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Abstract

In this paper, we propose an optimally structured gradient coding scheme to
mitigate the straggler problem in distributed learning. Conventional gradient coding
methods often assume homogeneous straggler models or rely on excessive data
replication, limiting performance in real-world heterogeneous systems. To address
these limitations, we formulate an optimization problem minimizing residual error
while ensuring unbiased gradient estimation by explicitly considering individual
straggler probabilities. We derive closed-form solutions for optimal encoding
and decoding coefficients via Lagrangian duality and convex optimization, and
propose data allocation strategies that reduce both redundancy and computation
load. We also analyze convergence behavior for λ-strongly convex and µ-smooth
loss functions. Numerical results show that our approach significantly reduces the
impact of stragglers and accelerates convergence compared to existing methods.

1 Introduction

In recent years, the rapid advancements in deep learning have underscored the significance of large
datasets and large-scale AI models as critical components for performance enhancement. Break-
through models such as ChatGPT, Gemini, and SORA have not only demonstrated unprecedented
capabilities but have also transformed the industrial landscape, reshaping how AI technologies are
applied across various domains. These models are commonly trained using gradient-descent-based
algorithms, but the training process for such large-scale models demands immense computational
resources, such as GPUs and NPUs, leading to a computation bottleneck. To address these challenges,
building on foundational frameworks like MapReduce [1] and Spark [2], distributed computing [3, 4]
has emerged as a promising and practical solution, and evolving into distributed learning, which
mitigates computation and communication bottlenecks in large-scale training scenarios.

A distributed learning architecture typically consists of a central coordinator (master node) that
trains an AI model using gradient-based optimization (e.g., Gradient Descent (GD)) to minimize a
given loss function, partitions and distributes the dataset to worker nodes for parallel computation of
local gradients, and aggregates these local gradients to approximate the global gradient and update
model parameters. However, heterogeneity in computational and communication resources can cause
bottlenecks, particularly due to the slowest worker node, known as a straggler, impairing overall
efficiency and scalability.
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Motivated by this aspect, Gradient Coding, a specialized technique for mitigating stragglers in
distributed learning, has been extensively studied [5–12]. The concept was first introduced in [5],
where data replication enables coding of partial gradients. Assuming a known number of stragglers,
it designed linear encoding and decoding schemes and identified fundamental data replication limits.
Its extension [6] explored trade-offs between communication overhead and resilience to stragglers,
proposing gradient coding schemes that reduce overhead at the expense of lower resilience. However,
these methods assume prior knowledge of straggler counts—often unrealistic in practice—and require
extensive data replication, placing a heavy computational burden on worker nodes.

To overcome limitations associated with unrealistic straggler models and high computational costs,
Approximate Gradient Coding has emerged as a practical solution under probabilistic straggler models,
explored in prior works [7–12]. Unlike exact gradient coding [5, 6], which precisely reconstructs
the true gradient sum, approximate gradient coding relies on estimated gradient sum for model
updates. This relaxation is justified since optimization methods, such as Stochastic Gradient Descent
(SGD), naturally tolerate approximations and noise, still ensuring convergence. By alleviating
the computational burden of exact recovery, approximate gradient coding improves efficiency and
mitigates straggler impacts through minimizing the residual error between true and approximate
gradient sum.

The authors of [7] introduced the approximate gradient coding framework by leveraging the normal-
ized adjacency matrix of an expander graph to construct encoding and decoding schemes. Similarly,
[8] proposed an approximate gradient coding scheme based on sparse random graphs, where gradient
components are assigned to worker nodes via Bernoulli sampling and the residual error is controlled
through probabilistic guarantees. The study [9] further analyzed the residual error of Fractional
Repetition (FR) codes, originally introduced in [5], noting that these codes can only be constructed
when the number of distributed nodes is a multiple of the data replication factor. Additionally, [10]
examined the fundamental trade-off among the data replication factor, the number of stragglers, and
the residual error in approximate gradient coding. Building on these advancements, the authors of
[11] proposed a novel approximate gradient coding scheme that leverages expander graphs while
dynamically optimizing decoding coefficients to minimize residual error.

