
Asymmetric REINFORCE for off-Policy
Reinforcement Learning:

Balancing positive and negative rewards

Charles Arnal
FAIR, MSL, Meta

Gaëtan Narozniak
FAIR, MSL, Meta

Vivien Cabannes
FAIR, MSL, Meta

Yunhao Tang
Anthropic (ex-Meta)

Julia Kempe
FAIR, MSL, Meta

NYU Courant Institute and CDS

Rémi Munos
FAIR, MSL, Meta

Abstract

Reinforcement learning (RL) is increasingly used to align large language models
(LLMs). Off-policy methods offer greater implementation simplicity and data
efficiency than on-policy techniques, but often result in suboptimal performance. In
this work, we study the intermediate range of algorithms between off-policy RL and
supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm,
where the advantage is defined as A = r − V , with r a reward and V some
tunable baseline. Intuitively, lowering V emphasizes high-reward samples, while
raising it penalizes low-reward ones more heavily. We first provide a theoretical
analysis of this off-policy REINFORCE algorithm, showing that when the baseline
V lower-bounds the expected reward, the algorithm enjoys a policy improvement
guarantee. Our analysis reveals that while on-policy updates can safely leverage
both positive and negative signals, off-policy updates benefit from focusing more
on positive rewards than on negative ones. We validate our findings experimentally
in a controlled stochastic bandit setting and through fine-tuning state-of-the-art
LLMs on reasoning tasks.

1 Introduction

Reinforcement Learning (RL) has long been applied to align Large Language Models (LLMs) to
users’ preferences using human feedback [Christiano et al., 2017, Ouyang et al., 2022, Dubey et al.,
2024]; more recently, it has been used to augment models in more general ways, and in particular to
develop their reasoning, coding and tool use capacities [Shao et al., 2024, Guo et al., 2025, Meta,
2025, OpenAI, 2025]. As RL theoretically allows models to learn beyond the limits of existing
training data (see e.g. Silver et al. [2016], AlphaEvolve-team [2025]), we can expect it to play an
increasingly crucial role in years to come as models begin pushing scientific boundaries. So far,
on-policy techniques, in which models are trained on samples that they generated, have been preferred
to off-policy methods, in which models are trained using samples generated from another source,
which can e.g. be an outdated version of themselves [Tang et al., 2024]. However, strictly on-policy
RL can be difficult or even impossible to implement in many use cases; it also suffers from sample
inefficiency, as each trajectory generated cannot be used for more than a single gradient update. This
makes some degree of off-policyness unavoidable, and in fact desirable.

As such, we are interested in the study of off-policy RL techniques, with LLMs finetuning as our
motivating example. Various sophisticated methods exist that deal with off-policyness; while classical
solutions based on Q-learning or value functions often struggle in the context of language modeling

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

[Zheng et al., 2023], losses based on importance sampling correction have yielded good results,
though the variance of the importance ratio can be problematic [Precup et al., 2001, Schulman et al.,
2017]. In this paper, we consider a simple alternative and study the behavior of a gradient ascent on
the expected objective

J(π) = Ey∼µ [log π(y)(r(y)− V)] (1)

as a function of the baseline V ∈ R, where µ and π are the behavior (sampling) and current policies
respectively and r(y) is the reward of trajectory y. We call this algorithm Asymmetric REINFORCE
(AsymRE). It is asymmetric in the following sense: higher values for V put more emphasis on pushing
down the probability of trajectories with low rewards (i.e. “failures”) while mainly ignoring high
rewards (i.e., "successes"), whereas a small V results in a more positive approach, where the model
mostly increases the probability of successful trajectories while mainly ignoring failures. Our core
intuition is that while a model can learn from both its successes and failures while training on-policy,
it has less to learn from the failures of another model (i.e., when off-policy), which it might not be
likely to produce in the first place, and as such should focus more heavily on the positive examples
while training off-policy.

Our key contributions are as follows.

• In Theorem 4.2, we show that the AsymRE algorithm applied in a tabular setting converges
to a limit policy π∗

µ,V which we characterize. We show that when the baseline V is smaller
than the expected reward V µ of the behavior policy µ, the limit policy π∗

µ,V improves upon
the behavior policy µ, while maintaining a wide support. When V becomes larger than V µ,
a phase transition occurs and the support of π∗

µ,V shrinks dramatically.

• In Theorem 4.3, we study the iterative application of AsymRE in a policy improvement
scheme when V < V µ. In combination with Theorem 4.2, we see that letting V ≥ V µ

results in premature convergence to a potentially suboptimal policy.

• We then verify our findings in a controlled yet rich setting, that of multi-armed bandits.

• Finally, we validate our results on a larger scale by training Llama 8B and Qwen 3B models
on real-world data with AsymRE.

These results confirm our initial intuition that in an off-policy setting, conservatively picking a small
baseline is the correct strategy.

2 Related works

Reinforcement learning for LLMs. Reinforcement learning methods are rapidly becoming the
dominant paradigm for fine-tuning LLMs on complex tasks, such as mathematical reasoning and
coding. It benefits from certain key advantages over supervised training methods: e.g., models
can generate their own training samples in the absence of preexisting data of high enough quality.
Reinforcement Learning from Human Feedback (RLHF) has emerged as a cornerstone methodology
for aligning large language models with human values and preferences [Achiam et al., 2023]. Early
systems [Ouyang et al., 2022] turn human preference data into reward modeling to optimize model
behavior accordingly. DPO [Rafailov et al., 2023] has been proposed as a more efficient approach
that directly trains LLMs on preference data. However, as LLMs evolve during training, continuing
training on pre-generated preference data becomes suboptimal due to the distribution shift from
off-policy data. Thus, the need arises for additional data to be collected during mid-training—a key
phase in the iterative fine-tuning of LLMs [Touvron et al., 2023, Bai et al., 2022, Xiong et al., 2024,
Guo et al., 2024]. One line of works aims to mitigate by merging on-policy and off-policy data to
achieve improved performance or alignment [Gu et al., 2017, Feng et al., 2025].

In verifiable domains, recent methods like GRPO [Shao et al., 2024, Guo et al., 2025] have shown
strong performance by leveraging binary reward signals. GRPO is a REINFORCE-style algorithm
[Williams, 1992] that incorporates negative examples, increasingly recognized as an important
ingredient for efficient learning [Ahmadian et al., 2024]. At its core, REINFORCE is an on-policy
algorithm, with theoretical guarantees only when the reference model matches the trained model,
limiting the user’s ability to reuse past data. However, training is rarely truly on-policy: data is
generated in a parallel, asynchronous way. Moreover, given the computational cost of rollouts, reusing
of trajectories is often desirable.

2

Off-policy approaches. While off-policiness is well-studied in RL [Degris et al., 2012], it is not the
case in the context of LLMs. Algorithms like REINFORCE tend to become unstable with off-policy
data [Pang and He, 2021]. One way to mitigate these issues is to introduce KL-regularization towards
the data-generating policy or early stopping, which effectively diminish the influence of negative
trajectory and the amount of off-policy learning. Q-learning [Watkins and Dayan, 1992] is also able
to handle off-policy data but is less suitable for deployment in LLMs. Perhaps the most common
technique to address off-policy distribution shift is importance sampling in conjunction with clipping
in REINFORCE-style algorithms [Schulman et al., 2017, Munos et al., 2016, Espeholt et al., 2018].
In practice, though, it is well-known that importance sampling is plagued with excessive variance
[Precup et al., 2001]. Other approaches to off-policy RL use a consistency condition derived from the
explicit solution of the KL-regularized policy optimization problem, which could be enforced on any
data, off- or on-policy, see e.g., Rafailov et al. [2023], Richemond et al. [2024], Tang et al. [2025],
Cohen et al. [2025]. Concurrent work to ours [Roux et al., 2025] introduces an asymmetric variant of
importance sampling to speed up learning, noting in passing that the baseline V in REINFORCE
plays a role in connection with negative samples in off-policy data. Zhu et al. [2025] also investigates
the importance of negative and positive samples, though in an on-policy setting.

