
Guiding Reasoning in Small Language Models with LLM Assistance

Yujin Kim* Euiin Yi* Minu Kim Se-Young Yun† Taehyeon Kim†

KAIST AI
{yujin399, euiin_mercyii}@kaist.ac.kr, kimtaehyeon610@gmail.com

Abstract

The limited reasoning capabilities of small lan-
guage models (SLMs) cast doubt on their suit-
ability for tasks demanding deep, multi-step
logical deduction. This paper introduces a
framework called Small Reasons, Large Hints
(SMART), which selectively augments SLM
reasoning with targeted guidance from large
language models (LLMs). Inspired by the
concept of cognitive scaffolding, SMART em-
ploys a score-based evaluation to identify un-
certain reasoning steps and injects corrective
LLM-generated reasoning only when neces-
sary. By framing structured reasoning as an
optimal policy search, our approach steers the
reasoning trajectory toward correct solutions
without exhaustive sampling. Our experiments
on mathematical reasoning datasets demon-
strate that targeted external scaffolding signifi-
cantly improves performance, paving the way
for collaborative use of both SLM and LLM
to tackle complex reasoning tasks that are cur-
rently unsolvable by SLMs alone. Our code is
available at https://github.com/kimyuji/
ScaffoldedReasoning.

1 Introduction

The significant success of large language models
(LLMs) in natural language processing (NLP) has
driven researchers and engineers to explore their
potential applications in robotics (Driess et al.,
2023) and fundamental science (Madani et al.,
2023; Thirunavukarasu et al., 2023). Their re-
markable reasoning capabilities enable them to
tackle complex problems requiring multi-step log-
ical deductions, hypothesis generation, and struc-
tured decision-making. A key factor behind LLMs’
strong reasoning ability is their capacity for what
aligns with System 2 reasoning—deliberate, step-
by-step cognitive processes often associated with
human analytical thinking (Kahneman, 2011; Guan

*Equal contribution. †Corresponding author.

Query

Beam Search + Ours

Query

Best-of-N + Ours

Generated answer

Reasoning step 
generated by SLM

Reasoning step 
corrected by LLM

Accepted  
based on score

Rejected  
based on score

LLM generation
SLM generation

reasoning step 
pruned in Beam Search

Figure 1: Test-time compute scaling method with our
SMART framework. During inference, LLM selectively
intervenes only at rejected steps of SLM’s reasoning.

et al., 2024). Unlike rapid, heuristic-based System
1 reasoning, which relies on instinct and pattern
recognition, System 2-like reasoning—such as test-
time compute—is crucial for tasks such as mathe-
matical problem-solving, scientific reasoning, and
strategic planning (Snell et al., 2024). Recent stud-
ies suggest that LLMs, when properly prompted
or trained via reinforcement learning (RL), can
exhibit emergent System 2-like behavior, making
them highly effective in structured reasoning tasks
(Shao et al., 2024; Guo et al., 2025).

However, small language models (SLMs), de-
spite their efficiency, struggle with such structured
reasoning due to their limited capacity and lack of
emergent cognitive patterns (Mirzadeh et al., 2024).
Their reasoning is often shallow, relying more on
memorization and surface-level heuristics rather
than deep logical deduction (Nikankin et al., 2024).
This limitation raises a critical question:

1

ar
X

iv
:2

50
4.

09
92

3v
1

 [
cs

.C
L

]
 1

4
A

pr
 2

02
5

https://github.com/kimyuji/ScaffoldedReasoning
https://github.com/kimyuji/ScaffoldedReasoning

... Find the angle
between these

lines, in degrees.

Q. Precalculus

To find the angle
between the two

lines, ...

Step 1.

... so the direction
vector is

.⃗u = (2, 3, -1)

Step .i

... Thus, the
direction vector of

the first line is
.d1 = (1, 2/3, -2)

Step .i

... Therefore, the
angle between the

two lines is
\\(\\boxed{ }\\).90∘

Answer

... Therefore, the
final answer is:

$\\boxed{ }$.1.62∘

Answer

SLM

⋯

Replace!

⋯

⋯

SLM generation path
LLM generation path

Rejected based on scoreAccepted based on score
SLM SLM

SLM

Input Query

SLM Generates 
Reasoning Draft

1

LLM

Score-based 
Reasoning Step 

Evaluation

2
LLM-based 

Step Correction

3

Results in wrong answer, 
if not guided by LLM.

Figure 2: Overview of our SMART framework. First, the SLM generates an initial reasoning trajectory, producing
step-by-step solutions. Second, after each step is generated, a score-based evaluation mechanism assesses its
reliability, determining whether it meets a predefined threshold. Third, for the steps identified as uncertain, the LLM
is queried to generate new step, replacing the original SLM step while preserving the preceding SLM-generated
steps, and then the process continues until the EOS token or the final answer is reached.

Research question

If SLMs inherently lack reasoning capabili-
ties, does this mean they cannot be utilized
in settings that require complex reasoning?

To address this challenge, we introduce a rea-
soning framework inspired by scaffolding, a con-
cept from cognitive science that describes how hu-
mans rely on external support—such as guidance
from a teacher or structured tools—to complete
tasks beyond their independent capability (Well-
man and Gelman, 1992; Battaglia et al., 2013; Ger-
stenberg and Stephan, 2021). Analogously, in our
framework, an SLM executes as a primary reasoner
while selectively integrating LLM-generated rea-
soning steps only when it encounters unreliable
states (Lake et al., 2017) (Figure 1). For adaptiv-
ity, we introduce a score-based evaluation mech-
anism that determines when external guidance is
required. At each reasoning step, the SLM gen-
erates a candidate step, which is then assigned a
score using a predefined metric—such as a Process
Reward Model (PRM) that evaluates reasoning co-
herence or averaged token-level confidence over
the sequence. If the score surpasses a predefined
threshold, the SLM proceeds independently. How-
ever, if the score falls below this threshold, the
framework queries an LLM to generate a replace-
ment step (Figure 2). This approach ensures that
external scaffolding occurs only at critical decision
points, reducing redundant costs while significantly
improving reasoning robustness.

A particularly striking observation in our study
is that while increasing the number of sampled rea-

soning trajectories (e.g., Best-of-N sampling) natu-
rally improves performance, this approach is com-
putationally expensive and often lacks principled
guidance—frequently relying on lucky guesses
rather than a structured search for optimal reason-
ing (Snell et al., 2024). In contrast, our framework
achieves more significant improvements while
modifying only specific reasoning steps rather than
re-evaluating the entire trajectory. This suggests
that rather than globally increasing sampling and
scaling compute, selectively correcting key deci-
sions is sufficient to guide the reasoning process
toward an optimal solution (Sharma et al., 2023).

From an RL perspective, structured reasoning
can be viewed as an optimal policy search, where
the model must navigate a sequence of states to
reach a correct answer (Chen et al., 2024). Our
findings indicate that even when an SLM struggles
to determine the next step in a reasoning trajec-
tory, providing guidance only at critical points is
enough to keep the overall trajectory on an optimal
path. Notably, this selective scaffolding is non-
trivial—one might expect that RL-based search
methods, such as diffusion models (Ren et al.,
2024) or traditional policy optimization (Cetin and
Celiktutan, 2022), could naturally handle this pro-
cess. However, in practice, these methods require
extensive exploration or dense reward signals, mak-
ing them computationally expensive or difficult to
scale effectively (Ding et al., 2024). Our results
indicate that even without full trajectory optimiza-
tion, targeted scaffolding can provide sufficient
correction, suggesting a promising direction for
future integration with RL-based structured reason-

2

ing frameworks. Our key contributions are:

• We introduce a novel framework called Small
Reasons, Large Hints (SMART), where an
SLM reasons but selectively incorporates
LLM-generated reasoning steps (Section 2).

• We conduct experiments on mathematical rea-
soning benchmark, demonstrating that SLM
reasoning, selectively incorporating response
from LLM scaffolding, can solve complex
reasoning problems that SLMs alone cannot
(Section 3).

• We provide a detailed analysis of when LLM
scaffolding is beneficial, offering insights into
hybrid reasoning systems (Section 4).

2 SMART

2.1 Preliminaries and notations
We formalize the reasoning process as an iterative
decision-making problem. Given a query Q, a rea-
soning trajectory R = (r1, r2, . . . , rm) consists of
a sequence of intermediate step ri, leading to a final
answer A. The probability of generating R given
Q is modeled as:

P (R | Q) =
m∏
i=1

P (ri | Q, r<i). (1)

The answer A is then determined as:

A = argmax
a

P (a | Q,R). (2)

In this formulation, each ri represents an intermedi-
ate reasoning step, and the correctness of the final
answer depends on the entire trajectory R.