While previous studies [7–11] primarily aimed to reduce residual errors between the gradient estima-
tor and the true gradient, this focus alone does not necessarily ensure model convergence. Therefore,
robust convergence guarantees become essential when using approximate gradient sums in gradient-
descent algorithms. Stochastic Gradient Coding (SGC) [12] addressed this by introducing a pairwise
data distribution scheme, where the number of worker nodes sharing any two data partitions is
proportional to the product of their respective replication factors. SGC designs its encoding coef-
ficients to ensure an unbiased gradient estimator using binary decoding and provides a thorough
convergence analysis. Empirical results showed that SGC performs robustly even under severe
straggler conditions, where residual-error-focused methods [7–11] may falter. Unlike exact gradient
coding—which requires each data partition to be replicated more than the number of stragglers—SGC
enforces constraints on pairwise data distribution. Consequently, depending on the total number of
data partitions, their replication factors, and the number of workers, it can become challenging or
even infeasible to satisfy the pairwise distribution constraints.

In summary, previous studies have generally pursued two directions. The first focuses on minimizing
the residual error but often lacks rigorous convergence analysis or relies on binary encoding/decoding
coefficients for analytical simplicity. The second ensures the gradient estimator’s unbiasedness by
carefully designing encoding coefficients while using binary decoding coefficients. Observing the
progress in both directions, we believe that integrating these approaches can potentially yield improved
performance. Moreover, most prior research assumes homogeneous straggler scenarios with uniform
straggling probabilities across worker nodes, which is unrealistic given the varying computation
and communication capacities encountered in practical settings. Under a non-uniform probabilistic
model, gradient updates may consistently neglect certain datasets, increasing generalization errors
and the risk of converging to local optima. To address these issues, we propose a novel approximate
gradient coding technique specifically designed for heterogeneous straggler environments.
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2 Preliminaries

2.1 Distributed Learning with Gradient Coding

Consider a distributed learning, where a master node aims to solve an optimization problem using a
gradient-descent-like algorithm across k worker nodes. Given a dataset D = {Di}ni=1 consisting of
n data partitions, the goal is to learn a parameter β∗ ∈ Rl that minimizes a loss function L(D,β).
This process involves iteratively solving:

β∗ = argmin
β
L(D,β), (1)

by approximating the parameter update:

βt+1 = βt − γt · g(t), (2)

where g(t) represents the aggregated gradient at iteration t,

g(t) = ∇L(D,βt) =
n∑
i=1

∇L(Di,βt), (3)

and γt is a learning rate. In a distributed framework, the master node divides the dataset D into
k batches (B1,B2, . . . ,Bk) and distributes each data batch Bj to its corresponding worker node j,
where data batches may overlap and do not necessarily have the same size. Each worker node j then
computes the local partial gradient∇L(Bj ,βt) in parallel, and then the master node aggregates these
to approximate the global gradient. Stragglers, however, can impede this process; gradient coding
combats them by injecting redundancy and applying coding across batches to tolerate slow or failed
worker nodes.

The gradient coding procedure consists of three phases—data distribution, local computation, and
gradient update phase. In data distribution phase, the master node replicates each partition Di to di
worker nodes to tolerate stragglers. This redundancy enables worker nodes to send encoded partial
gradients (via linear combinations), so the master node can recover the true gradient sum even if
some worker nodes straggle. This process introduces the parameter d = 1

n

∑n
i=1 di, known as the

computation load (or replication factor), which quantifies the average redundancy in computation (or
data replication). Hereinafter, we will refer to the replication factor as the computation load.

