

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CROSSSPARSE-MOE: ADAPTIVE SPARSITY AND CROSS-CHANNEL EXPERT ROUTING FOR TIME SE- RIES FORECASTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Time series forecasting under limited data remains challenging due to model overfitting and insufficient structural regularization. In this work, we uncover a sparsity-oriented scaling phenomenon: as training data increases, model parameters naturally become sparser—even in simple linear models. This observation motivates the introduction of learned sparsity as an effective prior to improve model generalization under data-scarce regimes. We propose CrossSparse-MoE, a lightweight forecasting framework that enhances model expressiveness while promoting adaptive sparsity. Built upon a linear backbone, CrossSparse-MoE incorporates cross-channel convolutions to capture short-term inter-variable dependencies and employs a Mixture-of-Experts (MoE) module with non-linear MLPs. A learnable gating network dynamically routes temporal segments to specialized experts, while L1 regularization encourages parameter sparsity without imposing rigid structural constraints. Extensive experiments on multiple benchmarks demonstrate that CrossSparse-MoE consistently outperforms state-of-the-art baselines, particularly in low-data scenarios, validating the effectiveness of combining structural flexibility with learned sparsity. Code is available in Appendix.

1 INTRODUCTION

Time series forecasting is fundamental to a wide range of real-world applications, including energy management, financial modeling, and industrial monitoring. Recent progress has been largely driven by deep learning methods, including Transformer-based models (Zhou et al., 2021; Wu et al., 2022; Zhou et al., 2022; Nie et al., 2023; Lin et al., 2023a), CNN-based models (Liu et al., 2022; Wu et al., 2023; Wang et al., 2022), and MLP-based architectures (Xu et al., 2024; Ekambaram et al., 2023; Das et al., 2023; Huang et al., 2024a). These models have achieved impressive performance, particularly in long-term forecasting (LTSF) tasks. However, most of them rely heavily on large-scale, high-quality labeled datasets. In practice, such data is often limited, leading to overfitting and poor generalization—especially in cross-domain or few-shot scenarios (Chang et al., 2024; Jin et al., 2024; Wang et al., 2025).

To improve model efficiency and robustness under limited data, many recent works have explored sparse and lightweight architectures (Lin et al., 2024; Shi et al., 2025; Chen et al., 2024; Ni et al., 2024; Ismail et al., 2023; Zeng et al., 2023; Zhang et al., 2022). These approaches enforce sparsity through explicit architectural design—such as block-wise pruning (Lin et al., 2024), temporal gating (Shi et al., 2025), and frequency-domain filtering (Xu et al., 2024)—to reduce computation and overfitting. While effective, they impose fixed structural constraints that may limit model flexibility and prevent sparsity from adapting to dataset-specific patterns.

In contrast, we revisit an underexplored but fundamental property in time series models: *parameter sparsity*. Through empirical investigation, we uncover a novel sparsity-oriented scaling law—model parameters become naturally sparser as training data increases, even without explicit regularization. This observation suggests that sparsity can emerge as a learned inductive bias and provides a promising direction for improving generalization in low-resource forecasting.

Motivated by this, we propose **CrossSparse-MoE**, a hybrid and lightweight forecasting framework that balances model capacity and adaptive sparsity. It consists of two key components: (1)

054 a cross-channel convolutional embedding to enhance short-term inter-variable modeling, and (2)
 055 a Mixture-of-Experts module composed of multiple non-linear experts with dynamic gating. To
 056 encourage sparse and interpretable representations, we apply ℓ_1 regularization to expert weights,
 057 enabling pruning of redundant parameters.

058 With our meticulously designed architecture, our CrossSparse-MoE achieves state-of-the-art per-
 059 formance on various long-term time series forecasting tasks, while maintaining a lightweight design
 060 that offers superior efficiency and speed compared to more complex TSF methods under limited
 061 computational resources.

062 Our contributions are summarized as follows:

064

- 065 • We uncover a *sparsity-oriented scaling law* in time series forecasting: model parameters
 naturally become sparser as training data increases.
- 066 • We propose **CrossSparse-MoE**, a novel forecasting framework that combines a cross-
 channel MoE architecture with ℓ_1 regularization.
- 067 • We demonstrate state-of-the-art performance and efficiency across diverse benchmarks,
 highlighting the generalization ability of adaptive sparsity.

068

069 2 RELATED WORKS

070

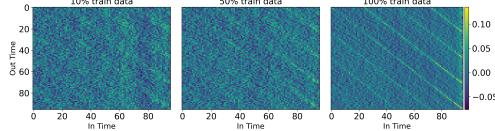
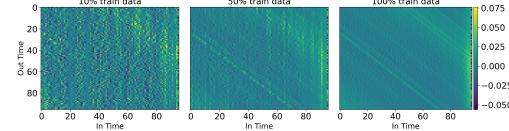
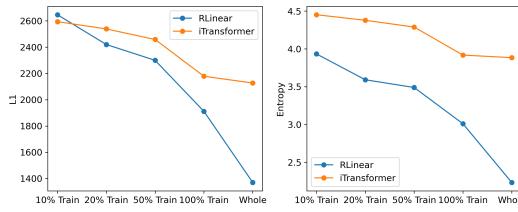
071

072 **Long Time Series Forecasting.** Time series forecasting has seen significant progress with deep
 073 learning models, which can be broadly categorized into univariate and multivariate approaches.
 074 Univariate models such as DeepState (Rangapuram et al., 2018), DeepAR (Salinas et al., 2020),
 075 and N-BEATS (Oreshkin et al., 2020) focus on individual time series, while multivariate models
 076 are designed to handle multiple correlated sequences simultaneously. Transformer-based archi-
 077 tectures have played a central role in recent advancements, especially in long-term forecasting (LTSF)
 078 tasks. Early works like Informer (Zhou et al., 2021), Autoformer (Wu et al., 2022), and FED-
 079 former (Zhou et al., 2022) modified the standard Transformer to better capture temporal patterns.
 080 More recent models such as PatchTST (Nie et al., 2023) and PETformer (Lin et al., 2023a) show that
 081 the vanilla Transformer, when equipped with patching strategies inspired by computer vision (Doso-
 082 vitskiy et al., 2020; He et al., 2022), can achieve strong performance. Beyond Transformers, CNN-
 083 and MLP-based models—e.g., SCINet (Liu et al., 2022), TimesNet (Wu et al., 2023), MICN (Wang
 084 et al., 2022), TiDE (Das et al., 2023), and HDMixer (Huang et al., 2024a)—have demonstrated that
 085 simpler architectures can be competitive. Additionally, RNN-based models such as SegRNN (Lin
 086 et al., 2023b) and graph-based models like CrossGNN (Huang et al., 2024b) have been revisited
 087 for LTSF, showing promising results. Recently, the adaptation of pretrained large language mod-
 088 els (LLMs) to time series forecasting (Chang et al., 2024; Jin et al., 2024; Xue & Salim, 2023) has
 089 opened new directions, though challenges remain in generalization, particularly under cross-domain,
 090 few-shot, or zero-shot settings (Wang et al., 2025).

091

092 **Sparse and Lightweight Modeling in Time Series Forecasting.** Recent studies have increas-
 093 ingly focused on improving the efficiency of time series forecasting models through sparsity and
 094 lightweight design. SparseTSF (Lin et al., 2024) applies block-wise masking to prune temporal
 095 and channel dimensions, while Time-MoE (Shi et al., 2025) introduces temporal gating to selec-
 096 tively activate expert modules. Similarly, Pathformer (Chen et al., 2024), MOLE (Ni et al., 2024),
 097 and IME (Ismail et al., 2023) leverage expert routing or attention masking to enforce structured
 098 sparsity. Models like DLinear (Zeng et al., 2023), LightTS (Zhang et al., 2022), TSMixer (Ekam-
 099 baram et al., 2023), and FITS (Xu et al., 2024) reduce parameter budgets through temporal mixing
 100 or frequency-domain filtering. Although these methods significantly improve computational and
 101 parameter efficiency, *the sparsity is manually imposed through architectural design rather than dy-
 102 namically learned from data*. This limits their adaptability to diverse datasets and prevents parameter
 103 sparsity from emerging naturally during training.