2.2 Motivation
SLMs are efficient but frequently fail to gener-
ate globally coherent reasoning trajectories due
to their limited capacity. A straightforward way
to improve reasoning performance is to increase
test-time compute (Snell et al., 2024), such as gen-
erating multiple trajectories via Best-of-N sam-
pling and selecting the most probable path: R∗ =
argmaxR(j) P (R(j) | Q) where R(j) ∼ PSLM(R |
Q). However, such approaches introduce signifi-
cant computational overhead, requiring exponen-
tially more sampling as reasoning complexity in-
creases. Additionally, such selection does not in-
herently optimize for logical correctness; instead,
it favors heuristic shortcuts that may align with flu-
ency but not necessarily with accurate reasoning.

One motivation for our approach is the obser-
vation that not all reasoning steps within a query
are equally complex (Xue et al., 2024; Liu et al.,
2025; Yang et al., 2025). Many intermediate steps
in a chain-of-thought process are simple enough
for an SLM to handle correctly; however, critical
steps—particularly those involving complex cal-
culations or deeper logical inference—pose sig-
nificant challenges and are more error-prone for
smaller models. If we can precisely identify these
critical points and selectively engage the stronger
reasoning capabilities of an LLM to guide or re-
place uncertain steps, the remaining reasoning
steps performed by the SLM can be corrected, ulti-
mately leading to accurate final predictions.

To address this limitation, we propose selective
scaffolding during the reasoning process rather
than post-hoc correction of a completed trajec-
tory. As the SLM generates reasoning steps se-
quentially, each step is assessed for reliablity. If a
step ri is identified as unreliable, an LLM guides
immediately, replacing it with a revised step r′i:
r′i ∼ PLLM(r′i | Q, r<i). This assistance directly
influences all subsequent steps, leading to a new
reasoning trajectory R′ that builds upon the cor-
rected information.

2.3 Method

Our framework, termed as Scaffolded Teacher-
Assisted Reasoning (SMART), refines the reason-
ing process of an SLM by selectively intervening
at critical decision points. The method follows:

1. SLM-generated reasoning draft The SLM
generates an initial reasoning trajectory R =
(r1, r2, . . . , rm) autoregressively, conditioned on
the query Q: R ∼ PSLM(R | Q). Since SLMs
lack robust reasoning capabilities, some steps in R
may be incorrect or uncertain, leading to errors that
propagate throughout the trajectory.

2. Score-based step evaluation To identify un-
reliable reasoning steps, we introduce a step-wise
scoring function that assigns a score s(ri|r<i, Q)
to each step ri. We consider two scoring methods:

A. PRM score: A learned reward model evaluates
the correctness of each step based on prior con-
text, assigning a score s(ri|r<i, Q) ∈ [0, 1].

B. Token-level confidence (TLC): Instead of an
external reward model, the token-level confi-
dence of ri is estimated with its averaged token

3

2 2¹ 2² 2³ 2 2 2
N (The number of completions or beam size)

40

50

60

70

80
Ac

cu
ra

cy

Qwen-1.5B
Qwen-7B
1.5B-7B (SMART)

Single Gen
Best-of-N
Beam Search

(a) SMART on Qwen family with PRM scores.

2 2¹ 2² 2³ 2 2 2
N (The number of completions or beam size)

40

50

60

70

80

Ac
cu

ra
cy

(b) SMART on Qwen family with TLC scores.

2 2¹ 2² 2³ 2 2 2
N (The number of completions or beam size)

30

40

50

60

Ac
cu

ra
cy

Llama-1B
Llama-8B
1B-8B (SMART)

Single Gen
Best-of-N
Beam Search

(c) SMART on Llama family with PRM scores.

2 2¹ 2² 2³ 2 2 2
N (The number of completions or beam size)

30

40

50

60

Ac
cu

ra
cy

(d) SMART on Llama family with TLC scores.

Figure 3: Overall performance results for two different models under various search strategies.

probability: s(ri|r<i, Q) = 1
n

∑n
j=1 P (xj |

x1, . . . , xj−1, r<i, Q) for each token xi in ri.

During the autoregressive generation, each step is
assessed in real-time for score evaluation. Steps
with low scores indicate erroneous reasoning or
uncertainty, and are candidates for correction.

3. LLM-based step correction If step ri’s
score falls below a threshold τ , we replace it with
an LLM-generated alternative: r′i ∼ PLLM(r′i |
Q, r<i). This selective correction improves rea-
soning quality with only necessary interventions.
See Appendix A for algorithmic details.

Scalability We briefly demonstrate how it can be
integrated with test-time compute scaling methods.

• Best-of-N: Multiple reasoning trajectories are
generated in parallel. SMART is applied to each
trajectory independently, ensuring that erroneous
steps are corrected within each sampled path.

• Beam Search: Given N candidate sequences
and a beam width of M , at each reasoning step,
the top M sequences are retained based on their
scores. Each step ri within a sequence is evalu-
ated, and if any candidate node falls below the
predefined confidence threshold τ , it is replaced
with an LLM-generated alternative.

3 Experiments

3.1 Experimental setup

SMART is evaluated on the MATH500 dataset1.
(SLM, LLM) pairs for architectures are tested with
(Qwen2.5-1.5B, Qwen2.5-7B) and (Llama3.2-1B,
Llama3.2-8B). For both pairs, we employ a process
reward model with RLHFlow/Llama3.1-8B-PRM-
Deepseek-Data (Dong et al., 2024). Stochastic
decoding is implemented with temperature equal
to 0.8 following Snell et al. (2024). We report
Weighted@N performance for accuracy. Other than
mentioned, threshold values τ for PRM score and
TLC are mainly set to 0.9 and 0.93. More details
regarding the design choices are deferred to Ap-
pendix B.

3.2 Main results

To address our core question—whether scaffold-
ing can genuinely improve the performance of
an SLM—we firstly examine the overall improve-
ments by SMART framework. Figure 3 shows the
performance of SMART across different models

1MATH500 contains a subset of 500 problems from
the MATH benchmark(Lightman et al., 2023a) and
is provided by Huggingface(https://huggingface.co/
datasets/HuggingFaceH4/MATH-500).

4

https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

Table 1: Performance of SMART method using different models, search strategies, and N according to the difficulty
level of problem on the MATH500 dataset. The values in parentheses indicate the improvement over the SLM
baseline, with colors denoting the direction of change. Performance values exceeding 90.00 are underlined, and the
improvement larger than 10.00 are bold-faced. Average values of 16 samples are reported.

Model Search N Lv 1 Lv 2 Lv 3 Lv 4 Lv 5

Qwen2.5 7B /
Qwen2.5 1.5B

Single 1 79.79 (+12.94) 76.39 (+17.60) 72.49 (+24.33) 57.43 (+23.80) 36.84 (+21.34)

Best-of-N

2 83.41 (+8.13) 80.89 (+13.74) 76.00 (+19.94) 62.16 (+21.34) 41.09 (+22.48)
4 87.50 (+4.68) 85.01 (+9.31) 83.20 (+18.56) 68.08 (+18.86) 45.61 (+22.48)
8 89.50 (+3.45) 87.23 (+4.48) 87.40 (+15.25) 73.05 (+16.20) 47.98 (+22.03)

16 91.85 (+3.45) 90.00 (+6.10) 89.50 (+11.90) 76.95 (+19.55) 50.35 (+20.50)
32 93.00 (+4.60) 91.10 (+5.50) 88.60 (+7.60) 79.70 (+21.10) 51.50 (+20.90)

Beam Search
4 83.70 (-4.70) 80.00 (+3.30) 78.10 (+14.30) 60.90 (+5.40) 40.30 (+16.40)
8 86.00 (-2.40) 81.10 (+0.00) 78.10 (+5.70) 64.10 (+13.30) 44.80 (+19.40)

16 93.00 (+2.30) 85.60 (+2.30) 81.90 (+5.70) 64.80 (+9.30) 47.00 (+14.90)

Llama3.1 8B /
Llama3.2 1B

Single 1 79.58 (+20.72) 66.66 (+20.10) 55.40 (+21.15) 40.56 (+20.63) 20.22 (+11.52)

Best-of-N

2 84.59 (+10.87) 72.56 (+16.52) 61.84 (+20.09) 45.96 (+21.24) 24.21 (+13.45)
4 85.74 (+13.41) 78.34 (+17.43) 67.86 (+20.23) 50.10 (+19.82) 28.00 (+18.10)
8 88.35 (+11.65) 82.78 (+19.00) 72.85 (+19.55) 54.68 (+19.98) 30.05 (+20.95)

16 89.55 (+12.25) 86.70 (+16.13) 76.65 (+20.75) 58.20 (+21.60) 34.70 (+20.40)
32 90.70 (+15.40) 85.60 (+15.10) 81.90 (+26.40) 59.40 (+25.50) 36.60 (+25.10)

Beam Search
4 83.00 (-4.00) 70.00 (+7.80) 61.90 (+11.40) 43.00 (+6.30) 22.40 (+6.00)
8 81.40 (-7.00) 74.40 (+4.40) 59.00 (-3.90) 43.00 (+3.20) 26.90 (+10.50)

16 83.70 (+0.00) 81.10 (+10.00) 69.50 (+5.70) 50.00 (+9.00) 29.10 (+8.20)

Table 2: Comparison of SMART with the target LLM (used as the teacher in scaffolding) for the Qwen model family,
using Best-of-N strategy, and PRM as score. Each cell shows the percentage of our performance to that of the target
LLM (i.e., 100% means SMART brings the identical performance with that of LLM). Values in the parentheses
indicate the relative performance of SLM against the target LLM. Performance values over 90% are underlined. We
report average values of 16 samples.

