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ABSTRACT

Time series forecasting under limited data remains challenging due to model
overfitting and insufficient structural regularization. In this work, we uncover a
sparsity-oriented scaling phenomenon: as training data increases, model parame-
ters naturally become sparser—even in simple linear models. This observation
motivates the introduction of learned sparsity as an effective prior to improve
model generalization under data-scarce regimes. We propose CrossSparse-MoE,
a lightweight forecasting framework that enhances model expressiveness while
promoting adaptive sparsity. Built upon a linear backbone, CrossSparse-MoE in-
corporates cross-channel convolutions to capture short-term inter-variable depen-
dencies and employs a Mixture-of-Experts (MoE) module with non-linear MLPs.
A learnable gating network dynamically routes temporal segments to specialized
experts, while L1 regularization encourages parameter sparsity without impos-
ing rigid structural constraints. Extensive experiments on multiple benchmarks
demonstrate that CrossSparse-MoE consistently outperforms state-of-the-art base-
lines, particularly in low-data scenarios, validating the effectiveness of combining
structural flexibility with learned sparsity. Code is available in Appendix.

1 INTRODUCTION

Time series forecasting is fundamental to a wide range of real-world applications, including energy
management, financial modeling, and industrial monitoring. Recent progress has been largely driven
by deep learning methods, including Transformer-based models (Zhou et al.| 2021} Wu et al., |[2022;
Zhou et al., [2022; [N1e et al.| [2023; |[Lin et al., 2023a), CNN-based models (Liu et al., [2022; [Wu
et al., 2023 Wang et al., 2022)), and MLP-based architectures (Xu et al., 2024} [Ekambaram et al.,
2023} Das et al., [2023; Huang et al.,[2024a). These models have achieved impressive performance,
particularly in long-term forecasting (LTSF) tasks. However, most of them rely heavily on large-
scale, high-quality labeled datasets. In practice, such data is often limited, leading to overfitting and
poor generalization—especially in cross-domain or few-shot scenarios (Chang et al.||2024; Jin et al.,
2024 Wang et al., [2025)).

To improve model efficiency and robustness under limited data, many recent works have explored
sparse and lightweight architectures (Lin et al., | 2024} |Shi et al., 2025; |Chen et al., 2024} N1 et al.,
2024; Ismail et al.| 2023} |Zeng et al., 2023 Zhang et al.,|2022). These approaches enforce sparsity
through explicit architectural design—such as block-wise pruning (Lin et al., 2024)), temporal gat-
ing (Shi et al.} [2025), and frequency-domain filtering (Xu et al., [2024)—to reduce computation and
overfitting. While effective, they impose fixed structural constraints that may limit model flexibility
and prevent sparsity from adapting to dataset-specific patterns.

In contrast, we revisit an underexplored but fundamental property in time series models: parameter
sparsity. Through empirical investigation, we uncover a novel sparsity-oriented scaling law—model
parameters become naturally sparser as training data increases, even without explicit regulariza-
tion. This observation suggests that sparsity can emerge as a learned inductive bias and provides a
promising direction for improving generalization in low-resource forecasting.

Motivated by this, we propose CrossSparse-MoE, a hybrid and lightweight forecasting frame-
work that balances model capacity and adaptive sparsity. It consists of two key components: (1)
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a cross-channel convolutional embedding to enhance short-term inter-variable modeling, and (2)
a Mixture-of-Experts module composed of multiple non-linear experts with dynamic gating. To
encourage sparse and interpretable representations, we apply ¢; regularization to expert weights,
enabling pruning of redundant parameters.

With our meticulously designed architecture, our CrossSparse-MoE achieves state-of-the-art perfor-
mance on various long-term time series forecasting tasks, while maintaining a lightweight design
that offers superior efficiency and speed compared to more complex TSF methods under limited
computational resources.

Our contributions are summarized as follows:

* We uncover a sparsity-oriented scaling law in time series forecasting: model parameters
naturally become sparser as training data increases.

* We propose CrossSparse-MoE, a novel forecasting framework that combines a cross-
channel MoE architecture with ¢ regularization.

* We demonstrate state-of-the-art performance and efficiency across diverse benchmarks,
highlighting the generalization ability of adaptive sparsity.

2 RELATED WORKS

Long Time Series Forecasting. Time series forecasting has seen significant progress with deep
learning models, which can be broadly categorized into univariate and multivariate approaches.
Univariate models such as DeepState (Rangapuram et al 2018)), DeepAR (Salinas et al., |2020),
and N-BEATS (Oreshkin et al.l 2020) focus on individual time series, while multivariate models
are designed to handle multiple correlated sequences simultaneously. Transformer-based architec-
tures have played a central role in recent advancements, especially in long-term forecasting (LTSF)
tasks. Early works like Informer (Zhou et al., 2021), Autoformer (Wu et al., 2022), and FED-
former (Zhou et al.| [2022) modified the standard Transformer to better capture temporal patterns.
More recent models such as PatchTST (Nie et al.| 2023)) and PETformer (Lin et al.,|2023a)) show that
the vanilla Transformer, when equipped with patching strategies inspired by computer vision (Doso-
vitskiy et al.| [2020; He et al.,2022)), can achieve strong performance. Beyond Transformers, CNN-
and MLP-based models—e.g., SCINet (Liu et al., 2022), TimesNet (Wu et al., 2023)), MICN (Wang
et al., [2022), TiDE (Das et al.| 2023), and HDMixer (Huang et al., 2024a)—have demonstrated that
simpler architectures can be competitive. Additionally, RNN-based models such as SegRNN (Lin
et al., [2023b) and graph-based models like CrossGNN (Huang et al.l [2024b) have been revisited
for LTSF, showing promising results. Recently, the adaptation of pretrained large language mod-
els (LLMs) to time series forecasting (Chang et al., 2024} Jin et al.| 2024} |Xue & Saliml 2023)) has
opened new directions, though challenges remain in generalization, particularly under cross-domain,
few-shot, or zero-shot settings (Wang et al.| 2025)).

