
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAC-CAFE: MULTI-ACTOR, CENTRALIZED CRITIC
ARCHITECTURE FOR FEEDBACK-DRIVEN EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often generate incorrect or outdated infor-
mation, especially in low-resource settings or when dealing with private data.
To address this, Retrieval-Augmented Generation (RAG) uses external knowl-
edge bases (KBs), but these can also suffer from inaccuracies. We introduce
MAC-CAFE, a novel Multi-actor, Centralized Critic Architecture for Feedback-
driven Editing approach that iteratively refines the KB based on expert feedback
using a multi-actor, centralized critic reinforcement learning framework. Each
document is assigned to an actor, modeled as a ReACT agent, which performs
structured edits based on document-specific targeted instructions from a central-
ized critic. Experimental results show that MAC-CAFE significantly improves
KB quality and RAG system performance, enhancing accuracy by up to 8% over
baselines.

1 INTRODUCTION

Large Language Models (LLMs) often produce incorrect or outdated information, particularly in
low-resource settings or when handling private data. Even if the information provided is accurate,
LLMs can generate hallucinated or imaginary content alongside it (Maynez et al., 2020; Zhou et al.,
2021). A promising solution to address these issues is the integration of retrieval components that
extract relevant information from external knowledge sources, known as Retrieval-Augmented Gen-
eration (RAG) (Chen et al., 2017; Khandelwal et al., 2020; Guu et al., 2020; Izacard et al., 2022;
Shi et al., 2023). For clarity, we will refer to these external knowledge sources as Knowledge Bases
(KBs). However, KBs themselves can suffer from inaccuracies, incompleteness, or outdated con-
tent. To address these challenges, there is growing interest in Knowledge Editing (KE) techniques
to enhance LLMs with up-to-date and accurate knowledge.

Advancements in KE have focused on updating the model’s parameters (De Cao et al., 2021a; Meng
et al., 2022; 2023), adding new parameters to model (Huang et al., 2023; Yu et al., 2024), and holding
additional memory (Madaan et al., 2022; Wang et al., 2024a;b). Contrary to approaches that either
update model parameters or add new parameters that require white-box access to LLMs, memory-
based approaches can work with black-box access to LLMs. In similar line of thought, recently,
KE approaches have also focused on refining the KBs themselves (Li et al., 2024). For example,
the method proposed in Li et al. (2024) continuously updates KBs with new information, such as
the current identity of the British Prime Minister. This approach demonstrates that directly editing
the KB is more effective than simply adding new documents, which may coexist with outdated or
inaccurate ones. Removing older documents is often not feasible, as only certain sections may be
incorrect, while other parts could still provide valuable information for different queries. However, in
applications like chatbots or code generation using API documentation, where updated information
might not be readily available in document form, expert intervention can be crucial (Ramjee et al.,
2024; Afzal et al., 2024). In such cases, expert feedback can be used to directly update the KB with
accurate information when the LLM produces erroneous results.

To leverage expert or oracle feedback, we propose MAC-CAFE, a Multi-actor, Centralized Critic
Architecture for Feedback-driven Editing technique. Our contributions are as follows:

1. Introduction of Feedback-Driven KB Editing: We present MAC-CAFE, a novel frame-
work that refines the KB using structured edits based on expert feedback. This approach

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

allows for direct, document-level updates without requiring access to LLM parameters,
making it applicable to both white-box and black-box LLMs.

2. Multi-Actor, Centralized Critic Architecture: We design a multi-agent reinforcement
learning framework where each actor is responsible for a specific document, and a central-
ized critic coordinates updates based on a global reward signal. This architecture ensures
that document-level edits are consistent and contribute to the overall accuracy of the RAG
system.

3. Parameterized Action Space for Document Editing: We propose a parameterized action
space for each document-specific actor, enabling fine-grained control over edits, additions,
and deletions within each document. This structured action space allows the actors to per-
form precise modifications based on expert feedback, resulting in a refined KB that better
supports the RAG system.

4. Definition and Evaluation of KB Characteristics: We define desirable characteristics
for KB refinement, including coherence, completeness, and generalizability, and introduce
corresponding metrics to quantitatively assess these properties. These metrics provide a
systematic way to measure the effectiveness of KB updates.

5. Empirical Evaluation and Performance Gains: We demonstrate that MAC-CAFE sig-
nificantly improves the accuracy and reliability of the QA system in a variety of set-
tings. Through extensive experiments, we show that incorporating expert feedback into
document-level edits leads to a substantial reduction in error rates and enhances the KB’s
ability to support accurate answer generation.

This paper is organized as follows: Section 2 reviews relevant prior work, while Section 3 presents an
illustrative example to introduce and explain our approach. Section 4 details the proposed method-
ology, and Section 5 outlines the desired characteristics for the edited KB along with metrics for
evaluation. Section 6 describes the experimental setup, and finally, Section 7 reports the results.

2 RELATED WORK

The MAC-CAFE framework addresses a key limitation of current RAG systems: the inability to
dynamically update Knowledge Bases (KBs) without retraining or altering model parameters. Our
work draws from research in Retrieval-Augmented Generation (RAG), Continual Learning, Model
Editing, and feedback-driven prompt optimization, incorporating insights from Multi-Agent Rein-
forcement Learning (MARL) to propose an effective solution for KB editing.