Subsequently, in local computation phase, each worker node i computes the partial gradient from its
assigned data batch Bi, i.e., {g(t)j : ∀Dj ∈ Bi}. Using the computed partial gradients, each worker
node generates an encoded message, which is then sent to the master node:

fi(βt) =
∑

Dj∈Bi

ai,j · g(t)j , (4)

where ai,j ∈ R represents the encoding coefficient used by worker node i for the gradient g(t)j =

∇L(Dj ,βt), which corresponds to data partition Dj .
Then, in gradient update phase, the master node aggregates all the received responses from non-
straggling worker nodes with the decoding coefficients:

ĝ(t) =

k∑
i=1

Ii · wi · fi(βt), (5)

where wi ∈ R is the decoding coefficient for worker node i and Ii is the indicator function for worker
node i being non-straggler, i.e.,

Ii =
{
1, if worker node i is non-straggler,
0, otherwise.

(6)

Unlike the homogeneous straggler assumptions in [7–13], we adopt a heterogeneous model: each
worker node i independently straggles at each iteration with probability pi, so E[Ii] = 1− pi. This
reflects real-world variability in computational and communication capacities. The parameter update
follows the process outlined in (2); however, instead of the true gradient sum g(t), an estimated
gradient sum ĝ(t) from gradient decoding is used for the update. Once updated, the parameters βt+1

are distributed to the worker nodes. Once the data distribution is done, the local computation and
gradient-update phases repeat every iteration until convergence.
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Figure 1: Motivating example of gradient coding.

2.2 Motivations

Figure 1 illustrates our motivating example. Without replication or coding, a single straggler forces
the master node to update using only the remaining gradients—e.g., in Figure 1(a), β is updated with
g1 + g2. By contrast, in Figure 1(b) each partition is assigned to two worker nodes, which compute
and linearly encode their gradients into f1 = g1/2 + g2, f2 = g2 − g3, and f3 = g1/2 + g3. Even
if the third worker node becomes a straggler, the master node still recovers the true gradient sum
g = g1 + g2 + g3 by computing 2f1 − f2. This perfect recovery nullifies the impact of stragglers,
ensuring seamless gradient-descent updates.

From this perspective, exact gradient coding provides a systematic way to choose the encoding
coefficients ai,j and the decoding coefficients wi so that each worker node encodes its gradients into
fi, and the master node recovers the true gradient sum from non-straggling messages. Representing
the encoding matrix as A and decoding vector as w, the goal is to satisfy Aw = I, ensuring
ĝ(t) = g(t). Moreover, to tolerate up to s stragglers, the computation load d must satisfy d ≥ s+ 1,
which represents a fundamental limit.

To address the high computation load and the impractical requirement of knowing the exact number
of stragglers, approximate gradient coding was developed based on the homogeneous probabilistic
straggler model (p1 = p2 = · · · = pk). Unlike exact recovery under deterministic straggler scenarios
illustrated in Figure 1(b), approximate gradient coding focuses on designing the encoding matrix
A and decoding vector w to minimize the average residual error between the true gradient sum
g(t) and its estimated counterpart ĝ(t). Prior studies have demonstrated that smaller residual errors
and higher computation load typically improve convergence behavior. Nevertheless, as highlighted
in [12], exclusively minimizing residual error may lead to degraded convergence performance in
environments with frequent straggling events. In contrast, ensuring an unbiased gradient estimator
provides robust convergence properties even under severe straggler conditions.

3 Optimally Structured Gradient Coding

Building on these insights, our gradient coding approach aims not only to reduce both the overall
residual error and the variance of the estimator but also to leverage the unbiasedness of gradient
estimators in heterogeneous straggler environments.1 By addressing these factors, the proposed
method enhances convergence performance, achieving faster convergence with stronger theoretical
guarantees. Accordingly, the encoding matrixA and decoding vectorw, each comprising the encoding
coefficients {ai,j ,∀i, j} and decoding coefficients {wi,∀i}, are designed by optimizing the problem:

(P1) minimize
A,w

Et[∥g(t) − ĝ(t)∥22] (7)

subject to Et[ĝ(t)] = g(t), (8)

where Et[·] ≜ E[·|βt] represents the expectation over the random behavior of the stragglers in the t-th
iteration, conditioned on the model parameter βt. Since straggler effects are i.i.d. across iterations,
the optimized encoding and decoding coefficients remain fixed, eliminating the need to re-optimize
(P1) at every iteration—unless the underlying straggler statistics change.

