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Abstract

Although Federated Learning (FL) is promising for privacy-preserving collabo-
rative model training, it suffers from low inference performance due to hetero-
geneous client data. Due to heterogeneous data across clients, FL training eas-
ily learns client-specific overfitting features. Existing FL. methods adopt coarse-
grained averaging, which can easily cause the global model to get stuck in lo-
cal optima, leading to poor generalization. Specifically, this paper presents a
novel FL framework, FedPhoenix, to address this issue. It stochastically re-
sets partial parameters in each round to destroy some features of the global
model, guiding FL training to learn multiple generalized features for inference
rather than specific overfitting features. Experimental results on various well-
known datasets demonstrate that compared to SOTA FL methods, FedPhoenix can
achieve up to 20.73% higher accuracy. The implementation is publicly available
athttps://github.com/UniString/FedPhoenix.

1 Introduction

With Artificial Intelligence (AI) technologies widely used in privacy-sensitive applications, protect-
ing data privacy during model training has become an urgent requirement. To address this issue,
Federated Learning [1-7] as a privacy-preserving distributed machine learning paradigm has been
proposed and used in various Al applications, such as Artificial Intelligence of Things (AIoT) sys-
tems [8—12], recommender systems [13, 14], and healthcare systems [15, 16], which enables multi-
ple clients to collaboratively train a global model without exposure of their raw data. Specifically,
conventional FL consists of a cloud server and multiple clients. In each FL training round, the cloud
server sends the global model to each client. Clients use their raw data to train the received model
and then upload the trained model back to the cloud server. By aggregating all uploaded models, the
cloud server can generate a new global model for the next round of training.

However, due to clients’ diverse preferences and data volumes, client data is often not Independent
and Identically Distributed (non-IID), leading to the “client drifting” problem [17-20]. Specifically,
different data distributions lead to different optimization directions for local models. The traditional
FedAvg strategy aggregates all local models to generate the global model, which may cause the
global model’s optimization directions to deviate from the optimal direction, leading it to easily
get stuck in local optima. To optimize the FL training process, existing methods attempt to utilize
correction terms [21, 17], knowledge distillation (KD) [22-25], model mutation [26, 27], client
clustering [28-31], and multi-model searching [32-34] strategies.
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Although these methods can improve the inference accuracy of the global model in non-IID sce-
narios, they introduce additional overhead or privacy leakage risks. For example, correction term-
based methods require the communication overhead for the transmission of global correction terms.
Knowledge distillation-based methods require additional public data or incur computation overhead
to generate proxy datasets. Clustering-based and multi-model searching-based methods cannot sup-
port secure aggregation [35], which may increase the risk of privacy leakage. Therefore, how to
improve the performance of FL in non-IID scenarios without additional overheads or public data
while integrating secure aggregation is a significant challenge in FL.

Typically, compared to centralized model training, each client in an FL setting has access to far
less data, which increases the risk of overfitting to local features. To improve the global model’s
inference performance, the local model should learn more general features rather than those specific
to the local dataset. Unfortunately, due to limited access to local data, the cloud server cannot justify
the quality of the global model. In addition, since each client cannot access other clients’ data, it
cannot determine which features are generalized. Intuitively, to avoid the global model overfitting
to client-specific features, FL training should encourage the model to perform inference using more
features rather than a few specific ones. Intuitively, if the model inference depends on multiple
features, losing or destroying a few of them has only a minor impact on the final decision. In
contrast, if the model relies on just a handful of features, destroying any one of them can severely
affect its decisions.

Inspired by the above intuition, this paper presents a novel FL framework, FedPhoenix, to address
the low training performance in FL. Like the Phoenix rising from the ashes, FedPhoenix randomly
resets partial parameters of the global model to destroy certain features, generating different local
models with different parameter resets for local training within a communication round. In this way,
if a destroyed feature is unique to a particular device, retraining will be an alternative. In contrast,
if the feature is truly generalized, it will be restored as FL training progresses. In addition, when
features with large weights are destroyed, the model will try to use other features for inference
while learning new features. At this time, the weights of some generalized features will increase,
while those of device-specific features will decrease. To ensure the model’s convergence efficiency,
FedPhoenix includes a dynamic reset mechanism that adjusts the ratio of reset parameters as FL
training progresses. The main contributions of this work are summarized as follows:

* We present a novel FL framework, FedPhoenix, that employs a heuristic parameter resetting
mechanism to achieve generalized FL model training.

* We propose an adaptive parameter reset strategy to control the resetting ratio and range of
each layer and a dynamic stabilization strategy to ensure the convergence of FedPhoenix.

* We present a theoretical analysis of FedPhoenix’s convergence in convex settings and con-
duct comprehensive experiments on well-known benchmarks to demonstrate its effective-
ness and convergence in non-convex settings.

2 Preliminary and Related Work

2.1 Problem Formulation 4
Consider a federated learning system with N clients, each holding a local dataset D; = {zﬁ”}
(&) _ (x(,i)
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where 2z , yj(l)) is a data sample. The goal is to collaboratively learn a global model w € R?
by minimizing tfle objective:

min F(w) = ZN EFi(w)7

w i=1 n

where F;(w) = % 2?21 £(w zj(l)) n = Zf\il n; is the total number of samples. Here, ¢(-) is
a sample-wise loss (e.g., cross-entropy). The server coordinates iterative training: clients locally
update the global model on their data, and the server aggregates these updates (e.g., via weighted

averaging) to refine the global model.

2.2 Related Work

To address non-IID challenges in FL, existing methods often adopt various optimization strategies
that come with inherent limitations. FedProx [21] introduces a regularization term to align local



models with the global model, reducing client drift by penalizing deviations. While this approach
incurs minimal communication overhead, its accuracy improvement is often limited, especially in
highly heterogeneous scenarios. ClusterSampling [28] groups clients by data or model similarity
to improve aggregation representativeness. However, its computational complexity scales quadrat-
ically with the number of clients, making it impractical for large-scale deployments. FedGen [23]
leverages knowledge distillation with synthetic proxy data to achieve knowledge transfer among
clients. FedMut [26] injects diversity by mutating the global model through gradient perturbations.
While this method demonstrates some effectiveness in exploring the solution space, its reliance on
random mutations can lead to inconsistent updates, potentially destabilizing convergence. In addi-
tion, most existing methods inevitably incur additional communication overhead or require public
data, or cannot be employed in secure aggregation, which significantly limits generalization.

To the best of our knowledge, FedPhoenix is the first FL. method to use the heuristic parameter
reset strategy to enhance generalization without additional data or communication overhead, and it
is compatible with the secure aggregation strategy.

