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ABSTRACT
Non-pharmaceutical interventions (NPIs) play a critical role in the

defense against emerging pathogens. Among these interventions,

familiar measures such as travel bans, event cancellations, social

distancing, curfews, and lockdowns have become integral compo-

nents of our response strategy. Contact tracing is especially widely

adopted. However, the optimization of contact tracing involves

navigating various trade-offs, including the simultaneous goals of

minimizing virus transmission and reducing costs. Reinforcement

learning (RL) techniques provides a promising avenue to model in-

tricate decision-making processes and optimize policies to achieve

specific objectives, but even modern deep RL techniques strug-

gle in the high dimensional partially observable problem setting

presented by contact tracing. We propose a novel RL approach to

optimize a multi-objective infectious disease control policy that

combines supervised learning with RL, allowing us to capitalize on

the strengths of both techniques. Through extensive experimenta-

tion and evaluation, we show that our optimized policy surpasses

the performance of five benchmark policies.
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1 INTRODUCTION
The COVID-19 pandemic has highlighted the crucial role of non-

pharmaceutical interventions (NPIs) in effectively managing the

spread of infectious diseases. The implementation of NPIs requires
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careful consideration of multiple objectives, including the preven-

tion of viral transmission and the reduction of costs associated

with quarantine measures. Contact tracing has emerged as a widely

adopted policy within the realm of NPIs and has been extensively

studied in the context of COVID-19 [7, 8, 11, 21].

Nevertheless, optimizing NPIs remains a challenging open prob-

lem in many settings for several reasons. First, the objective is in-

herently multi-objective—intensified control efforts lead to higher

costs. In addition, sensing actions, such as testing, may be included

in all but the earliest stages of an infectious disease crisis. These

have their own costs and constraints associated with them. Sec-

ondly, inferring the probability that an individual is difficult for

infections that do substantial transmission asymptomatically, such

as SARS-CoV-2. This inference problem is perhaps surprisingly high

dimensional, as we show it is dependent on the symptom status

and test results of all individuals in the same cluster due to the

transmission heterogeneity.
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Figure 1: Illustration of our approach. We combine a infec-
tion probability decoder that uses supervised learning with
a reinforcement learning-based policy.

In this work, our goal is to develop a generic approach for cluster-

level optimization of NPIs. To tackle this challenge, we propose

a novel approach that integrates convolutional neural networks

(CNN) and reinforcement learning (RL) model[5, 20] (Fig. 1). The

CNN is used to solve the high dimensional infection inference

problem and uses a novel representation of the symptom and test

state of the entire cluster as input, allowing a single CNN to be

trained for all cluster sizes. The RL agent takes the CNN output and

other features as its state and selects an action for each individual

(including quarantine and testing) and aims to maximize a multi-

objective reward function. This reward function includes a penalty
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for days where an individual is infectious but not isolated, a penalty

for days where they are quarantined but not infectious, as well as a

cost for any control action that is taken (e.g., test cost). As a case

study, we have developed a branching process-based SARS-CoV-2

virus simulator, where we evaluate the effectiveness of our method.

In this work, we focus on optimization only—in the longer term,

we aim to use the results of optimization to automatically discover

simple, implementable policies.

This paper makes the following contributions:

• We propose a novel RL approach for finding optimal con-

tact tracing policies. Our approach combines a supervised

learning model with an RL model, leveraging the strengths

of both techniques to optimize the desired objectives. The

resulting agent can be trained and deployed simultaneously

across all cluster sizes.

• We show the existence of a theoretically simple, yet optimal,

threshold type policy for contact tracing in the setting where

no sensing actions are available. Running this policy requires

supervised learning only.

• We develop a simple branching process-based model for

SARS-CoV-2 and compare our policies with baselines. We

show that we achieve better rewards across a range of ob-

jective parameters.