N Lv 1 Lv 2 Lv 3 Lv 4 Lv 5

1 89.93% (75.35%) 89.00% (68.49%) 89.21% (59.27%) 90.98% (53.28%) 90.84% (38.22%)

2 91.68% (82.75%) 91.21% (75.72%) 89.66% (66.13%) 91.70% (60.22%) 95.55% (43.28%)

4 94.67% (89.61%) 92.90% (82.72%) 94.20% (73.18%) 93.43% (67.54%) 95.50% (48.44%)

8 100.0% (95.56%) 97.50% (92.99%) 96.99% (88.43%) 98.24% (88.56%) 98.26% (75.69%)

16 100.0% (96.89%) 98.65% (93.53%) 98.56% (89.17%) 98.61% (85.22%) 99.12% (81.15%)

32 100.0% (99.32%) 99.21% (96.74%) 99.19% (94.55%) 98.43% (90.54%) 99.00% (85.10%)

and scoring methods as the number of completions
N increases under Best-of-N and Beam Search.

As shown in Figure 3, SMART consistently out-
performs the SLM baseline across all settings and
rapidly approaches LLM-level performance even
with a small number of completions. This trend
is evident even in the single-generation scenario
N = 1, where SMART provides a clear accuracy
improvement over the solely SLM-generated rea-
soning process.

The benefit of SMART becomes even more pro-
nounced when scaling up the test-time compute. As
the number of completions increases under Best-
of-N or Beam Search, SMART systematically ap-
proaches near-LLM accuracy, showcasing that ad-

ditional test-time compute further narrows the gap.
This suggests that selective scaffolding is particu-
larly effective in guiding the reasoning trajectory
efficiently, reducing the need for excessive test-
time compute and full trajectory evaluation. While
larger N leads to increasingly better results, the
marginal gains diminish at higher N , implying that
SMART can already achieve strong improvements
with moderate test-time compute, without relying
on exhaustive search. Comparing the PRM-based
and TLC-based scoring methods, both exhibit sim-
ilar scaling patterns, while PRM shows slightly
stronger performance at higher N .

Table 1 further quantifies SMART ’s performance
improvements across five levels of problem diffi-

5

Table 3: Comparison of corrected step and token ratios using Best-of-N and Beam Search strategies for N = 16.
Average values of 16 samples are reported.

Model Search Correction Lv 1 Lv 2 Lv 3 Lv 4 Lv 5 Total

Qwen2.5 7B /
Qwen2.5 1.5B

Best-of-N (with N = 16)
Step ratio 0.1830 0.2948 0.4277 0.5499 0.7331 0.4959
Token ratio 0.1338 0.2112 0.2902 0.3555 0.4235 0.2021

Beam Search (with N = 16)
Step ratio 0.0212 0.0596 0.1001 0.1470 0.2309 0.1331
Token ratio 0.0052 0.0148 0.0228 0.0295 0.0435 0.0271

Llama3.1 8B /
Llama3.2 1B

Best-of-N (with N = 16)
Step ratio 0.2500 0.3876 0.5388 0.6390 0.7965 0.5815
Token ratio 0.1645 0.2256 0.3026 0.3567 0.3927 0.3149

Beam Search (with N = 16)
Step ratio 0.0429 0.0994 0.1554 0.2185 0.2868 0.1870
Token ratio 0.0059 0.0156 0.0257 0.0305 0.0396 0.0272

culty. As expected, the baseline SLM struggles
with higher-level problems, but SMART ’s targeted
scaffolding consistently elevates its accuracy. This
effect is most pronounced at the more complex lev-
els (Lv 4 and Lv 5), where reasoning errors occur
more frequently. In all cases, Best-of-N sampling
proves particularly effective for complex tasks, es-
pecially N is higher(N = 16, 32). Beam Search
follows a similar pattern, though higher N some-
times yield diminishing returns at lower difficulty
levels—likely because exhaustive search is less
critical when problems are simpler. Interestingly,
we observe SMART with Best-of-N consistently
outperforming SMART paired with Beam Search
across all settings. This is because the Best-of-N
retains a global search space: Under Best-of-N,
SMART ensures that even partially flawed beams
are recoverable by replacing low-scoring nodes
with improved alternatives. This not only preserves
diversity in beam candidates but also mitigates
catastrophic failure from early missteps. Whereas
the Beam Search allows LLM intervention only on
unpruned (candidate) nodes, restricting its search
space for scaffolding. We defer further analysis
to Section 3.3.

Table 2 compares SMART ’s accuracy against
the full LLM’s performance, showing that SMART
often achieves near-LLM results while relying only
on selective scaffolding. At lower difficulty lev-
els (Lv 1 and 2), SMART already attains over 90%
of the LLM’s accuracy, even for smaller N . As
the tasks become more challenging, the perfor-
mance gap between the SLM and full LLM widens,
yet SMART remains highly effective, maintain-
ing above 95% of the LLM’s accuracy at N =
8, 16, and32. While Beam Search also benefits
from LLM interventions, its narrower search space
sometimes limits exploration compared to Best-of-

0.0

(0.
0,

0.2
)

[0.
2,

0.4
)

[0.
4,

0.6
)

[0.
6,

0.8
)

[0.
8,

1.0
) 1.0

Qwen - Corrected Step Ratio Bin

0%

10%

20%

30%

40%
1.5B-7B Best-of-N (SMART)
1.5B-7B Beam Search (SMART)

0.0

(0.
0,

0.2
)

[0.
2,

0.4
)

[0.
4,

0.6
)

[0.
6,

0.8
)

[0.
8,

1.0
) 1.0

Llama - Corrected Step Ratio Bin

1B-8B Best-of-N (SMART)
1B-8B Beam Search (SMART)

Figure 4: Step ratio distribution across Qwen (left) and
Llama (right) models upon different search strategies.
We report average values of 16 samples.

N, resulting in smaller gains at higher difficulty
levels. See Section C.1 for more results.

Taken together, our results reveal that SMART
not only corrects erroneous intermediate reasoning
steps generated by the SLM but also scales effec-
tively with additional test-time compute. The great-
est improvements occur at higher difficulty levels,
underscoring the benefits of targeted corrections for
complex mathematical reasoning tasks. By allow-
ing the SLM to function autonomously on simpler
problems while selectively scaffolding harder ones,
SMART demonstrates that SLMs, which have been
considered unsuitable for complex reasoning, can
effectively contribute to solving such tasks when
supported by minimal, yet strategic LLM guidance.

3.3 Analysis

We analyze the impact of LLM scaffolding by quan-
tifying the extent of intervention in the reasoning
process. In doing so, we aim at verifying whether
SMART intervenes only when and where it is most
needed. To this end, we introduce two key met-
rics—the corrected step ratio and the corrected to-
ken ratio—which measure the frequency and extent

6

of LLM modifications, respectively.
Let S = {1, · · · ,m} be the set of all reason-

ing steps generated by the SLM. We define the
corrected steps as a subset Sc ⊆ S, where each
corrected step r′i for i ∈ Sc is a modification of
the original step ri due to LLM scaffolding. The
corrected step ratio is then defined as:

(Corrected step ratio) :=
|Sc|
|S|

, (3)

which reflects how frequently the LLM intervenes
in the reasoning trajectory. For Beam Search, we
only consider the final reasoning steps. This means
that we do not calculate the pruned steps on cor-
rected step ratio. To measure extent of these correc-
tions, we also introduce the corrected token ratio.
Given a tokenization function Token(·) that returns
the token count of a reasoning step, we compute
the corrected token ratio as:

(Corrected token ratio) :=

∑
l∈Sc

Token(r′l)∑
j∈S Token(rj)

.

(4)
This metric captures how extensively the LLM’s
interventions rewrite the original reasoning content.