3 Prestudy and Our Motivation

Intuition. In non-IID scenarios, the limited diversity and volume of local data often cause the global
model to overfit specific local features. Intuitively, the model inference process is more focused on
a few overfitting features rather than on multiple generalized features, resulting in low inference
performance for the global model trained by FedAvg.
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Figure 1: Accuracy and loss curves of FedAvg and FedPhoenix with o = 0.6

Study on the Overfitting Issue of the Global Model. To explore the overfitting issue of FL, we
conducted a prestudy for FedAvg on the CIFAR-10 dataset using the ResNet-18 model with the
non-IID setting of the Dirichlet Distribution (o = 0.6). Figure 1 presents accuracy and loss curves
of FedAvg and our FedPhoenix on the training dataset and testing dataset. From Figure 1, we can
observe that although the global model trained by FedAvg can eventually achieve 100% accuracy
and close to O loss in the training dataset, its performance is still seriously limited in the testing
dataset. We can find that the loss in the testing dataset initially decreases and then increases as
training progresses. Based on the above observations, we can find that FedAvg-based FL easily
overfits to the training dataset.
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Figure 2: t-SNE for representations of the model trained by FedAvg

Study on Learned Features of the Global Model. To investigate whether the global model re-
lies on a small number of overfitted features, we stochastically masked 10% of the parameters in a
FedAvg-trained global model to remove certain features. We then collected intermediate representa-
tions from both the original and the masked models using the training and test datasets, categorizing
them by label. Figure 2 illustrates the similarities between the representations of the original global
model and the masked model on both the training and test datasets using t-SNE [36]. We observe
that, in the training dataset, the intermediate representations of the original model across different



categories form distinct clusters. Nonetheless, when 10% of the parameters are masked, it becomes
challenging to differentiate these clusters. In the test dataset, the representations of the original
model across different categories overlap to some extent, indicating less distinct clustering. After
masking 10% of the parameters, the representations of all categories in the test dataset become
nearly indistinguishable. Therefore, masking a small number of features can cause significant seri-
ous performance degradation in the global model trained via FedAvg-based FL.

To further investigate the impact of a small subset of features on models trained by FedAvg, we
evaluate the importance of each feature in a specific layer on the CIFAR-10 test dataset for each
class by individually masking a single feature and measuring the accuracy degradation for that class.
Then, we test the accuracy on the test dataset for the model trained by FedAvg with masking 1)
the top 16 important features (accounting for 3.125% of the total features) and ii) the stochastic 16
features of the last convolutional layer, respectively. As shown in Table 1, for models trained with
FedAvg, masking the top 16 features results in significant accuracy degradation, while masking the
stochastic 16 features has little effect on accuracy. Based on the above observations, we find that
the inference of the global model of FedAvg relies on only a few specific features rather than more
generalized ones, making it vulnerable to parameter masking.

Our Idea. Motivated by the aforementioned
observations and results, this paper aims to
guide the model to acquire more generalized

Table 1: Impact of Partial Feature Layer Output
Masking on Class-wise Accuracy

features and to make inferences using a wide Accuracy of FedAvg (%)
range of features rather than relying on just a Class Original | Topl6 | RandomI6
few specific ones. To achieve this goal, we Class0 | 64.10% | 38.80% 63.30%
propose FedPhoenix, which randomly resets a Class 1 | 70.80% | 47.30% 72.30%
small subset of the global models parameters to Class2 | 54.60% | 33.40% | 54.10%
generate local models for FL training. In this Class 3 | 41.70% | 22.10% | 43.10%
way, the cloud server can destroy a few features Class4 | 64.40% | 39.40% 64.50%

of the global model. Since most clients can

learn generalized features, these features can be quickly restored. On the contrary, the specific local
features unique to a few clients are hard to restore. In addition, since features with large weights are
randomly reset, parameter resetting can guide the model to adjust its weights to learn more features
for inference rather than just a few.

To validate the effectiveness of our idea, we compare the performance of FedPhoenix with that of
FedAvg. As shown in Figure 1, FedPhoenix can greatly alleviate overfitting and achieve higher
inference accuracy on the test dataset.
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Figure 3: t-SNE for representations of the model trained by FedPhoenix

Figure 3 visualizes the similarities of representations of the original global model and the masked
model trained by FedPhoenix on the training dataset and test dataset using t-SNE. We observe that
representations of the original and the masked models across different categories form distinctly
separate clusters in both the training and test datasets, indicating that the global model trained by
FedPhoenix learns more generalized features and utilizes more features for inference than the model
trained by FedAvg.

4 Our Phoenix Approach
4.1 Overview

Figure 4 illustrates the framework and workflow of our FedPhoenix approach, which includes a
central cloud server and multiple local clients. In each FL training round, the cloud server selects K



________________________ . Cloud Server

1
1 o [= =] —n
| | m=m == —x Template
1 [= = =] [ ] (= ==] .
\ [==] =] —n Generation
—
= Model Aggregation
_____________________ y
: [— — — 1
1 — — — ]
— — .- — 1
: — — — |
e e Y —— |
] Uploading
R N I I R AR
: Local Local y Local :
V(= Data | = = Data | = =3 Data [ =] | !
1 = = —3 = wen = = 1
1 Training Training Training 1
: Client #1 Client #2 Client #K :
1 1
1 1

Local Clients

Figure 4: Framework and workflow of FedPhoenix

activated clients to participate in local training. Assuming that there are IV clients, we have K < N.
Unlike traditional FedAvg-based methods, which directly dispatch the global model to each client,
FedPhoenix first duplicates the global model into K copies and then stochastically resets a few
parameters in each copy. Then, the cloud server dispatches the model copies to activated clients,
where each client uses its received copy and local data to conduct local training. After local training,
the cloud server collects all local models and aggregates them to generate a new global model.
Specifically, the workflow of each FedPhoenix training round consists of five steps as follows:

Step 1: Parameter Resetting. The cloud server duplicates the global model into K independent
copies and stochastically resets a subset of each copy’s parameters. The reset proportion of each
layer is dynamically adjusted based on the initial value 1o and the current training round r.

Step 2: Model Dispatching. The server sends the reset model copies to K activated clients, where

each client only receives one copy.

Step 3: Local Training. Activated clients perform model training using their local data.

Step 4: Model Uploading. Each activated client uploads its trained local model to the cloud server.

Step 5: Model Aggregation. The cloud server aggregates all the uploaded local models to generate
a new global model, which is used for the next round of FL training.

4.2 TImplementation

Algorithm 1 presents the implementation of
FedPhoenix. As shown in Algorithm 1, Line 1
initializes the global model wglb. Lines 2-12
show the FL training process, which consists
of round training rounds. Line 3 randomly se-
lects K clients from the client pool C, where
S, is the set of selected clients. Lines 4-7 du-
plicate the global model and reset the model
copies, where in Line 6, the function Reset(-)
resets the k** model copy, and such model will
be dispatched to the k*" activated client in S..
Lines 8-10 present the local training process,
where in Line 9, each activated client uses their
local data to train the dispatched model u)]foc“l,
and wj, is the trained local model. Line 11 ag-
gregates all the trained local models to generate
the new global model wy,.