Retrieval Augmented Generation (RAG): RAG systems enhance LMs by retrieving relevant
knowledge from a KB based on the input query and appending it to the context, thereby addressing
the limitations of standalone LMs that lack sufficient context and produce inaccurate answers (Chen
et al., 2017; Khandelwal et al., 2020; Guu et al., 2020; Izacard et al., 2022; Shi et al., 2023). These
systems dynamically construct contexts from unstructured KBs without modifying the LM’s inter-
nal parameters. MAC-CAFE further enhances RAG systems by refining the KB itself based on
feedback, ensuring more accurate and up-to-date information.

Continual Learning: Continual Learning (CL) methods address the challenge of updating LMs in
non-stationary environments by ensuring that new information is learned without forgetting previ-
ously acquired knowledge (Jin et al., 2022; Xu et al., 2023; Padmanabhan et al., 2023; Akyürek
et al., 2024). These methods are often computationally intensive and require large-scale retraining,
making them less suitable for scenarios requiring frequent updates or minimal computational re-
sources. MAC-CAFE, by contrast, leverages expert feedback to perform direct edits to the KB,
avoiding the need for extensive retraining.

Knowledge Editing: Knowledge Editing approaches fall into two categories: Model Editing, which
modifies the LM parameters directly, and Input Editing, which updates the knowledge supplied to
the model. While Model Editing efficiently alters specific facts using specialized secondary models
or altering parameters (De Cao et al., 2021b; Meng et al., 2023), it struggles to ensure consistent
updates across contexts (Onoe et al., 2023; Hua et al., 2024). In contrast, Input Editing modifies the
KB itself, enabling updates to be reflected in outputs without changing model parameters (Madaan
et al., 2022; Wang et al., 2024a;b; Li et al., 2024). MAC-CAFE builds on input editing techniques

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

by leveraging expert feedback to refine the KB systematically, ensuring more accurate and consistent
responses.

Prompt Optimization: With the advent of LMs, some recent works approximate gradients in text-
based environments using LMs (Pryzant et al., 2023; Wang et al., 2023; Juneja et al., 2024; Gupta
et al., 2024) for optimizing task prompts. MAC-CAFE is inspired by these approaches and gen-
erates textual reflections, similar to MetaReflection (Gupta et al., 2024) and Shinn et al. (2023), as
proxies for gradients. It provides actionable guidance for document updates without the need for
differentiable models. Additionally, MAC-CAFE adopts clustering strategies for feedback aggre-
gation from works like UniPrompt (Juneja et al., 2024)- ensuring that actors receive coherent and
non-redundant instructions.

Multi-Agent Reinforcement Learning (MARL): Multi-agent reinforcement learning (MARL) has
been applied to various domains, with early research focusing on tabular methods (Busoniu et al.,
2008; Canese et al., 2021; Gronauer & Diepold, 2022) and later expanding to deep learning tech-
niques for high-dimensional inputs (Tampuu et al., 2017; Leibo et al., 2017). Studies have explored
independent Q-learning (Tan, 1993), agent communication (Foerster et al., 2016; Das et al., 2017),
and centralized training with decentralized execution (Gupta et al., 2017). However, most of these
approaches do not address the critical challenge of multi-agent credit assignment. Actor-critic meth-
ods have been introduced to overcome this limitation by employing centralized critics with decen-
tralized actors (Foerster et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021; Chen et al., 2023).
MAC-CAFE extends such actor-critic framework to operate directly on textual content, using
the centralized critic to decompose feedback into actionable textual gradients for each document-
specific actor.

In the next section, we provide an example to illustrate the KB editing problem, while also providing
an overview of MAC-CAFE.

3 EXAMPLE AND OVERVIEW

Figure 1 illustrates our technique applied to the ARKS Pony domain (Su et al., 2024a), where a
knowledge base (KB) for the low-resource programming language Pony supports a natural language-
to-code task. Due to Pony’s rarity, language models often generate code that fails to compile. To
address this, we use the Pony compiler as an expert to provide feedback in the form of compile
errors.

1 Evaluating the Knowledge Base State: We start with an initial KB, including documents like
builtin-array.md. The system retrieves relevant documents based on the given task (e.g.,
counting non-inversions in an array) and generates a program, which is evaluated by the compiler,
resulting in feedback (e.g., compile errors).

2 Centralized Feedback Analysis: We analyze compile errors to generate reflections that explain
why the errors occurred. For instance, if the apply method in the Array class is partial and may
raise an error, the reflection suggests adding a ? to handle potential failures. These reflections are
matched to the documents they pertain to, refining the understanding of errors.

3 Distributing Gradients: Reflections are generalized into gradients, which summarize modifica-
tions needed for each document. For example, the theme might be the partial nature of functions like
apply and update, which need better error handling in the documentation.

4 Generating Edit Actions: Gradients are converted into structured edit actions, such as adding or
modifying content in specific sections of the documents.

5 Re-evaluation and MCTS Search: After edits are applied, the KB is re-evaluated, generating
new feedback and a reward score. This score guides a Monte Carlo Tree Search (MCTS) to explore
different states of the KB, iterating through steps 1 - 4 to progressively refine the KB and improve
the system’s overall performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task: Given an array of integers nums, write a function
that returns the number of good pairs. A pair (i, j) is
called good if nums[i] == nums[j] and i < j.

Retrieved Documents:
builtin-array.md
collections-persistent-vec.md
math-fibonacci.md
random-dice.md

Output Program:
fun numIdenticalPairs(ns: Array[I32]): I32 =>
var count: I32 = 0
for i in Range(0, ns.size() - 1) do
for j in Range(i + 1, ns.size()) do
if ns(i) == ns(j) then
count = count + 1
...

