
Factorized-FL: Personalized Federated Learning with
Parameter Factorization & Similarity Matching

Wonyong Jeong
Graduate School of AI

KAIST, Seoul, South Korea
wyjeong@kaist.ac.kr

Sung Ju Hwang
Graduate School of AI

KAIST, Seoul, South Korea
sjhwang82@kaist.ac.kr

Abstract

In real-world federated learning scenarios, participants could have their own person-
alized labels incompatible with those from other clients, due to using different label
permutations or tackling completely different tasks or domains. However, most
existing FL approaches cannot effectively tackle such extremely heterogeneous
scenarios since they often assume that (1) all participants use a synchronized set of
labels, and (2) they train on the same tasks from the same domain. In this work, to
tackle these challenges, we introduce Factorized-FL, which allows to effectively
tackle label- and task-heterogeneous federated learning settings by factorizing the
model parameters into a pair of rank-1 vectors, where one captures the common
knowledge across different labels and tasks and the other captures knowledge
specific to the task for each local model. Moreover, based on the distance in the
client-specific vector space, Factorized-FL performs a selective aggregation
scheme to utilize only the knowledge from the relevant participants for each client.
We extensively validate our method on both label- and domain-heterogeneous set-
tings, on which it outperforms the state-of-the-art personalized federated learning
methods. The code is available at https://github.com/wyjeong/Factorized-FL.

1 Introduction

Personalized Federated Learning (PFL) aims to utilize the aggregated knowledge from other clients
while learning a client-specific model that is specialized for its own task and data distribution, rather
than learning a universal, global model for tackling all local tasks [1, 16, 5, 28]. While various
personalized federated learning approaches have shown success in alleviating the data heterogeneity
problem, yet, they are also limited as they follow the common assumptions of the standard federated
learning setting, that (1) all participants use a synchronized set of labels, and (2) all clients tackle the
same task from the same domain.

In many real-world scenarios, the first assumption may not hold since the labels for the same task
could be differently annotated depending on the user environment, i.e. language or nationality
(Figure 2 Left). In other words, when working with the same set of semantic classes, the labels across
multiple clients could be completely different. For example, the same “Car" class may be given the
label “Vehicle" or “Auto".

The second assumption severely limits the pool of devices or institutions that can participate in the
collaborative learning process. However, clients working on different tasks and domains may have
similar classes, or a common underlying knowledge, that may be helpful for the local models being
trained at other clients (Figure 2 Right). Thus, it would be helpful if we can allow the local models
with heterogeneous tasks and domains to communicate the common knowledge across them.
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Figure 1: Challenges of Label & Domain Heterogeneous Scenarios (a) illustrates label and domain hetero-
geneity in parameter space. (b) shows normalized L2 distance of the gradient updates from that of model trained
on MNIST Partition 1. (c) shows performance degradation on MNIST partition 1 caused by the label and domain
heterogeneity while performing federated learning.
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Figure 2: Label and Domain Heterogeneous
FL Scenarios. Left labels are not synchro-
nized across all clients. Right the local clients
learn on different tasks and/or domains.

However, federated learning under label and domain het-
erogeneity is a nontrivial problem, as most methods suf-
fer from severe performance degeneration in such set-
tings (Table 1). We analyze this phenomenon in Figure 1.
Specifically, we train equally-initialized models on four
different datasets and observe how different the gradient
updates become as training goes on (we measure nor-
malized L2 distance between them). Learning on two
MNIST partitions will yield the smallest difference be-
tween gradients (Figure 1 (a) and (b) Gray). Interestingly,
simply permuting the labels of the partition 2 makes the
gradient updates to largely diverge from the original gradients, compared to those of the model
trained with synchronized labels (Figure 1 (a) and (b) Red). Moreover, learning on the completely
different dataset (CIFAR-10) makes model gradients diverge more severely compared to learning on
the dataset with permuted labels (Figure 1 (a) and (b) Blue).

The heterogeneity in the labels and domains tackled by each participant leads to severe performance
degeneration when performing federated learning (Figure 1 (c)). We measure performance on MNIST
partition 1 while aggregating a model trained on the different dataset for every 3 epochs. We observe
averaged models suffer from crucial performance degeneration in both FL scenarios. Note that the
classifier layers are not shared when performing federated learning. However, such label- and domain-
heterogeneous FL settings have been relatively overlooked. Although few previous works [1, 16, 25]
briefly introduced such extreme settings as motivations, they did not formally define the problems
nor tackle such scenarios, and rather targeted standard non-IID scenarios.