Related work. We identify twomain thrusts of work that optimize

contact tracing and NPIs: network and branching process. Network

models represent connections between individuals as edges in a

possibly dynamic contact graph [4, 9, 12, 15, 16]. These approaches

can leverage network structure in their decisions but make the

strong assumption that the entire contact network is known. The

closest existing approach to ours is RLGN [12], which formulates

the problem as a sequential decision-making task within a tempo-

ral graph process. These approaches often consider a fixed budget

of interventions rather than a multi-objective reward function. In

contrast, branching processes are used, resulting in a cluster-based,

tree-structured view of contagion [10, 13, 17]. These approaches

have the advantage of aligning more closely with the information

available to public health decision-makers in many practical set-

tings (but allow for less expressive policies). All of these models

are agent-based in the sense that they model individuals rather

than subpopulations—because contact tracing decisions depend on

the specific time that certain events happen for individuals (e.g.,

exposure, symptoms), the additional detail that agent-based models

provide is valuable for modeling and optimization.

2 BRANCHING PROCESS ENVIRONMENT
We take a branching process-based view of an infectious disease

crisis (Fig. 2). We track two generations of potential individuals:

the seed case and their contacts. We assume that interventions

begin after a reporting and tracing delay. At that point, day 𝑡start
(𝑡start = 3 in Fig. 2), we observe the symptom history for each agent

up to day 𝑡 and must decide which action to take for each agent

(e.g., quarantine, test). On day 𝑡 , we observe the symptom state of

each agent plus the results of any sensing actions (defined below)

we have taken up to day 𝑡 and must decide what action to take for

each agent on day 𝑡 . The simulation proceeds for a fixed period of

time until 𝑇 .

Close Contacts
Time(days)

Seed Case

Infectious

Without
Symptoms

With
Symptoms

Exposed Quarantined Isolation

Figure 2: An agent-based branching process model. The dia-
gram depicts standard contact tracing for an example seed
case with six contacts.

In Fig. 2, we present an application of contact tracing policy in the

branching process framework. The seed case remains infectious for

two days without exhibiting symptoms, followed by one day with

symptoms, before entering isolation. In this example, all six contacts

were exposed on the same day. Contacts 1 and 4 are infected and

show symptoms on day 2 and day 3, respectively. All contacts are

asked for quarantine if their infection probability is higher than

a threshold. Contact 3 and contact 5 serve quarantine on day 3.

Contact 2 and contact 6 start quarantining on day 4.

In an infectious disease crisis, we can use whatever data is avail-

able to construct such a branching process model. Many of the

required components are distributions that are often estimated by

epidemiologists in the early stages of an outbreak. We describe

distributions we used to simulate SARS-CoV-2 and their sources

in Tab. 1. Components that are not known can be filled in conser-

vatively or sensitivity analysis can be performed. In some cases,

distributional estimates can be shared across diseases—for exam-

ple, POLYMOD [14] provides contact distributions for the US and

Western European settings for both droplet and physical contact.

The superspreading dynamics of infection can be impactful because

it is often that most transmission is driven by a small number of

seed cases, and this concentration can be exploited by control poli-

cies [17]. Nevertheless, superspreading dynamics are often poorly

understood, especially early in a crisis and greater understanding

would benefit approaches such as this paper’s.

We define the objective function as

(−𝑆1 − 𝛼2 × 𝑆2 − 𝛼3 × 𝑆3)/cluster_size (1)

where

• 𝑆1 is the count of transmission days where an infected indi-

vidual is not quarantined,

• 𝑆2 is the count of days where a quarantined individual is not

infected, and 𝛼2 (which we assume is in [0, 1]) is the weight
for this term,

• 𝑆3 is the sum of the action costs (e.g., test cost) and 𝛼3 is the

weight for this term, and

• cluster_size normalizes the objectives to a score per indi-

vidual.

In summary, the objective function seeks to minimize the number

of transmission days (i.e., days where an individual is infectious
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Table 1: Parameters of the SARS-CoV-2 branching process model

Parameter Assumed value Details and references

Incubation time

Log-normal: Log mean 1.57

days and log std 0.65 days

Mean: 5.94 days. Bi et al. [2]

Duration of infectious period

7 days—2 days before and

5 days after onset if symptomatic

Bi et al. [2]

Probability that an infected

individual shows symptoms

0.8 Buitrago-Garcia et al. [3]

Probability of symptoms

without infectiousness

0.01 per day Perrault et al. [17]

Probability of asymptomatic infection 0.2 Buitrago-Garcia et al. [3]

Probability of highly transmissive 0.109 Perrault et al. [17]

Infectiousness multiplier for

highly transmissive individuals

24.4 Perrault et al. [17]

Test parameters

TP = 0.86, FP = 0.66

TN = 0.14, FN = 0.34

Besutti et al. [1]

Delays

Observation Delay = 3 days

Test Result Delay = 1 day

Assumed

but not quarantined), minimize the number of days of non-effective

quarantine, and minimize the cost associated with actions.

