuracy of our method versus DreamerV3 Hafner et al. (2023; 2025). To
isolate modeling capability from training dynamics and ensure an equitable comparison, we trained
both models on a shared, static dataset comprising 100k frames collected by an expert policy. The
subsequent analysis focuses on the accuracy of their world model reconstructions.

Figure 6: Frames imagined by (a) Dreamer V3 and (b) PO-Dreamer. Red boxes highlight incon-
sistencies that occur only in trajectories generated by Dreamer V3. In Alien (top row), Dreamer
V3 exhibits rendering artifacts, including incorrect enemy coloring and a missing key game element
(the gem), while PO-Dreamer produces a faithful reconstruction. In KungFuMaster (middle row),
Dreamer V3 fails to accurately estimate the player’s remaining lives and misidentifies the enemy
type, whereas PO-Dreamer correctly captures both. In Road Runner (bottom row), Dreamer V3
omits environmental rewards (small blue dots on the road), while PO-Dreamer reconstructs them
precisely (red circle) and generates a more accurate background reconstruction provides crucial
contextual information, allowing for effective differentiation between the player character and the
background. Additionally, our method shows some improvement in reconstructing image details
compared to Dreamer V3.

As shown in Figure 6 that the trajectories imagined by PO-Dreamer are generally of higher visual
quality and more faithful to the true environment compared to the trajectories imagined by Dreamer
V3. In particular, the trajectories generated by Dreamer V3 exhibit visual inconsistencies and state
discontinuities across frames, leading to the misrepresentation of critical game elements such as en-
emies or rewards. Although these artifacts may occupy only a few pixels in the generated images,
they can substantially impact the reinforcement learning process. For instance, in the Alien envi-
ronment, rendering errors in enemies and missing gem objects may misguide the agent’s avoidance
behavior and reward acquisition, thereby affecting policy learning. Improvements in the accuracy of
the world model on such visual details contribute to more stable and effective policy optimization.

A.6 ANONYMOUS CODE REPOSITORY

To ensure reproducibility and foster further research, the source code and project website for our
work are provided in the following anonymous repository:

https://anonymous.4open.science/r/PO-Dreamer_anonymous
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B ADDITIONAL PARTS

B.1 ABLATION STUDY ON MEMORYMAZE

The ablation experiments on MemoryMaze (from 9×9 to 15×15) confirm that PO-Dreamer’s su-
periority in handling partial observability and long-horizon navigation stems from its core fusion
mechanism and complementary key components. Fusion analysis shows that single-branch vari-
ants (MG only/CO only) and current-episode-only memory (CE Only) underperform across maze
sizes—especially on large 13×13-15×15 mazes—proving that integrating cross-episode long-term
memory with current observations is critical for retaining path information. The CO+CO variant
(duplicated current observation encoding) also lags behind, ruling out model capacity expansion as
the primary gain driver. Component analysis further demonstrates that omitting any core module
(VAE, cross-attention, positional encoding, action embeddings) degrades performance: VAE en-
hances robustness against noise, cross-attention enables bidirectional feature interaction, positional
encoding preserves temporal order, and action embeddings link past actions to observations—all
collectively supporting reliable navigation. PO-Dreamer achieves the best performance on 11×11,
13×13, and 15×15 mazes (and second-best on 9×9), validating that its integrated design effectively
addresses the challenges of partially observable POMDPs.

Table 5: Ablation study on memorymaze

Game Fusion Analysis Component Analysis Ours
CE Only MG CO CO + CO W/o VAE W/o CA W/o Pos W/o Act

9 × 9 37.5±1.4 31.4±0.7 35.9±0.4 36.1±0.8 34.2±0.9 33.1±0.5 36.1±1.3 38.4±1.8 38.0±1.6
11 × 11 46.1±1.3 32.6±1.4 43.5±1.1 45.2±1.7 33.5±1.5 36.5±1.2 44.8±1.5 45.6±1.7 47.6±1.5
13 × 13 48.3±1.7 37.5±1.5 36.2±1.2 31.5±1.9 37.9±1.7 40.2±1.5 49.1±2.3 47.2±2.1 50.3±2.2
15 × 15 43.0±2.5 39.4±2.3 15.7±1.3 16.5±2.2 34.2±2.1 37.0±2.0 45.1±2.1 47.1±2.5 47.4±2.7

Note: The bold values indicate the best performance among all, while the underlined values indicate
the second-best performance.

B.2 COMPARISON WITH DREAMERV3 ON SMAC

Figure 7: Performance comparison between the PO-Dreamer and the modified DreamerV3 algo-
rithm (denoted as Dreamer*) across scenarios with varying difficulty levels.

We selected four scenarios with varying difficulty levels to compare the performance of our proposed
algorithm against our modified DreamerV3 algorithm (denoted as Dreamer*). It can be observed
that the PO-Dreamer achieves a remarkable performance improvement compared with the modified
DreamerV3 algorithm (Dreamer*).

B.3 TRAINING CURVE

Figure 8: The curves of the return in the MemoryMaze benchmark.
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B.4 COMPUTATIONAL ANALYSIS OF PO-DREAMER

To address concerns about the computational overhead introduced by PO-Dreamer’s cross-attention
mechanism (involved in both training and inference for fusing current observations and memory), we
provide quantitative metrics for transparency and validation. This design is critical for our model’s
performance, and we demonstrate that the overhead is well-controlled while justifying the perfor-
mance gains.

Table 6: Comprehensive Breakdown of Computational Metrics
Metric DreamerV3 DIAMOND STORM PO-Dreamer
Total Parameters 14M 13M 25M 27M

Parameter
-model opt: 11.29M
-actor opt: 1.05M
-value opt: 1.18M

-denoiser: 4.41M
-rew end model: 5.90M
-actor critic opt: 3.23M

-model opt: 21.71M
-actor critic opt: 3.42M

-model opt: 24.96M
-actor opt: 1.05M
-value opt: 1.18M

FLOPs 6.02 GFLOPs 29.71 GFLOPs 4.71 GFLOPs 13.48 GFLOPs

Inference Parameter 9M 13M 25M 17M

Inference Latency (s)* 8.7±0.3 31.7±1.4 21.7±0.8 12.3±0.4

Mean HNS(Atari) 1.097 1.459 1.266 1.516
Note: Inference latency is measured as the average value obtained by running 100 steps on the NVIDIA A100.

In summary, while PO-Dreamer’s introduces computational overhead in design, our quantitative
analysis (Table 6) confirms this overhead is tightly constrained via architectural optimizations. The
superior performance across benchmarks validates a well-balanced trade-off between complexity
and effectiveness, rendering PO-Dreamer both expressive and practically feasible.

B.5 FUTURE DIRECTIONS

While PO-Dreamer achieves promising performance in partially observable reinforcement learning
tasks, there remains substantial room for optimization in model complexity and training efficiency,
which we plan to explore in future work.

First, in terms of network architecture advancement, we will integrate more efficient sequence mod-
eling backbones to replace the current GRU-based fused sequence model and the Transformer-based
cross-attention module. Second, regarding architectural efficiency optimization, we aim to design
a more compact dual-branch fusion mechanism. Finally, we will also explore transfer learning
paradigms, pre-training the memory encoder and world model on general POMDP benchmarks
(e.g., Crafter, MemoryMaze) and fine-tuning them on specific tasks, thereby reducing the number of
training steps required for convergence. These improvements will further balance the performance
and complexity of PO-Dreamer, expanding its applicability to resource-constrained scenarios.
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