104 In contrast, our proposed CrossSparse-MoE combines structural modularity with data-driven spar-
 105 sity learning. It incorporates a cross-channel Mixture-of-Experts architecture and enforces param-
 106 eter sparsity via L1 regularization. Moreover, we identify a *sparsity-oriented scaling law*, showing
 107 that parameters become inherently sparser as training data grows—a phenomenon not explored in
 prior time series models.

108
109 3 PARAMETER SPARSITY UNDER DATA SCALING: THEORY AND
110 REGULARIZATION
111
112

118 Figure 1: Visualization of weight sparsification
119 with increasing data volume at intervals of 24
120 on the ETTh2 dataset.

129 Figure 2: Distinctive pattern of weight changes
130 corresponding to data volume variations on the
131 weather dataset.


144 Figure 3: Visualization of Linear projection layer weights varying with data volume.

145 3.1 OBSERVATION
146
147

148 Figure 3.3 visualizes the weight matrices of a Linear model trained with varying amounts of data
149 on ETTh2 and weather datasets. In Fig. 1, the ETTh2 dataset exhibits a clear trend: as training data
150 increases from 10% to 100%, the weight matrices become increasingly sparse and structured, with
151 prominent diagonal patterns emerging. This indicates that the model gradually focuses on essential
152 channel interactions while suppressing redundant ones as more data is available. In contrast, Fig. 2
153 shows a more nuanced sparsity evolution on the weather dataset. Although sparsification still in-
154 creases with data volume, the patterns are more complex and less diagonally dominant, reflecting
155 fundamentally different temporal and inter-channel dependencies. These results highlight that
156 sparsity and structural patterns in model weights emerge naturally with more training data, shaped by
157 the underlying data characteristics.

158 To verify the generality of this phenomenon, we provide additional visualizations in the supple-
159 mentary material across other datasets, almost showing similar trends. Furthermore, when training on
160 the full dataset (training + validation + test), we observe even stronger sparsification (as shown in
161 Fig. 3), suggesting that access to more diverse temporal patterns further enhances weight pruning.

162 3.2 MOTIVATION
163
164

165 While the primary training objective for time series forecasting models is typically the minimization
166 of prediction loss (e.g., MSE), we observe a consistent empirical trend: *as the size of the training*
167 *dataset increases, the learned model parameters become increasingly sparse*. Interestingly, this
168 phenomenon arises without any explicit sparsity constraints in the optimization objective. In this
169 section, we present a theoretical interpretation of this behavior and further propose a sparsity-aware
170 regularization strategy to enhance model robustness under limited data.

171 3.3 DATA-INDUCED PARAMETER SPARSITY
172
173

174 We consider a forecasting model f_θ trained with the following objective:

175
$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} [\|f_\theta(x) - y\|_2^2], \quad (1)$$
176
177

162 where $\theta \in \mathbb{R}^p$ are the learnable parameters. While this formulation includes no explicit sparsity
 163 term, we find that when trained on sufficiently large datasets, the model naturally suppresses redundant
 164 parameters. This phenomenon can be attributed to the following mechanisms:

166 **Gradient Stabilization with Increasing Data.** Let $g_B(\theta) = \frac{1}{B} \sum_{i=1}^B \nabla_{\theta} \ell(f_{\theta}(x_i), y_i)$ denote the
 167 batch gradient at each step. Although the short-term noise in gradient estimation is governed by the
 168 batch size B , the *long-term gradient structure*—i.e., whether a parameter is consistently updated—
 169 depends on the full dataset size $|D|$. As $|D| \rightarrow \infty$, we have:

$$\mathbb{E}_{(x,y) \sim D} \left[\frac{\partial \mathcal{L}}{\partial \theta_j} \right] \rightarrow \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\frac{\partial \mathcal{L}}{\partial \theta_j} \right]. \quad (2)$$

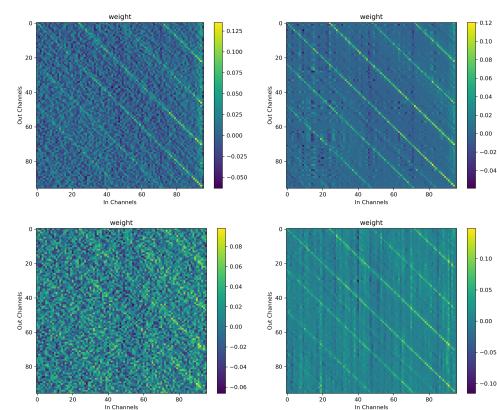
173 Parameters with near-zero expected gradients across the dataset receive vanishing updates during
 174 training and are naturally suppressed. Thus, the model exhibits a form of *data-driven pruning*,
 175 where only truly predictive weights remain active.

177 **Implicit Bias Toward Low-Complexity Solutions.** In overparameterized settings, stochastic gra-
 178 dient descent is known to converge toward *minimum-norm solutions*. With ample data, the optimiza-
 179 tion landscape becomes flatter and more constrained, leading to convergence in regions of lower
 180 weight magnitude and structural redundancy. Even without explicit regularization, the optimizer
 181 implicitly favors sparse configurations to minimize complexity while retaining predictive capacity.

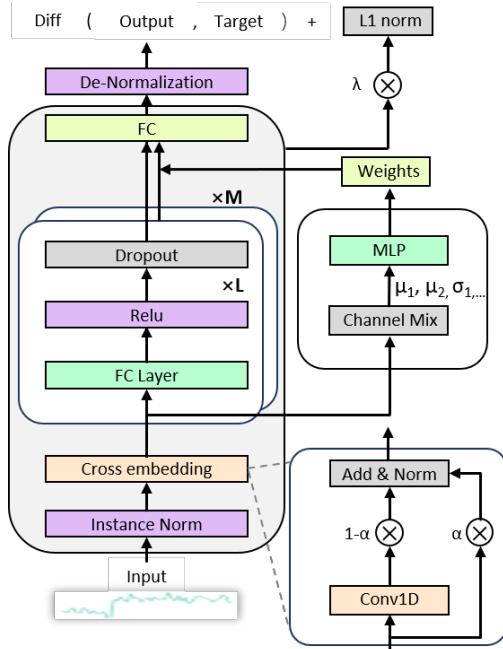
183 **Sparsity Scaling Law.** Empirically, we observe that the number of nonzero parameters $\|\theta\|_0$ de-
 184 creases sublinearly with training data size D . We propose the following scaling relation:

$$\mathbb{E}_D [\|\theta\|_0] \leq C_1 + C_2 \cdot D^{-\beta}, \quad \beta > 0, \quad (3)$$

187 indicating that sparsity emerges as an inductive consequence of data abundance. This behavior
 188 aligns with our broader understanding of neural scaling phenomena in time series forecasting (Shi
 189 et al., 2024).



204 **Figure 4:** Visualization of Linear projection
 205 weights under different filter ratios (FR) and
 206 L1 regularization settings on the ETTTh2 dataset.
 207 Top: full data, Bottom: 50% data; Left: with-
 208 out L1 regularization, Right: with L1 regula-
 209 rization. L1 norm encourages weight sparsity
 210 and enhances structural diagonality, especially
 211 under low-resource settings.