We name this challenging problem as the Agnostic Personalized Federated Learning (APFL) problem,
where participants with personalized labels or from multiple domains can collaboratively learn while
benefiting each other. An APFL problem has two critical challenges: (1) Label Heterogeneity for the
discrepancy of the labels, due to the lack of a synchronized labeling scheme across the clients; and
(2) Domain Heterogeneity for the discrepancy in the task and domains tackled by each participant.
To tackle these challenges, we propose a novel FL framework, dubbed Factorized-FL, which
factorizes model parameters into basis vectors and aggregate them in the factorized parameter space.
This allows to factorize the model aggregation to take place in a semantic parameter basis space which
is more robust to the use of different labels and data. Also, the factorization results in the separation
of the client-general and client-specific knowledge, and thus prevents the aggregation of incompatible
knowledge across clients. Moreover, to further alleviate the model from collapsing into a degenerate
solution, we measure the task similarity across the clients using the factorized parameters, to allow
selective aggregation of the knowledge among the relevant models that work on similar tasks or
domains. We extensively validate our method on both label- and domain-heterogeneous settings, and
show that it significantly outperforms the current state-of-the-art methods with lower communication
cost due to using factorized parameters. Our contributions can be summarized as follows:

• We introduce the Agnostic Personalized Federated Learning (APFL) problem and study its two
critical challenges, Label and Domain Heterogeneity.

• We propose Factorized-FL for tackling the APFL problem, which factorizes model parameters to
reduce parameter dimensionality for alleviating knowledge collapse, and utilize them to measure
task-level similarity for matching relevant clients.

• We validate our method in both label- and domain-heterogeneous scenarios and show our method
outperforms the current state-of-the-art personalized federated learning methods.
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2 Related Work

Federated learning Many federated learning algorithms have been proposed since the introduction
of FedAvg [18], but, we specifically focus on works that aim to tackle the heterogeneity problems, e.g.
Non-IIDness. Some studies focus on regularization methods [19, 15], correcting disparity between
server and clients [26, 9], or contrastive learning [13]. Recently, many existing works also tackle
architecture-level heterogeneity [24, 29, 3].

Personalized federated learning aims to improve the individual local models instead of the universal
global model, via the mixture methods [17, 2, 7], meta-learning [5], partial network aggregation [1,
16], or hyper-networks [25]. Recent approaches aim to enhance personalization performance by
avoiding to aggregate irrelevant knowledge that are not helpful. Zhang et al. [28] download the
models from other clients to aggregate only the beneficial ones for the local task at each client. Sattler
et al. [23], Duan et al. [4] measure client-wise similarity by using the gradient updates. Our method
also measures client similarity but in a more efficient way, by utilizing 1D vectors from factorization.

Re-parameterization for federated learning Jeong et al. [8], Yoon et al. [27] decompose model
parameters (using an additional set of parameters) to train them with different objectives, which do
not reduce the dimensionality of model parameters. Some approaches factorize high dimensional
model parameters into low rank matrices. Konečnỳ et al. [10] introduce structured update which
model directly learns factorized parameter space, and Nam et al. [20] propose to use the Hadamard
product of low rank matrices to enhance communication efficiency. Unlike prior works, we utilize
rank-1 vectors factorization to tackle heterogeneity in domains and tasks, by allowing the 1D vectors
to capture task-general and the client-specific knowledge. Also, we minimize the information loss
from factorization by utilizing sparse bias matrices.

3 Problem Definition

We begin with the formal definition of the conventional federated learning scenario, and then introduce
our novel Agnostic Personalized Federated Learning (APFL) problem.

3.1 Preliminaries

Our goal is to solve a multi-class classification task under an FL setting. Let fg be a global model
(neural network) at the global server and F = {fk}Kk=1 be a set of K local neural networks, where K
is the number of local clients. D = {xi, yi}Ni=1 be a given dataset, where N is the number of instances,
xi 2 RW⇥H⇥D is the ith examples in a size of width W , height H , and depth D, with a corresponding
target label yi 2 {1, . . . , C} for the C-way multi-class classification problem. The given dataset
D is then disjointly split into K sub-partitions Dk= {xk,i, yk,i}Nk

i=1 s.t. D =
SK

k=1 Dk, which are
distributed to the corresponding local model fk. Let R be the total number of the communication
rounds and r denote the index of the rth communication round. At the initial round r=1, the global
model fg initializes the global weights ✓(1)fg

and broadcasts ✓(1)fg
to an arbitrary subset of local models

that are available for training at round r, such that F (r) ⇢ F , |F (r)| = K(r), and K(r)  K, where
K(r) is the number of available local models at round r. Then the active local models fk 2 F (r)

perform local training to minimize loss L(✓(r)k ) on the corresponding sub-partition Pk and update
their local weights ✓(r+1)

k  ✓(r)k � ⌘rL(✓(r)k ), where ✓(r)k is the set of weights for the local model
fk at round r and L(·) is the loss function. When the local training is done, the global model F
collects and aggregates the learned weights ✓(r+1)

fg
 Nk

N

PK(r)

i=1 ✓(r)k and then broadcasts newly
updated weights to the local models available at the next round r + 1. These learning procedures are
repeated until the final round R.