1With an unbiased gradient estimator, the residual error equals its variance.
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However, problem (P1) is not directly solvable, as it requires knowledge of the true gradient values,
necessitating the dynamic design of gradient codes at each iteration—an impractical requirement for
constructing gradient codes.

To address this challenge, we leverage a mild assumption of the true gradient:
Assumption 1. (Boundedness of gradient) There exists a constant C such that

∥∇L(Dj ,βt)∥22 = ∥g(t)j ∥
2
2 ≤ C,∀j ∈ [1 : n]. (9)

Note that this approach remains practical, as it accommodates constraints imposed by activation
functions or gradient clipping techniques, as outlined in [12–14]. Accordingly, we introduce the
following lemma.

Lemma 1. Suppose that Assumption 1 is satisfied and gradient estimator ĝ(t) is unbiased. Then,

Et[∥g(t) − ĝ(t)∥22] ≤ C
[ k∑
i=1

pi(1− pi) · w2
i

( n∑
j=1

ai,j

)2]
. (10)

The proof is provided in Appendix F.1.

Since the objective is for the gradient estimator—affected by straggler behavior of worker nodes—to
mimic the target gradient computed by gradient-based algorithms at each iteration, based on the given
data partitions D and model parameter βt, the source of randomness lies in the straggler behavior at
each iteration. Consequently, we have

Et[ĝ(t)] =
n∑
j=1

g
(t)
j · Et

[ k∑
i=1

Ii · wiai,j
]
. (11)

To ensure that this expected value matches the true gradient sum g(t) =
∑n
j=1 g

(t)
j regardless of the

specific values of g(t)j , the following unbiasedness condition must be satisfied individually:

Et
[ k∑
i=1

Ii · wiai,j
]
=

k∑
i=1

(1− pi) · wiai,j = 1, ∀j ∈ [1 : n], (12)

where the equality comes from the fact that Et[Ii] = 1− pi.
From these observations, the original problem (P1) can be reformulated as:

(P2) minimize
A,w

k∑
i=1

δiw̃
2
i

( n∑
j=1

ai,j

)2

(13)

subject to
k∑
i=1

w̃iai,j = 1, ∀j ∈ [1 : n], (14)

where w̃i = (1 − pi) · wi and δi = pi/(1 − pi). It is apparent that the optimization problem (P2)
is non-convex, primarily due to the strong coupling between the encoding and decoding variables.
However, both the objective function and the constraints exhibit a similar structure with respect to
the combined variables w̃iai,j . By defining αji = w̃iai,j , (P2) can, without loss of optimality, be
transformed into

(P3) minimize
α

k∑
i=1

δi

( n∑
j=1

αji

)2

(15)

subject to
k∑
i=1

αji = 1, ∀j ∈ [1 : n], (16)

where α is the matrix whose (i, j) element is αji . Problem (P3) is a convex problem with respect to
the transformed variables αji and can be solved by the standard convex optimization tool, such as
CVX [15] and YALMIP [16].
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Subsequently, for a given α, the encoding and decoding coefficient can be obtained with randomly
generated w̃i (w̃i ̸= 0) as:

ai,j =
αji
w̃i

and wi =
w̃i

1− pi
, ∀i, j. (17)

Note that the entry αji is relevant to the encoding and decoding coefficient of the partial gradient
computed from partitionDj that is attributed to worker node i. This representation facilitates efficient
management of data distribution and redundancy across multiple worker nodes within the gradient
coding framework: specifically, αji ̸= 0 means data partition Dj is allocated to worker node i. Thus,
the structure of matrix α explicitly encodes how data partitions are distributed among worker nodes.