Algorithm 1 FedPhoenix Framework

Input: i) round, # of training rounds; ii) C, the set of

involved clients; iii) K, # of activated clients; iv)
s, # of rounds for reset; v) 6, reset proportion

Output: wy;s, the trained global model.
FedPhoenix(round,C,K,rs,0)

11:
12:
13:
14:

SOXND ALY

wglb < Initialize global model

: forr=1, .., round do

Sc < Randomly select K clients from C
fork=1, .., Kdo

Local r—1
Wy < wglb

wge + Reset(wi, 0, r, 1s)
end for
/* parallel for block */
fork=1, .., Kdo
w}, + LocalTraining(wg ", S.[k])
end for .
Worp 4 % D h—1 W
end for
return wg;,




4.2.1 Parameter Reset

Algorithm 2 details the model reset process. As .
shown in Algorithm 2, Line 2 extracts all the con- Algorithm 2 Model Reset

volutional layers in the target model w’. Lines 3- Input: i) w, model weights; ii) 0, reset proportion;
13 perform the parameter reset for the target iii) 7, current round; iv) 75, # of rounds for reset;
model w’. Line 5 adopts a dynamic stabilization ~OQutPut: w’, reset model weights.

strategy to determine whether to reset the current Rl‘?setﬁw’ Ho, T Ts)

layer according to the index of the current layer ¢, Swe

) 2: S; « Convolutional layers in w’
the current round r, and the threshold r,. Line 7 3. fol” -1 ; .l.l.l‘ S| doy mw

calculates the number of reset kernels according 4. . g, [i]

to the reset portion po. Line 8 randomly selects 5. jf, < iXTs then

k; kernels in [; for reset. Line 10 resets the param- . - e : _
g t 6: n; < number of kernels in layer /;

eters of the selected kernel, where w [k] denotes 7. ki < |0 x n;]

the corresponding parameters of the kernel k£ in . Sk < Randomly select k; kernels in I;

the w’. Here, we use a normal distribution to sam-  9: for k € S) do

ple from the current layer’s mean and variance, 10: wi, [k] < Sampling(l;)

and use the sampled values to reset the parame- 11: end for

ters rather than setting them to zero. The sampling 12:  end if

process can be defined as follows: 13: end for

14: return w’

Sampling(l;) ~ N (i, 07), (1

where p; and o; denote the mean and standard deviation of the parameters of [;, respectively. This
design limits the range of resets and satisfies the bounded-variance requirements that ensure the
convergence of FedPhoenix.

4.2.2 Dynamic Stabilization Strategy

FedPhoenix employs a dynamic stabilization strategy to maintain stable training and convergence by
adjusting the number of reset layers. Initially, more parameters are reset to promote the acquisition of
generalized features. As training progresses, the frequency of parameter resets decreases, enabling
the model to stabilize its learned features. Since each neural network layer relies on the output of the
previous layer, this strategy progressively reduces resets in shallower layers. As shown in the Line 5
of Algorithm 2, assume a network with |S;| convolutional layers and ; is the i*" convolutional layers,

when the current round r < ’E—IT[", the cloud server will perform parameter reset for /;, where r, is a

hyperparameter. However, under the dynamic stabilization strategy, as the number of model layers
participating in Reset gradually decreases, FedPhoenix still maintains strong accuracy in scenarios
with a large number of clients.

S Convergence Analysis

To demonstrate the convergence of our FedPhoenix approach (assuming that the entire equipment is
involved), we present the corresponding convergence analysis. Inspired by the convergence analysis
of FedAvg [37], we present the following assumptions:

Assumption 1. Fori € {1,2,--- , K}, f; is L-smooth, where
IVFi(w) = VE(W)[| < LIw —w'|| vw,w'.
Assumption 2. The variance of stochastic gradients is bounded:
Ee|[VF(w;€) = VE(W)[|* < 0 Yk, w.
Assumption 3. The expected squared norm of gradients is bounded:
E[VE.(w; O <G* Vk,w.

Assumption 4. The divergence between local and global objectives is bounded:

K
= Y IVE(w) - VEW)F < 6
k=1



Based on the above assumptions and Lemmas 1 and 2 in B.2, we have Theorem 5.1:

Theorem 5.1 (Convergence Guarantee). The FedPhoenix algorithm achieves the following asymp-
totic convergence rate:

lim Dy = 0, @
r—Ts
k(2B vy 2)
E[F(wr)] — F* < — + — E||lw; —w* , 3
Plun)] - < 5 (22 + 4 Bl - ') ®

matching vanilla FedAvg’s rate while enabling transient exploration. Please refer to Appendix B for
the full proof.

6 Experiments

6.1 Experimental Settings

To validate FedPhoenix under diverse data heterogeneity scenarios, we partition each dataset via
IID sampling and non-1ID Dirichlet Distribution [38]. By default, we assumed that only 10% of the
clients participate in each FL. communication round. For all experiments, we employed the SGD
optimizer with a learning rate of 0.01 and a momentum of 0.5. Each FL training round utilizes a
batch size of 50 and 5 local training epochs. For data heterogeneity, we used the Dirichlet distribu-
tion [39] Dir(/3), where [3 is a hyperparameter to control the degree of data heterogeneity. Note that
a smaller 3 indicates a higher degree of data heterogeneity. We selected five baseline methods, i.e.,
FedAvg [ 1], FedProx [40], FedGen [23], ClusteredSampling [28], and FedMut [26]. Here, FedAvg
is the most classical FL method, while the other four methods are SOTA FL methods. Specifically,
FedProx is a global control variable-based method, FedGen is a KD-based approach, ClusteredSam-
pling is a device grouping-based method, and FedMut is a mutation-based method. For FedPhoenix,
we set the reset rate to 6 = 3—12 for both IID and non-IID scenarios with 3 = 0.6, and set § = ﬁ
for non-1ID scenarios with 5 = 0.3. All the experimental results were obtained from an Ubuntu
workstation with an Intel 19 CPU, 256GB of memory, and an NVIDIA RTX 4090 GPU.

Table 2: Test Accuracy Comparison for Both Non-IID and IID Scenarios Using Three DL Models

Hetero \ Accuracy of Different Approaches (%)
Settings | FedAvg | FedProx | FedMut [ CluSample | FedGen [ FedPhoenix