212 **Figure 5:** Overview of CS-MoE, including
 213 RevIN normalization, correlation-aware embed-
 214 ding, expert routing via gating, weighted expert
 215 fusion, and L1-based sparsity regularization.

216 3.4 SPARSITY-AWARE REGULARIZATION FOR LOW-RESOURCE SETTINGS
217218 While data-induced sparsity naturally arises under large datasets, such behavior cannot be reliably
219 expected in *low-resource regimes*, where the model lacks sufficient gradient consensus to suppress
220 uninformative parameters. In such cases, we propose to explicitly inject sparsity bias into the learning
221 objective via ℓ_1 -regularization.222 **Modified Objective.** We augment the forecasting loss with a sparsity-inducing regularizer:
223

224
$$\mathcal{L}_{\text{total}}(\theta) = \mathcal{L}_{\text{forecast}}(\theta) + \lambda \cdot \|\theta\|_1, \quad (4)$$

225

226 where $\lambda > 0$ is a hyperparameter controlling the strength of the sparsity prior. This modification
227 is equivalent to a MAP estimation under a Laplace prior and serves to guide the optimizer toward
228 low-complexity solutions, especially when training data is insufficient to do so organically.229 **Implementation Details.** In practice, we apply ℓ_1 -regularization to all learnable weights. The
230 coefficient λ is selected from $\{10^{-5}, 10^{-4}, 10^{-3}\}$ based on validation performance.
231232 **Visual Evidence of L1-Induced Sparsity.** To intuitively demonstrate the effect of L1 regularization,
233 we visualize the learned Linear projection weights under different filter ratios (FR) in Figure 4.
234 The top row corresponds to full training data (FR=1.0), while the bottom row shows the case with
235 only 50% data (FR=0.5). We compare results with and without L1 regularization.
236237 We observe that without L1, the weight matrices are relatively dense and exhibit noisy patterns,
238 especially under low-resource conditions. With L1, the matrices become notably sparser, and clear
239 diagonal structures emerge, indicating more focused and structured channel interactions. This sug-
240 gests that L1 serves as an effective regularization tool to promote both sparsity and interpretability,
241 especially when the data scale is limited.
242

243 4 METHOD

244 We propose **CS-MoE**, a compact and adaptive forecasting model that integrates inter-channel con-
245 volution and a sparse mixture-of-experts framework to improve generalization under data-limited
246 settings. The overall architecture is illustrated in Figure 5. CS-MoE consists of three main compo-
247 nents: (1) correlation-aware convolutional embedding, (2) temporal-aware mixture-of-experts, and
248 (3) L1-based expert regularization.
249250 4.1 INSTANCE NORMALIZATION AND DE-NORMALIZATION
251252 To handle temporal distribution shift and stabilize input dynamics, we adopt RevIN (Kim et al.,
253 2021), a parameter-free instance normalization module. Given input $X \in \mathbb{R}^{B \times C \times T}$, we compute
254 channel-wise statistics over the temporal axis:
255

256
$$\mu = \frac{1}{T} \sum_{t=1}^T X_{:, :, t}, \quad \sigma = \sqrt{\frac{1}{T} \sum_{t=1}^T (X_{:, :, t} - \mu)^2}. \quad (5)$$

257

258 The normalized input is:
259

260
$$X^{\text{norm}} = \frac{X - \mu}{\sigma}, \quad (6)$$

261

262 ensuring zero mean and unit variance per channel. After forecasting, we recover the original scale
263 via:
264

265
$$\hat{Y} = X^{\text{denorm}} = \hat{Y}^{\text{norm}} \cdot \sigma + \mu. \quad (7)$$

266

267 4.2 CORRELATION-AWARE CHANNEL EMBEDDING

268 Most previous forecasting models either ignore inter-variable dependencies or impose strong struc-
269 tural priors (e.g., attention or graphs), which may increase overfitting risks under low-resource set-
270 tings. To address this, we introduce a lightweight correlation-aware embedding module that captures

270 localized temporal correlations within each variable while preserving a simple and interpretable
 271 structure.

272 Formally, given an input sequence $X \in \mathbb{R}^{B \times C \times T}$, where B is the batch size, C is the number of
 273 variables (channels), and T is the temporal length, we define the embedding as:

$$275 \quad X^{\text{emb}} = \alpha \cdot X + (1 - \alpha) \cdot \text{Conv1D}_{\text{time}}(X), \quad (8)$$

276 where $\alpha \in \mathbb{R}$ is a learnable scalar initialized to 1.0, and $\text{Conv1D}_{\text{time}}$ denotes a 1D convolution
 277 with kernel size 3 applied independently to each channel along the temporal axis. Specifically, the
 278 convolution does not mix across channels, and no bias or activation function is applied.

279 The learnable parameter α allows the model to interpolate between the original input and the con-
 280 volved signal. Since α is jointly optimized with the rest of the model, the network can adaptively
 281 decide the degree of residual blending based on task-specific patterns. In our implementation, we do
 282 not impose any explicit regularization or range constraint on α , allowing the optimization to freely
 283 explore its effective value.

284 This design improves robustness by allowing localized temporal smoothing while avoiding overfit-
 285 ting to noise, especially under low-resource conditions.

288 4.3 TEMPORAL-AWARE MIXTURE-OF-EXPERTS

290 Our CS-MoE employs a mixture of E temporal experts, each modeled as a nonlinear module that
 291 independently forecasts future sequences. To route inputs to appropriate experts, we compute a
 292 temporal summary vector via channel-wise averaging:

$$293 \quad s = \text{Mean}_c(X) \in \mathbb{R}^{B \times T}. \quad (9)$$

295 This vector is fed into a lightweight gating network:

$$296 \quad w = \text{Softmax}(\text{Linear}(\text{ReLU}(\text{Linear}(s)))) \in \mathbb{R}^{B \times E}, \quad (10)$$

298 producing expert selection weights. Each expert E_i outputs a candidate forecast, and the final pre-
 299 diction is the weighted sum:

$$300 \quad \hat{Y} = \sum_{i=1}^E w_i \cdot E_i(X), \quad (11)$$

303 where $E_i(X) \in \mathbb{R}^{B \times C \times L'}$ and L' is the prediction horizon. This design promotes specialization
 304 and conditional computation. We apply ℓ_1 regularization on expert parameters to enhance sparsity
 305 (see Sec. 3).

306 5 EXPERIMENTS

309 5.1 EXPERIMENT SETTINGS

311 **Datasets.** In line with previous studies (Qiu et al., 2024; Zhou et al., 2021; Jin et al., 2024; Nie et al.,
 312 2023), we evaluate our method on ten widely used real-world datasets that span a variety of appli-
 313 cation domains. These include datasets such as Electricity Transformer Temperature (ETT) (Zhou
 314 et al., 2021), Traffic, Electricity, Weather, National Illness (ILI) (Lai et al., 2018), and Exchange.
 315 All datasets are multivariate in nature, and we provide further details regarding their characteristics
 316 and preprocessing procedures both below and in the Appendix.

317 **Baselines.** To ensure fair and comprehensive evaluation, we compare our approach against a diverse
 318 set of recent state-of-the-art models. This includes convolution-based architectures such as Times-
 319 Net (Wu et al., 2023) and MICN (Wang et al., 2022); mixture-of-experts (MoE) models like MoLE
 320 (Mixture of Linear Experts) (Ni et al., 2024); MLP-based methods such as FITS (Xu et al., 2024),
 321 TimeMixer (Wang et al., 2024), and DLinear (Zeng et al., 2023); and Transformer-based methods
 322 including PDF (Dai et al., 2024) and PatchTST (Nie et al., 2023).