Simulate
Task

Knowledge Base
builtin-array.md
collections-persistent-vec.md
math-fibonacci.md
...

Retrieval

Expert (Compiler) Feedback

main.pony:15:16: call is not partial but the method is
- a question mark is required after this call

if nums(i) == nums(j) then
ˆ

main.pony:15:27: call is not partial but the method is
- a question mark is required after this call

if nums(i) == nums(j) then
ˆ

main.pony:11:42: function signature is not marked as
partial but the function body can raise an error

fun numIdenticalPairs(nums: Array[I32]): I32 =>
ˆ

Feedback

Reflection: The output code contains the following errors:
1. The array access calls nums(i) and nums(j) are not marked as partial, but they
should be as the apply function in the Array class is partial and can throw errors. The
corrected code is: nums(i)? = nums(j)? To further illustrate the fix, consider the
following simplified example:
Code with error:

fun get(arr: Array[I32], index: USize): I32 ? => arr(index)
Fixed code:

fun get(arr: Array[I32], index: USize): I32 ? => arr(index)?
...
Selection: builtin-array.md

Reasoning: This file contains information about the Array class, including apply...

Collected selection reasoning for builtin-array.md

Reflection and Selection

Document-wise Partial Gradient: builtin-array.md is a KB document detailing the
use of the methods and functions of the Array class...

Method Availability and Error Handling: The current file lacks explicit guidance on the
partiality of methods and the use of ? operator. The omission can lead developers to...
The file should accurately reflect the partiality of methods like apply and update...

Aggregate Document Gradients

Edit: Add Section
When working with arrays in Pony, it is important to
understand that some methods are partial, meaning the
may not succeed in all cases and might raise an error. To
safely handle these errors, Pony provides the ? operator...
The apply method on arrays is partial and will raise an
error in the index is out of bounds...

Generate Edits

Figure 1: Example of the MAC-CAFE in the ARKS Pony scenario

4 METHODOLOGY

We will start by describing a typical Retrieval-Augmented Generation (RAG) system over unstruc-
tured Knowledge Bases.

Errors in such systems can arise from multiple components: 1) the LLM B might fail to reason
correctly over the provided information, 2) the retriever R might not select the right set of relevant
documents from K, or 3) the knowledge base K itself might contain incorrect or incomplete in-
formation. We assume an expert is monitoring the system, identifying when answers are incorrect,
determining which component is at fault, and providing feedback on why the answer is incorrect
and what the correct answer must be.

This work focuses on scenarios where incorrect answers result from issues in the Knowledge Base
(K). Our goal is to improve K by addressing mistakes in K and filling in missing information based
on expert feedback, thus enhancing the RAG system’s performance on future queries.

4.1 PROBLEM FORMULATION

We are provided with a training set T = {(qi, oi, ci, fi)}li=1, where qi is a user query, oi is the
RAG system’s answer, ci is the correct answer, and fi is an optional expert feedback on incorrect
answers. We also assume access to a scoring function g, which compare oi and ci to output a score.
The objective is to optimize the knowledge base K to maximize the sum of the scores for all queries
in the training set:

K∗ = argmax
K

1

|T |
∑

(qi,ai,ci,fi)∈T

g(B(qi,Γ(qi,K)), ci) (1)

In the next section, we show how such an objective can be seen as a state search problem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 KNOWLEDGE BASE EDITING AS STATE SEARCH

In our problem setting, the Knowledge Base (K) is defined as a collection of documents K =
{Di}ni=1. We assume each document consists of a number of chunks of text and can be represented
as Di = [cij]. The state s ∈ S of the system is represented by the current configuration of the KB,
i.e., the content of all documents in K.

Given a query qi and a set of retrieved documents Γ(qi,K), the LLM B generates an answer oi.
When errors arise due to incomplete or incorrect information in the retrieved documents, our goal
is to identify the optimal configuration of K that improves the accuracy of the system’s responses.
Thus, we define our state search problem as finding the best state s∗ of the KB.

State Space: The state space S encompasses all possible configurations of the KB. Each state s cor-
responds to a particular set of document contents, represented as: s = {Di}ni=1, where Di denotes
the content of document i and n is the number of documents in K. The state s captures the overall
structure and content of the KB at any given point. We set s0 = K.

State Transition Function: The state transition function T (s, u) defines how the KB changes in
response to the action u taken by the agent. Each action contains modifications to one or more
documents within the KB, resulting in a new KB configuration. The state transition is formalized as:
s′ = T (s, u), where s′ is the new state of the KB after applying u.

Action Space: The action space A consists of list of diffs di corresponding to each document Di.
Essentially, u = [di]

|K|
i=1.

Environment: We model the environment simply as a “patch” function, that takes the diff generated
by the agent and patches the KB to produce the new state.

Optimization Objective: Following Equation 1, our objective then is to find the optimal state s∗ of
the KB that maximizes the overall performance of the RAG system, as measured by a global reward
function R. The optimization problem is formulated as:

s∗ = argmax
s∈S

R(s) = argmax
s∈S

1

|T |
∑

(qi,ai,ci,fi)∈T

g(B(qi,Γ(qi, s)), ci) = a (2)

where R(s) represents the cumulative reward of the KB state s, reflecting its ability to support
accurate and complete responses for a set of queries.