Sparse and Lightweight Modeling in Time Series Forecasting. Recent studies have increas-
ingly focused on improving the efficiency of time series forecasting models through sparsity and
lightweight design. SparseTSF (Lin et al.| 2024) applies block-wise masking to prune temporal
and channel dimensions, while Time-MoE (Shi et al., [2025) introduces temporal gating to selec-
tively activate expert modules. Similarly, Pathformer (Chen et al.} 2024), MoLE (N1 et al., |2024),
and IME (Ismail et al.l 2023) leverage expert routing or attention masking to enforce structured
sparsity. Models like DLinear (Zeng et al.| [2023), LightTS (Zhang et al.| [2022), TSMixer (Ekam-
baram et al.,[2023)), and FITS (Xu et al.| 2024) reduce parameter budgets through temporal mixing
or frequency-domain filtering. Although these methods significantly improve computational and
parameter efficiency, the sparsity is manually imposed through architectural design rather than dy-
namically learned from data. This limits their adaptability to diverse datasets and prevents parameter
sparsity from emerging naturally during training.

In contrast, our proposed CrossSparse-MoE combines structural modularity with data-driven spar-
sity learning. It incorporates a cross-channel Mixture-of-Experts architecture and enforces param-
eter sparsity via L1 regularization. Moreover, we identify a sparsity-oriented scaling law, showing
that parameters become inherently sparser as training data grows—a phenomenon not explored in
prior time series models.
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3 PARAMETER SPARSITY UNDER DATA SCALING: THEORY AND
REGULARIZATION
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Figure 1: Visualization of weight sparsification =~ Figure 2: Distinctive pattern of weight changes
with increasing data volume at intervals of 24  corresponding to data volume variations on the
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Figure 3: Visualization of Linear projection layer weights varying with data volume.

3.1 OBSERVATION

Figure [3.3] visualizes the weight matrices of a Linear model trained with varying amounts of data
on ETTh2 and weather datasets. In Fig.[T] the ETTh2 dataset exhibits a clear trend: as training data
increases from 10% to 100%, the weight matrices become increasingly sparse and structured, with
prominent diagonal patterns emerging. This indicates that the model gradually focuses on essential
channel interactions while suppressing redundant ones as more data is available. In contrast, Fig. 2]
shows a more nuanced sparsity evolution on the weather dataset. Although sparsification still in-
creases with data volume, the patterns are more complex and less diagonally dominant, reflecting
fundamentally different temporal and inter-channel dependencies. These results highlight that spar-
sity and structural patterns in model weights emerge naturally with more training data, shaped by
the underlying data characteristics.

To verify the generality of this phenomenon, we provide additional visualizations in the supplemen-
tary material across other datasets, almost showing similar trends. Furthermore, when training on
the full dataset (training + validation + test), we observe even stronger sparsification (as shown in
Fig.[3), suggesting that access to more diverse temporal patterns further enhances weight pruning.

3.2 MOTIVATION

While the primary training objective for time series forecasting models is typically the minimization
of prediction loss (e.g., MSE), we observe a consistent empirical trend: as the size of the training
dataset increases, the learned model parameters become increasingly sparse. Interestingly, this
phenomenon arises without any explicit sparsity constraints in the optimization objective. In this
section, we present a theoretical interpretation of this behavior and further propose a sparsity-aware
regularization strategy to enhance model robustness under limited data.

3.3 DATA-INDUCED PARAMETER SPARSITY

We consider a forecasting model fy trained with the following objective:

min By [ fo(2) — yl3] W
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where § € RP are the learnable parameters. While this formulation includes no explicit sparsity
term, we find that when trained on sufficiently large datasets, the model naturally suppresses redun-
dant parameters. This phenomenon can be attributed to the following mechanisms:

Gradient Stabilization with Increasing Data. Let g () = % 223:1 Vol(fo(x;),y;) denote the
batch gradient at each step. Although the short-term noise in gradient estimation is governed by the
batch size B, the long-term gradient structure—i.e., whether a parameter is consistently updated—
depends on the full dataset size | D|. As |D| — oo, we have:

az} | o

oL
Ez, ~D |::| _>]Ez, ~D |:
(z,y) 96, (z,y) 90,
Parameters with near-zero expected gradients across the dataset receive vanishing updates during

training and are naturally suppressed. Thus, the model exhibits a form of data-driven pruning,
where only truly predictive weights remain active.