323 **Implementation Details.** All experiments are carried out on a workstation equipped with an
 NVIDIA GeForce RTX 3090 GPU running 64-bit Linux (kernel version 5.15.0-56-generic). For

324 the ETT and Solar datasets, we adopt a 60%/20%/20% split for training, validation, and testing,
325 respectively, while a 70%/10%/20% split is applied to all other datasets. Following the protocol
326 established in the TFB benchmark (Qiu et al., 2024), we perform a grid search over input sequence
327 lengths in {96, 336, 512} to determine the optimal setting for each dataset.
328

329	Models	CS-MoE		MoLE		PDF		FITS		TimeMixer		PatchTST		MICN		DLinear		
		Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
330	ETTh1	96	0.357	0.387	0.375	0.390	0.360	0.391	0.376	0.396	0.372	0.401	0.377	0.397	0.378	0.412	0.379	0.403
		192	0.395	0.412	0.403	0.417	<u>0.392</u>	<u>0.414</u>	0.400	0.418	0.413	0.430	0.409	0.425	0.400	0.430	0.408	0.419
		336	0.424	0.427	0.430	<u>0.434</u>	0.418	0.435	<u>0.419</u>	0.435	0.438	0.450	0.431	0.444	0.428	0.447	0.440	0.440
		720	0.417	0.441	0.449	0.461	0.456	0.462	<u>0.435</u>	<u>0.458</u>	0.486	0.484	0.457	0.477	0.474	0.499	0.471	0.493
		Avg	0.398	0.417	0.414	0.425	0.407	0.426	0.408	0.427	0.427	0.441	0.419	0.436	0.420	0.447	0.425	0.439
334	ETTh2	96	0.271	0.333	0.273	0.334	0.276	0.341	0.277	0.345	0.281	0.351	0.274	0.337	0.313	0.372	0.300	0.364
		192	0.330	0.373	0.336	<u>0.374</u>	0.339	0.382	<u>0.331</u>	0.379	0.349	0.387	0.348	0.384	0.419	0.439	0.387	0.423
		336	0.352	0.392	0.371	0.404	0.374	0.406	0.350	0.396	0.366	0.413	0.377	0.416	0.474	0.475	0.490	0.487
		720	0.380	0.420	0.409	0.439	0.398	0.433	<u>0.382</u>	<u>0.425</u>	0.401	0.436	0.406	0.441	0.723	0.600	0.704	0.597
		Avg	0.333	0.380	0.347	0.388	0.347	0.391	<u>0.335</u>	0.386	0.349	0.397	0.351	0.395	0.482	0.472	0.470	0.468
337	ETTm1	96	0.284	0.331	0.291	<u>0.333</u>	0.286	0.340	0.303	0.345	0.293	0.345	0.289	0.343	0.303	0.349	0.300	0.345
		192	0.320	0.355	0.333	0.357	0.321	0.364	0.337	0.365	0.335	0.372	0.329	0.368	0.336	0.369	0.336	0.366
		336	0.357	0.381	0.368	<u>0.383</u>	0.354	0.383	0.368	0.384	0.368	0.386	0.362	0.390	0.370	0.391	0.367	0.386
		720	0.406	0.411	0.429	0.418	0.408	0.415	0.420	<u>0.413</u>	0.426	0.417	0.416	0.423	0.410	0.421	0.419	0.416
		Avg	0.342	0.369	0.355	<u>0.373</u>	0.342	0.376	0.357	<u>0.377</u>	0.356	0.380	0.349	0.381	0.355	0.383	0.356	0.378
340	ETTm2	96	0.159	0.245	0.163	0.247	0.163	0.251	0.165	0.254	0.165	0.256	0.165	0.255	0.173	0.271	0.164	0.255
		192	0.213	0.281	0.217	<u>0.286</u>	0.219	0.290	0.219	0.291	0.225	0.298	0.221	0.293	0.232	0.313	0.224	0.304
		336	0.266	0.320	0.272	<u>0.323</u>	0.269	0.330	0.272	0.326	0.277	0.332	0.276	0.327	0.303	0.367	0.277	0.337
		720	0.349	0.376	0.380	0.391	0.349	0.382	<u>0.359</u>	<u>0.381</u>	0.360	0.387	0.362	0.381	0.467	0.477	0.371	0.401
		Avg	0.247	0.305	0.258	0.312	0.250	0.313	0.254	0.313	0.257	0.318	0.256	0.314	0.294	0.357	0.259	0.324
344	Weather	96	0.143	0.188	0.152	0.192	0.147	0.196	0.172	0.225	0.147	0.198	0.149	0.196	0.172	0.232	0.170	0.230
		192	0.186	0.224	0.190	<u>0.228</u>	0.193	0.240	0.215	0.261	0.192	0.243	0.191	0.239	0.214	0.270	0.216	0.275
		336	0.237	0.265	0.245	0.271	0.245	0.280	0.261	0.295	0.247	0.284	0.242	0.279	0.259	0.309	0.258	0.307
		720	0.310	0.318	0.316	<u>0.324</u>	0.323	0.334	0.326	0.341	0.318	0.330	0.312	0.330	0.309	0.343	0.323	0.362
		Avg	0.219	0.249	0.226	0.254	0.227	0.263	0.244	0.281	0.226	0.264	<u>0.224</u>	0.261	0.239	0.289	0.242	0.293
347	Traffic	96	0.362	0.238	0.372	<u>0.246</u>	0.368	0.252	0.400	0.280	0.369	0.257	0.370	0.262	0.317	0.313	0.395	0.275
		192	0.379	0.251	0.385	<u>0.254</u>	0.382	0.261	0.412	0.288	0.400	0.272	0.386	0.269	0.526	0.302	0.407	0.280
		336	0.391	0.258	0.407	0.266	0.393	0.268	0.433	0.308	0.407	0.272	0.396	0.275	0.545	0.307	0.417	0.286
		720	0.430	0.273	0.429	0.265	0.438	0.297	0.478	0.339	0.461	0.316	0.435	0.295	0.569	0.328	0.454	0.308
		Avg	0.391	0.255	0.398	<u>0.258</u>	0.395	0.270	0.431	0.304	0.409	0.279	0.397	0.275	0.539	0.313	0.418	0.287
351	Electricity	96	0.126	0.217	0.129	<u>0.219</u>	0.128	0.222	0.139	0.237	0.153	0.256	0.143	0.247	0.158	0.266	0.140	0.237
		192	0.143	0.235	0.150	0.237	0.147	0.242	0.154	0.250	0.168	0.269	0.158	0.260	0.175	0.287	0.154	0.251
		336	0.161	0.251	0.164	0.256	0.165	0.260	0.170	0.268	0.189	0.291	0.168	0.267	0.184	0.296	0.169	0.268
		720	0.187	0.276	0.188	<u>0.278</u>	0.199	0.289	0.212	0.304	0.228	0.320	0.214	0.307	0.200	0.310	0.204	0.301
		Avg	0.154	0.245	0.158	<u>0.247</u>	0.160	0.253	0.169	0.265	0.185	0.284	0.171	0.270	0.179	0.290	0.167	0.264
354	Exchange	96	0.079	0.198	0.084	0.201	0.083	0.200	0.082	0.199	0.084	0.207	0.079	0.200	0.079	0.203	0.080	0.202
		192	0.166	0.291	0.173	0.293	0.172	0.294	0.173	0.295	0.178	0.300	<u>0.159</u>	0.289	0.158	0.299	0.182	0.321
		336	0.311	0.402	0.321	0.407	0.323	0.411	0.317	0.406	0.376	0.451	0.297	0.399	0.300	0.403	0.327	0.434
		720	0.743	0.649	0.845	0.694	0.820	0.682	0.825	0.684	0.884	0.707	0.751	0.650	0.745	0.665	0.578	0.605
		Avg	0.325	0.386	0.356	0.399	0.350	0.397	0.349	0.396	0.381	0.416	0.322	0.385	<u>0.321</u>	0.393	0.292	0.391
357	Solar	96	0.172	0.196	0.186	<u>0.203</u>	0.181	0.247	0.208	0.255	0.179	0.232	0.170	0.234	0.190	0.250	0.199	0.265
		192	0.185	0.209	0.196	0.212	0.200	0.259	0.229	0.267	0.201	0.259	0.204	0.302	0.226	0.284	0.220	0.282
		336	0.187	0.213	0.194	<u>0.215</u>	0.208	0.269	0.241	0.273	<u>0.190</u>	0.256	0.212	0.293	0.259	0.308	0.234	0.295
		720	0.202	0.235	0.205	0.230	0.212	0.275	0.248	0.277	0.203	0.261	0.215	0.307	0.341	0.365	0.243	0.301
		Avg	0.186	0.213	0.195	<u>0.215</u>	0.200	0.263	0.232	0.268	<u>0.193</u>	0.252	0.200	0.284	0.254	0.302	0.224	0.286
361	IL1	24	1.635	0.782	1.752	0.821	1.801	0.874	2.182	1.002	1.804	0.820	1.932	0.872	2.279	1.020	2.208	1.031
		36	1.610	0.784	1.712	<u>0.796</u>	1.743	0.867	2.241	1.029	1.891	0.926	1.869	0.866	2.451	1.085	2.032	0.981
		48	1.512	0.777	1.731	0.813	1.843	0.926	2.272	1.036	1.752	0.866	1.891	0.883	2.440	1.077	2.209	1.063
		60	1.591	0.842	1.724	<u>0.854</u>	1.845	0.925	2.642	1.142	1.831	0.930	1.914	0.896	2.303	1.012	2.292	1.086
		Avg	1.587	0.796	1.730	<u>0.821</u>	1.808	0.898	2.334	1.052	1.820	0.886	1.902	0.879	2.368	1.049	2.185	1.040
368	1 st Count		81	3	5	1	0	6	3	3	0	0	0	0	3	3	3	