Table 3 presents the corrected step and token
ratios for varying levels of problem difficulty. At
lower levels, the SLM requires only minimal in-
tervention, as evidenced by low ratios of both cor-
rected step and token ratios. However, as the task
difficulty increases (Lv 4 and 5), LLM interven-
tion becomes more frequent. This suggests that
the LLM effectively detects and intervenes when
the SLM struggles, selectively guiding reasoning
only when necessary. The increasing frequency of
intervention for higher levels aligns with our expec-
tation that more complex reasoning require greater
external support. LLM intervention—measured by
both the corrected step and token ratios—is sig-
nificantly lower under Beam Search compared to
Best-of-N, even at higher reasoning levels. This
discrepancy can be from the structural properties of
Beam Search. Since Beam Search maintains a tree-
like structure, a single correction to a parent node
can automatically propagate changes to its multi-
ple child paths. In contrast, Best-of-N treats each
reasoning path independently, requiring the LLM
to individually intervene in each path to achieve
similar corrections. This characteristic holds con-
sistently across different model families.

To gain further insights, Figure 4 illustrates the
distribution of samples across corrected step ra-
tios for each model family and test-time scaling

0 10000 20000 30000
The Number of LLM Tokens

45

50

55

60

65

Ac
cu

ra
cy

8B BoN
1B-8B BoN (SMART)

(a) Best-of-N

0 1000 2000 3000
The Number of LLM Token

45

50

55

60

Ac
cu

ra
cy

8B Beam Search
1B-8B Beam Search (SMART)

(b) Beam Search

Figure 5: Accuracy according to the number of LLM
tokens used during inference.

compute method. In this part, we consider Beam
Search reasoning samples as independent samples.
If there is two sample which is sharing same par-
ents, we regard two reasoning paths as two inde-
pendent path. For both model families, a large
proportion of samples exhibit no LLM interven-
tion, indicating that SMART predominantly allows
the SLM to operate independently. Beam Search
results are heavily concentrated at the 0.0 token
correction ratio, suggesting that errors tend to prop-
agate less aggressively within its constrained search
space, consistent with its pruning of less-promising
candidates early on and thus requiring fewer large-
scale corrections. In contrast, Best-of-N shows a
broader distribution across correction ratios, with a
significant number of samples exhibiting high cor-
rection levels (e.g., 0.8–1.0 and 1.0 bins). This sug-
gests that Best-of-N not only invites more frequent
intervention but also allows for more aggressive
correction when necessary.

These findings validate the effectiveness of
SMART , where the LLM only corrects key reason-
ing steps rather than applying exhaustive modifica-
tions. Our method preserves the SLM’s indepen-
dence on easier problems while ensuring adequate
support for more complex reasoning tasks.

4 Discussion

4.1 Cost-effective and practical usage in
SMART

In the previous sections, we demonstrated that
SMART effectively bridges the performance gap be-
tween an SLM and an LLM by selectively integrat-
ing LLM-generated reasoning steps in a controlled
manner. Our results indicate that SLMs, despite
their limited reasoning capacity, can achieve near-
LLM performance with minimal but well-targeted
LLM scaffolding. This suggests a viable deploy-
ment strategy where an SLM operates as the pri-

7

mary model, with an LLM providing corrective
reasoning only when necessary.

A key application of this framework is in scenar-
ios where an SLM runs locally on a device, while
an LLM is accessible remotely via an API. Re-
cently, such collaborative frameworks have drawn
increased attention due to their potential to simul-
taneously optimize both accuracy and resource ef-
ficiency (Narayan et al., 2025). However, due to
constraints such as cost, latency, or privacy, fre-
quent LLM queries may be impractical, making it
crucial to minimize intervention while maintaining
strong reasoning performance. SMART addresses
this challenge by enabling an adaptive mechanism
that dynamically determines when an LLM query
is needed, thereby reducing unnecessary API calls
while preserving accuracy.

As illustrated in Figure 5, SMART effectively re-
duces LLM token usage while maintaining compa-
rable accuracy to an LLM alone. For the Best-of-N
strategy, our approach shows efficiency similar to
directly employing an LLM. With Beam Search,
we consistently observe substantial reductions in
LLM token usage—up to 90%—without sacrific-
ing accuracy. This improvement occurs because the
LLM intervenes selectively, only when the SLM’s
top-ranking candidate reasoning paths fail to meet
a specified confidence threshold, thus minimizing
overall LLM intervention. Furthermore, as N in-
creases, the number of LLM tokens utilized by
SMART remains stable in low number, due to the
fixed number (M) of top-ranking paths. These ob-
servations suggest that our framework is particu-
larly favorable for tree-structured search strategies,
highlighting its potential to significantly reduce
token-based costs associated with LLM API usage.
Additional results using the Qwen model family
are provided in Section C.2.

4.2 Comparison between PRM and TLC
scores

In Figure 3, we observe that PRM slightly outper-
forms TLC at higher values of N. This is because
the PRM score explicitly evaluates the correctness
of each reasoning step based on predefined crite-
ria, making it a more structured and interpretable
measure of logical validity. As a result, PRM is
particularly useful for interpretability and control,
aligning well with predefined reward structures.
However, evaluating the PRM score becomes more
challenging for general problems across various do-
mains and tasks. In contrast, the TLC score demon-

strates reasoning consistency and robustness, which
may better reflect generalization across diverse do-
mains. Unlike PRM, which relies on predefined
evaluation criteria, TLC focuses on the model’s in-
ternal certainty about its predictions. Nonetheless,
token-level confidence scoring has its limitations.
Specifically, it fails to account for error propaga-
tion in Chain-of-Thought (CoT) reasoning, where
a strongly confident but incorrect step can mislead
subsequent steps. Self-confidence-based scores,
such as the TLC score, remain an active area of
research (Wang and Zhou, 2024). As models in-
creasingly exhibit self-awareness, intrinsic confi-
dence can be used as a score (Ji et al., 2023). If
self-awareness research continues to advance, this
approach appears promising. Nevertheless, if com-
putational resources are available, PRM can still be
utilized as the primary scoring method.

5 Related works

Application of SLMs SLMs are increasingly em-
ployed in resource-constrained environments, such
as mobile devices and embedded systems, where
deploying LLMs is impractical due to computa-
tional and memory limitations (Blog, 2024). SLMs’
efficiency makes them well-suited for real-time ap-
plications, including chatbots, live captioning, and
gaming interactions, by enabling low-latency pro-
cessing (Xu et al., 2025). They are also utilized in
cloud-integrated systems, where they enhance au-
tomation and personalized services while reducing
infrastructure costs (Talluri et al., 2024). Despite
these advantages, SLMs face significant limitations,
particularly in structured reasoning tasks (Bi et al.,
2024). Their constrained model size leads to per-
formance saturation during training, making it dif-
ficult to map low-dimensional outputs to high-rank
contextual probability distributions. As a result,
they struggle with nuanced language comprehen-
sion and exhibit reduced accuracy on complex tasks
compared to larger models (Godey et al., 2024; Yi
et al., 2024).

Multi-LM collaboration Collaborative decod-
ing enables multiple language models to work
together to enhance text generation (Shen et al.,
2024a). At the token level, different models con-
tribute at various points in the sequence by employ-
ing a small model to draft tokens and a large model
to verify them for efficient decoding (Leviathan
et al., 2023), utilizing a mixture of expert mod-
els aligned with specific tasks to improve perfor-

8

mance (Liu et al., 2021), or integrating a verifier
model to refine generation (Lightman et al., 2023b).
To address complex reasoning tasks, collaborative
decoding has evolved to the step level. For hal-
lucination mitigation, a primary model generates
reasoning steps while another model verifies their
validity (Feng et al., 2024). In multi-agent setups,
multiple smaller models assume different roles,
contributing individual insights in a structured de-
bate. Arguments are then synthesized to reach a
final conclusion (Shen et al., 2024b). While multi-
LM collaboration has been widely explored, prior
work has primarily focused on models with com-
parable capabilities. There is limited research on
leveraging two models with large discrepancies in
reasoning capacity, such as an SLM and an LLM.

Test-time compute scaling Recent work has ex-
plored test-time compute scaling as an alterna-
tive to fine-tuning or distillation, enhancing SLM
reasoning by generating multiple reasoning paths
or refining outputs iteratively (Snell et al., 2024;
Ehrlich et al., 2025; Muennighoff et al., 2025).
While increasing test-time computation improves
performance, SLMs inherently lack the capacity
to solve complex reasoning problems, even with
extensive compute scaling. This fundamental limi-
tation stems from their restricted expressivity, mak-
ing it impossible for SLMs to reach LLM-level
reasoning solely through brute-force search or in-
creased sampling. Additionally, test-time scaling
incurs higher operational costs and computational
overhead, limiting its practicality for real-time ap-
plications. Research has explored selective test-
time scaling, applying computation only where
necessary to balance cost and performance while
acknowledging the constraints of SLM capacity.