3.1 Optimal Structure of Gradient Coding

While problem (P3) can be solved using convex optimization tools, we also provide an opportunity
to uncover the optimal structure of gradient codes that minimize the residual error while satisfying
the gradient estimator’s unbiasedness. This structure facilitates the development of a closed-form
solution for gradient code design. To begin, we present the optimal structure of gradient codes that
minimizes (P3).
Theorem 1. The optimal structure of optimization problem (P3) satisfies the conditions below:

n∑
j=1

αji = Yi,∀i ∈ [1 : k], and
k∑
i=1

αji = 1,∀j ∈ [1 : n], (18)

where Yi = δ−1
i · n∑k

j=1 δ
−1
j

and δ−1
i = 1−pi

pi
for all i ∈ [1 : k].

The proof is provided in Appendix F.2. Note that the row-wise sum constraint,
∑k
i=1 α

j
i = 1 for

all j ∈ [1 : n], ensures the unbiasedness of the gradient estimator. The values of the matrix α that
satisfy the optimal structure of gradient coding are determined by Yi, which, in turn, depends on the
straggler probabilities of all worker nodes. As a result, the gradient code is directly influenced by the
straggling characteristics of the distributed nodes.

According to Theorem 1, any gradient code satisfying the optimal structure adheres to the following
lemma:
Lemma 2. For any gradient codes satisfying the optimal structure described in Theorem 1, the
residual error of gradient estimator is bounded by

Et[∥g(t) − ĝ(t)∥22] ≤ n2C ·
1∑k

i=1 δ
−1
i

(19)

and squared norm of the gradient estimator is bounded by

Et[∥ĝ(t)∥22] ≤ n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
. (20)

The proof is provided in Appendix F.3.

3.2 Optimally Structured Gradient Code Construction

There may be multiple configurations of α that can adhere to the optimal structure outlined in
Theorem 1. In this subsection, we detail two closed-form configurations-termed Scheme I and Scheme
II—that not only satisfy the optimal structure but also reduce the computation load.

Throughout, without loss of generality, we assume that p1 ≤ p2 ≤ · · · ≤ pk. To effectively capture
more gradient information across the dataset on average, it is advantageous to allocate more data to
worker nodes with a lower likelihood of becoming stragglers. Accordingly, a gradient coding strategy
can be designed so that worker nodes with lower indices are assigned a proportionally larger share of
the data. Let b1 ≥ b2 ≥ · · · ≥ bk denote the number of partitions assigned to worker nodes 1 through
k, selected from n distinct and non-overlapping data partitions.2 For both Scheme I and Scheme II,

2The data distribution parameters b1, ..., bk−1 can be adjusted based on the straggler probabilities and the
available storage (or computing) capacity.
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(a) (b)

Figure 2: Illustrative example of the proposed schemes: (a) Scheme I and (b) Scheme II.

the values bi are chosen to satisfy
∑k
i=1 bi = n+ k− 1, which ensures that the k batches collectively

cover all n partitions, with each adjacent pair of worker nodes sharing exactly one partition. This
design reduces the overall computation load on individual worker nodes.

Scheme I A single, specific data partition (D1) is a common partition shared by all workers, while
the remaining partitions are assigned exclusively to individual workers. This scheme has a centralized
sharing structure. The data allocation is performed as:

• Worker node 1 is assigned the first b1 data partitions: B1 = {D1,D2, . . . ,Db1}.
• Worker node i ∈ [2 : k − 1] is assigned a batch that includes the shared data partition
D1, along with bi − 1 additional data partitions that are exclusive to worker node i and
not shared with any other worker node. Specifically, for 2 ≤ i ≤ k − 1, Bi = {D1} ∪
{Dl′i ,Dl′i+1, . . . ,Dl′i+bi−2}, where l′1 = 2, and for i ≥ 2, the starting index is recursively
defined as l′i = l′i−1 + bi−1 − 1, ensuring that each worker node receives the next bi − 1
unassigned, non-overlapping data partitions.

• Worker node k is assigned only the shared data partition: Bk = {D1}.

Given the data distribution in Scheme I, we set the elements of α to meet the optimal structure, which
can be divided into three cases:

• If a partition Dj is not distributed to worker node i (i.e., Dj /∈ Bi), we set αji = 0.
• If a partition Dj is distributed exclusively to worker node i (i.e., Dj ∈ Bi but Dj /∈ Bℓ for

any ℓ ̸= i), we set αji = 1, which satisfies the unbiasedness condition.