On the other hand, Personalized Federated Learning aims to adapt the individual local models f1:K to
their local data distribution D1:K , to obtain specialized solution for each task at the local client, while
utilizing the knowledge from other clients. Thus merging the local knowledge for personalized FL
is not necessarily done in the form of ✓(r+1)

fg
 Nk

N

PK(r)

i=1 ✓(r)k , and the specific ways to utilize the

knowledge from others depends on the specific algorithm, i.e. ✓(r+1)
k  ✓(r)k +

PK(r)

i 6=k !i(✓
(r)
k �✓

(r)
i ),

where !(·) is weighing function [28].
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Figure 3: Illustration of Parameter Factorization Methods: Left shows conventional matrix factorization
with two low rank matrices with rank �. Middle represents the method utilizing Hadamard product of low rank
matrix for federated learning [20]. Right illustrates our factorization method for agnostic personalized federated
learning, which utilizes rank 1 vectors and highly sparse bias.

3.2 Agnostic Personalized Federated Learning

Agnostic Personalized Federated Learning (APFL) is a scenario where any local participants from
diverse domains with their own personalized labeling schemes can collaboratively learn, benefiting
each other. There exist two critical challenges that need to be tackled to achieve this objective: (1)
Label Heterogeneity and (2) Domain Heterogeneity.
Label Heterogeneity This scenario assumes that the labeling schemes are not perfectly synchro-
nized across all clients, as described in Section 1 and Figure 2 Left. Most underlying setting for
this scenario is the same as the conventional single-domain setting with synchronized labels that is
described in Section 3.1, except that labels are arbitrarily permuted amongst clients. The local data
Dk for the local model fk is now defined as Dk = {xk,i,'k(yk,i)}Nk

i=1, where 'k(·) is a mapping
function for the local model fk which maps a given class yk,i with a randomly permuted label
pk,i='k(yk,i). Let the jth layer out of L layers in the neural networks of local model fk be `jk and the
last layer `Lk be the classifier layer. Since each client has differently permuted labels, the personalized
classifiers `L1:K are no longer compatible to each other. While we can merge the layers below the
classifier in this setting, training with heterogeneous labels could still lead to large disparity in the
local gradients even in the initial communication round, as described in Figure 1.
Domain Heterogeneity This scenario presumes that local clients learn on their own dataset D, that
are completely different from the datasets that are used at other clients, as described in Section 1 and
Figure 2 Right. In this setting, K disjoint datasets D1:K are assigned to the K local clients f1:K ,
where Dk = {xk,i, yk,i}Nk

i=1 is the dataset assigned to the local model fk. The number of target classes
may differ across clients, such that yk,i 2 {1, . . . , Ck}. We assume complete disjointness across
clients, such that there is no instance- and class-wise overlap across the datasets: ? =

TK
k=1 Dk and

? =
TK

k=1 Ck, where Ck is a set of classes for client k. Similarly to the label-heterogeneous scenario,
the personalized classifiers `L1:K are no longer compatible to each other due to the heterogeneity in
the data and the labels. Hence, the aggregation is done for the layers before the classifier, but they
will be also incompatible as the learned model weights will be largely different across domains.

4 Factorized Federated Learning

4.1 Factorization of Model Parameters

Wang et al. [26] discussed that the conventional knowledge aggregation, that is often performed
in a coordinate-wise manner, may have severe detrimental effects on the averaged model. This is
because the deep neural networks have extremely high-dimensional parameters and thus meaningful
element-wise neural matching is not guaranteed when aggregating the weights across different models
trained under diverse settings.

One naive solution to this problem is to factorize model parameters into lower dimensional space,
i.e. low rank matrices, as shown in Figure 3 (Left). Conventional approaches, such as SVD, Tucker,
or Canonical Polyadic decomposition, however, factorize model parameters after training [12, 22]
is done. Thus, the dimensionality at the time of knowledge aggregation will remain the same as
the unfactorized model. Konečnỳ et al. [10], Nam et al. [20] pre-decompose model parameters to
low rank matrices for FL scenarios. While Konečnỳ et al. [10] use naive low rank matrices, Nam
et al. [20] use two sets of low rank matrices to improve expressiveness and utilize them as global
and local weights (Figure 3 (Middle)). Unlike prior works, our approach utilizes rank-1 vectors to
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perform aggregation in the lowest subspace possible for compatibility, while effectively yet efficiently
enhancing expressiveness with sparse bias matrices, as shown in Figure 3 (Right) and Figure 5 (Left).
Another crucial difference of our method from the previous factorization methods is that our rank-1
vectors have distinct roles. Our factorization will separate the common knowledge from the task- or
domain-specific knowledge, since u could be thought as the bases (the common knowledge across
clients) and v could be thought as the coefficients (client-specific information).

(a) Hetero. Labels (b) Hetero. Domains
Figure 4: Analysis of u and v: The normalized L2

distance of the gradient updates of u and v while
learning on (a) MNIST Partition 2 and (b) CIFAR-
10 compared to learning on MNIST Partition 1.