B =0.3 | 58.92+0.32 | 58.804+0.39 | 64.04+0.33 | 58.06+0.46 | 60.31+£0.23 | 80.124+0.54
CIFAR-10 B =0.6 | 64.44+0.15 | 65.114+0.04 | 67.78+0.09 | 63.554+0.19 | 65.56+0.15 | 82.2840.82
11D 64.12£0.03 | 64.75+0.17 | 67.61+0.02 | 64.85+0.01 64.47+0.12 | 84.85+0.07
[/ =0.3 | 41.45£0.13 | 40.23+0.41 | 44.45£0.08 | 39.60+0.16 | 40.82+0.24 | 56.58+0.20
Resnet CIFAR-100 B=0.6 | 42.98+0.08 | 43.88+0.07 | 46.53+£0.02 | 43.88+£0.10 | 42.13+£0.12 | 58.86+0.17
1ID 42.9740.05 | 42.3740.16 | 44.68+0.29 | 42.5940.14 | 42.59+0.19 | 62.5140.01
B =0.3 | 48.77£0.10 | 48.52+0.12 | 50.51£0.04 | 48.46+0.11 | 48.10+0.06 | 59.04+0.03
Tiny-ImageNet | 5= 0.6 | 48.9840.12 | 48.734+0.08 | 51.05+0.05 | 49.454+0.10 | 48.8740.05 | 59.74+0.09
1ID 49.56+0.05 | 49.1840.05 | 50.56+0.03 | 49.464+0.04 | 48.26+0.04 | 60.9610.12
B =0.3 | 7592+1.16 | 77.334+0.10 | 79.62+0.47 | 75.364+0.13 | 76.88+0.52 | 81.461+0.70
CIFAR-10 B =0.6 | 79.17+£0.06 | 78.234+0.09 | 80.45+0.19 | 78.164+0.37 | 79.64+0.05 | 83.2440.35
11D 80.85£0.01 | 80.16+0.01 | 81.463+0.01 | 79.98+0.01 80.4740.00 | 87.17+0.00
/=0.3 | 55.02£0.05 | 54.89+0.37 | 56.81+£0.50 | 54.56+0.54 | 54.53+0.74 | 58.84+0.07
VGG CIFAR-100 S =0.6 | 56.40+0.10 | 56.974+0.51 | 57.88+0.34 | 56.89 + 0.58 | 55.42+0.10 | 59.85+0.25
1ID 58.1340.01 | 58.59+£0.01 | 59.8840.01 | 58.53+£0.08 | 56.5440.08 | 61.00+£0.12
B =0.3 | 44.62£0.06 | 44.28+0.11 | 47.05£0.04 | 44.58£0.06 | 51.35+0.13 | 56.89+0.06
Tiny-ImageNet | § = 0.6 | 45.2140.03 | 45.134+0.12 | 47.9440.06 | 50.894+0.02 | 51.45+0.12 | 56.99+0.11
1ID 45.04+0.01 | 44.8540.11 | 47.00£0.02 | 51.864+0.21 | 51.89+0.09 | 58.1940.02
B=0.3 | 50.71£3.79 | 51.98+£1.47 | 56.224+1.10 | 50.29+£5.49 | 51.394+5.32 | 73.54+0.94
CIFAR-10 B =0.6 | 57.96+1.06 | 59.894+0.63 | 62.21+0.07 | 60.844+0.47 | 58.80+0.64 | 78.951+0.33
11D 60.914+0.13 | 61.18+0.15 | 64.404+0.06 | 62.73+£0.15 | 61.03+0.01 | 82.50+0.02
[ =0.3 | 35.62£0.26 | 36.184+0.22 | 38.49+0.14 | 36.15+0.31 36.05£0.15 | 51.77+1.00
MobNet-V1 CIFAR-100 £ =0.6 | 39.32+0.05 | 39.684+0.08 | 40.75+£0.08 | 39.234+0.10 | 38.09+0.10 | 53.13+0.14
11D 41.50+0.22 | 40.97£0.15 | 46.49+£0.18 | 40.8940.06 | 39.67£0.09 | 57.3540.11
B =0.3 ] 39.99+0.06 | 39.97+0.07 | 42.42+0.05 | 39.99+0.05 | 40.12+0.07 | 53.74+0.11
Tiny-ImageNet | = 0.6 | 41.15+0.04 | 41.204+0.06 | 43.694+0.04 | 41.461+0.03 | 41.1540.05 | 54.87+0.04
1ID 40.784+0.01 | 41.0540.03 | 43.54+0.02 | 40.2740.07 | 40.85+0.04 | 57.1440.07

‘ Model ‘ Dataset

6.2 Performance Comparison

Table 2 compares classification performance between FedPhoenix and the baseline models, evalu-
ated under both IID and non-IID conditions, across different datasets and Deep Learning (DL) mod-



els. From Table 2, we observe that FedPhnoeix achieves the best performance across all cases. We
observe that FedPhoenix achieves significant accuracy improvements in both IID and two non-IID
scenarios, demonstrating its effectiveness in data-heterogeneous settings. We can see that, compared
to cases using the VGG-16 model, FedPhoenix achieves greater improvement on the ResNet-18 and
MobileNet-V1 models. This is because our parameter reset strategy mainly operates on feature ex-
tractors. FedPhoenix performs better on networks that primarily rely on convolutional layers than on
dense networks like VGG-16, which have more fully connected layers. It is important to note that
FedPhoenix continues to outperform baseline models by a significant margin when using VGG-16.

6.3 Compatibility Analysis

Impact of Different Number of Activated Clients. We conducted experiments to examine the
impact of different numbers of activated clients (i.e., K € {1,10,20,50,100}) on FedPhoenix.
Figure 5 compares the training performance between FedPhoenix and the five baselines, considering
different numbers of activated clients. We observe that FedPhoenix still significantly outperforms all
baselines across all cases. In addition, we observe that when fewer devices are activated, FedPhoenix
exhibits significant fluctuations in accuracy during the early training stage, yet it still converges as
training progresses.
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Figure 5: Learning curves on ResNet-18 for different number of active clients with o = 0.3

Impact of the Total Number of Clients. To explore the impact of the total number of clients,
we conducted experiments with different configurations of the total number of clients (i.e., |C] €
{50, 100, 200, 500}). Figure 6 presents the learning curves of FedPhoenix and five baselines with
configurations of the number of clients. We observe that FedPhoenix still significantly outperforms
all baselines across all cases. We can still observe that when |C| = 500, FedPhoenix should spend
more training rounds to achieve the highest accuracy. This is mainly because, as the number of
clients increases, the amount of data available per client decreases, inherently limiting the quality
of updates each client can contribute. Nonetheless, FedPhoenix can maintain comparable accuracy
even with a large number of clients.
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Figure 6: Learning curves for different number of clients on CIFAR-10 dataset with 8 = 0.6

Compatibility with General Overfitting Mitigation Methods. To evaluate the compatibility of
FedPhoenix with general overfitting mitigation methods, we conducted experiments on FedPhoenix
and five baselines using two overfitting mitigation techniques in local training, all based on the
CIFAR-100 dataset. First, we added Dropout layers after each of the four blocks of ResNet18 and
before the fully connected layer, with a dropout probability of p = 0.5, as suggested in the original
Dropout paper [41]. The results, shown in Table 3, indicate that FedPhoenix achieves the best
performance in both IID and Non-IID scenarios. In both Non-IID (with 8 = 0.3) and IID settings,
FedPhoenix shows a performance discrepancy of merely 2.41%, in contrast to the baselines, which
range from 9.43% to 15.96%. This highlights its strong compatibility with Dropout and its superior
adaptability to Non-IID conditions. Additionally, we evaluated the performance of ResNet-18 with
weight decay, set to 0.0004. This value was chosen based on recommendations from [42]. As shown