369 Table 1: Fair long-term forecasting results under hyperparameter searching without the “drop-last”
370 trick. The best model is **bold**, and the second best is underlined. Count is the number of the best
3

378 5.3 MODEL ANALYSIS
379

380 **Ablation study.** To better understand the contribution of each component in our CS-MoE, we con-
381 duct ablation study by removing or altering key modules. Table 2 summarizes the results averaged
382 across all forecasting horizons on two representative datasets (ETTh2 and Weather). Removing the
383 L1 norm regularization (“w/o L1 norm”) leads to a notable degradation in performance, especially
384 on the ETTh2 dataset, which confirms that our sparsity-inducing constraint plays a crucial role in
385 improving generalization. Excluding the cross-channel embedding module (“w/o Cross Embed.”)
386 also results in performance drops, particularly on the Weather dataset, demonstrating the impor-
387 tance of capturing inter-channel dependencies. Lastly, replacing the Mixture-of-Experts structure
388 with a single expert (“w/o MoE”) leads to consistent decreases in accuracy across both datasets,
389 highlighting the effectiveness of expert specialization within our framework. Overall, the full model
390 (CS-MoE) achieves the best results across all metrics, validating the complementary benefits of its
391 individual components.
392

Variants	ETTh2 (avg.)		Weather (avg.)	
	MSE	MAE	MSE	MAE
w/o L1 norm	0.348	0.389	0.221	0.253
w/o Cross Embed.	0.341	0.387	0.233	0.265
w/o MoE	0.341	0.386	0.219	0.250
CS-MoE	0.333	0.379	0.218	0.249

393 Table 2: Ablation study. Results are
394 averaged from all forecasting horizons \in
395 $\{96,192,336,720\}$.
396

λ	ETTh1 (avg.)		Exchange (avg.)	
	MSE	MAE	MSE	MAE
0.0	0.416	0.423	0.365	0.409
0.001	0.420	0.433	0.372	0.411
0.0001	0.404	0.419	0.338	0.392
0.00001	0.401	0.417	0.352	0.398
0.000001	0.412	0.421	0.360	0.405

397 Table 3: Effect of different L1 regularization co-
398 efficients λ on forecasting performance. Results
399 are averaged over all horizons on the ETTh1 and
400 Exchange datasets.
401

402 **Efficiency Analysis** Table 5 compares the efficiency of different time series forecasting models
403 in terms of computational cost (MACs), parameter size, inference time, and forecasting accuracy
404 (MSE) on the large-scale Electricity dataset with a look-back window of 512 and a forecasting hori-
405 zon of 720. Our model, CS-MoE, achieves superior efficiency, requiring only 560M MACs and
406 1.69M parameters—an order of magnitude lower than prior methods such as Pathformer and PDF.
407 Additionally, CS-MoE delivers a significantly faster inference time of just 3.27ms, while also achiev-
408 ing the best prediction accuracy with an MSE of 0.189. These results highlight CS-MoE’s advantage
409 in balancing computational efficiency and forecasting performance, making it highly suitable for de-
410 ployment in resource-constrained or real-time environments.
411

412 **Generalization of Parameter Sparsity.** To evaluate the generalizability of our sparsity-inducing
413 strategy, we apply the L1 regularization to a diverse set of base models, including NLinear, iTrans-
414 former, and TimeMixer. As reported in Table 4, introducing L1 norm consistently improves the
415 forecasting performance across all models, demonstrating that parameter sparsity is a universally
416 beneficial inductive bias for long-term time series forecasting (LTSF). Specifically, we observe av-
417 erage MSE improvements of 4.4% on the NLinear model, 5.7% on iTransformer, and 2.3% on
418 TimeMixer across the two datasets. These results suggest that L1-induced parameter sparsity not
419 only benefits simple linear models but also effectively complements complex attention-based and
420 mixer-based architectures. This further supports the claim that sparsity is a broadly applicable prin-
421 ciple for enhancing generalization in LTSF tasks.
422

423 **Hyperparameter Analysis.** We study the effect of L1 regularization coefficient λ on forecasting
424 performance by varying its value and evaluating model accuracy using MSE and MAE, as shown
425 in Table 3. A moderate value of λ typically yields the best performance, indicating that inducing
426 proper sparsity can enhance generalization, while overly strong regularization may suppress useful
427 patterns.
428

429 To further investigate this behavior, we conduct additional experiments on more datasets, with de-
430 tailed results reported in the supplementary material. Interestingly, we observe that for low-resource
431 datasets such as ETTh1, ETTh2, and Exchange, relatively larger values of λ lead to better perfor-
432 mance, as they compensate for the lack of data-induced parameter sparsity. In contrast, on larger-
433

Variants	ETTh1 (avg.)		Exchange (avg.)	
	MSE	MAE	MSE	MAE
NLinear	0.420	0.428	0.355	0.400
+ L1	0.402	0.417	0.345	0.391
iTransformer	0.439	0.448	0.360	0.404
+ L1	0.414	0.422	0.353	0.398
TimeMixer	0.427	0.441	0.381	0.416
+ L1	0.413	0.426	0.376	0.412
Boost (%)	4.4%	3.9%	2.0%	1.6%

Table 4: Generalization of parameter sparsity. Results are averaged from four forecasting horizons. “Boost” denotes the relative improvement after applying L1 regularization.

scale datasets like Electricity and Traffic, smaller λ values perform better since the model already exhibits natural sparsity driven by abundant data. This validates our hypothesis that L1 regularization serves as an effective sparsity prior under data scarcity, but can be relaxed when sufficient training data is available.