In Figure 4 (a) and (b), which show the experimental
results with the factorized model, we observe that
u trained on two datasets becomes closer to each
other (MNIST Partition 1) while v (personalized fil-
ter coefficient) remain largely different as FL goes on.
With this observation, we further aggregate u while
allowing v to be different across clients, to allow per-
sonalized FL. Further, we use the client specific v for
similarity matching, to identify relevant local models
from other clients. In the following paragraphs, we
describe our factorization method in detail, for both fully-connected and convolutional layers.

Factorization of Fully-Connected Layers We assume that each local model fk has a set of local
weights ✓k across all layers; that is, ✓k = {Wi

k}Li=1. The dimensionality of the dense weight Wi
k

for each fully connected layer is Wi
k 2 RI⇥O, where I and O indicate respective input and output

dimensions. We can reduce the I ⇥O complexity by factorizing the high order matrix into the outer
product of two vectors as follows:

Wi
k = ui

k ⇥ vi|k ,where ui
k 2 RI , vik 2 RO. (1)

However, such extreme factorization of the weight matrices may result in the loss of expressiveness in
the parameter space. Thus, we additionally introduce a highly sparse bias matrix µ to further capture
the information not captured by the outer product of the two vectors as follows:

Wi
k = ui

k ⇥ vi|k � µi
k,where ui

k 2 RI , vik 2 RO, µi
k 2 RI⇥O. (2)

We initialize µ with zeros so that it can gradually capture the additional expressiveness that are not
captured by u and v during training. We can control its sparsity by the hyper-parameter for the
sparsity regularizer described in 4.3.

Factorization of Convolutional Layers The difference between the fully-connected and con-
volutional layers is that the convolutional layers have multiple kernels (or filters) such that
Wi

k 2 RF⇥F⇥I⇥O, where F is a size of filters (we assume the filter size is equally paired for
the simplicity). To induce u to capture base filter knowledge and v to learn filter coefficient, it is es-
sential to design u 2 RF ·F and v 2 RI·O, but not in arbitrary ways, such as u 2 RI·F and v 2 RO·F

or u 2 RO and v 2 RI·F ·F . We observe that performance is degenerated when the parameters are
ambiguously factorized (Figure 7 (h)). Our proposed factorization method for convolutional layers
are as follows: Wi

k = ⇡(ui
k ⇥ vi|k � µi

k),where ui
k 2 RF ·F , vi

k 2 RI·O,

µi
k 2 RF ·F⇥I·O,⇡(·) : RF ·F⇥I·O ! RF⇥F⇥I⇥O,

(3)

⇡(·) is the weight reshaping function. Note that we reparameterize our model at initialization time.
Then we reconstruct and train full weights of each layer W1:L

k , while optimizing u1:L
k , v1:Lk , and µ1:L

k ,
respectively, during training phase.

4.2 Similarity Matching

Since we assume label- and domain-heterogeneous FL scenarios, aggregating the parameter bases
across all clients may not be optimal, since some of them could be highly irrelevant. Yoon et al. [27]
and Zhang et al. [28] also demonstrate that avoiding aggregation of irrelevant models from other
clients improves local model performance. Yoon et al. [27] achieve this goal by taking the weighted
combination of task-specific weights from other clients, and Zhang et al. [28] suggest downloading
the models from other clients and evaluating their performance on a local validation set, at each client.
However, since they require additional communication and computing cost at the local clients, we
provide a more efficient yet effective approach to match models that are beneficial to each other.
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Figure 5: Illustration of the parameter factorization & similarity matching algorithm (a) We multiply
two factorized vectors u and v to obtain kernel matrix. Then we add the sparse bias matrix µ to complement
non-linearity and reshape the matrix into the original kernel shape. (b) We match relevant clients utilizing the
factorized vector v that captures client-specific knowledge. Then we aggregate u based on the similarity.

Efficient similarity matching Our method utilizes a factorized vector vk for measuring similarity
across different models, at the central server. Since v are devised to learn personalized coefficients,
we assume that clients trained on similar tasks or domains will have similar v. Specifically, we use
vL�1
k of the layer before the classifier layer for similarity matching. The similarity matching function
⌦(·), is defined as the cosine similarity between target client fk and the other clients {fi}Ki 6=k, as
follows:

⌦(vL�1
fk

, vL�1
fi 6=k:K

) = {�i|�i =
vL�1
fk

· vL�1
fi

kvL�1
fk
kkvL�1

fi
k
,�i � ⌧}Ki 6=k. (4)

The similarity scores for those with the cosine similarity scores lower than the given threshold ⌧ , are
set to zero. Our method is significantly more efficient than the similarity matching approaches which
use full gradient updates for clustering clients [23, 4], as we only use single vector vL�1

k from each
client k that are obtained without additional cost.