Implicit Bias Toward Low-Complexity Solutions. In overparameterized settings, stochastic gra-
dient descent is known to converge toward minimum-norm solutions. With ample data, the optimiza-
tion landscape becomes flatter and more constrained, leading to convergence in regions of lower
weight magnitude and structural redundancy. Even without explicit regularization, the optimizer
implicitly favors sparse configurations to minimize complexity while retaining predictive capacity.

Sparsity Scaling Law. Empirically, we observe that the number of nonzero parameters ||0|| de-
creases sublinearly with training data size D. We propose the following scaling relation:

Ep[||0fo] <C1+Co-D™F, B>0, 3)

indicating that sparsity emerges as an inductive consequence of data abundance. This behavior
aligns with our broader understanding of neural scaling phenomena in time series forecasting (Shi

et all, 2024).
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3.4 SPARSITY-AWARE REGULARIZATION FOR LOW-RESOURCE SETTINGS

While data-induced sparsity naturally arises under large datasets, such behavior cannot be reliably
expected in low-resource regimes, where the model lacks sufficient gradient consensus to suppress
uninformative parameters. In such cases, we propose to explicitly inject sparsity bias into the learn-
ing objective via /1 -regularization.

Modified Objective. We augment the forecasting loss with a sparsity-inducing regularizer:
Etotzﬂ(e) = ACforecast<9) +A- ||9||1> (4)

where A > 0 is a hyperparameter controlling the strength of the sparsity prior. This modification
is equivalent to a MAP estimation under a Laplace prior and serves to guide the optimizer toward
low-complexity solutions, especially when training data is insufficient to do so organically.

Implementation Details. In practice, we apply ¢;-regularization to all learnable weights. The
coefficient ) is selected from {107%,10~%, 1073} based on validation performance.

Visual Evidence of L1-Induced Sparsity. To intuitively demonstrate the effect of L1 regulariza-
tion, we visualize the learned Linear projection weights under different filter ratios (FR) in Figure[4]
The top row corresponds to full training data (FR=1.0), while the bottom row shows the case with
only 50% data (FR=0.5). We compare results with and without L1 regularization.

We observe that without L1, the weight matrices are relatively dense and exhibit noisy patterns,
especially under low-resource conditions. With L1, the matrices become notably sparser, and clear
diagonal structures emerge, indicating more focused and structured channel interactions. This sug-
gests that L1 serves as an effective regularization tool to promote both sparsity and interpretability,
especially when the data scale is limited.

4 METHOD

We propose CS-MoE, a compact and adaptive forecasting model that integrates inter-channel con-
volution and a sparse mixture-of-experts framework to improve generalization under data-limited
settings. The overall architecture is illustrated in Figure[5] CS-MOoE consists of three main compo-
nents: (1) correlation-aware convolutional embedding, (2) temporal-aware mixture-of-experts, and
(3) L1-based expert regularization.

4.1 INSTANCE NORMALIZATION AND DE-NORMALIZATION

To handle temporal distribution shift and stabilize input dynamics, we adopt RevIN (Kim et al.,
2021), a parameter-free instance normalization module. Given input X € RE*C*T we compute
channel-wise statistics over the temporal axis:

A 1 <
_ - I — )2
H = T ZX:,:,t7 o= T Z(XZ,I,t :u) . (5)
t=1 t=1
The normalized input is:
X —
Xl’lOl‘lTl — /'1/7 (6)
o)

ensuring zero mean and unit variance per channel. After forecasting, we recover the original scale
via: . N
Y = Xdenorm —yrom . ;4 L. (7)

4.2 CORRELATION-AWARE CHANNEL EMBEDDING

Most previous forecasting models either ignore inter-variable dependencies or impose strong struc-
tural priors (e.g., attention or graphs), which may increase overfitting risks under low-resource set-
tings. To address this, we introduce a lightweight correlation-aware embedding module that captures
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localized temporal correlations within each variable while preserving a simple and interpretable
structure.

Formally, given an input sequence X € RBXC*T where B is the batch size, C is the number of
variables (channels), and 7" is the temporal length, we define the embedding as:

Xemb =a- X+ (1 — a) . COUVlDtime(X)a (8)

where o« € R is a learnable scalar initialized to 1.0, and Conv1Dy,,. denotes a 1D convolution
with kernel size 3 applied independently to each channel along the temporal axis. Specifically, the
convolution does not mix across channels, and no bias or activation function is applied.

The learnable parameter o allows the model to interpolate between the original input and the con-
volved signal. Since « is jointly optimized with the rest of the model, the network can adaptively
decide the degree of residual blending based on task-specific patterns. In our implementation, we do
not impose any explicit regularization or range constraint on «, allowing the optimization to freely
explore its effective value.

This design improves robustness by allowing localized temporal smoothing while avoiding overfit-
ting to noise, especially under low-resource conditions.

4.3 TEMPORAL-AWARE MIXTURE-OF-EXPERTS

Our CS-MoE employs a mixture of E temporal experts, each modeled as a nonlinear module that
independently forecasts future sequences. To route inputs to appropriate experts, we compute a
temporal summary vector via channel-wise averaging:

s = Mean,.(X) € REXT, 9)
This vector is fed into a lightweight gating network:
w = Softmax (Linear(ReLU(Linear(s)))) € RZ*¥ (10)

producing expert selection weights. Each expert F; outputs a candidate forecast, and the final pre-
diction is the weighted sum:

where E;(X) € RB xCOxL" and I/ is the prediction horizon. This design promotes specialization
and conditional computation. We apply ¢; regularization on expert parameters to enhance sparsity
(see Sec. 3).