Confidence-based score Recent studies have
demonstrated that the intrinsic confidence of a
model’s predictions can serve as a reliable indi-
cator of reasoning quality. For instance, Wang and
Zhou (2024) found that in large language mod-
els, the presence of a chain-of-thought (CoT) rea-
soning path correlates with higher confidence in
the model’s decoded answer. Moreover, Huang
et al. (2025) introduced a self-calibration method
that dynamically adjusts the number of sampling
responses based on the model’s confidence in its
predictions.

6 Conclusion

This paper presents a novel SMART (Scaffolded
Teacher-Assisted Reasoning) framework that en-
hances structured, multi-step reasoning by selec-
tively incorporating LLM interventions into an
SLM’s reasoning process. SMART dynamically
assesses each reasoning step using a score-based
mechanism and replaces unreliable steps with
LLM-generated alternatives only at critical junc-
tures. Experimental results indicate that SLMs, de-
spite their limited reasoning capacity, can achieve
near-LLM performance with minimal but well-
targeted LLM intervention, enabling SLMs to
tackle complex reasoning problems that are unsolv-
able when operating alone. This suggests a viable
deployment strategy where an SLM functions as
the primary model, with an LLM providing correc-
tions only when necessary—a practical avenue for
deploying SLMs where on-device operation is de-
sired—thereby avoiding the overhead of exhaustive
compute scaling.

Limitations

While our method demonstrates the feasibility and
effectiveness of SMART framework, there is room
for optimization to improve its practical deploy-
ment. Currently, the degree of LLM scaffolding
is not explicitly controlled but is instead regulated
through indirect thresholding via PRM and TLC
scores. Although this provides a mechanism for
adaptive intervention, it lacks fine-grained con-
trol, which could allow for more precise optimiza-
tion based on task complexity or computational
constraints. Additionally, our current criteria for
triggering LLM scaffolding may not be optimal,
and alternative strategies could further minimize
computational overhead while preserving or even
improving accuracy. Future work could explore
more adaptive scaffolding mechanisms, such as
RL-based policies or uncertainty-aware scaffolding,
to enhance adaptability across different reasoning
tasks.

Acknowledgement

This work was supported by Artificial intelligence
industrial convergence cluster development project
funded by the Ministry of Science and ICT(MSIT,
Korea) & Gwangju Metropolitan City.

9

References
Peter W Battaglia, Jessica B Hamrick, and Joshua B

Tenenbaum. 2013. Simulation as an engine of physi-
cal scene understanding. Proceedings of the National
Academy of Sciences, 110(45):18327–18332.

Jing Bi, Yuting Wu, Weiwei Xing, and Zhenjie Wei.
2024. Enhancing the reasoning capabilities of small
language models via solution guidance fine-tuning.
arXiv preprint arXiv:2412.09906.

IBM Think Blog. 2024. Small language models. Ac-
cessed: 2025-02-16.

Edoardo Cetin and Oya Celiktutan. 2022. Policy gra-
dient with serial markov chain reasoning. Advances
in Neural Information Processing Systems, 35:8824–
8839.

Guoxin Chen, Kexin Tang, Chao Yang, Fuying Ye,
Yu Qiao, and Yiming Qian. 2024. Seer: Facilitating
structured reasoning and explanation via reinforce-
ment learning. arXiv preprint arXiv:2401.13246.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren,
Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
2024. Diffusion-based reinforcement learning via
q-weighted variational policy optimization. arXiv
preprint arXiv:2405.16173.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
2023. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald
Clark, Christopher Ré, and Azalia Mirhoseini. 2025.
Codemonkeys: Scaling test-time compute for soft-
ware engineering. arXiv preprint arXiv:2501.14723.

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding,
Vidhisha Balachandran, and Yulia Tsvetkov. 2024.
Don’t hallucinate, abstain: Identifying llm knowl-
edge gaps via multi-llm collaboration. arXiv preprint
arXiv:2402.00367.

Tobias Gerstenberg and Simon Stephan. 2021. A coun-
terfactual simulation model of causation by omission.
Cognition, 216:104842.

Nathan Godey, Éric de la Clergerie, and Benoît Sagot.
2024. Why do small language models underperform?
studying language model saturation via the softmax
bottleneck. arXiv preprint arXiv:2404.07647.

Melody Y Guan, Manas Joglekar, Eric Wallace, Saachi
Jain, Boaz Barak, Alec Heylar, Rachel Dias, Andrea
Vallone, Hongyu Ren, Jason Wei, et al. 2024. Delib-
erative alignment: Reasoning enables safer language
models. arXiv preprint arXiv:2412.16339.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-
acheng Liu, and Jiaxin Huang. 2025. Efficient test-
time scaling via self-calibration. arXiv preprint
arXiv:2503.00031.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigat-
ing hallucination in large language models via self-
reflection. arXiv preprint arXiv:2310.06271.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and brain sciences, 40:e253.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023a. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023b. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023.

Yuliang Liu, Junjie Lu, Zhaoling Chen, Chaofeng Qu,
Jason Klein Liu, Chonghan Liu, Zefan Cai, Yunhui
Xia, Li Zhao, Jiang Bian, et al. 2025. Adaptivestep:
Automatically dividing reasoning step through model
confidence. arXiv preprint arXiv:2502.13943.

Ali Madani, Ben Krause, Eric R Greene, Subu Subrama-
nian, Benjamin P Mohr, James M Holton, Jose Luis
Olmos, Caiming Xiong, Zachary Z Sun, Richard
Socher, et al. 2023. Large language models generate
functional protein sequences across diverse families.
Nature Biotechnology, 41(8):1099–1106.

10

https://www.ibm.com/think/topics/small-language-models

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Avanika Narayan, Dan Biderman, Sabri Eyuboglu,
Avner May, Scott Linderman, James Zou, and
Christopher Re. 2025. Minions: Cost-efficient col-
laboration between on-device and cloud language
models. arXiv preprint arXiv:2502.15964.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. arXiv preprint arXiv:2410.21272.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony
Simeonov, Pulkit Agrawal, Anirudha Majumdar, Ben-
jamin Burchfiel, Hongkai Dai, and Max Simchowitz.
2024. Diffusion policy policy optimization. arXiv
preprint arXiv:2409.00588.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra.
2023. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction.
arXiv preprint arXiv:2312.13558.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang,
Yoon Kim, and David Sontag. 2024a. Learning to de-
code collaboratively with multiple language models.
arXiv preprint arXiv:2403.03870.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024b. Small llms are weak tool learners: A
multi-llm agent. arXiv preprint arXiv:2401.07324.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Subhash Talluri, Carlos Fernandez Casares, Deepak
Rupakula, Mohammad Zoualfaghari, and Parham
Beheshti. 2024. Aws for industries: Opportunities
for telecoms with small language models. Accessed:
2025-02-16.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-
thought reasoning without prompting. arXiv preprint
arXiv:2402.10200.

Henry M Wellman and Susan A Gelman. 1992. Cog-
nitive development: foundational theories of core
domains. Annual review of psychology.

Borui Xu, Yao Chen, Zeyi Wen, Weiguo Liu, and
Bingsheng He. 2025. Evaluating small language
models for news summarization: Implications and
factors influencing performance. arXiv preprint
arXiv:2502.00641.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting
Ning, Binbin Jin, Xin Li, and Qi Liu. 2024. Decom-
pose, analyze and rethink: Solving intricate problems
with human-like reasoning cycle. Advances in Neu-
ral Information Processing Systems, 37:357–385.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi
Wang. 2025. Reasonflux: Hierarchical llm reason-
ing via scaling thought templates. arXiv preprint
arXiv:2502.06772.

Euiin Yi, Taehyeon Kim, Hongseok Jeung, Du-Seong
Chang, and Se-Young Yun. 2024. Towards fast multi-
lingual llm inference: Speculative decoding and spe-
cialized drafters. arXiv preprint arXiv:2406.16758.

11

https://aws.amazon.com/ko/blogs/industries/opportunities-for-telecoms-with-small-language-models/
https://aws.amazon.com/ko/blogs/industries/opportunities-for-telecoms-with-small-language-models/

A Implementation details of SMART

Algorithm 1 SMART

Require: Query Q, max steps M , scoring func-
tion s(·), threshold τ , Token count function
Token(·), max token length Lmax

Ensure: Reasoning sequence R = (r1, . . . , rm)
and final answer A = ϕ(Q,R)

1: R← []
2: for i = 1 to M do
3: r

(SLM)
i ← PSLM(ri | Q, r1, . . . , ri−1)

4: s← s(r
(SLM)
i |Q,R)

5: ri ←

PLLM(ri | Q, r1, . . . , ri−1) if s < τ,

r
(SLM)
i otherwise.