We consider two action types.Quarantine-type actions reduce the
number of transmission days for an agent. The simplest quarantine-

type action causes an agent to not produce a transmission day

with probability 1 and incurs no additional cost. A more complex

quarantine-type action may work probabilistically (because an indi-

vidual may not choose to quarantine if directed), incur an additional

cost (e.g., the cost of checking in with that individual by phone), or

may be coupled with a sensing action (see below). Quarantine-type

actions are that they contribute to 𝑆2 if the individual quarantines

and is not infected.

Sensing-type actions do not directly affect the number of trans-

mission days directly. Instead, they reveal information about an

individual’s infectious state according to a probability distribution.

For example, if someone has had known exposure to someone in-

fected, but he/she doesn’t show the symptoms. With antigen tests,

we can know whether this person is infected or not. Actions can

combine both sensing and quarantine, e.g., an action that performs

an antigen test and then quarantines if the result is positive.

3 APPROACH
We show that the optimization problem from the previous section

can be formulated as a partially observable Markov decision pro-

cess (POMDP). However, solving this POMDP directly is wildly

intractable. Some hope arrives from the result that, under a sim-

plified model that contains only sensing-type actions, the POMDP

can be solved optimally if the probability that an individual is in-

fectious can be estimated—itself a challenging problem due to the

high dimensional observation space.

Motivated by this conclusion, we formulate our solution ap-

proach: we use a convolutional neural network (CNN) to estimate

the probability of infectiousness for each individual in a cluster,

and this output, along with cluster-wide statistics, serves as the

state for the RL agent.

3.1 POMDP Formulation
We define a POMDP [6] as ⟨𝑆,𝐴, 𝑅, 𝑃,Ω,𝑂,𝛾, 𝑆0⟩, where 𝑆 and 𝐴

represent the state and action spaces, respectively, 𝑅 : 𝑆 ×𝐴 → R
is the reward function, 𝑃 : 𝑆 ×𝐴 → Δ𝑆 is the transition function,

Ω is the observation state, 𝑂 : 𝑆 × 𝐴 → ΔΩ is the observation

probabilities, 𝛾 ∈ [0, 1] is the discount factor, and 𝑆0 : Δ𝑆 is the

distribution of initial states.

We briefly describe how to interpret the control problem of

the previous section as a POMDP. We define the state space as

containing all of the relevant information required to simulate the

cluster, including whether the seed case is highly transmissive,

whether each contact of a seed case will become infected, whether

they will show symptoms and if so, on what day. This simulator

data cannot be observed directly—instead we must rely on receiving

action-dependent observations. We define the action space as the

set of daily quarantine and sensing actions that are available for

each individual in the cluster. For instance, in our experiments, we

consider five actions: no quarantine and no test, quarantine and

no test, test and no quarantine, test and quarantine, and test and

quarantine only if positive. If we have 𝑁 individuals in the cluster,

we have an action space of size |𝐴|𝑁 . For observations, we receive

two types of information from each individual in each timestep:

symptom information and test results. We receive test results only

when a sensing-type action is taken and these results are noisy

(Tab. 1). Similarly, we always observe symptoms if they are present,

but both infectiousness without symptoms and symptoms without

infectiousness are possible. The resulting observation space size is

4
𝑁
.

In principle, solving the POMDP formulation results in the opti-

mal control policy. In practice, exact solving is not possible due to

the high computational complexity of the best-known algorithms.

A particular source of difficulty is the problem of calculating the

posterior probability of infection for each individual given the ob-

servations. A key challenge is that the variation in infectiousness of

the seed case causes the posterior probability of infection for each
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individual to depend on the observations for all other individuals.

Intuitively, observing symptoms or positive test results for one indi-

vidual makes it more likely that the seed case is highly transmissive

and thus more likely that each other individual is infected.