Few Shot Learning. To assess the effectiveness of sparsity in data-scarce scenarios, we conduct few-shot forecasting experiments by limiting the available training data to 10%, 20%, and 50% of the original training set. The validation and test sets remain unchanged, and all models are trained from scratch under each data condition using the same hyperparameters as in the full-data regime.

Table 6 presents the forecasting performance averaged over multiple horizons on the ETTh1 dataset. CS-MoE consistently achieves the best results across all few-shot settings. Notably, adding ℓ_1 regularization to iTransformer and NLinear leads to moderate improvements, especially under 10% and 20% data, confirming that sparsity is a beneficial inductive bias under limited supervision. CS-MoE further improves upon this by integrating sparsity with modular routing and structured convolution.

Data	10%	20%	50%
iTransformer	0.482	0.476	0.456
iTransformer + L1	0.465	0.453	0.438
NLinear	0.451	0.438	0.423
NLinear + L1	0.443	0.426	0.417
CS-MoE	0.429	0.417	0.403

Table 6: Few-shot forecasting performance (MSE) averaged over horizons on ETTh1.

Method	MACs	Params	Infer. Time	MSE
Informer	3.97 G	12.53 M	70.1ms	0.502
Autoformer	4.41 G	12.22 M	107.7ms	0.254
FEDformer	4.41 G	17.98 M	238.7ms	0.259
FiLM	4.41 G	12.22 M	78.3ms	0.249
PatchTST	11.21 G	6.31 M	290.3ms	0.214
Pathformer	8.69G	7.92M	156.94ms	0.211
PDF	7.76G	6.14M	58.78ms	0.199
CS-MoE	560M	1.69M	3.27ms	0.192

Table 5: Number of training parameters, MACs, inference time, and MSE of TSF models under look-back window = 512 and forecasting horizon = 720 on the large Electricity dataset.

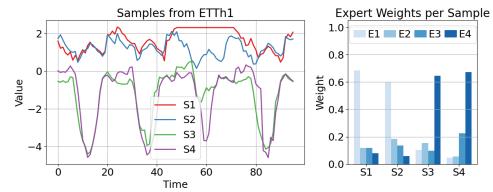


Table 7: Expert weights visualization on four ETTh1 samples. Left: standardized input series. Right: corresponding expert weights.

Expert Weights Visualization. Figure 7 shows the expert weights for four diverse samples from ETTh1. Samples with similar patterns (e.g., S1 and S2) activate similar experts (e.g., E1), while different patterns (e.g., S3 and S4) lead to distinct expert usage (e.g., E4), demonstrating that our model adaptively routes inputs to specialized experts based on temporal characteristics.

6 CONCLUSIONS

In this paper, we introduce CrossSparse-MoE, an efficient forecasting framework that mitigates overfitting in low-data regimes by novelly combining structural flexibility with adaptive sparsity. Motivated by a sparsity-oriented scaling law, the model leverages cross-channel convolutions for inter-variable modeling and employs a Mixture-of-Experts architecture with L1 regularization to learn compact and specialized representations. CrossSparse-MoE allows sparsity to emerge naturally through data-driven training. Experiments on real-world time series benchmarks show that our method achieves superior performance and extremely lightweight computational consumption.

486 REFERENCES
487

488 Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Aligning pre-trained
489 llms as data-efficient time-series forecasters, 2024.

490 Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
491 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
492 forecasting. In *International Conference on Learning Representations*, 2024.

493 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
494 decoupling framework for long-term series forecasting. In *The Twelfth International Conference
495 on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net,
496 2024. URL <https://openreview.net/forum?id=dp27P5HBBt>.

497 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
498 forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.

499 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
500 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
501 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
502 arXiv:2010.11929*, 2020.

503 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
504 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *Proceedings
505 of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 459–469,
506 2023.

507 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
508 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
509 vision and pattern recognition*, pp. 16000–16009, 2022.

510 Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding, Zhengyang Zhou, and Yang
511 Wang. Hdmixer: Hierarchical dependency with extendable patch for multivariate time series
512 forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
513 12608–12616, 2024a.

514 Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
515 Wang. Crossggn: Confronting noisy multivariate time series via cross interaction refinement.
516 *Advances in Neural Information Processing Systems*, 36, 2024b.

517 Aya Abdelsalam Ismail, Sercan O Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and Tomas Pfister.
518 Interpretable mixture of experts. *Transactions on Machine Learning Research*, 2023. ISSN 2835-
519 8856.

520 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
521 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
522 by reprogramming large language models, 2024. URL <https://arxiv.org/abs/2310.01728>.

523 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
524 versible instance normalization for accurate time-series forecasting against distribution shift. In
525 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=cGDAkQo1C0p>.

526 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
527 term temporal patterns with deep neural networks, 2018. URL <https://arxiv.org/abs/1703.07015>.

528 Shengsheng Lin, Weiwei Lin, Wentai Wu, Songbo Wang, and Yongxiang Wang. Petformer:
529 Long-term time series forecasting via placeholder-enhanced transformer. *arXiv preprint
530 arXiv:2308.04791*, 2023a.

540 Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
 541 rnn: Segment recurrent neural network for long-term time series forecasting. *arXiv preprint*
 542 *arXiv:2308.11200*, 2023b.

543 Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesf: Modeling
 544 long-term time series forecasting with 1k parameters. In *Forty-first International Conference on*
 545 *Machine Learning*, 2024.

546 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qixia Lai, Lingna Ma, and
 547 Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution
 548 and interaction. *Advances in Neural Information Processing Systems*, 35:5816–
 549 5828, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/266983d0949aed78a16fa4782237dea7-Abstract-Conference.html.

550 Ronghao Ni, Zinan Lin, Shuaiqi Wang, and Giulia Fanti. Mixture-of-linear-experts for long-term
 551 time series forecasting. In *International Conference on Artificial Intelligence and Statistics*, pp.
 552 4672–4680. PMLR, 2024.

553 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 554 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference on*
 555 *Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 556 URL <https://openreview.net/forum?id=Jbdc0vTOcol>.

557 Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural ba-
 558 sis expansion analysis for interpretable time series forecasting. In *International Conference on*
 559 *Learning Representations*, 2020.

560 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 561 ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
 562 benchmarking of time series forecasting methods, 2024. URL <https://arxiv.org/abs/2403.20150>.

563 Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
 564 Tim Januschowski. Deep state space models for time series forecasting. *Advances in neural*
 565 *information processing systems*, 31, 2018.

566 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
 567 casting with autoregressive recurrent networks. *International journal of forecasting*, 36(3):1181–
 568 1191, 2020.

569 Jingzhe Shi, Qinwei Ma, Huan Ma, and Lei Li. Scaling law for time series forecasting. *arXiv*
 570 *preprint arXiv:2405.15124*, 2024.

571 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
 572 moe: Billion-scale time series foundation models with mixture of experts, 2025. URL <https://arxiv.org/abs/2409.16040>.

573 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 574 scale local and global context modeling for long-term series forecasting. In *The Eleventh Inter-*
 575 *national Conference on Learning Representations*, 2022.

576 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 577 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 578 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
 579 *May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=7oLshfEIC2>.

580 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
 581 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 582 analysis. In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.

583 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 584 formers with auto-correlation for long-term series forecasting, 2022. URL <https://arxiv.org/abs/2106.13008>.

594 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 595 Temporal 2d-variation modeling for general time series analysis. In *International Conference on*
 596 *Learning Representations*, 2023.

597

598 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with $10k$ parameters, 2024.
 599 URL <https://arxiv.org/abs/2307.03756>.

600 Hao Xue and Flora D Salim. Promptcast: A new prompt-based learning paradigm for time series
 601 forecasting. *IEEE Transactions on Knowledge and Data Engineering*, 2023.