• If a partition Dj is distributed to all worker nodes, i.e., Dj = D1, αji is set to be Yi − bi + 1,
ensuring that Theorem 1 is satisfied.

Example (Figure 2(a)): Consider n = 4 data partitions and k = 3 worker nodes. One feasible
choice of {bi} is b1 = 3, b2 = 2, b3 = 1. The batches in Scheme I become B1 = {D1,D2,D3},
B2 = {D1,D4}, and B3 = {D1}. Here all worker nodes share D1, worker node 1 exclusively has
D2, D3, and worker node 2 exclusively has D4. The α assignments for this example are:α1

1 α2
1 α3

1 α4
1

α1
2 α2

2 α3
2 α4

2

α1
3 α2

3 α3
3 α4

3

 =

(
Y1 − 2 1 1 0
Y2 − 1 0 0 1
Y3 0 0 0

)
, (21)

where each column sum is 1 (for D1, α1
1 + α1

2 + α1
3 = Y1 + Y2 + Y3 − 3 = 1; for D2, D3, D4, the

sum is trivially 1 since each is only held by one worker node), and each row i sums to Yi.

Scheme II Each worker shares exactly one data partition with the worker of the adjacent index,
so every partition is held by at most two workers. This scheme has a sequential and decentralized
sharing structure. The data distribution is as follows:

• Worker node 1 is assigned the first b1 data partitions: B1 = {D1,D2, . . . ,Db1}.
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• Worker node i ∈ [2 : k − 1] is assigned bi consecutive data partitions, starting from the last
partition of the previous worker node’s batch to ensure exactly one sharing partition between
adjacent worker nodes. Specifically, we define Bi = {Dli ,Dli+1, . . . ,Dli+bi−1}, where
l1 = 1 and li = li−1+ bi−1−1 for i ≥ 2. By this construction, each batch Bi shares exactly
one partition with the preceding batch Bi−1 (specifically, partition Dli = Dli−1+bi−1−1).
Consequently, each data partition Dj resides on at most two worker nodes, being either
exclusive to one worker node or shared between two consecutive worker nodes.

• Worker node k is assigned the last bk = 1 data partition. i.e., Bk = {Dn}.

Given the data distribution in Scheme II, we determine the elements of α to satisfy the optimal
structure specified in Theorem 1, which can be categorized into the three cases:

• If a partition Dj is not distributed to worker node i (i.e., Dj /∈ Bi), we set αji = 0.

• If a partition Dj is distributed exclusively to worker node i (i.e., Dj ∈ Bi but Dj /∈ Bℓ for
any ℓ ̸= i), we set αji = 1, which maintains the unbiasedness condition.

• If a partitionDj is shared between worker node i and worker node i+1 (i.e.,Dj = Bi∩Bi+1),
αji and αji+1 are carefully assigned to ensure that αji + αji+1 = 1,

∑n
j=1 α

j
i = Yi, and∑n

j=1 α
j
i+1 = Yi+1 from the conditions in Theorem 1. To construct such a matrix α, we

can recursively determine the nonzero elements row by row. Starting from worker node 1,
we assign the first b1 − 1 elements in the row as 1 (corresponding to exclusive partitions),
and set the last element αb11 = Y1 −

∑b1−1
q=1 αq1 to satisfy the row-wise sum constraint,∑n

j=1 α
j
i = Yi. Then, since partition Db1 is shared with worker node 2, the corresponding

entry is set as αl22 = αb12 = 1− αb11 . The same procedure is repeated recursively: for each
worker node i, once αlii is determined by the previous row, the remaining values in the
row are set to satisfy the row-wise sum constraint

∑n
j=1 αi,j = Yi. This recursive process

ensures that all entries of α satisfy both the optimal row-sum and column-sum conditions.