The reward function R(s) is derived from the expert feedback on the system’s generated answers
and captures improvements in terms of correctness, coherence, and completeness of the information
in the KB. By optimizing for s∗, we ensure that the final state of the KB maximizes the overall
accuracy and effectiveness of the RAG system, rather than focusing on an intermediate sequence of
state transitions.

In summary, the state search formulation defines the problem of finding the optimal state s∗ of the
KB that maximizes the system’s performance. This approach enables us to make targeted, feedback-
driven edits to the KB and achieve a refined, high-quality knowledge base that better supports accu-
rate answer generation.

Monte Carlo Tree Search: We employ Monte Carlo Tree Search (MCTS) similar to
PROMPTAGENT (Wang et al., 2023) to search for the optimal state s∗. However, this introduces
several challenges: (1) The search space for all possible KB edits is vastly larger than that of stan-
dard prompt edits typically explored in the literature (Pryzant et al., 2023; Wang et al., 2023; Juneja
et al., 2024; Gupta et al., 2024), making exhaustive search infeasible. (2) Generating actions and
subsequent states, as done in methods like PROMPTAGENT , is difficult in the KB editing context
since fitting the entire KB into the prompt of a language model is impractical. Despite advancements
in handling long contexts (Wang et al., 2020; Kitaev et al., 2020; Press et al., 2022; Su et al., 2024b),
these models often struggle to leverage extensive contexts effectively Liu et al. (2024). (3) Finally,
the LM would need to output the entire edited KB, which is challenging due to the inherent difficulty
LMs face in generating long, coherent outputs (Bai et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To address these challenges, we decouple the KB edits by isolating document-level modifications
based on the required updates. Since individual documents can be large, we further break down the
edits into manageable sections, enabling a structured editing mechanism that focuses on specific
portions of a document at a time. In the next section, we introduce MAC-CAFE, an agent designed
to efficiently perform these structured edits based on feedback.

4.3 MAC-CAFE

…

Environment

Reflection
∇

Doc Selection

Doc-wise Reflection
𝜕0, 𝜕1, … 𝜕n

𝐷0 𝐸𝑑𝑖𝑡𝑜𝑟 𝐷1 𝐸𝑑𝑖𝑡𝑜𝑟 𝐷𝑛 𝐸𝑑𝑖𝑡𝑜𝑟

Reward 𝑅

Critic 𝐶

Actors {𝐴𝑖}

𝑑𝑛𝑑1𝑑0

𝜕0 𝜕1 𝜕𝑛

MAC-CAFE Architecture

Figure 2: MAC-CAFE Multi-actor, centralized critic architecture: On receiving a reward from the
environment, the critic generates a reflection over the failures to calculate the textual gradient ∇. The
critic uses this reflection to select the documents responsible for the error and proceeds to assigns
credit to the actors in the form of document-wise reflections. The actors then proceed to iteratively
edit the documents. All the document-wise edits are then pooled to define the KB edit.

The proposed approach MAC-CAFE is designed to enhance a RAG system by refining the under-
lying Knowledge Base (K) using expert feedback. Our approach employs a multi-actor, centralized
critic architecture, where each actor is responsible for making updates to a specific document within
K, and a centralized critic uses global feedback to coordinate these updates. The objective is to
iteratively improve K such that the overall accuracy of the RAG system is maximized.

4.3.1 REWARD SIGNAL

For a given query qi and the generated answer oi, the expert provides feedback (ci, fi) that includesa
ground truth answer ci and qualitative expert feedback fi on any errors. The global reward signal is
derived from ci as per the scoring function s (Refer Equation 2).

4.3.2 KB EDITING AGENT

To effectively incorporate expert feedback, we employ a multi-actor, centralized critic architecture.

Centralized Critic: The centralized critic, denoted as C, is responsible for evaluating the overall
performance of the RAG system based on the global reward signal r derived from expert feedback.
The critic analyzes the feedback received given the current state s of K. The critic’s analysis is then
used to provide tailored reflections to each actor, guiding document updates.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The centralized critic aggregates the reward signal across multiple queries to generate a holistic
evaluation of K.

R(s) =
1

|T |
∑

(qi,ai,ci,fi)∈T

g(B(qi,Γ(qi, s)), ci) (3)

To generate feedback for the documents, the critic needs to take gradient of this reward with respect
to the documents. This would give us,

∂j =
∂R(s)

∂Dj
=

1

|T |
∑

(qi,ai,ci,fi)∈T

∂

∂Dj
g(B(qi,Γ(qi, s)), ci) (4)

Figure 2 illustrates the environmental interaction of the actor-critic model. Following methodologies
in prior works (Pryzant et al., 2023; Juneja et al., 2024; Gupta et al., 2024), we use LLMs to gener-
ate an overall text gradient ∇ over each failing example. The critic first identifies and select which
documents in Γ(qi, s) are responsible for any inaccuracies in oi. Reflections are then generated for
these documents based on the correct answer, expert feedback and the text gradient. However, as
shown in Equation 4, we need to aggregate these reflections across all queries. Instead of a simple
concatenation, we adopt the clustering approach similar to Juneja et al. (2024), producing general-
ized reflections that effectively capture the core insights from multiple queries. These aggregated
reflections can be effectively considered as the partial textual gradient ∂ with respect to the doc-
ument. These partial gradients are provided as feedback to the document-specific actor Aj , which
then perform the actions to edit the specific documents.