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets. In line with previous studies (Qiu et al.,|2024;|Zhou et al.l 2021 Jin et al.| 2024; Nie et al.,
2023), we evaluate our method on ten widely used real-world datasets that span a variety of appli-
cation domains. These include datasets such as Electricity Transformer Temperature (ETT) (Zhou
et al., |2021), Traffic, Electricity, Weather, National Illness (ILI) (Lai et al.| [2018), and Exchange.
All datasets are multivariate in nature, and we provide further details regarding their characteristics
and preprocessing procedures both below and in the Appendix.

Baselines. To ensure fair and comprehensive evaluation, we compare our approach against a diverse
set of recent state-of-the-art models. This includes convolution-based architectures such as Times-
Net (Wu et al.l 2023)) and MICN (Wang et al., 2022)); mixture-of-experts (MoE) models like MoLE
(Mixture of Linear Experts) (N1 et al., |2024); MLP-based methods such as FITS (Xu et al.l [2024),
TimeMixer (Wang et al., |2024), and DLinear (Zeng et al., 2023)); and Transformer-based methods
including PDF (Dai et al., |2024)) and PatchTST (Nie et al., 2023).

Implementation Details. All experiments are carried out on a workstation equipped with an
NVIDIA GeForce RTX 3090 GPU running 64-bit Linux (kernel version 5.15.0-56-generic). For
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the ETT and Solar datasets, we adopt a 60%/20%/20% split for training, validation, and testing,
respectively, while a 70%/10%/20% split is applied to all other datasets. Following the protocol
established in the TFB benchmark (Qiu et al.,|2024)), we perform a grid search over input sequence
lengths in {96, 336, 512} to determine the optimal setting for each dataset.