3 Setting

In reinforcement learning (RL), the task is to maximize the expected reward

V π def
= Ey∼π [r(y)] (2)

of a trainable current policy π given some reward function r. This is typically done by iteratively
updating π using training samples (y, r(y)), where the trajectories y are sampled from some behavior
policy µ; here, each trajectory y potentially represents a whole sequence of states (or observations)
and actions taken according to the policy, with partial rewards reflected in r(y). If the training
samples y are drawn from the current policy, i.e. if µ is kept equal to the evolving policy π, it is called
on-policy RL; otherwise, it is off-policy RL.

In the absence of a superior behavior policy µ from which to sample, algorithms that are as on-policy
as possible, i.e. in which µ is kept as close to the trained policy π as possible by frequently updating
it, is usually preferable for LLM training [Tang et al., 2024]. However, on-policy methods suffer from
various limitations. Though conceptually simple, they pose delicate engineering problems due to
the need for asynchronous cooperation among multiple GPUs, often leading to suboptimal resource
utilization. Furthermore, for µ to remain equal to π, the algorithm must wait for the current batch of
trajectories to be generated and evaluated using the reward function r, and for π (and µ) to be updated,
before a new batch can be produced. In many common settings, such as code generation, agentic
interaction with the web or human feedback, rewards can take minutes or even hours to be produced;
this is even more true for embedded agents interacting with the physical world. Fully on-policy
methods can become extremely inefficient or even infeasible due to this. Finally, a strictly on-policy
algorithm can only use the trajectories it generates for a single policy update before having to discard
them, whereas one might want to reuse samples generated earlier during training, or even coming
from the training of another model. This makes them very sample-inefficient, and consequently
compute-inefficient, as trajectories are often costly to generate.

This makes off-policy algorithms an attractive alternative [Rafailov et al., 2023, Richemond et al.,
2024, Tang et al., 2025, Cohen et al., 2025]; we are in particular interested in off-policy RL with
delayed updates, in which the actor policy µ is simply an outdated version of the current policy π, and
is updated (by setting it equal to π) every N training iterations of π. Common off-policy algorithms
typically apply importance sampling correction to obtain unbiased estimates of the objective function
[Schulman et al., 2017, Espeholt et al., 2018, Tang et al., 2025]. Both approaches have drawbacks; in
this paper, we investigate a third method for handling off-policy data.

Context-dependent tasks and LLMs. Context-dependent tasks, such as the ones for which LLMs
are designed, add another layer of subtlety to the study of RL algorithms. In the setting above, we
considered a single objective function, namely the expected reward from Equation 2. Conversely,
the behavior policy π of an LLM typically has to generate responses y ∼ π(·|x) for various prompts
x ∼ ρ sampled from some task distribution ρ, and its goal is to maximize the expected context-
dependent reward maxπ Ex∼ρ,y∼π [r(x, y)]. If each prompt x defined an entirely distinct problem,

3

then whatever RL algorithm we choose to apply would only see a handful of trajectories associated
to this problem, and learning would be essentially impossible. This is not so, as the regularities of
language and of LLMs’ architectures make it so that similar prompts, such as “Please solve 2 + 3 = ?”
and “Compute 2 + 3 = ?”, yield similar problems and conditional distributions, and training on one
question helps with the other. This additional structure on the space of conditioning prompts plays a
key role in enabling LLM training, yet is rarely discussed in RL literature.

4 Asymmetric REINFORCE

We set ourselves in the general RL setting described earlier in which the goal is to maximize the
expected reward V π = Ey∼π [r(y)] of our current policy π. For that purpose, one may use a
simple on-policy Policy Gradient (PG) algorithm, REINFORCE Williams [1992], which updates the
parameters of the policy in the direction

Ey∼π [∇ log π(y) (r(y)− V)] , (3)

where V ∈ R is a value baseline and the gradient is taken with respect to some differentiable
parameters. In practice, V is often set to be some learnt approximation V ≈ V π of the value function
of the current policy, or to be the empirical average V = 1

n

∑n
i=1 r(yi) of the rewards obtained when

generating several responses yi (see e.g., Ramesh et al. [2024], Shao et al. [2024]).

In the on-policy setting, the role of the value baseline is simply to offer possible variance reduction
of the PG update: the expected behavior of the algorithm during the learning process, as well as
its asymptotic performance, are not affected by the choice of this baseline. On the contrary, in
the off-policy case, the choice of the baseline impacts the expected behavior of both the algorithm
and the asymptotic policy. To analyze this behavior, we consider the simplest policy gradient
algorithm, namely REINFORCE, applied to the off-policy setting. We call this algorithm Asymmetric
REINFORCE (or AsymRE in short):

Definition 4.1 (Expected AsymRE and AsymRE). Given a behavior policy µ and a baseline V ∈ R,
the expected Asymmetric REINFORCE is a gradient ascent in the direction

Ey∼µ [∇ log π(y) (r(y)− V)] ,

The Asymmetric REINFORCE is its stochastic counterpart using samples drawn from µ.

This corresponds to a stochastic gradient ascent on the expected objective:

J(π) = Ey∼µ [log π(y) (r(y)− V)] . (1)

Note that it does not coincide with the expected reward of π, which is our true objective. As it does
not involve any off-policy correction, such as importance sampling, we do not expect this algorithm
to converge to an optimal policy in general. However we will see that even off-policy this algorithm
offers policy improvement guarantees (under some condition on the choice of the baseline V).

Intuition The baseline V can be understood as a way to control the emphasis put on the good
trajectories (those with high rewards) versus the bad ones (low rewards). If V is large, greater
(absolute) weight is given to gradient updates from bad trajectories, which are pushed down, and
vice versa, if V is low, more weight is given to push-up the good ones. This matters not in an
on-policy setting, since the baseline does not introduce bias to the expected dynamics. However, in
the off-policy setting, the choice of the baseline in AsymRE changes the expected behavior of the
policy gradient and provides us with a way to introduce some asymmetry in our treatment of good
versus bad trajectories. In the simplest of settings, in which rewards are binary r(y) ∈ {0, 1}, letting
V = 0 is equivalent to applying supervised-learning on good trajectories while ignoring the bad
ones. Conversely, setting V = 1 means learning from mistakes only, while ignoring good rewards.
Intuitively, we expect a comparatively lower baseline to be more beneficial in an off-policy setting, as
the failures of another policy are less informative for the current policy; we explore this intuition in
the remainder of this article.

Dynamics of AsymRE in a tabular setting. Our first result characterizes the dynamics and limits
of the AsymRE algorithm in the case of a tabular softmax policy representation.