Actors: Each document Di ∈ K is managed by a distinct actor, Ai, which is modeled as a ReACT
agent Yao et al. (2023) responsible for making structured edits to its document. Each actor operates
independently, receiving reflections from the centralized critic on how to modify the content of
Di = [cij].The actors need to only update these chunks as needed. The set of possible actions
includes:

• EditChunk: The action is defined as EditChunk(j, tj), where j indicates which chunk cij
of Di to modify, and tj is the updated content for the chunk.

• AddChunk: The action is defined as AddChunk(nj , tj), where nj indicates the name of the
new chunk, and tj is the content for the chunk.

• DeleteChunk: The action is defined as DeleteChunk(j), where j specifies which chunk cij
of Di to remove.

This parameterized action space allows the actors to perform precise edits within the document,
ensuring that the refinement process is both flexible and context-specific. Each actor leverages its
local state si and the document-specific feedback from the critic to produce a sequence of structured
edits, ensuring that modifications are consistent and contribute towards enhancing the document’s
relevance and completeness.

The ReACT agent utilizes these reflections and iteratively generates a trajectory t0 = a0, a1, a2 · an
of edit actions to the document until the errors are resolved or the knowledge gaps are filled. This
controlled editing process improves the accuracy of the RAG system by ensuring that the KB con-
tains up-to-date and relevant information. After the completion of the actor runs, we generate the
edit diffs for each document di and pool them to generate the KB edit action u = [di]

|K|
i=1

However, there might be many ways to edit a KB and we may need to have some desirable charac-
teristics for the edited KB. In the next section, we discuss what those desirable characteristics could
be and how we might measure them.

5 EVALUATING KNOWLEDGE BASE EDITING QUALITY

A Knowledge Base should be complete with respect to a task - it should contain all the information
necessary to assist the RAG system to solve the task at hand. Given the open-ended nature of tasks

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

that typical RAG agents are designed for, it is hard to quantify a closed-form metric of completeness.
That said, an ideal Knowledge Base editing system should at least be able to incorporate as much
external feedback as possible.

Further, It will be extremely undesirable for any Knowledge Base to only help the RAG system for
a small subset of tasks. Given the tendencies for data-driven techniques to over-fit on the train-set
distribution, it is important that knowledge base edits are generalizable to unseen examples.

Lastly, given the semantic and textual nature of the Knowledge Base, it is important that the doc-
uments in the Knowledge base are coherent and consistent throughout. This not only makes the
document interpretable for human consumption, it also help reduce in-context noise during LLM
inteference, which has been shown to affect LLM performance (Liu et al., 2024).

6 EXPERIMENTAL SETUP

6.1 BASELINE

While there has been a rich body of works in the area of knowledge editing and prompt optimization,
to the best of our knowledge, MAC-CAFE is the first work targeting the feedback-driven textual
Knowledge Base Editing problem. Therefore, to perform a holistic evaluation of MAC-CAFE we
implement - PROMPTAGENT-E, an extension of PROMPTAGENT Wang et al. (2023) for the KB
editing task. PROMPTAGENT formulates prompt optimization as a strategic planning problem using
Monte Carlo Tree Search (MCTS). At a high-level our baseline approach, PROMPTAGENT -E cre-
ates separate PROMPTAGENT -style agents to optimize specific document in the KB. To minimize
spurious edits in the Knowledge Base, we restrict PROMPTAGENT -E to only optimize documents
that were part of the retrievals for more than 2 training sample. After identifying the best nodes
for each of the document-wise runs, we put them back in the knowledge base to generate the new
version of the KB. In contrast to MAC-CAFE, PROMPTAGENT -E can be seen as a collection of
document-wise Independent Actor-Critic models (Foerster et al., 2017). We present in-depth com-
parisons between PROMPTAGENT -E and MAC-CAFE in Section 7

6.2 DATASETS

Knowledge Base Editing can be useful for scenarios where the KB is 1. Incomplete, or 2. Incorrect.
We evaluate MAC-CAFE on 5 datasets spanning these different settings.

6.2.1 INCOMPLETE KNOWLEDGE BASE

Dataset Train Eval Test Documents
Pony 31 32 45 601
Ring 26 27 39 577
ScipyM 22 22 98 3921
TensorflowM 9 9 26 5859
CLARKS News 30 30 60 138

Figure 3: Data splits

We adapt two code generation datasets from
ARKS (Su et al., 2024a), namely ARKS-Pony
and ARKS-Ring. The dataset consists of LeetCode
problems and their solutions in low-resource lan-
guages Pony and Ring respectively. Each datapoint
is supplemented with a corresponding language doc-
umentation, with execution accuracy as the success
metric and execution failures as feedback to the sys-
tem. Given that these language don’t appear promi-
nently in LLM pre-training data, the performance of code generation RAG agents on these datasets
depends significantly on the quality of the Knowledge Base. However, given that these languages
have smaller communities, their documentation isn’t as well maintained and often lack critical infor-
mation. . For the purpose of evaluation on these datasets, we split them into train, eval, test splits as
specified in Table 3. To ensure that we have a good representation of failure cases during training,
we first execute the RAG pipeline on the entire dataset and divide the failures at random in a 1:1:2
ratio for train, eval and test respectively. All the datapoints with successful execution match are put
in the test split. We use the compiler feedback from the executions as the expert feedback to the
MAC-CAFE system.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2.2 INCORRECT KNOWLEDGE BASE

For evaluating under this setting, we leverage the ARKS-ScipyM and ARKS-TensorflowM datasets
from ARKS and the CLARK-news dataset from Erase (Li et al., 2024). The ARKS datasets consist
of data science problems sourced from the DS-1000 dataset (Lai et al., 2022), which are to be solved
by artificially perturbed versions of scipy and tensorflow libraries respectively, while referring to the
original unperturbed documentation. Similar to Pony and Ring, we use the execution accuracy on
a test bench as a success metric and use compiler outcome as expert feedback. We also follow a
similar approach for data splitting.