3.2 Optimal Policy Without Sensing Actions
We first consider a simplified POMDP where the only actions avail-

able are a quarantine action and no quarantine action. We show

that, if the posterior probability of infection can be calculated ex-

actly, the optimal policy has a threshold-type form: if the posterior

probability of infection is above a threshold, we quarantine and

otherwise do not. We show this initially for a costless quarantine

action with 100% efficiency as this is what we use in experiments

(Thm. 1). We then generalize the result to any menu of non-sensing

actions because the expected reward of each action can be exactly

calculated given the posterior probability of infection (Thm. 2). We

remark that these results provide additional context to the findings

of Perrault et al. [17] by defining the class of optimal risk-based

policies.

Let 𝑝
inf

represent the posterior probability of infection for an

individual given the observations so far.

Theorem 1. With a costless quarantine action that is always suc-
cessful and a null action, the objective function of Eq. 1, the optimal
policy is to quarantine if 𝑝inf >

𝛼2

1+𝛼2

and take the null action other-
wise.

Proof. Because we have access to the exact posterior probability

of infection, we can calculate the expected objective value for each

action exactly:

E[𝑟 ] =
{
−𝛼2 · (1 − 𝑝

inf
) if quarantined

−𝑝
inf

if not quarantined.

(2)

We can then show that if 𝑝
inf

>
𝛼2

1+𝛼2

, the quarantine action has

higher expected reward. □

We can use the above proof technique to derive the optimal policy

for any menu of non-sensing actions. A useful generalization is

when the quarantine action has a cost and a failure rate.

Theorem 2. With a quarantine action with success rate 0 ≤ 𝛽 ≤ 1

and cost 1 and a null action, the optimal policy is to quarantine if
𝑝inf >

𝛼2 ·𝛽+𝛼3

(1+𝛼2 ) ·𝛽 and otherwise do not.

These results highlight the importance of the posterior probabil-

ity of infection. We next dedicate our attention to producing useful

estimates of 𝑝
inf
.

3.3 Supervised Learning
We could use RL directly to solve the POMDP using the observation

information as the state. Indeed, we show that this is somewhat

effective if we leverage the state representation we develop in the

next section. However, as we know the unobserved infectious state

for each agent in simulation, we hypothesize that using a supervised

learning model to predict 𝑝
inf

and using this as input to the RL

algorithm will lead to better objective values compared to pure

RL (and in the experiments, we see that the improvement is often

substantial). Another option for estimating 𝑝
inf

would be to use an

algorithm for approximate probabilistic inference such as Markov

chain Monte Carlo, but doing so is challenging due to the high

dimensional discrete observation space where most observations

have zero probability for a given state of infectiousness.

A key question for applying supervised learning is how to repre-

sent the observation space. We have two desiderata. First, we would

like the representation to not vary with cluster size. We can also

achieve this property in the RL agent, resulting in an agent that si-

multaneously be deployed across all cluster sizes, which makes both

training and deployment simpler. Second, there is an advantage to

using a representation that inherently accounts for the symmetries

that arise due to the ordering of individuals, i.e., if we permute the

order of individuals in an observation, it should not affect 𝑝
inf

for

each individual.

After testing several representations that satisfy these properties,

we arrive at the 7 ×𝑇 matrix shown in Fig. 3, where 𝑇 is the sim-

ulation length (in our experiments, 𝑇 = 30). This is an egocentric

representation of the observation—it is from the perspective of a

particular contact and contains all information gathered so far. We

train the supervised learning model 𝑓 to produce output dimension

[0, 1]𝑇 , i.e., for every day of the simulation, what is the probabil-

ity that the agent will be infectious given the observation using

simulation outputs where the infectiousness of each individual is

provided.

The representation contains the following information. The first

row is 1 for each day after (inclusive) that the individual shows

symptoms. The second row is a binary indicator of whether this

day is in the future (1 if yes). The third row is a count of the number

of individuals in the cluster that have shown symptoms up to (in-

clusive) day 𝑡 . The fourth row is the total number of contacts in the

cluster minus 1 (constant across time). The fifth row is 𝑡 . The sixth

row is 1 if a test was conducted for this individual, and the sixth

row represents the results of that test (with a one-day delay). In row

2, 0s are used to indicate that observation was made by this day

and 1s represent the future. In row 6 and 7, 0s are used to represent

the future (no test was ordered and no results were received).