Models CS-MoE MoLE PDF FITS TimeMixer PatchTST MICN DLinear
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 |0.357 0.387 | 0.375 0.390(0.360 0.391 [ 0.376 0.396 | 0.372 0.401 | 0.377 0.397 | 0.378 0.412 [ 0.379 0.403
192 10.395 0.412|0.403 0.417]0.392 0.414|0.400 0.418 |0.413 0.430|0.409 0.425|0.400 0.430|0.408 0.419
336 |0.424 0.427 | 0430 0.43410.418 0.435|0.419 0.435|0.438 0.450|0.431 0.444|0.428 0.447 | 0.440 0.440
720 |0.417 0.441|0.449 0.461 | 0.456 0.462|0.435 0.458 | 0.486 0.484|0.457 0.477|0.474 0.499 |0.471 0.493
Avg [0.398 0.417 | 0414 0.425|0.407 0.426 | 0.408 0.427 | 0.427 0.441|0.419 0.436|0.420 0.447 | 0.425 0.439
96 |0.271 0.333 | 0.273 0.334]0.276 0.341 [ 0.277 0.345|0.281 0.351 | 0.274 0.337 [ 0.313 0.372 [ 0.300 0.364
192 0.330 0.373|0.336 0.374 | 0.339 0.382|0.331 0.379 | 0.349 0.387 | 0.348 0.384 | 0.419 0.439|0.387 0.423
336 |0.352 0.392|0.371 0.404 | 0.374 0.406 | 0.350 0.396 | 0.366 0.413|0.377 0.416 | 0.474 0.475|0.490 0.487
720 |0.380 0.420 | 0.409 0.439 [ 0.398 0.433|0.382 0.425|0.401 0.436|0.406 0.441|0.723 0.600 | 0.704 0.597
Avg |0.333 0.380 | 0.347 0.388 | 0.347 0.391 | 0.335 0.386 | 0.349 0.397 | 0.351 0.395|0.482 0.472|0.470 0.468
96 |0.284 0.331|0.291 0.333]0.286 0.340 [ 0.303 0.3450.293 0.345[0.289 0.343 [ 0.303 0.349 [ 0.300 0.345
192 |0.320 0.355|0.333 0.357 | 0.321 0.364 | 0.337 0.365 | 0.335 0.372|0.329 0.368 | 0.336 0.369 | 0.336 0.366
336 |0.357 0.381|0.368 0.383 [ 0.354 0.383|0.368 0.384 | 0.368 0.386|0.362 0.390 | 0.370 0.391 | 0.367 0.386
720 |0.406 0.411|0.429 0.418 [0.408 0.415|0.420 0.413]0.426 0.417|0.416 0.423|0.410 0421 |0.419 0.416
Avg [0.342 0.369 | 0.355 0.373 |0.342 0.376 | 0.357 0.377 | 0.356 0.380| 0.349 0.381|0.355 0.383 | 0.356 0.378
96 |0.159 0.245|0.163 0.247 | 0.163 0.251 [ 0.165 0.254 | 0.165 0.256 | 0.165 0.255|0.173 0.271 [ 0.164 0.255
192 10.213 0.281|0.217 0.286 | 0.219 0.290| 0.219 0.291 | 0.225 0.298 | 0.221 0.293 | 0.232 0.313 | 0.224 0.304
336 |0.266 0.320 | 0.272 0.323 [ 0.269 0.330| 0.272 0.326 | 0.277 0.332|0.276 0.327 | 0.303 0.367 | 0.277 0.337
720 |0.349 0.376 | 0.380 0.391 [ 0.349 0.382|0.359 0.381 [ 0.360 0.387 | 0.362 0.381 | 0.467 0.477|0.371 0.401
Avg |0.247 0.305|0.258 0.312 [ 0.250 0.313|0.254 0.313 | 0.257 0.318|0.256 0.314|0.294 0.357 | 0.259 0.324
96 |0.143 0.188 | 0.152 0.192]0.147 0.196 [ 0.172 0.225|0.147 0.198 | 0.149 0.196 [ 0.172 0.232 [ 0.170 0.230
192 |0.186 0.224 | 0.190 0.228 | 0.193 0.240 | 0.215 0.261 [ 0.192 0.243 | 0.191 0.239 | 0.214 0.270| 0.216 0.275
336 |0.237 0.265|0.245 0.271]0.245 0.280|0.261 0.295|0.247 0.284 | 0.242 0.279 [ 0.259 0.309 | 0.258 0.307
720 |0.310 0.318 | 0.316 0.324 1 0.323 0.334| 0.326 0.341 |0.318 0.330|0.312 0.330 | 0.309 0.343 | 0.323 0.362
Avg [0.219 0.249 | 0.226 0.254 | 0.227 0.263 | 0.244 0.281 | 0.226 0.264 | 0.224 0.261 | 0.239 0.289 | 0.242 0.293
96 |0.362 0.238 | 0.372 0.246 | 0.368 0.252 [ 0.400 0.280 | 0.369 0.257 | 0.370 0.262 [ 0.517 0.313 [0.395 0.275
192 [0.379 0.251|0.385 0.254 (0.382 0.261 | 0.412 0.288 | 0.400 0.272|0.386 0.269 | 0.526 0.302 | 0.407 0.280
336 |0.391 0.258 | 0.407 0.266 [ 0.393 0.268 | 0.433 0.308 | 0.407 0.272]0.396 0.275|0.545 0.307 | 0.417 0.286
720 |0.430 0.273|0.429 0.265 | 0.438 0.297 | 0.478 0.339 | 0.461 0.316]0.435 0.295|0.569 0.328 | 0.454 0.308
Avg |0.391 0.255|0.398 0.258 | 0.395 0.270 | 0.431 0.304 | 0.409 0.279 | 0.397 0.275|0.539 0.313 | 0.418 0.287
96 [0.126 0.217 | 0.129 0.219(0.128 0.222 | 0.139 0.237 | 0.153 0.256 | 0.143 0.247 | 0.158 0.266 | 0.140 0.237
192 |0.143 0.235| 0.150 0.237 [ 0.147 0.242| 0.154 0.250 | 0.168 0.269 | 0.158 0.260 | 0.175 0.287 | 0.154 0.251
336 |0.161 0.251|0.164 0.256 [ 0.165 0.260| 0.170 0.268 | 0.189 0.291 | 0.168 0.267 | 0.184 0.296 | 0.169 0.268
720 |0.187 0.276 | 0.188 0.278 [ 0.199 0.289 | 0.212 0.304 | 0.228 0.320 | 0.214 0.307 | 0.200 0.310| 0.204 0.301
Avg | 0.154 0.245|0.158 0.247 | 0.160 0.253 | 0.169 0.265 | 0.185 0.284|0.171 0.270 | 0.179 0.290 | 0.167 0.264
96 |0.079 0.198 | 0.084 0.201 | 0.083 0.200 | 0.082 0.199 | 0.084 0.207 | 0.079 0.200 | 0.079 0.203 [ 0.080 0.202
192 | 0.166 0.291|0.173 0.293|0.172 0.294|0.173 0.295 | 0.178 0.300 | 0.159 0.289 | 0.158 0.299 | 0.182 0.321
336 |0.311 0.402|0.321 0.407 [ 0.323 0.411|0.317 0.406 | 0.376 0.451]0.297 0.399 | 0.300 0.403 | 0.327 0.434
720 |0.743 0.649 | 0.845 0.694 | 0.820 0.682|0.825 0.684 | 0.884 0.707 | 0.751 0.650 | 0.745 0.665 | 0.578 0.605
Avg [0.325 0.3860.356 0.399 | 0.350 0.397 | 0.349 0.396 | 0.381 0.416|0.322 0.385|0.321 0.393 | 0.292 0.391
96 [0.172 0.196 | 0.186 0.203 | 0.181 0.247 [ 0.208 0.255|0.179 0.232 [ 0.170 0.234 [ 0.190 0.250 [ 0.199 0.265
192 | 0.185 0.209 | 0.196 0.212 | 0.200 0.259 | 0.229 0.267 | 0.201 0.259 | 0.204 0.302 | 0.226 0.284 | 0.220 0.282
0.187 0.213|0.194 0.215]0.208 0.269 | 0.241 0.273 [ 0.190 0.256 | 0.212 0.293 | 0.259 0.308 | 0.234 0.295
720 10.202 0.235|0.205 0.230 | 0.212 0.275]0.248 0.277 | 0.203 0.261 | 0.215 0.307 [ 0.341 0.365 | 0.243 0.301
Avg |0.186 0.213 | 0.195 0.215|0.200 0.263 | 0.232 0.268 | 0.193 0.252 | 0.200 0.284 | 0.254 0.302 | 0.224 0.286
24 11.635 0.782|1.752 0.821 [ 1.801 0.874 | 2.182 1.002 | 1.804 0.820 | 1.932 0.872]2.279 1.020 | 2.208 1.031
36 [1.610 0.784 | 1.712 0.796 | 1.743 0.867 | 2.241 1.029 | 1.891 0.926 | 1.869 0.866 | 2.451 1.085 | 2.032 0.981
1.512 0.777 | 1.731 0.813 | 1.843 0.926|2.272 1.036 | 1.752 0.866 | 1.891 0.883 | 2.440 1.077 | 2.209 1.063
60 |1.591 0.842|1.724 0.854|1.845 0.925|2.642 1.142|1.831 0.930 | 1.914 0.896 |2.303 1.012|2.292 1.086
Avg | 1.587 0.796 | 1.730 0.821|1.808 0.898 | 2.334 1.052|1.820 0.886|1.902 0.879 | 2.368 1.049 | 2.185 1.040
1°* Count 81 3 5 1 0 6 3 3