While fact retrieval is one of the most popular use cases of RAG systems, evolving nature of in-
formation requires us to keep the knowledge bases up to date. To simulate these dynamic factual
knowledge updates we use the CLARKS-news dataset from Erase (Li et al., 2024) which contains
questions and their respective answers extracted from Wikidata at different timestamps. Each times-
tamp is characterized by a set of articles that were added in the data at that time. For our evaluation,
we pool all the questions whose answers changed for the first time at a given timestamp and split
them across train, eval and test splits in a 1:1:2 ratio (Table 3).

6.3 EVALUATION METRICS

In section 5 we discussed the desirable properties of a Knowledge Base edit. We leverage these
properties to design 3 metrics for the KB Editing problem as follows:

Completeness: We use the train set accuracy to estimate the degree of expert feedback incorporated
in the learnt Knowledge Base.

Generalization: To estimate the degree of generalization of our Knowledge Base edits, we use the
held out test set accuracy.

Coherence: To quantify the degree of coherence of the KB, we first calculate a document-wise
coherence score using G-Eval (Liu et al., 2023) with GPT4-1106-PREVIEW as the judge model.
The G-eval prompt assigns a 1-5 score to the diff of changes with respect to the original document,
checking for thematic similarity of the diff. We pool all the edited documents for a KB edit and
average there respective coherence score to define the KB coherence metric.

6.4 SYSTEM CONFIGURATIONS

MCTS parameters: We use the Upper Confidence bounds applied to Trees (UCT) algorithm for
selecting expansion nodes, enabling effective exploration and exploitation of the KB state space. For
our experiments, we set a maximum search depth of 3, an expansion width of 3, and a maximum of 5
iterations. The UCT exploration constant is set to 2.5. These parameters were chosen to balance the
computational cost and the need for adequate exploration. A depth of 3 ensures that the search can
explore sufficient variations in the KB states without unnecessary expansion, while an expansion
width of 3 allows a moderate number of candidate states to be evaluated at each step. Similarly,
5 iterations provide enough opportunity to refine the state search, and the UCT constant of 2.5
encourages sufficient exploration in early stages while converging towards high-reward states in
later stages. For unstructured data, the documents are chunked after every 50 lines and then edit the
chunks.

RAG System: For the purpose of our evaluations, we setup a generic RAG system which uses an
embedding similarity for semantic retrieval. Additionally, in lines with prior works like (Zhang
et al., 2023) for coding related tasks, we use an iterative retrieval setup wherein we first generate a
code using naive retrieval and then query the database again with both the question and generated
code to improve the quality of retrieval before generating the final result.

LLM configs: We use OPENAI-TEXT-EMBEDDING-3-LARGE as the embedding model with di-
mensions size of 3072 and use cosine similarity as a metric of embedding match for ranking. To
account for the 8191 max input limit, we create document chunks of at most 7500 tokens. For the
reasoning model, we use GPT4-1106-PREVIEW, with a temperature of 0. Since LLMs are known
to perform poorly with longer context input (Liu et al., 2024), we restrict the max token budget for
retrievals at 18000 tokens and remove any lower ranked retrieval to fit this token budget.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RESULTS

Dataset Ring Pony SciPy Tensorflow CLARK-news

Acc σ Acc σ Acc σ Acc σ Acc σ

Base KB 30.77 2.09 29.99 1.57 52.04 0.00 28.88 2.18 26.27 1.20
PROMPTAGENT-E 33.33 2.81 32.22 1.57 53.40 3.12 47.77 3.57 28.80 2.39
MAC-CAFE 36.75 1.21 37.04 1.28 59.38 1.22 53.84 3.11 37.28 1.69

Table 1: Comparison of Generalization performance of MAC-CAFE and baselines on various
datasets

Dataset Ring Pony SciPy Tensorflow CLARK-news

PROMPTAGENT -E 4.27 3.22 33.33 33.33 11.86
MAC-CAFE 8.98 9.68 31.38 44.44 13.79

Table 2: Comparison of Completeness metric for MAC-CAFE and baselines on various datasets

7.1 COMPLETENESS AND GENERALIZATION

Dataset Ring Pony SciPy Tensorflow CLARK-news

PROMPTAGENT-E 4.33 1.86 2.0 4.0 1
MAC-CAFE 4.67 4.6 4.30 4.0 1

Table 3: Comparison of Coherence met-
ric for MAC-CAFE and baselines on vari-
ous datasets. Score ranged from 1-5. Higher
scores are better

We observe consistent improvements over the
PROMPTAGENT-E baseline in completeness and
generalizability scores, with MAC-CAFE achiev-
ing approximately 2x performance gains on Ring
and Pony datasets. However, feedback incorporation
remains limited, likely due to suboptimal retrieval or
limited document-query associations hindering gen-
eralization. MAC-CAFE also demonstrates higher
generalizability and lower variance, attributed to its
structured and focused document edits that enhance
coherence.