We will show that this representation can achieve an AUC of

0.95 to predict infectiousness for our branching process model if

an appropriate architecture is selected.

0 1 1 1 ...

0 0 0 1 ...

3 3 3 3 ...

9 9 9 9 ...

0 1 2 3 ...

0 1 1 0 ...

0 0 1 0 ...

Symptoms shown by day t?

Total symptom count in cluster

Cluster Size - 1

t

Test on day t?

Day t-1 test positive?

0 for past and present, 1 for future

Figure 3: The observation representation used for supervised
learning, shown on a cluster of size 10 after observing the
outcome of day 2.
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Figure 4: The supervised learning (CNN) output is used as
input to the RL state which prioritizes immediately relevant
information.

3.4 Reinforcement Learning
To make RL effective, we develop a compact state representation

that includes supervised learning outputs. As with supervised learn-

ing, we want the representation to have the same size for all clusters

and to naturally encode permutation invariance. The representa-

tion we use is a 7 × 3 matrix shown in Fig. 4. As with the suprvised

learning representation, it is egocentric and time-specific.

The first and second rows represent the 𝑝
inf

outputs from super-

vised learning for the last three days and next three days, respec-

tively. The third row indicates whether the individual exhibited

symptoms for each day in the past three days. The fourth row is an

indicator for if this individual was tested for each of the past three

days. The fifth row denotes the test results with a one day delay.

The sixth row is the cluster size. The last row indicates the number

of tests conducted in the cluster in the past three days.

Training the RL algorithm is straightforward. First, we train the

supervised learning predictor from data collected from the simula-

tor. In our experiments, we use a fixed but stochastic control policy

to collect this data. This has the advantage that a single supervised

learning training run can serve as input to an arbitrary number of

RL training. If the optimal policies are dramatically different than

the data collection policy, an addition run of supervised learning

training can be performed with the current RL policy to increase

its accuracy.

Once the supervised learning predictor is trained, we train RL

with Proximal Policy Optimization (PPO) [19]. In our experiments,

we use six different policy initializations, train each for 800000

environment interactions and pick the best based on 100 evaluation

runs. All training is performed on a single core, using Intel i5-8259U

@2.3GHz with 8GB of RAM, and a single RL training run takes 20

minutes.

4 EXPERIMENTS
We compare different control policies in the branching process

environment we construct for SARS-CoV-2. We consider a set of

five control actions for each individual for each day: null action,

quarantine, test but don’t quarantine, quarantine but don’t test, and

test and quarantine only if results are positive. We assume that

there is no failure rate for actions, and all actions that include a test

cost 1 and others are costless. For 𝛼2, we use small values of 0.01

and 0.02 as typical SARS-CoV-2 contact tracing policies accept a

large number of quarantine days for non-infectious individuals. For

𝛼3, we use values of 0.001, 0.005, 0.01, 0.02, 0.03 and 0.2. We sample

cluster size from a uniform distribution on (2, 40). The model code

is available online (https://github.com/XueqiaoPeng/CovidRL).

4.1 Supervised Learning Model
We experiment with a variety of supervised learning model archi-

tectures (Tab. 2) to find one that achieves a high AUC across cluster

sizes. We find that CNNs are generally most effective and compare

different kernels and layer structures. In single layer architectures,

we find that larger 2D convolutions tend to achieve higher AUC.

We then found that a single convolution layer followed by a linear

layer performs just as well as deeper architectures—this setup of a

(5, 2) 2D convolution followed by a linear layer is what we use in

the experiments below.

Table 2: We find that two-layer architectures using a 2D con-
volution followed by a linear layer achieve performance on
par with larger models.

Cluster size = 4 8 16 32

1 Layer

Conv1d (5,2) 0.798 0.807 0.823 0.830

Conv1d (5,3) 0.814 0.830 0.835 0.839

Conv2d (5,2) 0.800 0.814 0.827 0.830

Conv2d (5,3) 0.832 0.820 0.838 0.840

Conv2d (5,4) 0.858 0.849 0.843 0.859

Conv2d (5,5) 0.864 0.895 0.893 0.893

2 Layer

Conv1d (5,2)

0.824 0.830 0.833 0.840

Conv1d (1,2)

Conv2d (5,3)

0.883 0.903 0.898 0.897

Conv2d (1,3)

Conv2d( 5,2)

0.955 0.960 0.947 0.961

Linear Layer

Conv2d (5,3)

0.951 0.960 0.940 0.964

Linear Layer

3 Layer

Conv1d (5,3)

0.958 0.957 0.950 0.961Conv1d (1,3)

Linear Layer

4 Layer

Conv1d (4,3)

0.958 0.958 0.953 0.965

Conv1d (2,3)

Conv1d (1,3)

Linear Layer

4.2 Benchmark Policies
We compare the RLSL approach we propose to several baselines.

• Threshold is the threshold-type policy suggested in Sec. 3.2.