Personalized weighted averaging We allow each local model to individually perform weighted
aggregation of the model weights from other clients, utilizing their similarity scores:

ul
k  

exp(✏ · �i)PK
i=1 exp(✏ · �i)

KX

i=1

ul
i, s.t.8l 2 {1, 2, . . . , L� 1}. (5)

where ✏ is a hyperparameter for scaling the similarity score �i. We always set �k, the similarity
score for itself, as 1.0. We name this model that aggregates only basis vector uk from each client k
as Factorized-FL ↵. This will result in encoding common knowledge across local models in uk

which is especially suitable for domain-heterogeneous scenarios. However, for label-heterogeneous
scenarios, we empirically observed that aggregating all parameters results in better performance, as
the factorization helps averaging them in a more compatible space. We thus introduce an additional
variant, namely Factorized-FL �, which aggregates not only the parameter bases across all clients,
but also coefficient and bias terms as well. Yet, note that Factorized-FL � require significantly
larger communication overhead over Factorized-FL ↵.

4.3 Learning Objective

Now we describe our final learning objective. Instead of utilizing the single term ✓k for local weights
of neural network fk, now let Uk, Vk, and Mk be sets of uk, vk, and µk of all layers in fk, s.t.
Uk = {ui

k}Li=1, Vk = {vik}Li=1, and Mk = {µi
k}Li=1, then our local objective function is,

min
Uk,Vk,Mk

X

B2Dk

L(B;Uk,Vk,Mk) + �sparsity||Mk||1, (6)

where L is the standard cross-entropy loss performed on all minibatch B 2 Dk. We add the L1

sparsity inducing regularization term to make the bias parameters highly sparse, controlling its effect
with a hyperparameter �sparsity. As for the full training procedure, please see the pseudo-code of the
algorithm in the supplementary file (Section A).
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Table 1: Performance comparison of label and domain heterogeneous scenario. Top (label heterogeneous
scenario): we train 20 clients on each dataset (CIFAR-10 & SVHN) for 250 training iterations (E=5, R=50).
Bottom (domain & label heterogeneous scenario): We train 20 clients for 500 training iterations (E=5,R=100)
on 20 sub-datasets from 5 heterogeneous domains (4 clients per domain). Labels are also permuted for all
partitions. We measure averaged performance over three trials with different seeds. (Table 1 Bottom will be
moved to Appendix and a new set of experiments for the pure domain heterogeneous setting will be added.)

Dataset Method Standard IID Permuted IID Standard Non-IID Permuted Non-IID
Accuracy [%] Cost [Gb] Accuracy [%] Cost [Gb] Accuracy [%] Cost [Gb] Accuracy [%] Cost [Gb]

CIFAR-10

Stand-Alone 64.31 (± 1.08) - 63.93 (± 0.90) - 47.79 (± 0.91) - 46.06 (± 1.03) -
FedAvg [18] 70.28 (± 0.82) 20.39 65.31 (± 1.28) 20.39 53.08 (± 1.4) 20.39 48.90 (± 1.25) 20.39
FedProx [14] 70.54 (± 0.73) 20.39 66.28 (± 0.90) 20.39 53.56 (± 0.55) 20.39 47.86 (± 0.83) 20.39
Clustered-FL [23] 69.48 (± 1.02) 20.39 65.77 (± 1.03) 20.39 53.93 (± 1.57) 20.39 49.00 (± 0.32) 20.39
Per-FedAvg [5] 70.84 (± 1.01) 20.39 65.58 (± 0.74) 20.39 53.35 (± 2.87) 20.39 47.60 (± 1.01) 20.39
FedFOMO [28] 70.19 (± 0.79) 122.33 64.26 (± 0.92) 122.33 50.69 (± 1.61) 122.33 46.73 (± 1.04) 122.33
pFedPara [20] 67.96 (± 1.25) 7.4 65.12 (± 1.27) 7.4 55.88 (± 1.28) 7.4 50.22 (± 0.92) 7.4

Factorized-FL ↵ (Ours) 66.97 (± 1.36) 0.32 67.91 (± 1.08) 0.32 50.34 (± 1.33) 0.32 50.24 (± 1.03) 0.32
Factorized-FL � (Ours) 76.26 (± 1.05) 18.25 70.59 (± 2.07) 18.25 65.30 (± 1.38) 18.25 56.61 (± 1.10) 18.25

SVHN

Stand-Alone 84.18 (± 0.37) - 84.32 (± 0.31) - 62.50 (± 0.84) - 62.11 (± 0.78) -
FedAvg [18] 88.53 (± 0.32) 20.39 87.83 (± 0.29) 20.39 76.03 (± 0.90) 20.39 69.73 (± 0.91) 20.39
FedProx [14] 89.04 (± 0.33) 20.39 87.31 (± 0.21) 20.39 76.61 (± 0.92) 20.39 69.40 (± 0.73) 20.39
Clustered-FL [23] 88.02 (± 0.37) 20.39 87.33 (± 0.29) 20.39 74.27 (± 0.83) 20.39 68.84 (± 0.84) 20.39
Per-FedAvg [5] 88.46 (± 0.53) 20.39 87.29 (± 0.24) 20.39 74.90 (± 0.58) 20.39 68.67 (± 0.79) 20.39
FedFOMO [28] 88.34 (± 0.26) 122.33 84.03 (± 0.34) 122.33 72.12 (± 0.96) 122.33 61.45 (± 0.93) 122.33
pFedPara [20] 88.70 (± 0.25) 7.4 88.24 (± 0.22) 7.4 75.36 (± 0.93) 7.4 70.26 (± 0.85) 7.4