4

Theorem 4.2. [Analysis of expected AsymRE for tabular softmax policies] Let Y be a finite set,
µ be some behavior policy whose support is Y , and consider a softmax policy representation

π(y)
def
= el(y)/

∑
y′ el(y

′) on Y , where the logits {l(y)}y∈Y are the policy parameters. We consider
the expected AsymRE algorithm with respect to the logits initialized at some π0 with successive
iterates πt

µ,V and learning rate η as per Definition 4.1. Then the AsymRE algorithm converges to a
limit distribution π∗

µ,V . The baseline parameter V controls the nature of the limit distribution:

• If V < V µ, then π∗
µ,V is defined by

π∗
µ,V (y) =

(µ(y)(r(y)− V)− τµ,V)
+

V µ − V
,

where τµ,V is uniquely characterized by the constraint
∑

y∈Y(µ(y)(r(y)− V)− τµ,V)
+ =

V µ − V, and x+ = max(x, 0).

• If V = V µ, then π∗
µ,V is defined by its support

supp(π∗
µ,V) = argmax

y∈Y
µ(y)(r(y)− V),

and by π∗
µ,V (y)/π

∗
µ,V (z) = π0(y)/π0(z) for any y, z ∈ supp(π∗

µ,V).

• If V > V µ, then π∗
µ,V can charge any of the elements in the set{

y
∣∣ min

z∈Y
µ(y)(r(y)− V)− µ(z)(r(z)− V) + V − V µ > 0

}
,

depending on the initial condition π0.

As a consequence, supp(π∗
µ,V1

) ⊆ supp(π∗
µ,V2

) when V2 ≤ V1 ≤ V µ.

The proof of this theorem can be found in Appendix A.

Comparison to on-policy REINFORCE: The result in Theorem 4.2 is somewhat surprising in the
fact that its behavior differs greatly from the on-policy REINFORCE (3). The stable points of the
on-policy REINFORCE algorithm are the optimal policies, i.e. those whose support is included in
argmaxy r(y), and as mentioned above, are independent of the choice of the baseline V . However,
in the off-policy REINFORCE algorithm, the role played by the baseline V is crucial. Not only does
it affect training dynamics, but also the final policies. Indeed, the size of the support of the limit
policies π∗

µ,V of AsymRE decreases as V increases, while for V = miny r(y) the support is Y itself.
Thus, the higher V , the more deterministic the resulting policies. Moreover, there is an abrupt change
of behavior as V becomes equal to or larger than V µ: at this tipping point, the support suddenly
shrinks, and generically becomes a singleton. This phase transition has important consequences
which we detail below.

Policy improvement scheme with AsymRE: Let V < V µ, and let us define TV the operator that
takes as input a behavior policy and returns the limit policy of the AsymRE algorithm (as defined in
Theorem 4.2), i.e.:

(TV µ)(y) = π∗
µ,V (y) ∝ (µ(y)(r(y)− V)− τµ,V)

+ for all y ∈ Y.

Note that this limit policy does not depend on the choice of initial policy π0. We now consider
the repeated application of TV in a policy improvement scheme, in which the behavior policy µt+1

of each iteration is the limit policy TV µt of the previous iteration. The expected dynamics of this
process are detailed in the following theorem, whose proof can be found in Appendix A.
Theorem 4.3. [Policy improvement dynamics] Let µ be any policy with support Y , and let V < V µ.

1. Each application of the AsymRE algorithm increases the expected reward: V TV µ ≥ V µ.

2. The sequence of expected rewards V (TV)nµ converges to some limit expected reward V ∞.

Let Y ∞ def
= {y : r(y) = V ∞}. Then the mass of (TV)nµ concentrates exponentially fast

on Y ∞, i.e. ∑
y ̸∈Y ∞

((TV)nµ)(y) ≤ cn

for some c < 1.

5

3. There exists V0,µ such that the corresponding limit reward is optimal (i.e. V ∞ =
maxy∈Y r(y)) if and only if V < V0,µ.

In practice, the number of training steps in each iteration of a policy improvement scheme is finite;
the more steps there are, the more off-policy the training. As the number of steps within an iteration
increases, the current policy gets closer to the limit policy, whose support is always smaller than that
of the initial policy, and smaller the larger V is. This can lead to the premature elimination of points
y with high reward. Hence the more off-policy the training, the smaller the baseline needs to be to
prevent premature convergence to a suboptimal solution. Interestingly, it can be shown that one can
be over-conservative: letting V be very small results in much slower convergence rates. Thus there is
a trade-off between the speed of convergence and the risk of reaching a suboptimal limit policy.

Note that if V ≥ V µ, then the first point of the theorem does not hold any more and Ey∼π∗
µ,V

[r(y)]

can be smaller than Ey∼µ[r(y)]. Furthermore, the support of the policy shrinks at the first policy
improvement iteration (as described in Theorem 4.2), which makes all subsequent iterations useless.

From the tabular setting to LLMs As explained at the end of Section 3, LLMs are applied to
a variety of conditioning contexts x (the prompts), each of which corresponding to a distinct RL
problem. The straightforward adaption of the AsymRE method to this setting is to train an LLM’s
policy π using the context-averaged version of our loss

Ex∼D,y∼µ(·|x) [log π(y|x) (r(y, x)− V)] ,

where D is some distribution of prompts. Translating our theoretical findings to the case of LLMs
requires some cautiousness. Note first that the expected reward V µ(·|x) = Ey∼µ(·|x) [r(y, x)], whose
value relative to V conditions the behavior of the AsymRE algorithm, differs for each prompt. A
natural solution is to consider instead the context-corrected loss

Ex∼D,y∼µ(·|x)

[
log π(y|x)

(
r(y, x)− V µ(·|x) − δV

)]
, (4)

so that the critical value becomes δV = 0 uniformly across the xs. Furthermore, though our theorems
apply to each of the problems corresponding to the various prompts, the averaged behavior of the
model over the distribution of problems is more subtle. At last, our results focus on the training loss
of the trained policy, whereas we might be interested in the LLM’s test loss on contexts on which
they were not trained.

Nonetheless, we can hope that the regularities of LLMs with respect to prompts can allow us to
partially predict the effects of training on certain prompts on the LLM’s policy conditioned by other
prompts. In particular, our results suggest that letting V be equal to or larger than 0 in the context-
corrected loss in Equation 4 can lead to dramatic decrease in the diversity of answers, corresponding
to the collapse of the policy’s support predicted by our theorems. While this may not necessarily
penalize the expected reward of a tabular policy, it is detrimental to a language model; in particular, it
poses a risk of severe overfitting of the training set, and consequently of poor test results.

5 Experiments

We validate our findings first in a controlled setting, then with LLMs on real-world data.

5.1 Bandits

We illustrate our findings in a simple bandit setting. There are 100 arms. The expected reward r(y)
of each arm y is chosen uniformly randomly in [0, 1]. We sample from a non-uniform behavior policy
µ defined as a softmax of the logits l(y) = y/10, where y is indexed from 0 to 99. The current policy
πt is a softmax of its logits lt(y), initialized as π0 = µ, and its logits are updated according to the
expected AsymRE algorithm with learning rate 1:

lt+1 = lt +∇lEy∼µ [∇ log πt(y) (r(y)− V)] .

6

(a) Expected reward Ey∼πt [r(y)] of the AsymRE al-
gorithm as a function of the training iteration t and
baseline V .

(b) The support of the final policy π∗
µ,V is shown by the

yellow dots; each dot corresponds to an arm (sorted by
increasing reward values). The support suddenly drops
to a single atom when V crosses V µ ≈ 0.54.

Figure 1: Expected rewards and supports of the policies in the bandits experiments

Expected reward and support with AsymRE In Figures 1a and 1b, we report the expected reward
Ey∼πt

[r(y)] of the expected AsymRE algorithm. We observe that the performance of the algorithm
tends to improve as the value of the baseline V gets closer to some V0,µ < V µ ≈ 0.5405. However,
the performance of all policies is upper bounded by a sub-optimal value ≈ 0.89, which is lower than
the optimal expected reward (maxy r(y) = 0.999 for this run).