It does not use test actions. This policy turns out to be highly

conservative and results in long quarantine duration for all

contacts for the tested 𝛼2 values.
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Table 3: RLSL achieves higher objective values (higher is better) than baselines across all tested 𝛼2 and 𝛼3.

𝛼2 = 0.01

𝛼3 = 0.001

𝛼2 = 0.01

𝛼3 = 0.005

𝛼2 = 0.01

𝛼3 = 0.01

𝛼2 = 0.01

𝛼3 = 0.02

𝛼2 = 0.01

𝛼3 = 0.03

𝛼2 = 0.01

𝛼3 = 0.2

𝛼2 = 0.02

𝛼3 = 0.001

𝛼2 = 0.02

𝛼3 = 0.005

𝛼2 = 0.02

𝛼3 = 0.01

𝛼2 = 0.02

𝛼3 = 0.02

𝛼2 = 0.02

𝛼3 = 0.03

𝛼2 = 0.02

𝛼3 = 0.2

RLSL (Ours) −3.77 ± 0.25 −10.27 ± 0.15 −17.13 ± 0.48 −44.22 ± 0.84 −46.46 ± 1.47 −110.92 ± 1.54 −4.01 ± 0.21 −17.64 ± 0.32 −25.39 ± 0.48 −49.28 ± 0.66 −64.45 ± 0.83 −120.21 ± 0.22

Threshold −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32
Symptom-Based

Quarantine

−111.13 ± 14.18 −111.13 ± 14.18 −111.13 ± 14.18 −111.13 ± 14.18 −111.13 ± 14.18 −111.13 ± 14.18 −112.60 ± 11.94 −112.60 ± 11.94 −112.60 ± 11.94 −112.60 ± 11.94 −112.60 ± 11.94 −112.60 ± 11.94

14 Days

Quarantine

−97.18 ± 9.97 −97.18 ± 9.97 −97.18 ± 9.97 −97.18 ± 9.97 −97.18 ± 9.97 −97.18 ± 9.97 −106.63 ± 11.00 −106.63 ± 11.00 −106.63 ± 11.00 −106.63 ± 11.00 −106.63 ± 11.00 −106.63 ± 11.00

No Quarantine −235.98 ± 18.53 −235.98 ± 18.53 −235.98 ± 18.53 −235.98 ± 18.53 −235.98 ± 18.53 −235.98 ± 18.53 −242.16 ± 20.38 −242.16 ± 20.38 −242.16 ± 20.38 −242.16 ± 20.38 −242.16 ± 20.38 −242.16 ± 20.38

Table 4: 𝑆1, 𝑆2 and 𝑆3 per individual compared across different cluster sizes (lower is better), using 𝛼2 = 0.01 and 𝛼3 = 0.01. Even
relatively conservative strategies such as 14-day quarantine from exposure fail to isolate some infections in our simulation.
RLSL can benefit substantially from the additional information available in large clusters resulting in strong performance with
low test costs.

Cluster size = 4 Cluster size = 8 Cluster size = 16 Cluster size = 32

𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3

RLSL 0.064 ± 0.008 6.808 ± 0.184 10.144 ± 0.052 0.077 ± 0.012 7.552 ± 0.099 11.825 ± 0.056 0.075 ± 0.011 10.033 ± 0.127 11.253 ± 0.087 0.054 ± 0.007 8.259 ± 0.090 10.808 ± 0.134

Threshold 0.078 ± 0.013 16.012 ± 0.211 - 0.063 ± 0.013 17.656 ± 0.198 - 0.05 ± 0.008 19.681 ± 0.173 - 0.016 ± 0.003 20.701 ± 0.319 -