ETThl

ETTh2

ETTml

ETTm2

‘Weather

Traffic

Electricity

Exchange

Solar
W
[9%)
[=)}

ILI
'S
o0

Table 1: Fair long-term forecasting results under hyperparameter searching without the “drop-last”
trick. The best model is bold, and the second best is underlined. Count is the number of the best
results.

5.2 MAIN RESULTS

Table [T] presents a comprehensive comparison between our proposed method CS-MoE and a range
of time series forecasting baselines across ten benchmark datasets under a fair long-term forecast-
ing protocol. As clearly shown, CS-MoE achieves the best performance in 81 out of all evalu-
ated settings, significantly outperforming existing state-of-the-art models such as MoLE, PDF, and
PatchTST. Our model consistently ranks either first or second across nearly all datasets, highlighting
its strong generalization ability. In particular, CS-MoE demonstrates superior forecasting accuracy
in long-horizon settings, benefiting from its channel-sparse mixture-of-experts structure that enables
both effective representation learning and efficient computation.
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5.3 MODEL ANALYSIS

Ablation study. To better understand the contribution of each component in our CS-MoE, we con-
duct ablation study by removing or altering key modules. Table 2] summarizes the results averaged
across all forecasting horizons on two representative datasets (ETTh2 and Weather). Removing the
L1 norm regularization (“w/o L1 norm”) leads to a notable degradation in performance, especially
on the ETTh2 dataset, which confirms that our sparsity-inducing constraint plays a crucial role in
improving generalization. Excluding the cross-channel embedding module (“w/o Cross Embed.”)
also results in performance drops, particularly on the Weather dataset, demonstrating the impor-
tance of capturing inter-channel dependencies. Lastly, replacing the Mixture-of-Experts structure
with a single expert (“w/o MoE”) leads to consistent decreases in accuracy across both datasets,
highlighting the effectiveness of expert specialization within our framework. Overall, the full model
(CS-MoE) achieves the best results across all metrics, validating the complementary benefits of its
individual components.

‘ ETTh2 (avg.) Weather (avg.) N ‘ ETThl (avg.) ‘ Exchange (avg.)

Variants | MSE MAE | MSE  MAE | MSE  MAE | MSE  MAE
w/o L1 norm 0348 0389 | 0221 0253 0.0 0416 0423 | 0365 0409
wlo Cross Embed. | 0.341 0387 | 0233 0265 0001 | 0420 0433 | 0372 0411
w/o MoE 0341 038 | 0219 0250 0.0001 | 0404 0419 | 0338 0392
0.00001 | 0.401 0417 | 0352  0.398

CS-MoE | 0333 0379 | 0218 0249 0000001 | 0412 0421 | 0360 0405

Table 2:  Ablation study.  Results are  Typle 3: Effect of different L1 regularization co-

averaged from all forecasting horizons € efficients A on forecasting performance. Results

{96,192,336,720}. are averaged over all horizons on the ETTh1 and
Exchange datasets.

Efficiency Analysis Table |5| compares the efficiency of different time series forecasting models
in terms of computational cost (MACs), parameter size, inference time, and forecasting accuracy
(MSE) on the large-scale Electricity dataset with a look-back window of 512 and a forecasting hori-
zon of 720. Our model, CS-MoE, achieves superior efficiency, requiring only 560M MACs and
1.69M parameters—an order of magnitude lower than prior methods such as Pathformer and PDF.
Additionally, CS-MoE delivers a significantly faster inference time of just 3.27ms, while also achiev-
ing the best prediction accuracy with an MSE of 0.189. These results highlight CS-MoE’s advantage
in balancing computational efficiency and forecasting performance, making it highly suitable for de-
ployment in resource-constrained or real-time environments.