602

603 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series fore-
 604 casting? In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Con-*
 605 *ference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications*
 606 *of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial*
 607 *Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 11121–11128. AAAI
 608 Press, 2023. doi: 10.1609/AAAI.V37I9.26317. URL <https://doi.org/10.1609/aaai.v37i9.26317>.

609

610 Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
 611 more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. *arXiv*
 612 *preprint arXiv:2207.01186*, 2022.

613

614 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan-
 615 cai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecast-
 616 ing. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Con-*
 617 *ference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sympo-*
 618 *sium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February*
 619 *2-9, 2021*, pp. 11106–11115. AAAI Press, 2021. doi: 10.1609/AAAI.V35I12.17325. URL
 620 <https://doi.org/10.1609/aaai.v35i12.17325>.

621

622 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
 623 quency enhanced decomposed transformer for long-term series forecasting, 2022. URL <https://arxiv.org/abs/2201.12740>.

624

A DATASET DESCRIPTIONS

625
 626 Table 8: Dataset detailed descriptions. *Dim* denotes the number of variables per dataset, i.e., chan-
 627 nels. *Frequency* represents the sampling interval of time points.

Dataset	Dim	Timesteps	Frequency	Domain
ETTh1&h2	7	17420	Hourly	Electricity
ETTm1&m2	7	69,680	15-min	Electricity
Exchange	8	7588	Daily	Economy
Electricity	321	26304	Hourly	Electricity
Traffic	862	17544	Hourly	Transportation
Weather	21	52696	10-min	Weather
ILI	7	966	Weakly	Disease
Solar	137	52560	10-min	Energy

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

- **ETT** consists of datasets with varying granularities, including two hourly-level datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). These datasets feature six power load variables and the target variable “oil temperature,” spanning from July 2016 to July 2018.
- **Traffic** tracks hourly road occupancy on San Francisco freeways over the period of 2015–2016.
- **Electricity** provides hourly power usage data from 321 customers, collected from 2012 to 2014.

- **Exchange-Rate** contains daily foreign exchange rate data for eight countries, with records from 1990 to 2016.
- **Weather** consists of 21 weather parameters, including air temperature and humidity, recorded at 10-minute intervals throughout 2020 in Germany.
- **ILI** is sourced from the U.S. Centers for Disease Control and Prevention (CDC), documenting weekly instances of influenza-like illness from 2002 to 2021, including patient counts and ratios.
- **Solar** provides solar energy production data from 137 photovoltaic (PV) plants in Alabama.

Drop Last Issue. Several studies Xu et al. (2024); Qiu et al. (2024) have highlighted the complications of using the “drop-last” setting during model evaluation. Specifically, enabling “drop_last=True” can lead to errors because of changes in the batch size of the test set. To mitigate these issues, we intentionally set the “drop_last=False” option for our experiments.

B HYPERPARAMETER SENSITIVITY

λ	Weather (avg.)		Electricity (avg.)		Traffic (avg.)		ETTh2 (avg.)	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
0.0	0.231	0.271	0.163	0.260	0.423	0.275	0.351	0.390
0.001	0.246	0.285	0.165	0.259	0.441	0.281	0.360	0.388
0.0001	0.235	0.270	0.160	0.263	0.421	0.276	0.351	0.384
0.00001	0.221	0.252	0.158	0.252	0.401	0.261	0.335	0.383
0.000001	0.225	0.261	0.154	0.247	0.394	0.258	0.342	0.394

Table 9: Effect of different L1 regularization coefficients λ on forecasting performance. Results are averaged over all horizons on the Weather and Exchange datasets.

We conduct additional experiments on more datasets, with detailed results reported in the supplementary material. Interestingly, we observe that for low-resource datasets such as ETTh1, ETTh2, and Exchange, relatively larger values of λ lead to better performance, as they compensate for the lack of data-induced parameter sparsity. In contrast, on larger-scale datasets like Electricity and Traffic, smaller λ values perform better since the model already exhibits natural sparsity driven by abundant data. This validates our hypothesis that L1 regularization serves as an effective sparsity prior under data scarcity, but can be relaxed when sufficient training data is available.

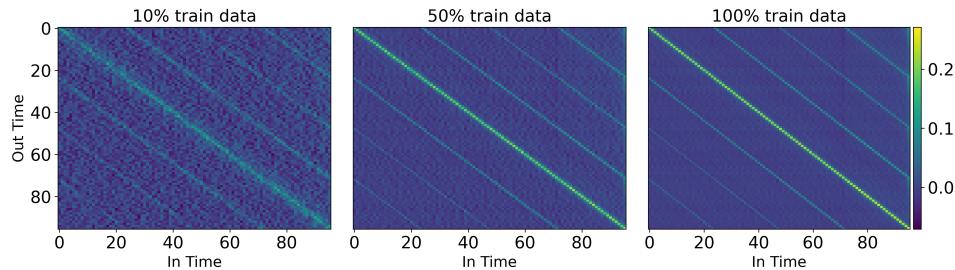
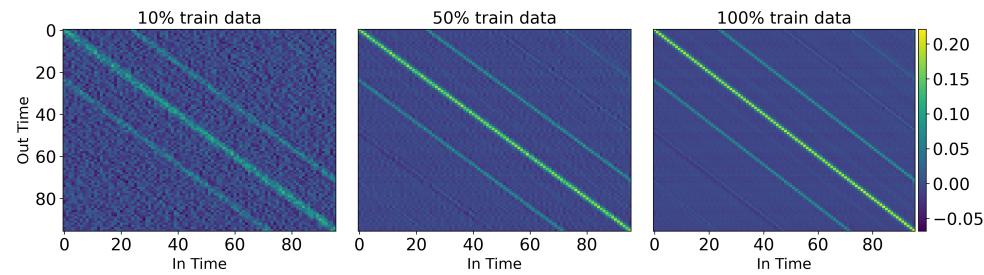


Figure 6: Visualization of weight sparsification with increasing data volume on the electricity dataset.

C EXPERIMENTAL RESULTS

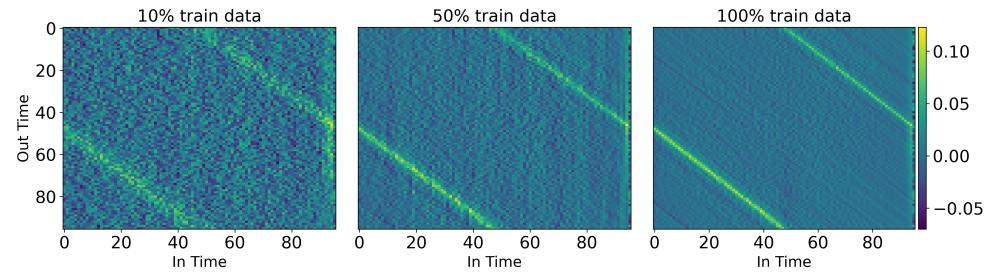
We further extend our analysis to additional benchmark datasets by visualizing the weights of the model’s linear projection layer (Figure 6, 8, 9, 7) and tracking two sparsity metrics (Figure 10, 12,

702
703
704
705
706
707
708
709
710
711
712
713
714
715



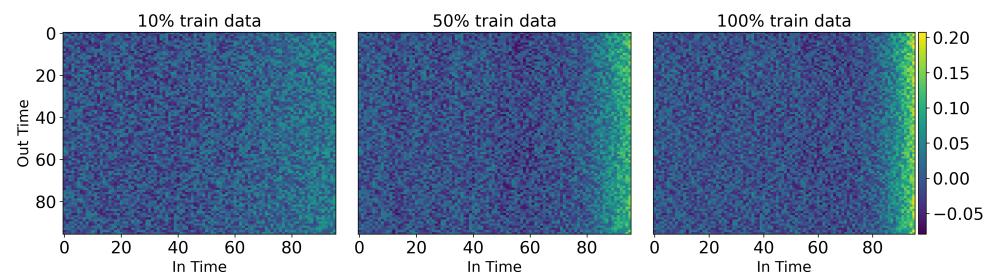
716 Figure 7: Visualization of weight sparsification with increasing data volume on the traffic dataset.
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733