Factorized-FL ↵ (Ours) 86.56 (± 0.39) 0.32 86.31 (± 0.27) 0.32 66.25 (± 0.71) 0.32 66.12 (± 0.79) 0.32
Factorized-FL � (Ours) 91.04 (± 0.73) 18.25 89.57 (± 0.47) 18.25 81.07 (± 0.53) 18.25 74.63 (± 0.84) 18.25

Method Household Fruit&Food Tree&Flower Transport Animals AVERAGE
Accuracy [%] Accuracy [%] Accuracy [%] Accuracy [%] Accuracy [%] Accuracy [%] Cost [Gb]

Stand-Alone 59.38 (± 0.70) 63.74 (± 1.76) 61.20 (± 0.64) 63.22 (± 2.12) 58.40 (± 1.20) 61.35 (± 1.90) -
FedAvg [18] 55.08 (± 2.49) 63.18 (± 2.45) 57.76 (± 1.77) 57.96 (± 2.97) 53.61 (± 1.21) 56.42 (± 1.65) 40.78
FedProx [14] 56.77 (± 2.59) 61.33 (± 1.28) 58.14 (± 0.51) 55.79 (± 0.82) 51.43 (± 2.17) 56.71 (± 1.52) 40.78
Clustered-FL [23] 59.44 (± 2.31) 66.93 (± 0.88) 60.03 (± 1.13) 62.17 (± 2.55) 55.01 (± 2.14) 59.20 (± 2.16) 40.78
Per-FedAvg [5] 64.01 (± 1.56) 67.68 (± 1.07) 61.62 (± 1.86) 64.36 (± 1.27) 60.25 (± 0.88) 62.92 (± 1.60) 40.78
FedFOMO [28] 59.70 (± 1.78) 64.32 (± 1.48) 63.87 (± 2.19) 62.57 (± 0.97) 57.75 (± 2.28) 62.07 (± 1.80) 244.66
pFedPara [20] 60.35 (± 3.30) 65.56 (± 0.60) 61.98 (± 2.02) 60.16 (± 6.66) 56.12 (± 2.86) 61.11 (± 2.61) 15.98

Factorized-FL ↵ (Ours) 64.06 (± 0.16) 68.55 (± 0.16) 64.39 (± 2.23) 66.93 (± 1.03) 61.33 (± 3.56) 64.49 (± 1.57) 0.64
Factorized-FL � (Ours) 65.04 (± 0.78) 65.53 (± 2.79) 65.14 (± 2.64) 65.04 (± 1.95) 64.45 (± 3.47) 63.93 (± 2.26) 36.5

(a) IID (b) Permuted IID (c) NonIID (d) Permuted NonIID (e) Hetero-Domain
Figure 6: Test Accuracy Curves & Communication Costs We plot the averaged test accuracy curves on both
CIFAR-10 and SVHN for (a) IID, (B) Permuted IID, (c) Non-IID, and (d) Permuted Non-IID partitions. For (e),
we plot test accuracy curves (top) and communication costs (bottom) for domain & label heterogeneous dataset.
All plots for communication costs are represented in the supplementary material.

5 Experiment
5.1 Experimental Setup

Baselines We first consider well-known baseline FL methods, such as (1) FedAvg [18] and (2)
FedProx [14]. We evaluate our factorization technique with (3) pFedPara [20] which also uses
kernel factorization technique for personalized FL scenarios. Our similarity matching approach is
compared to (4) Clustered-FL [23] and (5) FedFOMO [28], which measuring client-wise similarity
or helpfulness. (6) Per-FedAvg [5] is also used for evaluation as it shows great performance on
heterogeneous federated learning scenarios. We also show local training model, (7) Stand-Alone,
for the lower bound performance. Detailed information are described in Appendix (Section C).

Datasets (1) Label Heterogeneous Scenario: we use CIFAR-10 [11] and SVHN [21] datasets
and create four different partitions for each dataset, which are conventional IID and non-IID as well

7



(a) r=1 (b) r=25 (c) r=50 (d) r=75 (e) r=100 (f) Freq. of Client Matching (g) Ablation Study
Rank

� Acc.[%]

1 64.49
2 64.15
5 64.03
10 63.27

Threshold

⌧ Acc.[%]

0.95 64.49
0.85 64.06
0.75 63.59
0.5 62.83

Backbone �sparsity
Num. Acc.