6: Append ri to R
7: if ri = EOS or

∑i
j=1Token(rj) ≥ Lmax

then
8: break
9: end if

10: end for
11: return R

We present the implementation details of our Scaf-
folded Teacher-Assisted Reasoning (SMART)
framework, which selectively integrates LLM inter-
vention to enhance the structured reasoning capabil-
ities of SLMs. The reasoning process is formulated
as an iterative decision-making problem, where
the SLM generates reasoning steps autonomously,
and an LLM intervenes selectively based on score-
based evaluation.

A.1 Reasoning Process
Given an input query Q, the objective is to con-
struct a reasoning trajectory R = (r1, . . . , rm) that
leads to a final answer A. The SMART framework
operates as follows:

1. SLM Step Generation: The SLM generates
an intermediate reasoning step r

(SLM)
i autore-

gressively:

r
(SLM)
i ∼ PSLM(ri | Q, r1, . . . , ri−1) (5)

where PSLM represents the probability distri-
bution modeled by the SLM.

2. Step Scoring: Each generated step is eval-
uated with a scoring function s(r

(S)
i |Q, r<i),

which assesses its reliability based on prede-
fined heuristics or reward models.

3. Selective LLM Intervention: If the score s
is lower than the threshold τ , the reasoning
step is corrected by querying the LLM:

r′i ∼ PLLM(ri | Q, r1, . . . , ri−1) (6)

ri ← r′i (7)

Otherwise, the SLM-generated step is re-
tained.

After that, append reasoning step ri to reason-
ing trajectory R

4. Termination Criteria: The iterative reason-
ing process continues until one of the follow-
ing conditions is met:

• The model generates an end-of-the-
sequence (EOS) token.

• The cumulative token count surpasses
Lmax, ensuring computational efficiency.

5. Output Reasoning Trajectory: The final rea-
soning sequence R is returned as the output.

B Experimental details

B.1 Detailed experiment setup
We use Qwen family (Qwen2.5-1.5B, Qwen2.5-
7B) and Llama family (Llama3.2-1B, Llama3.2-
8B) in our experiments. For experiments, we
use four A5000 GPUs using inference package
VLLM(Kwon et al., 2023).

B.2 Dataset details
The MATH500 dataset is a curated subset of the
MATH dataset, comprising 500 problems selected
from MATH dataset(Lightman et al., 2023a), to
evaluate mathematical reasoning in models. These
problems are categorized by subject and difficulty
level, facilitating a comprehensive assessment of
model performance across various mathematical
domains. Each problem is accompanied by a de-
tailed step-by-step solution, enabling the evalua-
tion of models’ problem-solving processes. In our
experiments, we utilize the MATH500 dataset to
benchmark the performance of our models, ensur-
ing a rigorous evaluation of their mathematical rea-
soning abilities.

B.3 Threshold selection for SMART
In Figure 6, the relationship between the PRM
score and prediction accuracy differs notably be-
tween the two model sizes. For the 7B model

12

0.2 0.4 0.6 0.8
PRM Score

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Qwen-2.5-1.5B

(a) Accuracy of Qwen-2.5-1.5B according to PRM
score.

0.2 0.4 0.6 0.8
PRM Score

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Qwen-2.5-7B

(b) Accuracy of Qwen-2.5-7B according to PRM
score.

Figure 6: Accuracy according to PRM score. Qwen-2.5-
1.5B and Qwen-2.5-7B are used for predicting reasoning
steps.

(Qwen-2.5-7B) in Figure 6 (2), the PRM score
strongly correlates with accuracy, indicating that
higher PRM values reliably predict correct out-
comes. In contrast, for the 1.5B model (Qwen-2.5-
1.5B), accuracy increases only marginally across
most PRM score ranges and remains low until ap-
proximately 0.9. Based on this observation, we
set a PRM threshold of 0.9 to trigger LLM inter-
vention, as reasoning steps with a score of 0.9 or
lower exhibit a high likelihood of being incorrect,
necessitating the intervention of the LLM.

B.4 Evaluation metrics

The Weighted@N metric selects the answer with
the highest total reward by aggregating scores
across identical responses. It prioritizes high-
quality outputs by reinforcing frequently occurring,
high-reward solutions. Formally, the selected an-
swer A is given by:

Aweighted = argmax
a

N∑
i=1

I(Ai = a) · s(Ri | Q)

where s(Ri | Q) is a scoring function which
evaluates the correctness of reasoning trajectory
Ri given query Q. The trajectory Ri consists of a
sequence of intermediate steps leading to the final
answer Ai. We report Weighted@N as it shows
consistently high performance among other metrics
such as majority voting.

B.5 Zero-shot prompt for evaluation

We use zero-shot prompting method to evaluate
following . This prompt instructs to follow a struc-
tured step-by-step format, where each step is sepa-
rated by double line breaks (\n\n). This separation
facilitates evaluation and correction. The response
always concludes with a boxed final answer for
clarity.

<|im$_$ start|>system
Solve the following math problem

efficiently and
clearly:

- For simple problems (2 steps or fewer)
:

Provide a concise solution with minimal
explanation.

- For complex problems (3 steps or more)
:

Use this step -by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach , always
conclude

with:

Therefore , the final answer is: $\boxed{
answer }$.

I hope it is correct.

Where [answer] is just the final number
or

expression that solves the problem. <|im
$_$end|>

<|im$_$ start|>user

{Problem}<|im$_$end|>

<|im$_$ start|>assistant

13

C Additional results

C.1 Comparison of SMART with the target
LLM

We further evaluate SMART’s performance using
Beam Search on Qwen family (Table 4) and extend
the analysis to the Llama model family (Table 5).
The overall trend remains consistent—SMART
achieves near-LLM accuracy at lower difficulty
levels, exceeding 90% even for moderate N. As
task difficulty increases, performance remains com-
petitive. While Beam Search provides structured
decoding, Best-of-N tends to yield higher gains,
particularly at higher difficulty levels. Notably, for
Llama, SMART occasionally surpasses LLM per-
formance, highlighting its robustness across mod-
els and search strategies.

C.2 Accuracy according to LLM token usage

0 2000 4000 6000
The Number of LLM Tokens

65

70

75

Ac
cu

ra
cy

7B BoN
1.5B-7B BoN (SMART)

(a) Best-of-N

0 1000 2000 3000
The Number of LLM Token

50

60

70

Ac
cu

ra
cy

7B Beam Search
1.5B-7B Beam Search (SMART)

(b) Beam Search

Figure 7: Accuracy according to LLM token usage on
Qwen family.

We further provide result on Qwen family in Fig-
ure 7. As previously mentioned, for beam search,
our method shows efficiency to achieve similar
accuracy level in terms of LLM token usage com-
pared to only employing LLM. However, the result
of Best-of-N is quite different, where for Qwen,
our method uses comparatively more LLM tokens
compared to Llama.

D Further Discussions

D.1 The relationship between threshold
values of PRM and TLC score and
accuracy and token ratio

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

40

50

60

Ac
cu

ra
cy

 (%
)

Accuracy
Token Ratio

0.0

0.2

0.4

0.6

0.8

1.0

To
ke

n
Ra

tio

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

40

50

60

Ac
cu

ra
cy

 (%
)

Accuracy
Token Ratio

0.0

0.2

0.4

0.6

0.8

1.0

To
ke

n
Ra

tio

Figure 8: The relationship between accuracy and token
usage ratio according to threshold values. The upper
plot uses the PRM score, while the lower plot uses the
TLC score.

Although our work is, to the best of our knowl-
edge, the first to focus on boosting an SLM’s rea-
soning ability through limited LLM assistance, fur-
ther optimization of LLM scaffolding strategies
remains an open challenge. Currently, the scaf-
folding rate is controlled by a predefined threshold,
which dictates when an SLM-generated step should
be replaced. However, an optimal policy for LLM
calls may require a more adaptive mechanism that
learns when scaffolding is most beneficial. As illus-
trated in Figure 8, there exists an inherent trade-off
between overall accuracy and the proportion of rea-
soning tokens contributed by the LLM. A promis-
ing direction for future research is developing RL
or meta-learning strategies to dynamically adjust
scaffolding thresholds based on problem complex-
ity and past success rates.

D.2 Correction Timing of LLM

Beyond simply adjusting how often scaffolding oc-
curs, determining at which step in the reasoning
process to intervene may also be crucial. In our
implementation, the scaffolding is triggered by a

14

Table 4: Comparison of SMART with the target LLM (used as the teacher in scaffolding) for the Qwen model
family, using Beam Search. Each cell shows the percentage of our performance relative to the target LLM (i.e.,
100% means SMART brings the identical performance with that of LLM). Values in parentheses indicate the relative
performance of SLM against the target LLM. Performance values over 90% are underlined.