Table 3: Test Accuracy Comparison for ResNet-18 with Dropout Layers on CIFAR-100

[ Hetero | FedAvg | FedProx | FedMut | CluSamp | FedGen [ FedPhoenix |
£=0.3 | 45.81+1.16 | 48.24+1.02 | 53.424+2.39 | 43.97+1.46 | 49.41+1.18 | 69.10+£0.35
£=0.6 | 54.43+0.29 | 52.76+0.41 | 53.46+0.66 | 54.19+0.74 | 58.15+0.80 | 69.03+0.08
11D 58.19£0.21 | 57.67£0.39 | 66.87£0.13 | 59.93£0.18 | 62.51£0.09 | 71.51£0.05

Table 4: Test Accuracy Comparison for ResNet-18 with a Weight Decay of 0.0004 on CIFAR-100
[ Hetero | FedAvg | FedProx | FedMut | CluSamp | FedGen [ FedPhoenix |
£5=0.3 | 41.73£0.41 | 41.23+0.35 | 44.59+0.25 | 41.75+0.09 | 43.10+0.09 | 56.73+0.45
£=0.6 | 44.07+£0.20 | 43.92+0.14 | 47.99+0.11 | 43.58+0.06 | 44.26+0.17 | 59.17+0.06

11D 43.104+0.02 | 42.914+0.03 | 47.184+0.08 | 43.644+0.03 | 43.95+0.03 | 63.08+0.06

in Table 4, FedPhoenix consistently outperforms others in both IID and Non-IID settings, further
confirming its compatibility with general overfitting mitigation methods.

6.4 Ablation Studies

Impacts of Hyper-parameters. We performed ablation studies to analyze the effects of hyperpa-
rameters on FedPhoenix, specifically examining different reset rounds r4 and reset rates 6 on the
CIFAR-10 dataset in a non-IID setting (8 = 0.3) with MobileNet-V1. Figure 7(a) presents the learn-
ing curves of FedPhoenix with different values of r,, where “FedPhoenix-1000” denotes the variant
of FedPhoenix with r; = 1000. We can observe that a small value of 7 results in performance
degradation of FedPhoenix. This is because a few rounds of resetting result in the model not yet
learning generalized features. In addition, we can find that as r increases, the performance of Fed-
Phoenix improves. Figure 7(b) presents the learning curves of FedPhoenix with different values of
6. We can find that a large value of 6 results in significant fluctuations in accuracy and a small value
of 6 results in the accuracy degradation. However, all the variants of FedPhoenix will eventually
converge and still outperform all the baselines.
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Figure 7: Learning curves of different ablation studies on CIFAR-10 with 5 = 0.3

Impacts of Sampling and Stabilization Strategies. To evaluate the effectiveness of FedPhoenix’s
sampling and stabilization strategies, we conducted ablation studies on the CIFAR-10 dataset under
a non-IID condition (with 3 = 0.3) using ResNet-18 as our model. We compared our sampling
strategy to the Kaiming normal distribution (a.k.a., Kaiming-Normal). Figure 7(c) demonstrates
that our sampling strategy outperforms the Kaiming-Normal approach. Additionally, Figure 7(d)
displays the learning curves for FedPhoenix alongside a variant that does not employ the stabilization
strategy. The variant without stabilization exhibited greater fluctuations and lower accuracy than the
full FedPhoenix implementation.

6.5 Computational Overhead Analysis

To provide a comprehensive view of our method’s efficiency, we analyzed its theoretical compu-
tational overhead in terms of Floating Point Operations (FLOPs). This analysis shows that our
server-side reset mechanism incurs a modest and manageable cost.

Key Assumptions and Our Method’s FLOPs. Our analysis is based on the following assump-
tions: computing the layer-wise mean j; and variance o7 requires approximately 2 and 4 FLOPs
per parameter, respectively. Sampling new parameters is conservatively estimated to take around
10 FLOPs per parameter. The additional overhead of our method occurs entirely on the server side.
This includes a one-time computation of statistics, which is estimated at about 61/ FLOPs (where
M represents the total number of model parameters), and a per-client reset operation, estimated at



Table 5: Comparison of per-round computational overhead (AFLOPs) relative to vanilla FedAvg.
Our method involves a modest server-only cost, unlike methods that require significant client-side
computation or struggle to scale with the total number of clients V.

Method Overhead Source & Location Per-Round AFLOPs
FedPhoenix (Ours) Server: Statistics computation & parameter sampling for K clients. M(6+ 100K)
FedProx Client: Proximal term computation in each of the P local steps. ~3PKM
FedMut Server: Global gradient aggregation & model mutation for K clients. M(1+2K)
ClusteredSampling  Server: Pairwise similarity computation between K models and all V clients. ~3KNM
FedGen Both: Multi-step generator training (Server) & knowledge distillation (Client). High*

Notations: M, model parameters; K, the number of participating clients per round; /N, the number of total
clients (N > K); P, the number local update steps; 6, perturbation ratio.

*FedGen’s overhead involves multiple forward/backward passes on both the client and the server, often exceed-
ing those of other methods by orders of magnitude.

approximately 106 M FLOPs for each client, with 6 being the perturbation ratio and K referring to
the number of clients. Consequently, the total overhead per round is given by M(6 + 100K).

Comparison with Baselines. Table 5 compares the additional computational overhead per round
(AFLOPs) of our method with the baseline methods. This comparison demonstrates that our server-
only overhead is highly competitive, as it avoids the significant client-side costs and the poor scala-
bility associated with the total number of clients (/V) observed in other methods. The results show
a clear efficiency advantage for our approach. For a ResNet-18 model (M ~ 11M) with K = 10
and 6 = 0.2, our total reset FLOPs are ~ 286M. On an NVIDIA A100 GPU, this adds a negligible
wall-clock time of less than 0.1 seconds per round. This is significantly more efficient than meth-
ods like FedProx or FedGen, which impose heavy computational burdens on resource-constrained
clients, and scales better than ClusteredSampling in scenarios with a large pool of total clients V.

6.6 Limitations

While the above experiment results are promising, certain limitations point to areas for future re-
search. First, our methods and experiments primarily focus on vision tasks and Convolutional Neu-
ral Networks (CNNs). It remains uncertain whether the FedPhoenix framework can be applied to
other domains, such as Natural Language Processing (NLP) tasks and Transformer architectures.
We plan to adapt the FedPhoenix framework for these models and tasks in our future studies. Addi-
tionally, the convergence analysis presented here is limited to scenarios where all devices participate
fully. The stage-wise perturbation decay mechanism indicates that the perturbation resulting from
the reset operation will eventually decay to zero, even with partial participation. This could lead to
convergence behavior similar to that of FedAvg; however, this theory needs comprehensive theoret-
ical analysis and experimental validation.