Generalization of Parameter Sparsity. To evaluate the generalizability of our sparsity-inducing
strategy, we apply the L1 regularization to a diverse set of base models, including NLinear, iTrans-
former, and TimeMixer. As reported in Table 4 introducing L1 norm consistently improves the
forecasting performance across all models, demonstrating that parameter sparsity is a universally
beneficial inductive bias for long-term time series forecasting (LTSF). Specifically, we observe av-
erage MSE improvements of 4.4% on the NLinear model, 5.7% on iTransformer, and 2.3% on
TimeMixer across the two datasets. These results suggest that L1-induced parameter sparsity not
only benefits simple linear models but also effectively complements complex attention-based and
mixer-based architectures. This further supports the claim that sparsity is a broadly applicable prin-
ciple for enhancing generalization in LTSF tasks.

Hyperparameter Analysis. We study the effect of L1 regularization coefficient A on forecasting
performance by varying its value and evaluating model accuracy using MSE and MAE, as shown
in Table [3] A moderate value of \ typically yields the best performance, indicating that inducing
proper sparsity can enhance generalization, while overly strong regularization may suppress useful
patterns.

To further investigate this behavior, we conduct additional experiments on more datasets, with de-
tailed results reported in the supplementary material. Interestingly, we observe that for low-resource
datasets such as ETTh1, ETTh2, and Exchange, relatively larger values of A lead to better perfor-
mance, as they compensate for the lack of data-induced parameter sparsity. In contrast, on larger-
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‘ ETThl1 (avg.) Exchange (avg.) Method MACs Params Infer. Time MSE

Variants | MsE MAE | MSE  MAE Informer 397G 1253M  70.0ms  0.502

X Autoformer 441G 1222 M 107.7ms 0.254

N]i‘I“ear ‘ 8-332 g-ﬁg ‘ 8-;32 g-gg(l) FEDformer 441G 1798M  2387ms  0.259

+ - - - - FiLM 441G 122M 78.3ms 0.249

iTransformer | 0.439  0.448 | 0360  0.404 PatchTST 121G 631M 290.3ms  0.214

+L1 0414 0422 | 0353 0.398 Pathformer 8.69G 7.92M 156.94ms 0.211

PDF 7.76G 6.14M 58.78ms  0.199

TimeMixer 0427 0441 | 0381 0416 CS-MoE 560M 1.69M 3.27ms 0.192

+L1 0413 0426 | 0376 0412

Boost (%) | 44%  39% | 20%  1.6% Table 5: Number of training parameters, MACs,

inference time, and MSE of TSF models under
Table 4: Generalization of parameter sparsity.  Jook-back window = 512 and forecasting hori-
Results are averaged from four forecasting hori-  zon = 720 on the large Electricity dataset.
zons. “Boost” denotes the relative improvement
after applying L1 regularization.

scale datasets like Electricity and Traffic, smaller A values perform better since the model already
exhibits natural sparsity driven by abundant data. This validates our hypothesis that L1 regular-
ization serves as an effective sparsity prior under data scarcity, but can be relaxed when sufficient
training data is available.

Few Shot Learning. To assess the effectiveness of sparsity in data-scarce scenarios, we conduct
few-shot forecasting experiments by limiting the available training data to 10%, 20%, and 50% of
the original training set. The validation and test sets remain unchanged, and all models are trained
from scratch under each data condition using the same hyperparameters as in the full-data regime.

Table[6] presents the forecasting performance averaged over multiple horizons on the ETTh1 dataset.
CS-MOoE consistently achieves the best results across all few-shot settings. Notably, adding ¢; regu-
larization to iTransformer and NLinear leads to moderate improvements, especially under 10% and
20% data, confirming that sparsity is a beneficial inductive bias under limited supervision. CS-MoE
further improves upon this by integrating sparsity with modular routing and structured convolution.

Samples from ETTh1 Expert Weights per Sample
Data 10% 20% 50% , ——
iTransformer 0482 0476  0.456
iTransformer + L1 0.465 0.453 0.438 g 0 T |
NLinear 0.451 0438  0.423 s, I I
NLinear + L1 0443 0426 0417 1
CS-MoE 0429 0417 0.403 -4

Table 6: Few-shot forecasting performance

(MSE) averaged over horizons on ETThI. Table 7: Expert weights visualization on four

ETTh1 samples. Left: standardized input series.
Right: corresponding expert weights.

Expert Weights Visualization. Figure [/| shows the expert weights for four diverse samples from
ETThl. Samples with similar patterns (e.g., S1 and S2) activate similar experts (e.g., E1), while
different patterns (e.g., S3 and S4) lead to distinct expert usage (e.g., E4), demonstrating that our
model adaptively routes inputs to specialized experts based on temporal characteristics.

6 CONCLUSIONS

In this paper, we introduce CrossSparse-MoE, an efficient forecasting framework that mitigates
overfitting in low-data regimes by novelly combining structural flexibility with adaptive sparsity.
Motivated by a sparsity-oriented scaling law, the model leverages cross-channel convolutions for
inter-variable modeling and employs a Mixture-of-Experts architecture with L1 regularization to
learn compact and specialized representations. CrossSparse-MoE allows sparsity to emerge natu-
rally through data-driven training. Experiments on real-world time series benchmarks show that our
method achieves superior performance and extremely lightweight computational consumption.
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A DATASET DESCRIPTIONS

Table 8: Dataset detailed descriptions. Dim denotes the number of variables per dataset, i.e., chan-
nels. Frequency represents the sampling interval of time points.