Approach N Lv 1 Lv 2 Lv 3 Lv 4 Lv 5

Beam Search
4 92.28% (97.46%) 88.89% (85.22%) 93.20% (76.13%) 83.77% (76.34%) 84.31% (50.00%)

8 92.47% (95.05%) 87.96% (87.96%) 91.13% (84.48%) 95.39% (75.60%) 79.01% (44.80%)

16 100.00% (97.53%) 93.96% (91.44%) 92.44% (86.01%) 87.33% (74.80%) 92.70% (63.31%)

Table 5: Comparison of SMART with the target LLM (used as the teacher in scaffolding) for the Llama model
family, using different search methods. Each cell shows the percentage of our performance relative to the target
LLM (i.e., 100% means SMART brings the identical performance with that of LLM). Values in parentheses indicate
the relative performance of SLM against the target LLM. Performance values over 90% are underlined.

Approach N Lv 1 Lv 2 Lv 3 Lv 4 Lv 5

Best of N

1 97.43% (72.06%) 96.52% (67.42%) 97.66% (60.38%) 103.06% (50.64%) 104.91% (45.14%)

2 97.82% (79.16%) 95.14% (72.49%) 97.26% (65.72%) 102.28% (55.00%) 104.90% (47.54%)

4 96.39% (81.35%) 97.59% (77.16%) 94.07% (66.19%) 97.14% (58.70%) 102.75% (52.11%)

8 99.33% (88.87%) 100.67% (78.38%) 102.56% (66.62%) 104.21% (67.09%) 92.53% (47.73%)

16 102.60% (89.48%) 101.42% (88.15%) 98.86% (71.14%) 97.12% (70.45%) 94.94% (45.01%)

Beam Search
4 94.68% (100.00%) 88.72% (78.83%) 98.41% (80.29%) 87.40% (74.59%) 81.16% (59.42%)

8 94.65% (102.79%) 91.74% (86.31%) 91.05% (97.07%) 75.44% (69.83%) 87.91% (53.60%)

16 92.28% (92.28%) 97.36% (85.35%) 88.99% (81.69%) 90.09% (73.15%) 114.57% (82.28%)

Step 1 49.8%

Step 2

23.4%

Step 3
10.9%

Step 4

6.7%

Others

9.2%

Figure 9: The ratio of SLM’s reasoning steps first cor-
rected by the LLM during reasoning process. We used
16 random single-generation samples using Qwen-2.5-
7B/1.5B model family.

score function that does not account for time-step
dependencies, but real-world scenarios may well
exhibit such dependencies. Indeed, our analysis
in Figure 9 shows that the initial steps in the reason-
ing sequence receives the greatest amount of LLM
guidance, suggesting that the LLM effectively iden-
tifies and rectifies errors in the early stages of rea-
soning. This also well aligns with the intuition that
early assistance can be particularly beneficial, as
unresolved errors may propagate through subse-
quent steps to degrade reasoning quality.

D.3 Comparison of step-wise score

Table 6: Comparison of PRM and TLC scores using
Best-of-N and Beam Search approaches for Qwen2.5
and Llama3.1 models.

Model Search PRM Score TLC Score

Qwen2.5 7B /
Qwen2.5 1.5B

Best-of-N 0.8134 0.9039
Beam Search 0.8637 0.9212

Llama3.1 8B /
Llama3.2 1B

Best-of-N 0.8130 0.9451
Beam Search 0.8837 0.9666

In this section, we compare the average PRM and
TLC scores for different models and search strate-
gies. As shown in Table 6, Beam Search consis-
tently achieves higher scores than Best-of-N across
both Qwen and Llama model families. This aligns
with our main analysis, where Beam Search sys-
tematically prunes less-promising candidates early
in the reasoning process, retaining only those with
relatively higher scores. Consequently, the remain-
ing candidates tend to have higher PRM and TLC
scores. This trend is consistent across all models
and scoring methods.

15

1 2 3 4 5
Level

0

100

200

300

400

500

600

700

800
Av

er
ag

e
Nu

m
be

r o
f T

ok
en

s
SLM (Correct)
SLM (Incorrect)
SMART (Correct)
SMART (Incorrect)
LLM (Correct)
LLM (Incorrect)

Figure 10: Average number of tokens by model, level,
and correctness using the Best-of-N approach with
Qwen2.5 models. N = 32 for SMART , N = 64 for
SLM and LLM. PRM scores.

D.4 Average Number of Tokens by Model,
Level, and Correctness

Figure 10 illustrates the average number of tokens
generated by three different models (SLM, SMART ,
and LLM) across multiple levels, distinguishing
between correct and incorrect responses. The x-
axis represents different levels of difficulty, while
the y-axis indicates the average number of tokens
used. Overall, we observe a trend where incorrect
responses (represented with hatched bars) tend to
have a higher token count across all models and
levels. This suggests that models generally gen-
erate longer responses when their predictions are
incorrect, possibly due to increased uncertainty or
excessive generation in ambiguous scenarios.

D.5 Qualitative analysis of SMART

Table 7 illustrates where and how the LLM corrects
the reasoning steps of the SLM when applying our
SMART method. The table presents randomly se-
lected samples to demonstrate this correction pro-
cess.

As previously mentioned, the LLM consistently
provides corrections within the initial reasoning
steps (i.e., ## Step 1 or 2). Specifically, it identifies
logically flawed components in the SLM’s reason-
ing, generates an alternative formulation, and sub-
sequently adjusts the trajectory to ensure that the
following reasoning steps align correctly.

E AI usage

We utilize GPT-4o, O3-mini-high, Copilot, and
Perplexity to assist with coding and writing tasks.

However, the concepts and structure are formulated
by the authors, while AI models are employed pri-
marily for refining code and enhancing the clarity
and coherence of the writing.

16

Table 7: Example of generation using SMART on Level 1 difficulty problem.

Question: Suppose $\\ sin D = 0.7$ in the diagram below. What is DE? [asy]\
npair D,E,F;\nF = (0,0);\nD = (sqrt (51) ,7);\nE = (0,7);\ndraw(D--E--F--D
);\ndraw(rightanglemark(D,E,F,15));\ nlabel ("D",D,NE);\ nlabel ("E",E,
NW);\ nlabel ("F",F,SW);\ nlabel ("7" ,(E+F)/2,W);\n[/asy]

STAR Output: We have two right -angled triangles in the diagram. Let ’s denote
the length of DE as x and the length of DF as h.\n\n

(SLM step) From the given $\\ sin D = 0.7$, we have:\n\\[\\frac{h}{7} =
0.7 \\]\n\\[h = 7 \\ times 0.7 = 4.9 \\]

(LLM scaffolding step) ## Step 1: Use the right triangle DFE\nIn $\\
triangle DFE$, we have $\\ sin D = \\frac {\\ text{opposite }}{\\ text{
hypotenuse }} = \\frac {7}{h} = 0.7$. So, $h = \\frac {7}{0.7} = 10$.

Step 2: Use the Pythagorean Theorem in triangle DFE\nWe also know
that in $\\ triangle DFE$, $DE^2 + DF^2 = DF^2$. Substituting the
known values , we get $x^2 + 7^2 = 10^2$. Simplifying , we get $x^2 +
49 = 100$, so $x^2 = 51$.\n\nTherefore , $x = \\sqrt {51}$.\n\
nTherefore , the final answer is: $\\ boxed {\\ sqrt {51}}$.

17

Table 8: Example of generation using SMART on Level 2 difficulty problem.

Question: The Greek army contained two types of soldiers: the upper class
and the lower class soldiers. If there were a total of 5 upper class
soldiers , and 10 lower class soldiers in a certain part of Athens , and
the battle of Thermopylae demands a force of 4 upper class soldiers and
8 lower class soldiers , how many different battalions can be sent?