7.2 MAC-CAFE MAKES HIGH QUALITY COHERENT EDITS

As seen in Table 3, MAC-CAFE produces edits with a coherence score of 4 or higher for most
datasets. For KBs which need long term maintenance (like language and code documentation as
seen in the ARKS datasets), MAC-CAFE makes more coherent edits compared to the baseline.
This is especially true for long documents as seen in the ARKS Pony dataset. For news-article like
dataset like CLARK-news with factual edits. Incoherency is naturally induced when the facts of the
article are changed. For instance, an article on the coronation of a king will lose coherency when the
article is updated to add information about the coronation of a new king.

8 CONCLUSION

We introduced MAC-CAFE, a novel framework for refining Knowledge Bases (KBs) in
Retrieval-Augmented Generation (RAG) systems using a multi-actor, centralized critic architec-
ture. MAC-CAFE enables efficient KB updates without retraining or altering model parameters by
leveraging feedback-driven structured edits and textual gradients.

Our approach achieved superior performance in preserving knowledge base (KB) coherence, consis-
tency, and completeness, resulting in enhanced RAG system responses. Nonetheless, there remains
considerable potential for further advancements. Future work will focus on refining these three met-
rics to elevate system performance even further.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anum Afzal, Alexander Kowsik, Rajna Fani, and Florian Matthes. Towards optimizing and
evaluating a retrieval augmented qa chatbot using llms with human in the loop, 2024. URL
https://arxiv.org/abs/2407.05925.

Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen, Derry Wijaya, and Jacob Andreas. De-
ductive closure training of language models for coherence, accuracy, and updatability. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 9802–9818, Bangkok, Thailand and virtual meeting, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.584. URL
https://aclanthology.org/2024.findings-acl.584.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms, 2024. URL
https://arxiv.org/abs/2408.07055.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008. doi: 10.1109/TSMCC.2007.913919.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and appli-
cations. Applied Sciences, 11(11), 2021. ISSN 2076-3417. doi: 10.3390/app11114948. URL
https://www.mdpi.com/2076-3417/11/11/4948.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1870–
1879, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/
v1/P17-1171. URL https://aclanthology.org/P17-1171.

Wubing Chen, Wenbin Li, Xiao Liu, Shangdong Yang, and Yang Gao. Learning explicit credit
assignment for cooperative multi-agent reinforcement learning via polarization policy gradient.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(10):11542–11550, Jun 2023.
doi: 10.1609/aaai.v37i10.26364. URL https://ojs.aaai.org/index.php/AAAI/article/view/26364.

Abhishek Das, Satwik Kottur, José M. F. Moura, Stefan Lee, and Dhruv Batra. Learning cooperative
visual dialog agents with deep reinforcement learning. In 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 2970–2979, 2017. doi: 10.1109/ICCV.2017.321.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6491–
6506, Online and Punta Cana, Dominican Republic, November 2021a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https://aclanthology.org/2021.
emnlp-main.522.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6491–
6506, Online and Punta Cana, Dominican Republic, November 2021b. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https://aclanthology.org/2021.
emnlp-main.522.

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to com-
municate with deep multi-agent reinforcement learning. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, pp. 2145–2153, Red Hook, NY,
USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence, 2017.
URL https://api.semanticscholar.org/CorpusID:19141434.

11

https://arxiv.org/abs/2407.05925
https://aclanthology.org/2024.findings-acl.584
https://arxiv.org/abs/2408.07055
https://www.mdpi.com/2076-3417/11/11/4948
https://aclanthology.org/P17-1171
https://ojs.aaai.org/index.php/AAAI/article/view/26364
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://api.semanticscholar.org/CorpusID:19141434

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, February 2022. ISSN 1573-7462. doi: 10.1007/s10462-
021-09996-w. URL https://doi.org/10.1007/s10462-021-09996-w.

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control us-
ing deep reinforcement learning. In Gita Sukthankar and Juan A. Rodriguez-Aguilar (eds.), Au-
tonomous Agents and Multiagent Systems, pp. 66–83, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-71682-4.

Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna, Sherry
Shi, and Gustavo Soares. Metareflection: Learning instructions for language agents using past
reflections. arXiv preprint arXiv:2405.13009, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-
augmented language model pre-training. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Wenyue Hua, Jiang Guo, Mingwen Dong, Henghui Zhu, Patrick Ng, and Zhiguo Wang. Propagation
and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Compu-
tational Linguistics ACL 2024, pp. 12503–12525, Bangkok, Thailand and virtual meeting, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.743. URL
https://aclanthology.org/2024.findings-acl.743.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=4oYUGeGBPm.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning, 2019. URL
https://openreview.net/forum?id=HJx7l309Fm.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models, 2022. URL https://arxiv.org/abs/2208.03299.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora. In
Angela Fan, Suzana Ilic, Thomas Wolf, and Matthias Gallé (eds.), Proceedings of BigScience
Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models, pp.
1–16, virtual+Dublin, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.bigscience-1.1. URL https://aclanthology.org/2022.bigscience-1.1.

Gurusha Juneja, Nagarajan Natarajan, Hua Li, Jian Jiao, and Amit Sharma. Task facet learning: A
structured approach to prompt optimization, 2024. URL https://arxiv.org/abs/2406.10504.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation. ArXiv, abs/2211.11501, 2022.

12

https://doi.org/10.1007/s10462-021-09996-w
https://aclanthology.org/2024.findings-acl.743
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=HJx7l309Fm
https://arxiv.org/abs/2208.03299
https://aclanthology.org/2022.bigscience-1.1
https://arxiv.org/abs/2406.10504
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’17, pp. 464–473, Richland, SC, 2017.
International Foundation for Autonomous Agents and Multiagent Systems.