Symptom-Based

Quarantine

1.418 ± 0.199 0.236 ± 0.029 - 1.207 ± 0.187 0.239 ± 0.014 - 1.196 ± 0.052 0.232 ± 0.017 - 1.072 ± 0.146 0.261 ± 0.042 -

14-day

Quarantine

1.042 ± 0.072 2.469 ± 0.113 - 0.965 ± 0.082 2.440 ± 0.144 - 0.973 ± 0.114 2.291 ± 0.125 - 0.929 ± 0.107 2.004 ± 0.155 -

No Quarantine 2.361 ± 0.195 - - 2.597 ± 0.282 - - 2.075 ± 0.203 - - 1.856 ± 0.173 - -

Table 5: In cases where test costs are higher, RLSL produces polices that test too often, resulting in lower performance than
RLSL models with only quarantine actions—we discuss potential fixes.

𝛼2 = 0.01

𝛼3 = 0.001

𝛼2 = 0.01

𝛼3 = 0.005

𝛼2 = 0.01

𝛼3 = 0.01

𝛼2 = 0.01

𝛼3 = 0.02

𝛼2 = 0.01

𝛼3 = 0.03

𝛼2 = 0.01

𝛼3 = 0.2

𝛼2 = 0.02

𝛼3 = 0.001

𝛼2 = 0.02

𝛼3 = 0.005

𝛼2 = 0.02

𝛼3 = 0.01

𝛼2 = 0.02

𝛼3 = 0.02

𝛼2 = 0.02

𝛼3 = 0.03

𝛼2 = 0.02

𝛼3 = 0.2

RLSL −3.77 ± 0.25 −10.27 ± 0.15 −17.13 ± 0.48 −44.22 ± 0.84 −46.46 ± 1.47 −110.92 ± 1.54 −4.01 ± 0.21 −17.64 ± 0.32 −25.39 ± 0.48 −49.28 ± 0.66 −64.45 ± 0.83 −120.21 ± 0.22

RLSL (Daily Test) −4.30 ± 0.42 −13.15 ± 0.15 −24.46 ± 0.17 −45.62 ± 1.27 −74.68 ± 0.2 −737.78 ± 3.33 −12.81 ± 0.55 −23.72 ± 0.47 −27.25 ± 0.58 −50.50 ± 0.11 −75.88 ± 0.26 −739.98 ± 1.516

RLSL (No Test) −34.56 ± 0.39 −34.56 ± 0.39 −34.56 ± 0.39 −34.56 ± 0.39 −34.56 ± 0.39 −34.56 ± .39 −52.92 ± 0.13 −52.92 ± 0.13 −52.92 ± 0.13 −52.92 ± 0.13 −52.92 ± 0.13 −52.92 ± 0.13

RL Only −14.64 ± 0.79 −20.32 ± 0.83 −34.02 ± 0.70 −46.10 ± 1.14 −53.22 ± 1.01 −84.35 ± 1.04 −15.36 ± 0.76 −25.66 ± 0.56 −39.80 ± 0.39 −63.07 ± 0.81 −70.56 ± 0.827 −162.4 ± 2.36

Threshold (SL Only) −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −21.79 ± 0.20 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32 −43.65 ± 0.32

• Symptom-Based Quarantine quarantines if an individual

exhibits symptoms on the day before the observed day and

otherwise does not.

• 14-Day Quarantine quarantines individuals from the initial

day they exhibit symptoms until either 14 days have passed

or until they no longer exhibit symptoms, whichever is later.

No test action is included.

• No Quarantine always performs the null action.

4.3 Analysis
Our experimental results report the average objective value and

standard error taken over 10 random clusters (Tab. 3). We find that

RLSL and Threshold acheive better performance than baselines in

all cases. However, our current methods for RLSL struggle relative

to Threshold when tests are expensive. Our experimental results

could be broadened by includingmore𝛼 values andmore analysis as

to where the RLSL policies gain their advantage (but see discussion

of Tab. 5 below for some insights).

Focusing on the setting of 𝛼1 = 0.01 and 𝛼2 = 0.01, we report

objective values broken out by component and by cluster size as

measured per individual (Tab. 4). Here we can get an intuitive grasp

of what is happening in the different policies. Threshold aggres-

sively quarantines, resulting in 𝑆2 = 16–20, i.e., 16–20 days of

quarantine without infection per contact, for the tested 𝛼 values.