STAR Output: To solve this problem , let ’s break it down step by step:\n\n

1. First , we need to determine the total number of soldiers in the given
part of Athens. We know that there are 5 upper class soldiers and 10
lower class soldiers. So the total number of soldiers is:\n \\[5 + 10
= 15\\]\n\n

(SLM step) 2. Next , to find out how many different battalions can be
sent , we need to divide the total number of soldiers by the number
of soldiers required per battalion. In this case , each battalion
needs 4 upper class soldiers and 8 lower class soldiers. So we
divide the total number of soldiers by the sum of these requirements
:\n \\[15 \\div (4 + 8) = 15 \\div 12 = 1.25\\]

(LLM correction step) 2. Next , we need to determine how many different
battalions can be formed from the upper class soldiers. We need to
choose 4 upper class soldiers out of 5. This is a combination
problem , and the number of ways to choose 4 soldiers out of 5 is
given by the combination formula \\(\\binom {5}{4} \\):\n \\[\n
\\binom {5}{4} = \\frac {5!}{4!(5 -4) !} = \\frac {5!}{4!1!} = \\frac{5
\\cdot 4!}{4! \\cdot 1} = 5\n \\]

3. Similarly , we need to determine how many different battalions can be
formed from the lower class soldiers. We need to choose 8 lower
class soldiers out of 10. This is also a combination problem , and
the number of ways to choose 8 soldiers out of 10 is given by the
combination formula \\(\\binom {10}{8} \\):\n \\[\n \\binom
{10}{8} = \\frac {10!}{8!(10 -8) !} = \\frac {10!}{8!2!} = \\frac {10 \\
cdot 9 \\cdot 8!}{8! \\cdot 2 \\cdot 1} = \\frac {10 \\cdot 9}{2 \\
cdot 1} = 45\n \\]\n\n4. Since the battalions are formed
separately (one from upper class soldiers and one from lower class
soldiers), the total number of different battalions that can be sent
is the product of the number of ways to form the battalions from

each group:\n \\[\n 5 \\cdot 45 = 225\n \\]\n\nTherefore , the
final answer is:\n\\[\n\\boxed {225}\n\\]

Table 9: Example of generation using SMART on Level 3 difficulty problem.

Question: Evaluate $(1+2i)6-3i$.

STAR Output:
(SLM step) ## Step 1:**\ nFirst , we need to distribute the 6 in the

expression $(1+2i)6-3i$. This means multiplying 6 by each term inside
the parentheses.

(LLM correction step) ## Step 1: Distribute and simplify the expression\
nFirst , distribute 6 across the terms in the parentheses and then
subtract $3i$.

Step 2: Perform the multiplication and subtraction\n$6(1 + 2i) - 3i = 6 +
12i - 3i = 6 + 9i$.\n\nTherefore , the final answer is: $\\ boxed{6 + 9i

}$.

18

Table 10: Example of generation using SMART on Level 4 difficulty problem.

Question: What is the probability that a randomly selected integer in the
set $$\\{1 ,2 ,3 ,\\ldots ,100\\}$$ is divisible by 2 and not divisible by
3? Express your answer as a common fraction.

STAR Output: To find the probability , we need to consider the following
steps:\n\n

(SLM step) 1. Find the total number of integers in the set.\n2. Find the
number of integers divisible by 2 and not divisible by 3.\n3. Find the
number of integers divisible by 3 and not by 2.\n4. Subtract the result
from step 2 and the result from step 3 from the total to get the number
of integers divisible by 2 and not divisible by 3.\n5. Divide the result
from step 4 by the total number of integers in the set to get the

probability.
(LLM correction step) ## Step 1: Determine the total number of integers in

the set.\nThe set is \\(\\{1 , 2, 3, \\ldots , 100\\}\\) , so the total
number of integers is \\(100\\).

(SLM step) ## Step 2: Count the number of integers in the set that are
divisible by 2.\ nIntegers divisible by 2 in the set are \\(\\{2 , 4, 6,
\\ldots , 100\\}\\). This is an arithmetic sequence where the first term
\\(a_1 = 2\\) and the common difference \\(d = 2\\). The nth term of an
arithmetic sequence can be found using the formula \\(a_n = a_1 + (n-1)d
\\). Setting \\(a_n = 100\\) gives the equation \\(100 = 2 + (n-1) 2\\).
Solving for \\(n\\) gives \\(n = 50\\). Therefore , there are 50 integers
in the set that are divisible by 2.\n\n

(LLM correction step) ## Step 2: Count the numbers divisible by 2.\nA number
is divisible by 2 if it is even. The even numbers in the set are \\(2,

4, 6, \\ldots , 100\\). This is an arithmetic sequence where the first
term is 2 and the last term is 100, with a common difference of 2. The
number of terms in this sequence is \\(\\ frac {100}{2} = 50\\).\n\n

Step 3: Count the numbers divisible by 2 but not by 3.\nWe need to
exclude the numbers that are divisible by both 2 and 3 (i.e., divisible
by 6) from the count of numbers divisible by 2, because they are already
counted in the previous step. The numbers divisible by 6 in the set are
\\(6, 12, 18, \\ldots , 96\\). This is an arithmetic sequence where the

first term is 6 and the last term is 96, with a common difference of 6.
The number of terms in this sequence is \\(\\ frac {96}{6} = 16\\).
Therefore , the number of integers in the set that are divisible by 2 but
not by 3 is \\(50 - 16 = 34\\).\n\n

Step 4: Calculate the probability .\nThe probability that a randomly
selected integer from the set is divisible by 2 but not by 3 is the
number of such integers divided by the total number of integers in the
set. This gives us \\(\\ frac {34}{100} = \\frac {17}{50}\\) .\n\nTherefore ,
the final answer is: $\\ boxed {\\ frac {17}{50}}$. ’

19

Table 11: Example of generation using SMART on Level 5 difficulty problem.

Question: Bill walks $\\ frac {1}{2}$ mile south , then $\\ frac {3}{4}$ mile
east , and finally $\\ frac {1}{2}$ mile south. How many miles is he, in a
direct line , from his starting point? Express your answer as a decimal
to the nearest hundredth.

STAR Output: To solve this problem , let ’s break down Bill ’s journey into a
series of steps and then calculate the final distance from his starting
point.\n\n

(SLM step) 1. **First Leg**: Bill walks $\\ frac {1}{2}$ mile south. His
position is now $-\\frac {1}{2}$ mile South from his starting point.\n2.
** Second Leg**: Bill then walks $\\ frac {3}{4}$ mile east. After this leg
, he is now $\\ frac {3}{4}$ mile North and $\\ frac {1}{2}$ mile South of
his starting point. His net position change in the North -South direction
is $-\\frac {1}{2} + \\frac {3}{4} = \\frac {1}{4}$ mile North.\n3. **

Third Leg**: Finally , Bill walks $\\ frac {1}{2}$ mile south. After this
leg , he is now $\\ frac {1}{4}$ mile North and $\\ frac {1}{2}$ mile South
of his starting point. His net position change in the South direction is
$\\ frac {1}{2} - \\frac {1}{2} = 0$ mile.

(LLM correction step) ## Step 1: Determine the total southward displacement\
nBill walks $\\ frac {1}{2}$ mile south , then another $\\ frac {1}{2}$ mile
south. So, the total southward displacement is:\n\\[\n\\frac {1}{2} + \\
frac {1}{2} = 1 \\text{ mile}\n\\]

\n\n## Step 2: Determine the eastward displacement\nBill walks $\\ frac
{3}{4}$ mile east. This represents the eastward displacement .\n\n

(SLM step) ## Step 3: Calculate the resultant displacement\nTo find the
resultant displacement , we can represent Bill ’s movements as vectors. We
have:\n- A southward displacement of $\\ frac {1}{2}$ mile\n- A southward
displacement of $\\ frac {1}{2}$ mile (next south)\n- An eastward

displacement of $\\ frac {3}{4}$ mile\n\n

(LLM correction step) ## Step 3: Use the Pythagorean theorem to find the
direct distance\nNow we can use the Pythagorean theorem to find the
direct distance from the starting point. The total southward
displacement and the eastward displacement form the legs of a right
triangle , with the direct distance being the hypotenuse. The Pythagorean
theorem states :\n\\[\nc = \\sqrt{a^2 + b^2}\n\\]\ nwhere $a = 1$ mile (

southward displacement) and $b = \\frac {3}{4}$ mile (eastward
displacement). Plugging in these values , we get:\n\\[\nc = \\sqrt {1^2 +
\\left (\\ frac {3}{4}\\ right)^2} = \\sqrt{1 + \\frac {9}{16}} = \\sqrt {\\
frac {16}{16} + \\frac {9}{16}} = \\sqrt {\\ frac {25}{16}} = \\frac {5}{4} =
1.25\n\\]\n

Therefore , the final answer is: $\\ boxed {1.25}$ miles.

20

	Introduction
	SMART
	Preliminaries and notations
	Motivation
	Method

	Experiments
	Experimental setup
	Main results
	Analysis

	Discussion
	Cost-effective and practical usage in SMART
	Comparison between PRM and TLC scores

	Related works
	Conclusion
	Implementation details of SMART
	Reasoning Process

	Experimental details
	Detailed experiment setup
	Dataset details
	Threshold selection for SMART
	Evaluation metrics
	Zero-shot prompt for evaluation

	Additional results
	Comparison of SMART with the target LLM
	Accuracy according to LLM token usage

	Further Discussions
	The relationship between threshold values of PRM and TLC score and accuracy and token ratio
	Correction Timing of LLM
	Comparison of step-wise score
	Average Number of Tokens by Model, Level, and Correctness
	Qualitative analysis of SMART

	AI usage