Belinda Z. Li, Emmy Liu, Alexis Ross, Abbas Zeitoun, Graham Neubig, and Jacob Andreas. Lan-
guage modeling with editable external knowledge, 2024. URL https://arxiv.org/abs/2406.11830.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. In Conference on Empirical Methods in
Natural Language Processing, 2023. URL https://api.semanticscholar.org/CorpusID:257804696.

Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to
improve GPT-3 after deployment. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
2833–2861, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.183. URL https://aclanthology.org/2022.emnlp-
main.183.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 1906–1919, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.173. URL https://aclanthology.org/2020.acl-main.173.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. Advances in Neural Information Processing Systems, 36, 2022. arXiv:2202.05262.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Yasumasa Onoe, Michael Zhang, Shankar Padmanabhan, Greg Durrett, and Eunsol Choi. Can
LMs learn new entities from descriptions? challenges in propagating injected knowledge. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
5469–5485, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.300. URL https://aclanthology.org/2023.acl-long.300.

Shankar Padmanabhan, Yasumasa Onoe, Michael JQ Zhang, Greg Durrett, and Eunsol Choi. Prop-
agating knowledge updates to LMs through distillation. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=DFaGf3O7jf.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.emnlp-main.494.

Pragnya Ramjee, Bhuvan Sachdeva, Satvik Golechha, Shreyas Kulkarni, Geeta Fulari, Kaushik Mu-
rali, and Mohit Jain. Cataractbot: An llm-powered expert-in-the-loop chatbot for cataract patients,
2024. URL https://arxiv.org/abs/2402.04620.

13

https://arxiv.org/abs/2406.11830
https://aclanthology.org/2024.tacl-1.9
https://api.semanticscholar.org/CorpusID:257804696
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2020.acl-main.173
https://openreview.net/forum?id=MkbcAHIYgyS
https://aclanthology.org/2023.acl-long.300
https://openreview.net/forum?id=DFaGf3O7jf
https://openreview.net/forum?id=R8sQPpGCv0
https://aclanthology.org/2023.emnlp-main.494
https://arxiv.org/abs/2402.04620

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. Replug: Retrieval-augmented black-box language models, 2023. URL
https://arxiv.org/abs/2301.12652.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao Yu.
Arks: Active retrieval in knowledge soup for code generation. ArXiv, abs/2402.12317, 2024a.
URL https://api.semanticscholar.org/CorpusID:267750919.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomput., 568(C), March 2024b. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/j.neucom.2023.
127063.

Ardi Tampuu, Tambet Matiisen, Davide Kodelja, Igor Kuzovkin, Kristjan Korjus, Jaan Aru, Bo-
rys Teodor Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforce-
ment learning. PLOS ONE, 12(4):e0172395, 2017. doi: 10.1371/journal.pone.0172395. URL
https://doi.org/10.1371/journal.pone.0172395.

Ming Tan. Multi-agent reinforcement learning: independent versus cooperative agents. In Proceed-
ings of the Tenth International Conference on International Conference on Machine Learning,
ICML’93, pp. 330–337, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN
1558603077.

Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan Cao, Jiarong Xu, and Fandong Meng. Cross-
lingual knowledge editing in large language models. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 11676–11686, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.627. URL
https://aclanthology.org/2024.acl-long.627.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Weixuan Wang, Barry Haddow, and Alexandra Birch. Retrieval-augmented multilingual knowledge
editing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
335–354, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.21. URL https://aclanthology.org/2024.acl-long.21.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization, 2023. URL https://arxiv.org/abs/2310.16427.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. {DOP}: Off-policy
multi-agent decomposed policy gradients. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=6FqKiVAdI3Y.

Yan Xu, Mahdi Namazifar, Devamanyu Hazarika, Aishwarya Padmakumar, Yang Liu, and Dilek
Hakkani-Tur. KILM: Knowledge injection into encoder-decoder language models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5013–5035,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.275. URL https://aclanthology.org/2023.acl-long.275.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.org/abs/
2210.03629.

14

https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2303.11366
https://api.semanticscholar.org/CorpusID:267750919
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1371/journal.pone.0172395
https://aclanthology.org/2024.acl-long.627
https://arxiv.org/abs/2006.04768
https://aclanthology.org/2024.acl-long.21
https://arxiv.org/abs/2310.16427
https://openreview.net/forum?id=6FqKiVAdI3Y
https://aclanthology.org/2023.acl-long.275
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):19449–
19457, Mar. 2024. doi: 10.1609/aaai.v38i17.29916. URL https://ojs.aaai.org/index.php/AAAI/
article/view/29916.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation, 2023. URL https://arxiv.org/abs/2303.12570.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, Francisco Guzmán, Luke Zettlemoyer,
and Marjan Ghazvininejad. Detecting hallucinated content in conditional neural sequence gen-
eration. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1393–1404, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.120. URL
https://aclanthology.org/2021.findings-acl.120.

15

https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://arxiv.org/abs/2303.12570
https://aclanthology.org/2021.findings-acl.120

	Introduction
	Related work
	Example and Overview
	Methodology
	Problem Formulation
	Knowledge Base Editing as State Search
	Proposed Approach
	Reward Signal
	KB Editing Agent

	Evaluating Knowledge Base Editing Quality
	Experimental Setup
	Baseline
	Datasets
	Incomplete Knowledge Base
	Incorrect Knowledge Base

	Evaluation Metrics
	System Configurations

	Results
	Completeness and Generalization
	Proposed Approach makes high quality coherent edits

	Conclusion