Although these experiments may seem to support the choice of selecting a high value of the baseline,
Figure 1b, where we plot the support of the final policy π∗

µ,V as a function of V , shows a complete
loss of diversity in the resulting policies for high values of V , making future improvements in a
policy iteration scheme impossible. This is also supported by the drastic decrease in entropy for
high values of V reported in Figure 7, in the Appendix. We observe a phase transition for V around
V µ. For V < V µ, the size of the support decreases as V increases, as predicted in the Theory
Section 4. The policy stays supported by a large number of atoms even when V ≈ V µ, as long as
V < V µ. But as soon as V ≥ V µ, the support of the optimal policy π∗

µ,V becomes a singleton:
argmaxy µ(y)(r(y)− V).

Thus, when V ≥ V µ, there is a risk that our off-policy REINFORCE algorithm might produce
policies that lose their diversity. In addition, notice that when V is slightly larger than V µ, the reward
of the corresponding limit policy is not as large as the reward of the best arm in the support of the
limit policy for V slightly smaller than V µ. Thus the potential of finding this superior arm is lost
forever when V crosses V µ.

Policy improvement with AsymRE We study a policy improvement scheme over 40 iterations,
where at each iteration we apply the AsymRE algorithm for 500 steps using the policy obtained at
the end of the previous iteration as both our behavior policy and starting current policy. In Figure 2,
we show the expected reward of the corresponding policies. We notice that when V < V µ, for every
policy iteration step, the performance of the improved policies TV µt are better than the corresponding
behavior policies µt, as predicted by Theorem 4.3. However, for V ≥ V µ, we have already seen
in Figure 1a that the policy converges to a deterministic and suboptimal policy. Here we see that
iterating this algorithm does not permit to recover from this premature suboptimal convergence,
regardless of the value of V ≥ V µ. We also observe that while they do not plateau as dramatically,
trajectories corresponding to V only slightly smaller than V µ (such as 0.525 and 0.54) converge to a
less favorable limit policy than for V ≤ 0.5.

5.2 Large Language Models

We validate our findings by training LLMs on reasoning tasks.

7

Figure 2: Performance of the current policies for 40 iterations of policy improvement with AsymRE. Each
iteration is 500 steps. The curve corresponding to V ≈ V µ is in red.

Experimental setup We train Llama-3.1-8B-Instruct [Dubey et al., 2024] (which we refer to as
Llama 8B), Llama-3.2-3B-Instruct (which we refer to as Llama 3B) and Qwen2.5-3B-Instruct [Yang
et al., 2024] (which we refer to as Qwen 3B) with the AsymRE objective

J(π) = Ex∼D,{yi}G
i=1∼µ(.|x)

[1
G

G∑
i=1

(r(yi, x)− (V̂ + δV)) log(π(yi|x))
]
,

where xs are prompts from the dataset D, each yi is a full sequence of tokens auto-regressively
sampled from the LLM µ, and V̂ = 1

G

∑G
i=1 r(yi, x) is the empirical estimate of the average reward

V µ(·|x). This loss is the empirical approximation of the context-corrected loss in Equation (4). We
place ourselves in the delayed updates setting, i.e. the behavior policy µ is simply an outdated
version of the current policy π, which we update every N training steps; this corresponds to a
policy improvement scheme where each iteration lasts N steps. We set the number G of samples
per prompt to 8. We train and test on the MATH dataset (Hendrycks et al. [2021], 12.5k high
school-level problems), as well as on a subset of size 142k of the NuminaMath dataset (LI et al.
[2024], competition-level problems). The reward of a trajectory is 1 if the answer is correct, and −1
otherwise. Additional details regarding the experimental setup are given in Appendix B.

Impact of the baseline δV The train and test losses for various baselines V̂ + δV are shown in
Figures 3 and 4 (Llama 8B and Qwen 3B respectively). Similarly as what we observe with the bandits
experiment (Figure 2), while the baseline δV is smaller than the critical value 0, the model’s training
accuracy tends to increase with δV . This is reflected in the test accuracy as well, though less strongly.
When the baseline δV reaches, then passes 0, a phase transition occurs and both the training loss
and the test loss suffer a catastrophic collapse. The larger δV ≥ 0, the faster this collapse occurs
(for δV = 0, the collapse occurs at the very end of our training run). This corresponds in the theory
(and in the bandit setting) to the regime where the limit policy becomes deterministic: while this can
result in a good expected reward in the single-problem bandit setting, it leads to a drastic decrease in
accuracy in the LLM setting, where the model must retain diversity to answer the range of problems
with which it is tasked. This loss of diversity can be observed in the entropy of the models, in Figure 8
in the Appendix.

The left side of Figure 5 confirms our claim that letting δV be slightly smaller than 0 results in greater
training stability: we compare 7 independent training runs with δV = 0 and 7 training runs with
δV = −0.1, and we find that all runs with δV = 0 collapse.

Comparison to GRPO Though further testing would be needed to reach definitive conclusions,
we also observe that our loss compares favorably to GRPO both in terms of training speed and final
accuracy in the off-policy setting, as shown on the right side of Figure 5.

8

500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δV: -0.5
δV: -0.3
δV: -0.2
δV: -0.1
δV: 0.0
δV: 0.1
δV: 0.2
δV: 0.3

Training accuracy on MATH

Steps

A
cc

ur
ac

y

400 600 800 1000 1200 1400 1600 1800
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5 δV: -0.5
δV: -0.3
δV: -0.2
δV: -0.1
δV: 0.0
δV: 0.1
δV: 0.2
δV: 0.3

Test accuracy on MATH

Steps

A
cc

ur
ac

y

Figure 3: Training dynamics of Llama 8B on the MATH dataset (results are averaged over 3 seeds, and a
moving average with a window of size 3 is applied). The behavior policy is updated every N = 250 training
steps.

500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6
δV: -0.5

δV: -0.3

δV: -0.2

δV: -0.1

δV: 0.0

δV: 0.1

δV: 0.2

δV: 0.3

Training accuracy on MATH

Steps

A
c
c
u
r
a
c
y

0 500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

δV: -0.5

δV: -0.3

δV: -0.2

δV: -0.1

δV: 0.0

δV: 0.1

δV: 0.2

δV: 0.3

Test accuracy on MATH

Steps

A
c
c
u
r
a
c
y

Figure 4: Training dynamics of Qwen 3B on the MATH dataset (results are averaged over 3 seeds, and a moving
average with a window of size 3 is applied). The behavior policy is updated every N = 250 training steps.

Our additional results in Appendix C on the larger NuminaMath dataset, as well as on Llama 3B,
support the same conclusions.

5.3 Discussion

These experiments corroborate our theoretical findings and can be summarized as follows:

• Letting the baseline V be strictly smaller than the expected reward V µ of the behavior policy
µ makes the training stable, even when off-policy, and offers a monotonic improvement of
the policies.

• Performance tends to improve as V grows closer to V µ while remaining strictly smaller.

• As soon as V passes V µ, the policies become more deterministic. In the context of bandits,
this leads to a suboptimal convergence of the policy improvement scheme. In the context of
LLMs, this leads to a collapse of the training and test loss.