Params. (%)

ResNet-9 - 2.574 M (100%) 61.95%

Factorized
ResNet-9

1e-4 2.731 M (106%) 63.31%
3e-4 2.515 M (97%) 63.74%
5e-4 2.283 M (88%) 63.12%
7e-4 2.068 M (80%) 62.69%
1e-3 1.784 M (69%) 62.67%

Backbone Num. Head Regular I · F ⇥O · F F · F ⇥ I ·O
FC BN Kernel Factorization Factorization (Ours)

ResNet-9
1 - 61.29% 60.96% 62.34%
2 3 56.08% 60.81% 62.65%
2 7 50.01% 63.42% 64.39%

ResNet-18
1 - 63.06% 55.72% 66.23%
2 3 58.36% 61.39% 68.78%
2 7 51.26% 63.32% 67.93%

(h) � (i) ⌧ (j) �sparsity (k) Analysis of Factorization Methods
Figure 7: Analysis on Factorized-FL algorithms (a) and (e): While uL�1 show strong similarity across all
clients (upper row), vL�1 show exclusive similarity based on domains (bottom row). Darker colors indicate
higher scores. (f): the frequency of client matching after 100 rounds. (g): component analysis. (h), (i), and (j):
analysis on �, ⌧ , and �. (k) the effect of how to factorize model parameters

as permuted IID and permuted non-IID, whose labels are permuted and incompatible to each other.
We split the datasets into 20 partitions and then simply permuted the labels on the same partition for
label permuted settings. (2) Domain Heterogeneous Scenario: we use CIFAR-100 datasets [11] and
create five sub-datasets grouped by 10 similar classes, such as Household Objects, Fruits&Foods,
Trees&Flowers, Transport, and Animals. We assign 4 clients for each sub-dataset, i.e. Client 1-4
to Household Objects, Client 5-8 to Fruits&Foods, Client 9-12 to Trees&Flowers, Client 13-16 to
Transport, and Client 17-20 to Animals. We then permute the labels for all partitions to simulate
further realistic scenarios. Further descriptions are elaborated in Appendix (Section B).

5.2 Experimental Result

Label-heterogeneous FL As shown in Table 1 (Top), for the standard IID and Non-IID settings, all
FL methods obtain higher performance than the local training baseline (Stand-Alone), which con-
firms that the locally learned knowledge is beneficial to others, when the data and label distributions
are homogeneous across clients. However, when the labels are not synchronized across all clients
(Permuted IID/Non-IID), all previous FL methods suffer from significant performance degeneration,
even lower than that of the local training baseline. Again, note that we do not share the classifier layers
to ensure fairness across all algorithms in these permuted settings. We conjecture that this is caused
by the label permutation leading the local model to evolve a permuted set of features that are not
coordinate-wise compatible to others when aggregated. Contrarily, our method Factorized-FL ↵
shows consistent performance regardless of whether the labels are permuted or not. Factorized-FL
� even largely outperforms all baselines with significantly superior performance. Test accuracy
curves over the communication round and transmission cost are in Appendix (Section D).

Domain-heterogeneous FL Table 1 (Bottom) shows the experimental results for the domain and
label heterogeneous scenarios. We observe that the conventional FL baselines, i.e. FedAvg, FedProx,
fail to obtain better performance over purely local training baseline (Stand-Alone) due to the naive
aggregation of extremely heterogeneous knowledge, which causes detrimental knowledge collapse.
FedFOMO and Clustered-FL shows slightly higher performance (1-2%p) over Stand-Alone model,
as they can avoid irrelevant clients when aggregating local knowledge. The other personalized FL
methods, i.e. Per-FedAvg and pFedPara, also show 1-2%p higher performance over Stand-Alone
model as they are specialized for personalized FL scenarios. However, on average, our method largely
outperforms all baseline models even with the smallest communication costs (Factorized-FL ↵),
as shown in Figure 6 (e). In the figures, we plot the convergence rate of our Factorized-FL ↵ & �
over communication round (Top) and transmission cost (Bottom), compared to the baseline models.
Both models consistently obtain superior performance compared to the other models. Particularly,
unlike pFedPara which uses low rank matrices for knowledge sharing, Factorized-FL ↵ only
communicates with factorized vectors, such as U for base knowledge sharing and vL�1

k for similarity
matching and this allows our method to largely reduce the communication costs while showing the
best performance as shown in Figure 6 (e) Bottom.
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Effect of kernel factorization In Figure 7 (g), we perform an ablation study of our factorization
method in the domain-heterogeneous scenario. To clearly see the effectiveness of our factoriza-
tion methods, we compare Factorized-FedAvg, a variant of Factorized-FL � without similarity
matching, against FedAvg. As shown, Factorized-FedAvg achieves higher performance over the
original FedAvg model. As the only difference between the two is whether kernel is factorized or not,
this clearly demonstrates that our factorization method alone improves the model performance by
alleviating knowledge collapse. We further analyze the effect of the sparse bias matrix M. When
we remove M from the Factorized-FedAvg model, Factorized-FedAvg w/o µ in the figure, we
observe large performance drop. This shows that that the bias term is essential in compensating for
the loss of expressiveness from the rather extreme factorization. With only U and V , we use 90% less
model parameters (0.27M ) compared to the regular kernel model (2.574M ). Also, in Figure 7 (k), we
observe that model factorized by u 2 RF ·F and v 2 RI·O perform better than the model factorized by
u 2 RI·F and v 2 RO·F . This is because in the former case, the factorization will separate the base
knowledge from the task-specific knowledge, as described in Figure 5 (Left), but in the latter case the
factorization does not have such a natural interpretation. We also show the scalability and reliability
of our factorization method with different architectures, consisting of convolutional, fully-connected
layers, batch normalization, and skip connections as shown in Figure 7 (k).