7 Conclusion

This paper introduces FedPhoenix, a novel FL framework that incorporates a heuristic parameter
reset strategy to improve the generalization of the global model in non-IID scenarios. By randomly
resetting certain subsets of global model parameters, FedPhoenix disrupts client-specific features
and promotes collaborative restoration of more generalized features across clients. Theoretical anal-
ysis shows that FedPhoenix converges effectively, and experiments conducted on three benchmark
datasets demonstrate its effectiveness.
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A Additional Experimental Results

A.1 Learning Curves of Different FL. Methods
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Figure 8: Learning curves comparison on CIFAR-10 with three network architectures under different
data distributions. From top to bottom: MobileNet-V1, ResNet-18, and VGG-16. Columns show
different Dirichlet concentration parameters (3 = 0.3, 0.6) and an IID setting

A.2 Supplementary Tables of Test Accuracy Comparison (Extended from Section 6.3)

We evaluated the performance of FedPhoenix and baseline methods using a ResNet-18 architec-
ture with consistent regularization measures (e.g., Dropout and Weight Decay) on both CIFAR-10
and Tiny-ImageNet datasets. Experimental results demonstrate that FedPhoenix consistently out-
performs all baselines, achieving state-of-the-art accuracy under identical experimental conditions.

Table 6: Comparison for ResNet-18 with Dropout layers on CIFAR-10 and Tiny-ImageNet

[ Dataset | Hetero | FedAvg [ FedProx | FedMut | CluSamp | FedGen [ FedPhoenix
£=0.3 | 59.89+14.77 | 61.07+3.76 | 66.60+0.27 | 58.95+£10.05 | 79.51+4.04 | 85.54+0.11
CIFAR-10 B=0.6 | 75.42E£351 | 73.05E1.61 | 80.23£1.38 | 70.71£9.84 | 85.06£2.35 | 87.56E0.27

11D 76.72+£0.47 | 78.92+0.21 | 82.37£0.20 | 75.74£0.32 | 89.69+0.05 | 90.46+0.02
£=0.3 49.81+0.31 | 50.554+0.10 | 52.04£0.07 | 50.71+0.07 | 50.35+0.09 | 57.68+0.05
Tiny-TmageNet | $=0.6 | 51.03£0.06 | 51.88£0.11 | 52.6720.07 | 52.05£0.04 | 52.25%0.04 | 59.54+0.04
11D 51.78+0.03 | 52.77£0.03 | 53.62+0.02 | 52.26£0.03 | 52.12+0.13 | 61.01£0.02
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Table 7: Comparison for ResNet-18 with Weight Decay = 0.0004 on CIFAR-10 and Tiny-ImageNet
[ Dataset [ Hetero [ FedAvg [ FedProx | FedMut | CluSamp [ FedGen [ FedPhoenix

£=0.3 | 60.25+6.12 | 60.51£0.29 | 64.13+£0.40 | 58.58+2.65 | 60.08+£2.11 | 79.20+2.51
CIFAR-10 £5=0.6 | 66.31+0.18 | 64.42+0.26 | 70.87£0.05 | 63.91£0.22 | 66.54+0.21 | 81.70+0.11

11D 65.28+0.03 | 64.75£0.04 | 67.82+0.04 | 65.984+0.02 | 67.38+0.03 | 85.24+0.01
£=0.3 | 51.25+0.10 | 51.014+0.08 | 52.57+0.14 | 50.62+0.13 | 51.304+0.09 | 58.34+0.10
Tiny-ImageNet | ($=0.6 | 51.82£0.24 | 51.91£0.14 | 52.924+0.18 | 52.05£0.15 | 52.89+0.08 | 59.30+0.10
11D 51.14+0.05 | 51.54£0.04 | 51.93+0.06 | 52.26+0.04 | 52.56+0.01 | 61.2940.02

A.3 Comparison of Generalization

According to the observations in [43, 44], the more generalized model is typically located in flat
areas rather than sharp areas. To evaluate the generalization of FedPhoenix, as shown in Figure 9,
we visualized the loss landscapes of the models trained by FedAvg and FedPhoenix on CIFAR-10
under IID and non-1ID (3 = 0.3) settings. We can observe that the global model trained by FedAvg
is located in a sharp area. In contrast, that trained by FedPhoenix converges to a significantly flatter
area across both settings, which demonstrates the good generalization ability of FedPhoenix.
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(a) FedAvg (IID) (b) FedPhoenix (IID) (c) FedAvg (0.3) (d) FedPhoenix (0.3)
Figure 9: Comparison of FedAvg and FedPhoenix loss landscapes

A.4 Performance under Extreme Data Heterogeneity

To thoroughly test the limits of FedPhoenix, we conducted experiments under two challenging sce-
narios: extreme skew in label distribution and extreme skew in feature distribution.

A.4.1 Performance under Extreme Label Skew

We evaluated our method against baselines on CIFAR-10 with highly skewed label distributions,
simulated by a Dirichlet distribution with a very small concentration parameter (5 = 0.01 and 5 =
0.1). As shown in Table 8, FedPhoenix demonstrates significant performance gains across various
model architectures (ResNet-18, VGG16, and MobileNet-V 1), especially in the most extreme non-
IID setting (8 = 0.01). This highlights its robustness and superior ability to mitigate client drift
when local data distributions are severely biased.

Table 8: Accuracy (%) on CIFAR-10 under extreme non-IID (label skew) settings. FedPhoenix
consistently outperforms all baselines, with particularly strong gains when 5 = 0.01.

Model Setting (5) FedAvg FedProx FedMut CluSamp FedGen FedPhoenix (Ours)
ResNet-18 0.01 2933 £0.30 27.88+0.41 2820+£0.33 28.53+0.26 29.46=+0.04 35.80 = 0.93
esivet- 0.1 4548 +£0.03 4541 +0.16 47.55+0.14 4556+0.36 4529 +7.33 55.80 + 0.11
VGG16 0.01 3224 £0.16 31.79+0.37 32.09£0.16 30.74 +0.57 32.03 £ 1.89 33.10 + 0.41
0.1 4775 £0.11 4826 +0.18 49.59 +0.07 47.72+0.05 49.30 £ 0.29 52.86 + 0.14

MobileNet-V 1 8(1)1 2224+0.16 21.79 £037 22.09+0.16 20.74+£0.57 21.01 £1.89 27.56 + 0.57

4775 £0.11 4826+0.18 49.59+£0.07 47.72+£0.05 37.93+0.29 50.36 = 0.11

A.4.2 Performance on Extreme Feature Skew (Office-31 Dataset)

To simulate a scenario where clients’ feature spaces are disjoint, we used the Office-31 dataset, a
benchmark for domain adaptation. We assigned each of the three domains (i.e., Amazon, DSLR,
Webcam) to a separate client. This setup mimics a federated environment with extreme feature
skew. The results in Table 9 show that FedPhoenix achieves a substantial accuracy improvement
over all baselines. This empirically validates that our method effectively facilitates collaboration
and knowledge transfer even when clients’ data come from entirely different distributions.
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Table 9: Accuracy (%) on the Office-31 dataset, partitioned by domain to simulate extreme feature
skew. FedPhoenix significantly outperforms other methods.

Dataset FedAvg FedProx FedMut CluSamp FedGen
Office-31 47.84 £1.78 48.12+1.68 4399+1.59 4642+1.83 49.13+2.26

FedPhoenix (Ours)
54.17 + 0.96

A.5 Ablation Studies on the Reset Operation

We conducted a series of ablation studies to justify the core design choices of our reset operations.