9

500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δV = 0.0

δV = -0.1

Training accuracy on MATH

Steps

A
c
c
u
r
a
c
y

Figure 5: Left: Training dynamics of Llama 8B on the MATH dataset for two values of the baseline, δV = 0
and δV = −0.1, and 7 independent runs for each value. The behavior policy is updated every N = 250 steps.
We observe a systematic collapse when δV = 0. Right: Test accuracy of Llama 8B and Qwen 3B trained on the
MATH dataset with GRPO and AsymRE (with V = −0.1). The behavior policy is updated every N = 250
steps. Asymmetric REINFORCE leads to faster convergence and better than GRPO.

While further large scale experiments are needed to draw definitive conclusions regarding the training
of LLMs, our findings suggest that adding a small conservative correction δV ≈ −0.1 in the
advantage term of the training objective

Ex∼D,{yi}G
i=1∼µ(.|x)

[1
G

G∑
i=1

(r(yi, x)− (V̂ + δV)) log(π(yi|x))
]

might result in greater training stability, and help prevent the collapses often observed in RL training.

6 Conclusion

We have thoroughly studied the behavior of our simple off-policy algorithm AsymRE with respect
to the baseline V , both theoretically and experimentally. We have confirmed our claims that in an
off-policy setting, selecting a baseline slightly smaller than the expected reward of the behavior policy
results in superior asymptotic performances, and can help alleviate the risk of training collapse. Such
a choice of baseline corresponds to putting more emphasis on positive training examples, and less on
negative ones, which is intuitively reasonable.

Limitations and possible improvements While we have analyzed in depth the role of the baseline
V in our simple AsymRE method, it would be interesting to extend our study to more sophisticated
losses, which might e.g. include importance ratio correction and KL-divergence regularization.
Finally, the possibility to leverage off-policyness by training over the same samples for multiple
epochs was one of our initial motivations: quantifying the potential run-time and compute gains and
the impact on model performance of such a scheme is an exciting future research direction.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

AlphaEvolve-team. Alphaevolve: A gemini-powered coding agent for de-
signing advanced algorithms. https://deepmind.google/discover/blog/

10

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/

alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/,
2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3-4):231–357, 2015.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Taco Cohen, David W. Zhang, Kunhao Zheng, Yunhao Tang, Remi Munos, and Gabriel Synnaeve.
Soft policy optimization: Online off-policy rl for sequence models, 2025. URL https://arxiv.
org/abs/2503.05453.

Ross Cressman and Yi Tao. The replicator equation and other game dynamics. Proceedings of
the National Academy of Sciences, 111(supplement_3):10810–10817, 2014. doi: 10.1073/pnas.
1400823111. URL https://www.pnas.org/doi/abs/10.1073/pnas.1400823111.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Yunzhen Feng, Ariel Kwiatkowski, Kunhao Zheng, Yaqi Duan, and Julia Kempe. PILAF: Optimal
human preference sampling for reward modeling. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=Qap9pHIkI8.

Shixiang Shane Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani, Bernhard Schölkopf,
and Sergey Levine. Interpolated policy gradient: Merging on-policy and off-policy gradient
estimation for deep reinforcement learning. Advances in neural information processing systems,
30, 2017.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong,
Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath.
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf),
2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

11

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://arxiv.org/abs/2503.05453
https://arxiv.org/abs/2503.05453
https://www.pnas.org/doi/abs/10.1073/pnas.1400823111
https://openreview.net/forum?id=Qap9pHIkI8
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https:
//ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pages 1054–1062,
2016.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Richard Yuanzhe Pang and He He. Text generation by learning from demonstrations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
RovX-uQ1Hua.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
function approximation. In ICML, pages 417–424, 2001.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou
Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf, 2024. URL
https://arxiv.org/abs/2405.20304.

Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Gheshlaghi
Azar, Rafael Rafailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will Ellsworth,
et al. Offline regularised reinforcement learning for large language models alignment. arXiv
preprint arXiv:2405.19107, 2024.

Nicolas Le Roux, Marc G. Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex
Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Tapered
off-policy reinforce: Stable and efficient reinforcement learning for llms, 2025. URL https:
//arxiv.org/abs/2503.14286.

Ernest Ryu and Stephen Boyd. A primer on monotone operator methods. Applied and Computational
Mathematics, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
mance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024.

Yunhao Tang, Taco Cohen, David W. Zhang, Michal Valko, and Rémi Munos. Rl-finetuning llms
from on- and off-policy data with a single algorithm, 2025. URL https://arxiv.org/abs/
2503.19612.

12

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
https://arxiv.org/abs/2405.20304
https://arxiv.org/abs/2503.14286
https://arxiv.org/abs/2503.14286
https://arxiv.org/abs/2503.19612
https://arxiv.org/abs/2503.19612

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024. doi:
10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.

Rui Zheng, Shihan Dou, Songyang Gao, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin Liu,
Limao Xiong, Lu Chen, Zhiheng Xi, Yuhao Zhou, Nuo Xu, Wenbin Lai, Minghao Zhu, Rongxiang
Weng, Wensen Cheng, Cheng Chang, Zhangyue Yin, and Xuanjing Huang. Secrets of rlhf in large
language models part i: Ppo, 07 2023.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 06
2025.

13

https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2412.15115

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the central claim that lowering the
baseline in off-policy policy gradient updates emphasizes successful trajectories and leads
to policy improvement. These claims are substantiated with theoretical analysis (Theorems
4.2 and 4.3) and validated empirically in both tabular bandits and LLM fine-tuning tasks
(Sections 5.1 and 5.2).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed, particularly regarding the need
to further explore importance sampling, KL divergence, and multiple passes over data to
leverage off-policy training more effectively.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Full assumptions and detailed proofs are provided for the theoretical results in
Appendix, supporting Theorems of the theory section.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup is described in detail in the experimental section, with
hyperparameters, baselines, and update strategies specified. Additional training details are
in Appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the paper provides detailed methodological descriptions and experimen-
tal setup, we do not publicly release the code or models for legal reasons.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and evaluation details, including learning rates, behavior policy
updates, and dataset usage, are provided in empirical section and Appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

14

Justification: The paper does not report error bars or statistical significance tests. However,
multiple seeds and smoothing are used in LLM experiments (Figure 3), which provides
some robustness.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides hardware setup details (e.g., separation of GPU roles,
rollout/training workers) and discusses the update frequency controlling off-policyness
(Appendix).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. It focuses on improving
learning algorithms with no human subject data or potential ethical violations.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper is related to the theory of reinforcement learning, which has many
potential societal impacts, yet are too uncertain for us to discuss them precisely.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models trained are not released and pose no known high-risk misuse
potential. Thus, safeguards are not applicable.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits and cites existing datasets (e.g., MATH) and pretrained
models (e.g., LLaMA-3.1-8B-Instruct) with appropriate references.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or models are released with this paper.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not involve human participants or crowdsourcing.

15

https://neurips.cc/public/EthicsGuidelines

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable, as no human subject research is conducted.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper makes use of LLMs as a core part of the experimental setup, clearly
describing how these models are used and evaluated.

16

A Proofs of Theorems 4.2 and 4.3

A.1 Proof of Theorem 4.2

We first prove Theorem 4.2, which we restate for the reader’s convenience:
Theorem 4.2. [Analysis of expected AsymRE for tabular softmax policies] Let Y be a finite set,
µ be some behavior policy whose support is Y , and consider a softmax policy representation

π(y)
def
= el(y)/

∑
y′ el(y

′) on Y , where the logits {l(y)}y∈Y are the policy parameters. We consider
the expected AsymRE algorithm with respect to the logits initialized at some π0 with successive
iterates πt

µ,V and learning rate η as per Definition 4.1. Then the AsymRE algorithm converges to a
limit distribution π∗

µ,V . The baseline parameter V controls the nature of the limit distribution:

• If V < V µ, then π∗
µ,V is defined by

π∗
µ,V (y) =

(µ(y)(r(y)− V)− τµ,V)
+

V µ − V
,

where τµ,V is uniquely characterized by the constraint
∑

y∈Y(µ(y)(r(y)− V)− τµ,V)
+ =

V µ − V, and x+ = max(x, 0).