734 Figure 8: Visualization of weight sparsification with increasing data volume on the ETTm1 dataset.
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755



752 Figure 9: Visualization of weight sparsification with increasing data volume on the exchange rate
753 dataset.
754

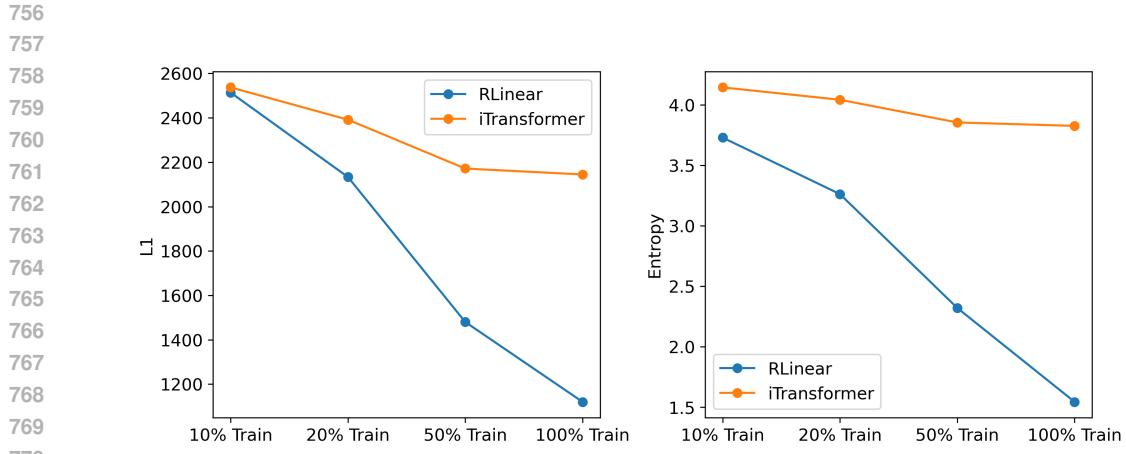


Figure 10: Metrics for parameter sparsification on electricity dataset.

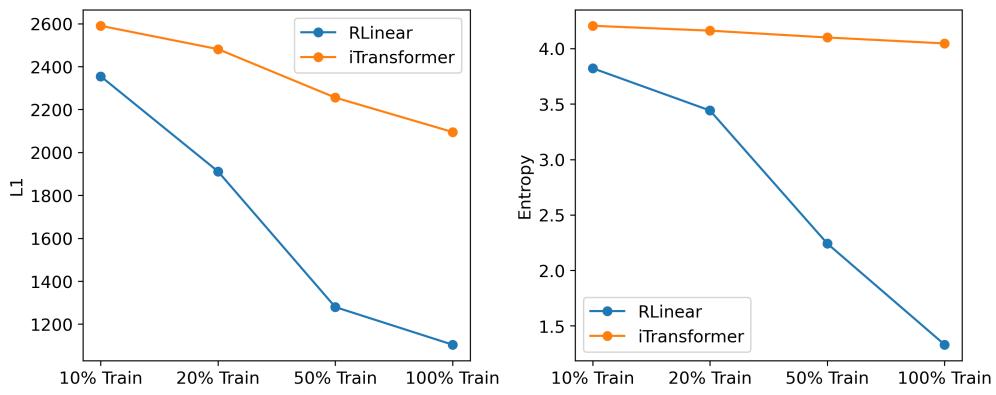


Figure 11: Metrics for parameter sparsification on traffic dataset.

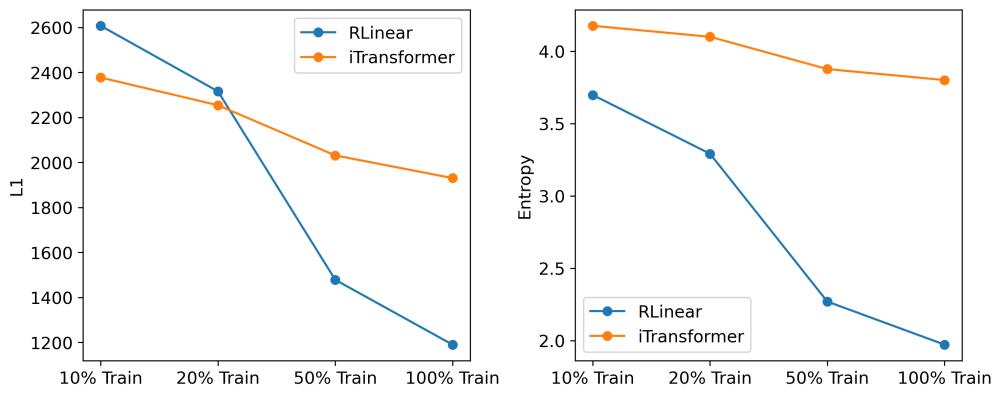


Figure 12: Metrics for parameter sparsification on ETTm1 dataset.

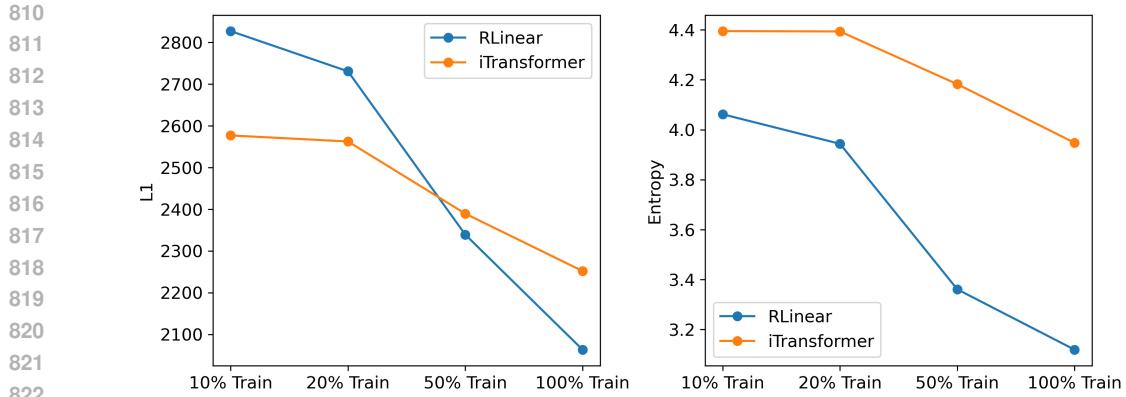


Figure 13: Metrics for parameter sparsification on ETTh1 dataset.

13, 11) as the amount of training data increases. A consistent trend emerges: as the data volume grows, the model exhibits increased parameter sparsity, with weights corresponding to less important features gradually approaching zero. Additionally, weight patterns differ significantly across datasets. For example, the Exchange dataset displays weak periodicity, with weights primarily focused on the most recent timesteps, whereas the ETTh1 dataset shows clear periodicity with a cycle length of 96.

C.1 USE OF LLMs

During the preparation of this manuscript, we used the OpenAI ChatGPT (GPT-5) large language model as an assistant for language refinement, grammar correction, and style improvement. The model was also employed for suggesting alternative phrasings and generating draft outlines of certain sections, which were subsequently reviewed, verified, and substantially revised by the authors. All technical content, experiments, analyses, and conclusions presented in this paper were conceived, implemented, and validated solely by the authors. The authors take full responsibility for the accuracy and integrity of the manuscript's content.