Dataset Dim Timesteps Frequency Domain

ETTh1&h2 7 17420 Hourly  Electricity
ETTml&m2 7 69,680 15-min  Electricity

Exchange 8 7588 Daily  Economy
Electricity 321 26304 Hourly  Electricity
Traffic 862 17544 Hourly  Transportation
Weather 21 52696 10-min  Weather

ILI 7 966 Weakly Disease

Solar 137 52560 10-min  Energy

* ETT consists of datasets with varying granularities, including two hourly-level datasets
(ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm?2). These datasets fea-
ture six power load variables and the target variable “oil temperature,” spanning from July
2016 to July 2018.

* Traffic tracks hourly road occupancy on San Francisco freeways over the period of
2015-2016.

* Electricity provides hourly power usage data from 321 customers, collected from 2012 to
2014.
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» Exchange-Rate contains daily foreign exchange rate data for eight countries, with records
from 1990 to 2016.

* Weather consists of 21 weather parameters, including air temperature and humidity,
recorded at 10-minute intervals throughout 2020 in Germany.

e ILI is sourced from the U.S. Centers for Disease Control and Prevention (CDC), docu-
menting weekly instances of influenza-like illness from 2002 to 2021, including patient
counts and ratios.

* Solar provides solar energy production data from 137 photovoltaic (PV) plants in Alabama.

Drop Last Issue. Several studies Xu et al| (2024); [Qiu et al| (2024) have highlighted the
complications of using the “drop-last” setting during model evaluation. Specifically, enabling “

drop_last=True” can lead to errors because of changes in the batch size of the test set. To mitigate
these issues, we intentionally set the “drop_last=False” option for our experiments.

B HYPERPARAMETER SENSITIVITY

| Weather (avg.) | Electricity (avg.)  Traffic (avg.)  ETTh2 (avg.)
| MSE MAE | MSE MAE | MSE MAE | MSE MAE

0.0 0231 0.271 | 0.163  0.260 | 0.423 0.275 | 0.351 0.390
0.001 0.246 0.285 | 0.165 0.259 | 0.441 0.281 | 0.360 0.388
0.0001 | 0.235 0.270 | 0.160  0.263 | 0.421 0.276 | 0.351 0.384
0.00001 | 0.221 0.252 | 0.158 0.252 | 0.401 0.261 | 0.335 0.383

0.000001 | 0.225 0.261 | 0.154  0.247 | 0.394 0.258 | 0.342 0.394

A

Table 9: Effect of different L1 regularization coefficients A on forecasting performance. Results are
averaged over all horizons on the Weather and Exchange datasets.

We conduct additional experiments on more datasets, with detailed results reported in the supple-
mentary material. Interestingly, we observe that for low-resource datasets such as ETThl, ETTh2,
and Exchange, relatively larger values of A lead to better performance, as they compensate for the
lack of data-induced parameter sparsity. In contrast, on larger-scale datasets like Electricity and
Traffic, smaller A values perform better since the model already exhibits natural sparsity driven by
abundant data. This validates our hypothesis that L1 regularization serves as an effective sparsity
prior under data scarcity, but can be relaxed when sufficient training data is available.
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Figure 6: Visualization of weight sparsification with increasing data volume on the electricity
dataset.

C EXPERIMENTAL RESULTS

We further extend our analysis to additional benchmark datasets by visualizing the weights of the
model’s linear projection layer (Figure [6] [8] 0] [7) and tracking two sparsity metrics (Figure [T0] [T2]
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Figure 7: Visualization of weight sparsification with increasing data volume on the traffic dataset.
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Figure 8: Visualization of weight sparsification with increasing data volume on the ETTm1 dataset.
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Figure 9: Visualization of weight sparsification with increasing data volume on the exchange rate

dataset.
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Figure 10: Metrics for parameter sparsification on electricity dataset.
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Figure 11: Metrics for parameter sparsification on traffic dataset.
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Figure 12: Metrics for parameter sparsification on ETTm1 dataset.
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Figure 13: Metrics for parameter sparsification on ETTh1 dataset.

as the amount of training data increases. A consistent trend emerges: as the data volume
grows, the model exhibits increased parameter sparsity, with weights corresponding to less impor-
tant features gradually approaching zero. Additionally, weight patterns differ significantly across
datasets. For example, the Exchange dataset displays weak periodicity, with weights primarily fo-
cused on the most recent timesteps, whereas the ETTm1 dataset shows clear periodicity with a cycle
length of 96.

C.1 USEOF LLMSs

During the preparation of this manuscript, we used the OpenAl ChatGPT (GPT-5) large language
model as an assistant for language refinement, grammar correction, and style improvement. The
model was also employed for suggesting alternative phrasings and generating draft outlines of cer-
tain sections, which were subsequently reviewed, verified, and substantially revised by the authors.
All technical content, experiments, analyses, and conclusions presented in this paper were con-
ceived, implemented, and validated solely by the authors. The authors take full responsibility for
the accuracy and integrity of the manuscript’s content.
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