A.5.1 Target Layers: Convolutional vs. Fully-Connected

To validate our rationale for exclusively targeting Convolutional (Conv) layers, we compared it
with applying the Reset Operation to Fully-Connected (FC) layers only or to both. The results in
Table 10 confirm our hypothesis. Resetting only Conv layers yields the best or highly competitive
performance, especially in the non-IID setting. Conversely, resetting FC layers alone is detrimental,
causing a significant drop in accuracy. This supports our design choice to enhance the shared feature
extractor (Conv layers) while preserving the stability of the classifier (FC layers).

Table 10: Ablation study on the target layers for the Reset Operation (ResNet and VGG on CIFAR-
10). Results show that resetting only convolutional layers is the most effective strategy.

Model Setting Both Conv & FC  Conv Layers Only (Ours) FC Layers Only

ResNe  Non-IID (8=0.3) 7856+ 1.08 80.12 + 0.54 57.17 +0.71
SN 1p 85.31 4 0.01 85.06 + 0.03 66.55 + 0.03
vaog NonlID(8=03)  8221+0.28 81.46 + 0.70 76.81 4+ 0.27
11D 87.17 + 0.00 87.17 + 0.00 78.92 + 0.03

A.5.2 Reset Granularity: Full vs. Partial Kernel Reset

We investigated whether resetting an entire kernel is superior to resetting only a fraction of its most
significant parameters (by magnitude). We compared our full-kernel reset with partially resetting
the top 1/3 or top 2/3 parameters within each selected kernel. As shown in Table 11, the original
FedPhoenix approach of resetting the entire kernel as a single functional unit consistently outper-
forms partial resets. We hypothesize that a full reset more effectively promotes feature exploration
and diversity.

Table 11: Ablation study on reset granularity (Non-IID CIFAR-10, ResNet-18). FedPhoenix’s full-
kernel reset is compared against resetting only the top-magnitude parameters within a kernel.

Setting (5) Top-1/3 Reset Top-2/3 Reset Top-1/3 (Fixed ) Top-2/3 (Fixed §) FedPhoenix (Full Kernel)

0.3 7720+ 1.87 7847 £1.32 76.86 + 0.98 79.55 £0.95 80.12 £ 0.54
0.6 80.68 = 0.17 80.90 £+ 1.06 80.35 £ 0.05 81.76 £ 0.78 82.28 + 0.82
1ID 83.01 £0.01 84.78 £ 0.02 84.26 +0.01 84.63 +0.01 84.85 + 0.07

A.5.3 Sampling Distributions for Kernel Initialization

To test the robustness of our method to the choice of sampling distribution, we conducted an exten-
sive study comparing our proposed adaptive Normal distribution (Adp_Normal) with a wide range
of other common initialization methods. All distributions were adapted using the target layer’s
statistics. The results in Table 12 show that FedPhoenix performs consistently well across all tested
distributions. This demonstrates that the core strength of our method lies in the adaptive reset strat-
egy itselfre-sampling based on the layer’s current statistical propertiesrather than a dependency on a
specific distribution.
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Table 12: Ablation study on sampling distributions for the Reset Operation (ResNet-18, CIFAR-10).
Performance is robust across a wide variety of distributions.

Non-IID Level | Adp_Normal Adp_Uniform Kaiming Normal Kaiming Uniform Truncated Normal Xavier Normal Xavier_Uniform Orthogonal Laplace

B=03 80.12+0.54  80.02 £ 0.41 79.34 +0.64 77.58 +£2.34 79.42 + 1.45 79.47 £ 0.59 78.87 +2.01 80.00 +0.16  78.46 + 0.34
8=0.6 82.28 4 0.82 81.86 & 0.24 79.97 £0.17 80.34 +0.41 81.70 £ 0.09 80.60 & 0.21 81.03 £ 0.60 82.68 +0.11 81.74 4+ 0.07
1D 85.06 & 0.03 85.25 4 0.04 84.70 £ 0.01 84.52 4+ 0.03 85.08 £ 0.02 85.03 £ 0.02 84.75 £+ 0.01 85.42+0.03 85.00 & 0.02

B Convergence Analysis

B.1 Notations and Perturbation Mechanism

Let ¢ index the local SGD iteration, and let v; denote the intermediate model after one SGD step.
Let T' = n x E represent the total number of iterations. For layer /; with n; kernels, define:

* |S;| represents the total number of feature layers.

* Perturbation ratio 6 € (0, 1), resetting |n; | kernels per round.

o p; = E[W,,], 02 = Var(W,,) for layer parameters, where p1; and o? are the statistical mean
and variance computed from the current parameters of layer ;.

¢ Perturbation operator A;, ~ N(j;,0?) for resampled kernels, indicating that new kernel
parameters are sampled from a normal distribution with mean y; and variance o2.

The layer-wise perturbation variance is derived as follows. For each kernel j (where j =
1,2,...,[0n;]) that is reset in layer [;, the new parameter value w"®" is sampled from N (y;, 0?),
while the original parameter value is w;. The perturbation for a single kernel is w}*™ — wj, and the
expected squared perturbation is:

E[(w]™ —w;)?] = E[(w]™ — p; + pi — w;)?]
= E[(w}™ — 1)?] + E[(w; — )] + 2E[(w}™ — i) (i — w;)]
= E[(wj™ — 1s)*] + E[(w; — p)?] Q)

o7 + E[(w; — pi)?]. Q)

Here, E[(w; — u;)?] represents the variance of the original parameter w; around the layer mean
;. Since o2 is the statistical variance computed from all parameters in layer [;, we approximate
E[(w;j — p;)?] ~ o? for each parameter w; in the layer. This approximation is reasonable due to
the large number of parameters in typical neural network layers, where the individual parameter
variance is close to the layer-wise statistical variance. Thus, we have:

E[(w;™ — w;)?] = of + 07 = 207. (6)

For the entire layer [;, with |6n; | kernels being reset, the expected perturbation variance is:

Len,J
EAL P =E | Y (™ —w;)?
j=1
~ Z 202 = 2|0n;|o? < 20n,;02. @)
j=1

B.2 Key Lemmas

Lemma 1 (Client Drift Bound). Following the proof structure of Lemma 3 in [45], we bound the
expected client drift as:

K [si]
EY " fwf —wl|* < 407 (B —1)°G* + 40> n,o7. (8)
k=1 i=1
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Proof. Let A%) = Z‘sll A( ) represent the total perturbation applied to client k’s model across all
layers due to kernel resettmg at the start of a communication round. The difference between the local
model wf of client k and the global model w; can be decomposed into contributions from the initial
perturbation and the local SGD updates. Specifically, starting from the perturbed initialization, we
have:

E-1 2

Z NitreVEy (wareﬂ §t+e)

e=0

Jwf — wel|* < 2| AR + 2 ©)

Taking expectations on both sides:

* For the perturbation term, using the layer-wise perturbation variance derived earlier (Equa-
tion 7), we have:

1] 1] st st

E|A®|2 = E ZA}f < ZEHA(’“)HQ < ZQGn o2 = 2ezn 0
=1

* For the local SGD update term, under Assumption 3 (bounded gradient norm), we follow
the standard analysis in [45]:

E-1 2

Z Nere VE (Wi e Erve)

e=0

< 2m}(E —1)2G>.