• If V = V µ, then π∗
µ,V is defined by its support

supp(π∗
µ,V) = argmax

y∈Y
µ(y)(r(y)− V),

and by π∗
µ,V (y)/π

∗
µ,V (z) = π0(y)/π0(z) for any y, z ∈ supp(π∗

µ,V).

• If V > V µ, then π∗
µ,V can charge any of the elements in the set{

y
∣∣ min

z∈Y
µ(y)(r(y)− V)− µ(z)(r(z)− V) + V − V µ > 0

}
,

depending on the initial condition π0.

As a consequence, supp(π∗
µ,V1

) ⊆ supp(π∗
µ,V2

) when V2 ≤ V1 ≤ V µ.

Proof. For simplicity, we omit the indices when the context makes them unnecessary; in particular,
we write πt for πt

µ,V . We are optimizing

Ey∼µ[(r(y)− V) log π(y)] (5)

with the logits parameterization π(y) ∝ exp(l(y)), hence gradient flow ascent corresponds to

∂tl = η∇F (l) = η(ay − bπ(y)), where F (l)
def
=
∑
y

ayl(y)− b log
∑
z

exp(l(z)) (6)

and ay
def
= µ(y)(r(y)−V), b def

=
∑

ay = V µ−V , and η > 0 is some speed parameter. This follows
from the definition of π(y) = exp(ly)/

∑
z exp(lz), and of V µ =

∑
y µ(y)r(y).

Eventually, one may also consider gradient ascent with a fixed stepsize η > 0, leading to the evolution

lt+1 = lt + η∇F (lt) (7)

We will see that, as long as η is not too large, dynamics (6) and (7) converge to the same limit.

A.1.1 Case V µ = V

When V µ = V , which is equivalent to b = 0, we are maximizing a linear function, which leads to

lt = l0+ηta, where l0 is the initial condition of the logits and a
def
= (ay)y∈Y . This implies, assuming

η = 1 without loss of generality,

π∗(y) = lim
t→∞

exp(ayt+ l0(y))∑
z exp(azt+ l0(z))

∝ I{y ∈ argmax
z

az} exp(l0(y)) ∝ I{y ∈ argmax
z

az}π0(y).

17

Speed of convergence. Note that in this case, we can also characterize the speed of convergence: if

ay ̸= a∗
def
= max az ,

πt(y) =
exp(ayt+ l0(y))∑
exp(azt+ l0(z))

≤ exp((ay − a∗)t+ l0(y)−min l0(z)),

which goes to zero exponentially fast as exp((ay − a∗)t). If ay = max az , then

πt(y) =
exp(ayt+ l0(y))∑
exp(azt+ l0(z))

=
exp(ayt+ l0(y))

exp(ayt)
(∑

z∈argmax ay
exp(l0(z)) +

∑
z/∈argmax ay

exp((az − ay)t+ l0(z))
)

= π∗(y)
1

1 +

∑
z/∈arg max ay

exp((az−ay)t)∑
z∈arg max ay

exp(l0(z))

Series expansion leads to

∥πt − π∗∥ ≤ π∗(y) |Y |∑
z∈argmax ay

exp(l0(z))
exp(max

z/∈argmax ay

(az − ay)t)

Hence the convergence speed is A exp(−ct) for c = min(a∗ − ay) and some constant A.

Note that this formula holds for both gradient flow and gradient ascent.

A.1.2 Case V ̸= V µ

Convergence of the continuous dynamics. To show the gradient flow dynamics converge, let us
introduce the following function

Φt =
∑

ayπt(y)−
b

2

∑
πt(y)

2.

The dynamics on the logits can be cast as a dynamics on the probabilities.

∂tπt(y) = ∂t
exp(lt(y))∑
z exp(lt(z))

=
exp(lt(y))∂tlt(y)∑

z exp(lt(z))
− exp(lt(y))∑

z exp(lt(z))

∑
y′ exp(lt(y

′))∂tlt(y
′)∑

z exp(lt(z))

= πt(y)∂tlt(y)− πt(y)
∑
z

πt(z)∂tlt(z)

= πt(y)(ay − bπ(y))− πt(y)
∑
z

πt(z)(az − bπt(z))

= πt(y)(ay − bπt(y)−
∑
z

azπt(z) + b
∑
z

πt(z)
2) = πt(y)(ay − bπt(y)− τt),

where
τt =

∑
z

azπt(z)− b
∑
z

πt(z)
2.

Casting this dynamics on Φ, we have

∂tΦt =
∑
y

(ay − bπt(y))∂tπt(y) =
∑
y

(ay − bπt(y))πt(y)(ay − bπt(y)−
∑
z

πt(z)(az − bπt(z)))

=
∑
y

πt(y)(ay − bπt(y))
2 −

∑
y

πt(y)(ay − bπt(y))
∑
z

πt(z)(az − bπt(z)))

=
∑
y

πt(y)(ay − bπt(y))
2 −

(∑
y

πt(y)(ay − bπt(y))

)2

= VarY∼πt
(aY − bπt(Y)) ≥ 0,

18

with equality when ay − bπt(y) is constant on the support of πt. Because V is continuous and
bounded above on the simplex, which is compact, Φt converges and ∂tΦt goes to zero. As V ̸= V µ

(which means that b ̸= 0), this shows that πt(y) either goes to zero, or converges to (ay − τ∗)/b for
some constant τ∗. Thus, πt converges to some limit distribution π∗.

Since π∗(y) is non-negative, we deduce that, with Y∗ ⊆ Y the support of π∗,

π∗(y) = I{y ∈ Y∗}
(ay − τ∗)

+

b
.

A.1.3 Case V µ > V

In the case V µ > V , i.e. b > 0, we will now show that Y∗ is actually defined by

Y∗ = {y | ay − τ∗ > 0} .

Let us proceed by contradiction. Assume the existence of a y such that ay − τ∗ > 0 and for which
π∗(y) = 0. Then, by continuity of τt, there exists an ε and a T such that for any t > T , we have

πt(y) ≤ ε/b, ay − τt > 2ε,

which implies
∂tπ(y) = π(y)(ay − bπ(y)− τt) > επ(y).

Due to the logits parameterization, we have π(y) > 0, which leads to πt(y) ≥ A exp(εt) for some
A > 0, which is a contradiction.

Finally, the fact that
∑

π∗(y) = 1 uniquely characterizes τ∗. Indeed, consider the function

G : τ 7→
∑ (ay − τ)+

b
.

Then

G(τ∗) =
∑ (ay − τ∗)

+

b
=
∑

π∗(y) = 1.

The function G is continuous and strictly decreasing on [min ay,max ay], with G(max ay) = 0 and
G(0) ≥ 1. If min ay < 0, then G(0) > 1, which implies the existence of a unique τ∗ ∈ (0,max ay]
such that G(τ∗) = 1. If min ay ≥ 0, then the only solution of G(τ∗) = 1 is τ∗ = 0.