Effect of similarity matching To verify the effectiveness of our similarity matching method using
the personalized factorized vector v, we visualize the inter-client similarity of uL�1

fk
and vL�1

fk
from

the second last layer of 20 clients in a domain heterogeneous setting. As shown in Figure 7 from
(a) round 1 to (e) round 100, we observe uL�1

fk
(upper row) are indeed highly correlated with other

clients (the darker color indicate higher similarity scores) while vL�1
fk

(bottom row) are relatively
uncorrelated to each other, as expected as our assumption that Ufk capture base knowledge across
all clients and Vfk capture personalized knowledge. Further, we also observe that vL�1

fk
obtains

higher similarity to that of the parameters trained on the same domains (but with permuted labels),
i.e. Client 1-4, Client 5-8, Client 9-12, Client 13-16, and Client 17-20, showing that they are effective
in capturing task- and domain-level similarities across models. We further visualize the frequency of
the client matching across clients in Figure (f), after 100 communication rounds. With only a single
vector parameter vL�1

fk
, our method finds which clients’s knowledge will be helpful to which clients.

For further analysis on our similarity matching, we compare it against Random and Worst Matching
baselines under the multi domain scenario. The random matching baseline randomly selects three
arbitrary models to be aggregated at each round, while the worst matching baseline selects three most
dissimilar models. As shown in Table 7 (g), both baselines significantly suffer from the performance
degeneration compared to our similarity matching algorithm, which shows its effectiveness.

Analysis on �, ⌧ , and �sparsity Figure 7 (h) and (i) show the analysis of the hyperparameters, � and
⌧ , on the domain-heterogeneous dataset. As shown in Figure 7 (h), the performance slightly decreases
with larger �, since higher rank weight matrices may result in larger coordinate-wise incompatibility
of the parameters, which could lead to knowledge collapse when performing aggregation. Also, the
lower ⌧s show the lower performance, as less similar knowledge can be aggregated more frequently.
In Figure 7 (j), we train Client 1 on CIFAR-10 IID Partition 1 for 20 epochs using both factorized
and regular models. As shown, our factorized model outperforms regular models (2.574M) even
with 30% less parameters (1.784M). We further analyze the sparsity in Section D.2 of Appendix.

6 Conclusion
We introduced a realistic federated learning scenario where the labeling schemes are not synchronized
across all participants (label heterogeneity) and the tasks and the domains tackled by each local model
are different from those of others (domain heterogeneity). We then proposed a novel method to tackle
this problem, whose local model weights are factorized into the product of two vectors plus a sparse
bias term. We then aggregate only the first vectors, for them to capture the common knowledge across
clients, while allowing the other vectors and the sparse bias term to be client-specific, accounting
for label and domain heterogeneity. Further, we use the client-specific vectors to measure the
similarity scores across local models, which are then used for weighted averaging, for personalized
federated learning of each local model. Our method not only avoids knowledge collapse from
aggregating incompatible parameters across heterogeneous models, but also significantly reduces the
communication costs. We validate our method on both label and domain heterogeneous settings, on
which it largely outperforms relevant baselines.
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Limitation and Potential Societal Impacts

Limitations Federated Learning (FL) is devised to protect the privacy of sensitive personal
data by strictly avoiding sharing them with other users, institutions, and companies. The common
limitation in FL is that, even though almost all existing methods regard sharing locally learned
parameters of gradients as safe, they still may contain some possibility to reproduce the local data
distribution, which violates the preservation of privacy. Although our work alleviates this probability
by significantly reducing the dimensionality of parameters and partially sharing them, it may be still
sub-optimal in an aspect of security, which is an open research domain for federated learning.

Potential Societal Impact Federated learning is a collaborative learning framework where multiple
clients can actively participate in the learning procedure anywhere and anytime. Nowadays, numerous
terminal devices, i.e. smartphones, smartwatches, IoT devices, etc, are utilized as participants of the
collaborative learning scheme. However, as the number of participants in federated learning increases,
the number of communications between them increases accordingly. Such situations leading to the
exhaustive communication costs may worsen the global environmental crisis, i.e. global warming.
Even though our method can alleviate such risks, since ours significantly reduces the communication
costs by partially sharing the factorized vectors, it is essential to develop further optimal solutions
for compressing the knowledge in both efficient and effective ways for federated learning that the
massive number of participants collaborate.
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