Combining these bounds into Equation 9, we obtain:
[si]
Ellwf — w|> <220 niof +2- 27 (E - 1)°G
i=1

[si

=40 o} + 407 (E —1)°G>. (10)
i=1
Summing over all clients £ = 1,2, ..., K, and noting that the bound holds uniformly for each client,
we arrive at the desired result:
K i
EY " fwf —wel|* < 4n7(E —1)°G* + 40> n,o}. (11)
k=1 i=1
O
Lemma 2 (One-Step Descent). Let k = L/u. For a learning rate n, = (ﬁ/ o) satisfying the
conditions in [45], we have:
[s1]
Ellors — w2 < (1= new)Ellwy —w* |2+ 07 [ B+40 nio? | | (12)

i=1

where B = Zi,vzl pioi +6LI 4+ 8(E — 1)2G2.

Proof. The proof follows the structure of Lemma 1 in [45], which analyzes the one-step descent of

SGD in the federated setting under Assumptions 1 (L-smoothness) and 4 (strong convexity). The key

difference in FedPhoenix is the additional perturbation introduced by kernel resetting, which affects

the client drift term. From Lemma 1 in the standard FedAvg analysis, the one-step descent bound

includes terms related to variance, data heterogeneity, and client drift. Incorporating the modified
| 2

client drift bound from our Lemma 1, the additional perturbation variance term 46 Z‘Sll n;o; is
added to the original bound B. Thus, we obtain:
s
Ellopss — 'l < (1= nip)Ellwy — o | + 72 | B+403 nio? |, (13)
i=1
where B = Zszl pioi+6LT +8(E —1)2G? captures the standard variance and divergence terms
from FedAvg. O
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Theorem B.1 (Global Convergence). With v > max{8k, E} and a decaying perturbation ratio
0(r), the expected optimality gap of the global model after T iterations satisfies:

« K 2(3 +4D9>
BiF(wr)] - 7 < o

+ %Eﬂwl _ w*||2) , (14)

Sl‘

where Do = 6.7 n;o? represents the perturbation variance term.

|
i

Proof. The proof follows the standard convergence analysis of FedAvg as in [45], leveraging the
one-step descent bound from Lemma 2. Starting from the recursive inequality:

|si]
Ellvigr — w*||* < (1 = mp)Ellw, — w*|> + 07 | B+40Y nio? |, (15)
i=1

we define A; = E|lw; — w*||? and 1, = u(%&-t) By induction and the choice of v > max{8«, E'},
which ensures 7; < ﬁ and n; < 214, wWe can telescope the inequality over 7' iterations. Noting

that 46 lell n;o0? = 4Dy, the additional perturbation term is incorporated into the final bound.
Using the L-smoothness of F'(-), the optimality gap is bounded as:

L K (2(B+4D9)
7 <
v+ T

where k = L/p. O

E[F(wr)] - F* < 5

+ EE|w; - w*||2) . e

B.3 Stage-wise Perturbation Decay

To mitigate the impact of perturbation on convergence in later stages, we adopt a stage-wise decay
strategy for the perturbation ratio over communication rounds. For a predefined number of commu-
nication rounds r during which Reset perturbations are applied, the perturbation ratio 6(r) at round
r is defined as:

O(r)=2606y |1 LLLSHJ 17
(r) =00 _W ) amn

where 6 is the initial perturbation ratio, and |.S;| represents the total number of convolutional layers
in the model. This ensures that () — 0 within r, rounds of applying perturbations. Substituting
st

. 2 . .
.1 n;o; dimin-

the decaying 6(r) into Theorem B.1, the perturbation variance term Dy = 6(r) >,

ishes over time:

lim Dy = 0, (18)
Ty
. k(2B | vy 2
E[F —F < — + —E —w* . 1
(Plor)] - < 0 (224 D - up?) (19)

This recovers the original FedAvg convergence rate with O(1/T') dependency as the perturbation
effect vanishes.

C Discussions

C.1 Privacy Preserving

While the primary objective of FedPhoenix is to enhance model generalization and robustness, its
unique parameter reset mechanism also offers notable privacy considerations, even though it does
not provide formal guarantees like (e, ¢)-Differential Privacy. The core mechanism, which resets a
fraction (0) of convolution kernels based on the layer’s statistics, introduces stochasticity into the
global model. This inherent randomness increases the effort an adversary must expend to success-
fully carry out attacks such as model inversion, as the model parameters are less deterministic across
communication rounds.
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Crucially, FedPhoenix is fully compatible with standard privacy-enhancing technologies like secure
aggregation. Since the server-side reset operation is based solely on the aggregated global model,
secure aggregation protocols can be seamlessly applied to protect individual client updates from
being inspected by the server.

Furthermore, we can significantly strengthen privacy protection, particularly against a malicious
server, by shifting the reset operation to the client side. In this configuration, each activated client
receives the same global model and then independently performs the parameter reset locally. This
creates a unique training starting point for each client. Consequently, even a malicious server can-
not know the exact initial model from which a client’s update was generated, which substantially
complicates server-side reverse engineering or inference attacks targeting a specific client’s data. As
our computational analysis demonstrates, the overhead of the reset operation is minimal, making it
entirely feasible for individual clients to bear this cost.

For future work, we plan to quantitatively evaluate these inherent privacy benefits. To achieve for-
mal privacy guarantees, FedPhoenix can be further integrated with techniques such as Differential
Privacy, for instance, by adding calibrated noise during the parameter sampling process. This would
create a comprehensive framework that balances performance, robustness, and provable privacy for
secure deployment in real-world federated learning scenarios.

C.2 Limitations

Although the FedPhoenix method effectively mitigates overfitting issues introduced by distributed
data, this work still has several limitations that warrant further exploration in future research. First,
the proposed method and experimental design primarily focus on vision tasks and convolutional
neural networks (CNNs), which are commonly studied in federated learning. Consequently, its
applicability to Transformer architectures and natural language processing (NLP) tasks remains un-
verified. In subsequent work, we plan to extend the FedPhoenix framework to accommodate these
emerging models and tasks, thereby improving its generalization capability.

Additionally, in the Convergence Analysis section, we only discuss the scenario of full device partic-
ipation. However, considering the Stage-wise Perturbation Decay mechanism, even in partial device
participation scenarios, the perturbation introduced by the reset operation will gradually decay to
zero. This suggests that the convergence behavior of FedPhoenix may be similar to that of FedAvg,
though this hypothesis requires more detailed theoretical analysis and experimental validation to
confirm.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
papers contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses the limitations in Section ??
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The paper provides the proofs of theoretical results in Section B
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all the necessary information to reproduce the main ex-
perimental results.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides code in supplemental material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper provides the experimental settings in Section 6.1 .
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviation as a measure of variability for the exper-
imental results that support the main claims.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides the information about compute resources in Section 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper uses popular datasets and models. We cites the original paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: No new assets are released in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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