Inclusion of the supports. From the previous results, we already have the inclusion of the support
of Tµ,V µ in that of Tµ,V for any V ≤ V µ. Let us now consider V2 ≤ V1 < V µ, and let τµ,V1 ,
respectively τµ,V2

, be the limit τ∗ introduced above for V1, respectively V2. We would like to show
that supp Tµ,V1

⊆ supp Tµ,V2
, which is equivalent to showing that

µ(y)(r(y)− V2)− τµ,V2
≤ 0 ⇒ µ(y)(r(y)− V1)− τµ,V1

≤ 0.

This is a consequence of the fact that τµ,V is increasing with V , which we will prove now. Recall
that we have ∑ (ay − τµ,V)

+

b
= 1,

hence ∑
(µ(y)(r(y)− V)− τµ,V)

+ = V µ − V.

For ε > 0 small enough, we have∑
(µ(y)(r(y)− (V + ε))− τµ,V)

+ ≥
∑

(µ(y)(r(y)− V − τµ,V)
+ − ε

= V µ − (V + ε) =
∑

(µ(y)(r(y)− (V + ε))− τµ,V+ε)
+,

hence τµ,V+ε ≥ τµ,V , as τ 7→
∑

(µ(y)(r(y)− (V + ε))− τ)+ is decreasing in τ .

19

From gradient flow to gradient ascent. We notice that F is the sum of a linear term and a
log-sum-exp term. Since the log-sum-exp term is strictly concave on 1⊥ (i.e. on the hyperplane∑

ly =
∑

ly(0)), due to the sign of b, we are maximizing a smooth strictly concave function.
Gradient ascent on a concave objective can be seen as a discretization of the gradient flow, and is
known to follow the same dynamics as long as the step-size is smaller than twice the inverse of the
largest absolute eigenvalue of the Hessian [Ryu and Boyd, 2016, page 17]. In our case, the Hessian
of F is equal to −b times the Hessian of the log-sum-exp function, which leads to

∇2F (l) = −b
(
diag(π)− ππ⊤) .

A simple calculation leads to the following bound on the operator norm:∥∥∇2F
∥∥ ≤ b(∥diag(π)∥+

∥∥ππ⊤∥∥) = b(π(y) + ∥π∥22) ≤ 2b.

As a consequence, as long as η < 1/b = 1/(V µ − V), the gradient ascent converges to the same
point as the gradient flow.

Remarks on the speed of convergence. When V < min r(y). In this case τ∗ = 0, and since
ay > 0, this implies that π has full support. The conservation of

∑
lt(y), which is a consequence of

the fact that
∂t
∑

l(y) =
∑

ay − b
∑

π(y) = b− b = 0,

implies that if some logits go to plus infinity, others should go to minus infinity, which is not possible
if π(y) ̸= 0 for all y. As a consequence, the logits are bounded, and the maximizer of F is achieved
on its domain. Moreover, because F is strictly concave on 1⊥ and C∞, it is strongly concave and
smooth on any compact set, which implies exponential convergence of both gradient flow and gradient
ascent [Bubeck, 2015, Theorem 3.10].

When V µ > V > min r(y). To quantify the speed of convergence, we can use

lim ∂tl(y) = ay − bπ∗(y) = I{y ∈ Y∗}τ∗ + I{y /∈ Y∗}ay
Because V > min r(y) and µ(y) > 0 for all y (since µ has full support), this implies min ay < 0,
which implies τ∗ > 0 as we have shown above. For any y ∈ Y∗, we have lim ∂tl(y) = τ∗ > 0, which
means that the logit l(y) will go linearly to plus infinity. For any y /∈ Y∗, by definition ay ≤ τ∗
and lim ∂tl(z) = ay, which means that the logit l(y) behaves as ayt+ o(t). As a consequence, for
ay < τ∗, we have

πt(y) =
exp(lt(y))∑
exp(lt(z))

=
exp(ayt+ o(t))

exp(τ∗t)
∑

exp(−(az − τ∗)−t+ o(t)))
≤ exp((ay − τ∗)t+ o(t)).

In other words, the mass of such points decreases exponentially fast. The examples below show that
similar conclusions cannot be drawn regarding other points.

Example of slow convergence when ay = τ∗ > 0. In the event ay = τ∗, the convergence can be slower.
For example, one may consider a situation where l(y) = exp(τ∗t) and l(z) = exp(τ∗t − log(t)),
leading to a convergence in 1/t. This is the case when

Y = {1, 2, 3} , µ = (1/3, 1/3, 1/3), r = (9, 3,−6), V = 0, a = (3, 1,−2), b = 2.

Then, one can check that τ∗ = 1 and π = (1, 0, 0). The dynamics on πt(2) can be written as

∂tπ(2) = π(2)(a2 − bπ(2)− (
∑

ayπ(y)− b
∑

π(y)2)).

= π(2)(1− 2π(2)− (3π(1) + π(2)− 2π(3)− 2π(1)2 − 2π(2)2 − 2π(3)2))

= π(2)(1− 2π(2)− (3(1− π(2)) + π(2)− 2(1− π(2))2 − 2π(2)2 + o(π(3)))

= −4π(2)2 + 4π(2)3 + o(π(3)).

From the previous derivation, we know that π(3) will go to zero exponentially fast; hence the
dynamics will be dominated by ∂tπ(2) ≃ −4π(2)2, which leads to π(2) ∼ 1/4t, and the slow
convergence.

Example of slow convergence when ay = τ∗ = 0. Similarly to the previous example of slow
convergence, considering

Y = {1, 2} , µ = (1/2, 1/2), r = (2, 0), V = 0

leads to τ∗ = 0, b = 1, π = (1, 0) and πt(2) ∼ 1/2t.

20

A.1.4 Case V µ < V

When V µ < V , which is equivalent to b < 0, we are maximizing (not minimizing) a strictly convex
function on 1⊥, which can lead to various limits depending on initial conditions (see after the end of
the proof for a short discussion).

Let us first characterize the union of the supports of the potential limits of π. Using the previous
characterization of ∂tπ, we get

∂t log
π(y)

π(z)
=

∂tπ(y)

π(y)
− ∂tπ(z)

π(z)
= ay − bπ(y) + τt − az + bπ(z)− τt

= ay − az − b(π(y)− π(z)).

We deduce that for any (y, z), since π(y)− π(z) ≤ 1 and −b > 0,

πt(y)

πt(z)
≤ π0(y)

π0(z)
exp((ay − az − b)t).

This means that minz ay − az − b < 0 implies π∗(y) = 0. Hence y cannot belong to the support
of any potential limit. It is easy to show that situation is the same if minz ay − az − b = 0, as
π0(y)− π0(z) < 1, hence ay − az − b(π0(y)− π0(z)) < 0 and ay − az − b(π(y)− π(z)) remains
smaller than some constant c < 0 for all t. Reciprocally, if minz ay − az − b > 0, an initial condition
π0 close to a Dirac on y will lead to π∗ = δy , hence y belongs to the support of some potential limits.

Showing the convergence in the case of the discrete gradient ascent follows from arguments similar
to the the concave case treated above.

As mentioned in the proof, the dynamics of the case V µ < V are harder to describe: the gradient
flow equation is a case of replicator equation [Cressman and Tao, 2014], and mapping the initial
condition π0 to the final limit π∗ is not easy. As shown in Figure 6, the regions {π0 |π∗ = δy} are
not e.g. polytopes.