This is able to drive 𝑆1 to a low value, resulting in an average objec-

tive value of −21.79. Recall that 𝑆1 is much more highly weighted

(100 times) higher than 𝑆2 in this setting. Symptom-based and 14-

day quarantine reduce 𝑆2 by a factor of 8 to 100, but this causes 𝑆1
to be roughly 150 to 200 times higher. By leveraging tests, RLSL

can reduce 𝑆2 by a factor of 2–3 and 𝑆1 by a factor of 0.8–3.5.

In the ablation study (Tab. 5), we gain a more detailed view into

the operation of the RLSL policy. We see that the introduction of the

SL outputs to the RL state results in better performance in all tested

scenarios compared to RL Only, which uses the state representation

of Fig. 4 without the first two rows.

We can observe limitations of the supervised infectiousness pre-

diction model in Tab. 4, where the 𝑆2 cost does not decrease as

cluster size increases—from Thm. 1, we can conclude that if 𝑝
inf

is correct, the ratio of 𝑆1 to 𝑆2 should not depend on cluster size

for Threshold. There are several possible causes of this issue. First,

the SL model outputs might be miscalibrated, as is often the case

for neural networks trained on highly imbalanced data. This issue

could be fixed with post-hoc calibration such as Platt scaling [18].

In this instance, a more sophisticated calibration could be employed

with separate calibration parameters per cluster size, if necessary.

Second, it may be the case that the SL model outputs are wrong for

reasons other than calibration. For example, it may receive insuffi-

cient relevant training data as it is trained on data produced from a

random policy and not Threshold or RLSL. It is also possible that

we performed insufficient architecture search.

We also see that RLSL (No Test) often performs better than RLSL

as test costs increase. This suggests that RLSL is not finding a true
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optimal policy. This could likely be address by using a wider range

of initialization values for RLSL—for example, initializing some

seeds to policies that test very little (the initialization we use for

RLSL and RL Only tests heavily). This observation has a silver

lining: RL (No Test) can achieve much stronger performance than

baselines even without tests. This implies that RL (No Test) is able

to correct for the errors in Threshold to find a policy closer to what

is suggested by Thm. 1.

5 DISCUSSION AND FUTUREWORK
This work aims to develop a generic multi-objective optimization

approach for cluster-level optimization of NPIs. We formulate this

problem for RL in a branching process environment. We present

initial results that demonstrate the potential of our approach—in a

branching process model of SARS-CoV-2, we can achieve substan-

tially higher objective values than baseline policies. The resulting

policies can be applied across all cluster sizes and do not take much

time to train on consumer hardware. The policies we propose are

able to heavily exploit superspreading dynamics.

Our vision for an infectious disease crisis is that a canonical prob-

abilistic model of the disease is constructed and updated throughout

the crisis. The model can be constructed from estimates of key dis-

ease parameters that are made from various sources throughout a

crisis and can reflect uncertainty in these estimates. We advocate

that superspreading dynamics be given substantial attention in

these early stages due to the substantial influence on interventions

that we find it can have. Using this canonical model, a branching

process environment can be constructed and optimized against as

we propose in this paper. We do not consider uncertainty in the

parameters of this model, but it is possible to do so with existing

techniques and leads to different RL algorithmic choices depending

on the form of the uncertainty and the desired objective.

A key disadvantage of our approach as presented is the com-

plexity of the resulting policies. For instance, to execute our RLSL

policy requires training and drawing outputs from two neural net-

works. In contrast, policies that were employed in the SARS-CoV-2

pandemic consisted of short lists of rules. We believe that this is

not an inherent weakness of our approach—we can leverage inter-

pretable ML and RL techniques to “distill” the RLSL policies into,

say, low-depth decision trees, allowing them to be applied at scale

with low logistical cost. There will be some decrease in quality, but

we suspect still substantial advantage over baselines.

An area for future study is cost and benefit of taking a cluster-

rather than individual-level view of policy application. This imposes

additional logistical costs and the benefit is dependent on the degree

of cluster-level transmission heterogeneity that is present. This

trade-off is not well understood and is a critical area for future

work.
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