Figure 6: Each point (x, y) in the triangle corresponds to an initial distribution π0 = (x, y, 1− x− y
on a set Y of cardinality 3. The color of a point π0 indicates the limit of a gradient ascent starting
with π0 as its initial condition: the three colors correspond to π∗ = (1, 0, 0), π∗ = (0, 1, 0) and
π∗ = (0, 0, 1) respectively. Note that some initial conditions converge to other limits, but they are of
mass 0 in the simplex and do not appear in the figure.

21

However, a simple case is when argmax ay ∩ argmax ay − bπ0(y) is non-empty, in which case the
dynamics converges toward the uniform distribution on this set. This is notably the case when π0 is
uniform.

A.2 Proof of Theorem 4.3

We now prove Theorem 4.3:

Theorem 4.3. [Policy improvement dynamics] Let µ be any policy with support Y , and let V < V µ.

1. Each application of the AsymRE algorithm increases the expected reward: V TV µ ≥ V µ.

2. The sequence of expected rewards V (TV)nµ converges to some limit expected reward V ∞.

Let Y ∞ def
= {y : r(y) = V ∞}. Then the mass of (TV)nµ concentrates exponentially fast

on Y ∞, i.e. ∑
y ̸∈Y ∞

((TV)nµ)(y) ≤ cn

for some c < 1.

3. There exists V0,µ such that the corresponding limit reward is optimal (i.e. V ∞ =
maxy∈Y r(y)) if and only if V < V0,µ.

Proof. Let us first prove that the value increases. Let us denote π = TV µ, Y∗ its support, and
τ = τµ,V (defined as in Theorem 4.2). We have

(V µ − V)π(y) = (µ(y)(r(y)− V)− τ)+.

This implies that for any y ∈ Y∗,

r(y) =
(V µ − V)π(y) + τ

µ(y)
+ V.

The value of the policy π can be computed as

V π =
∑

π(y)r(y) =
∑

π(y)

(
(V µ − V)π(y) + τ

µ(y)
+ V

)
= V + (V µ − V)

∑ π(y)2

µ(y)
+ τ

∑ π(y)

µ(y)

Using Cauchy-Schwarz, we have

∑ π(y)2

µ(y)
=
∑ π(y)2

µ(y)

∑
µ(z) ≥

(∑ π(y)√
µ(y)

√
µ(y)

)2

= 1.

As a consequence, we deduce

V π ≥ V µ + τ
∑ π(y)

µ(y)
≥ V µ.

Where we have used the fact that τ ≥ 0.

After one application of TV , we only keep in the support of TV µ the arms for which r(y) >
V + τ/µ(y) ≥ V (and they do not reappear in the support of T n

V µ for n ≥ 1). This implies that
τT n

V µ,V = 0 for n ≥ 1 according to the characterization of τ provided in the proof of Theorem 4.2.
This, in turn, implies

TV µ(y)
TV µ(z)

=
µ(y)

µ(z)

r(y)− V

r(z)− V

for all y, z in the support of TV µ. Let denote

Y ∞ = arg max
y∈supp TV µ

r(y)

22

By recursion, we deduce, for y /∈ Y ∞ and z ∈ Y ∞ both in the support of TV µ, that

T n
V µ(y)

T n
V µ(z)

=
µ(y)

µ(z)

(
r(y)− V

r(z)− V

)n

,

which implies that T n
V µ(y) goes exponentially fast to 0 as n increases.

The last statement of the theorem is a direct consequence of the characterization of Y ∞, the monotonic-
ity of the support of TV µ as V increases, and the fact that for V < min r(y), supp(TV µ) = Y .

B Details regarding our LLMs experiments

We provide additional details regarding our experimental setup from Subsection 5.2.

We trained Llama-3.1-8B-Instruct with the AdamW optimizer Loshchilov and Hutter [2017] with a
learning rate of 6×10−8. Each time a prompt is sampled from the dataset, 8 trajectories are generated
from the behavior policy and used to compute the empirical batch average V . 128 trajectories are
included in each gradient step. The maximum trajectories length is set to 2048 tokens (the generation
is stopped after this number of tokens is reached).

The GPUs were split into two categories: workers that generated the responses to the prompt sampled
from the dataset, and trainers that fine-tuned the model on the generated trajectories. In order to
control the degree of off-policyness of the model, we varied the update interval parameter, which
is the number of gradient steps between two updates of the weights of the workers. The larger this
parameter, the more off-policy the training is.

Inference parameters were set to temperature 1.0 (respectively 0.1) and top-p 1.0 (respectively 0.95)
for the training (respectively for the evaluation).

C Additional experiments

We report additional experiments.

Entropies of the policies in the bandits setting In complement to Figure 1b, we report in Figure 7
the evolution of the entropy of the policy πt under the AsymRE algorithm in our bandits experiment.

Figure 7: Entropy of the policy πt as a function of the iteration number t, for different values of the baseline
parameter δV . For the larger values of δV , the entropy of the policies drops close to 0 as the policy becomes
deterministic.

Entropies of the policies in the LLMs setting We report in Figure 8 the evolution of the entropy
of the policy πt under the AsymRE algorithm in the LLMs setting.

Additional experiments with Llama 3B In Figure 9, we represent the training dynamics (as in
Figure 3) for Llama 3B when training on the MATH dataset.

23

0 200 400 600 800 1000 1200 1400 1600
0.2

0.4

0.6

0.8

1

1.2

δV: -0.5
δV: -0.3
δV: -0.2
δV: -0.1
δV: 0.0
δV: 0.1
δV: 0.2
δV: 0.3

Policy entropy

Steps
E

nt
ro

py

Figure 8: Evolution of the policy entropy during the training of Llama 8B on the MATH dataset (averaged over
3 seeds). The larger the baseline V is, the faster the entropy decreases.

Figure 9: Training dynamics of Llama 3B on the MATH dataset (a moving average with a window of size 3 is
applied to the training curve). The behavior policy is updated every N = 250 training steps.

Additional experiments with NuminaMath In Figure 10, Figure 11 and Figure 12, we represent
the training dynamics for Llama 8B, Qwen 3B and Llama 3B respectively when training and
evaluating on subsets of size 142k and 2k respectively of the NuminaMath dataset (rather than on the
MATH dataset).

Figure 10: Training dynamics of Llama 8B on the NuminaMath sub-dataset (a moving average with a window
of size 3 is applied to the training curve). The behavior policy is updated every N = 250 training steps.

Additional comparisons to GRPO We report in Figure 13 a comparison between GRPO and
AsymRE where the models are trained and tested on subsets of the NuminaMath dataset.

24

Figure 11: Training dynamics of Qwen 3B on the NuminaMath sub-dataset (a moving average with a window
of size 3 is applied to the training curve). The behavior policy is updated every N = 250 training steps.

Figure 12: Training dynamics of Llama 3B on the NuminaMath sub-dataset (a moving average with a window
of size 3 is applied to the training curve). The behavior policy is updated every N = 250 training steps.

Figure 13: Test accuracy of Llama 8B and Qwen 3B trained on a subset of the NuminaMath dataset with GRPO
and AsymRE (with V = −0.1). The behavior policy is updated every N = 250 steps, and a moving average
with a window of size 3 is applied to the training curve.

25

	Introduction
	Related works
	Setting
	Asymmetric REINFORCE
	Experiments
	Bandits
	Large Language Models
	Discussion

	Conclusion
	Proofs of Theorems 4.2 and 4.3
	Proof of Theorem 4.2
	Case of mean baseline
	Other cases
	Case small baseline
	Case of high baseline

	Proof of Theorem 4.3

	Details regarding our LLMs experiments
	Additional experiments