Example (Figure 2(b)): Consider n = 4 and k = 3 with b1 = 3, b2 = 2, b3 = 1. This yields
the batches B1 = {D1,D2,D3}, B2 = {D3,D4}, and B3 = {D4}. Here, D3 is stored by both
worker node 1 and worker node 2, and D4 is stored by both worker node 2 and worker node 3. The
corresponding matrix α can be constructed as:α1

1 α2
1 α3

1 α4
1

α1
2 α2

2 α3
2 α4

2

α1
3 α2

3 α3
3 α4

3

 =

(
1 1 Y1 − 2 0
0 0 3− Y1 Y1 + Y2 − 3
0 0 0 4− Y1 − Y2

)
, (22)

where 4− Y1 − Y2 equals to Y3 (since
∑k
i=1 Yi =

∑k
i=1 δ

−1
i · n∑k

j=1 δ
−1
j

= n). It is evident that the

sum of each row i equals Yi and the sum of each column is 1, respectively, thus confirming that this
construction adheres to the optimal structure outlined in Theorem 1.

The closed-form expressions of both schemes are provided in Appendix A.

Code construction and computation load Based on the matrix α, we construct the encoding
and decoding coefficient by using (17). For both Schemes I and II, the computation load d remains
strictly less than 2, i.e., d < 2. This indicates that robust performance is achieved without placing
an excessive computational burden on the worker nodes. The efficiency of this code design is
underscored by the fact that the computation load is d = 1 + k−1

n . Since the number of computing
nodes is generally less than or equal to the size of the dataset (i.e., k ≤ n), the resulting computation
load d remains below 2. This low value reflects efficient resource utilization, minimizing redundant
computation while maintaining a balanced workload across the nodes.

Theoretical analysis of convergence behavior Due to the page limit, the theoretical convergence
analysis of our proposed method is provided in Appendix B.
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Figure 3: Convergence graph with respect to the training iteration T : (a) τth = 1.1 (k = 10) (b)
τth = 1.5 (k = 10) (c) τth = 1.1 (k = 100) (d) τth = 1.5 (k = 100).

4 Experiments

In this section, we demonstrate the effectiveness of the proposed optimally structured gradient coding
scheme for straggler mitigation in distributed learning. We numerically evaluate its performance on
the large-scale COCO dataset [21]. In our experiments, we employ the MobileNetV3 model, and
the learning rate is set to γt = 0.01. Suppose τth denote the response time limit for each training
iteration. A worker node i ∈ [1 : k] is classified as a straggler if its overall delay τi for local gradient
computation and communication exceeds this limit, i.e., τi > τth. Then, the straggler probability of
each worker node i ∈ [1 : k] can be modeled by

pi = e−ψi(τth−1), (23)

where ψi represents the straggling parameter of the worker node i and τth ≥ 1 [18, 19]. In
these experiments, the straggling parameter is sampled from the uniform distribution [19], i.e.,
ψi ∼ Uniform(ψmin, ψmax). We set k = 10, ψmin = 0.1, ψmax = 2, and τth = 1.1, unless stated
otherwise. The experimental results are obtained by averaging the outcomes of 10 simulation runs.

We compare our design with centralized learning-based GD, Ignore-Stragglers SGD (IS-SGD),
Bernoulli Gradient Coding (BGC) [8], ERASUREHEAD (EHD) [9], Optimal Decoding (OD) [11],
Stochastic Gradient Coding (SGC) [12]. The implementation details are in Appendix D.

Figure 3 shows the model convergence as a function of the training iteration T and the per-iteration re-
sponse time limit τth. Throughout the experiments, the loss represents the overall training objective of
the object-detection model—the sum of classification and bounding-box regression losses—computed
on the COCO validation set. The bounding-box term is computed as a Smooth-L1 regression on the
predicted center offsets and log-scale width/height adjustments with respect to each ground-truth
box. In Figure 3(a), we illustrate the convergence behavior for k = 10 and τth = 1.1. Except for
SGC—which guarantees unbiasedness of the gradient estimator—all benchmark methods suffer from
poor convergence due to the adverse impact of stragglers. In particular, for IS-SGD, when straggler
tendencies are high, the learning speed can be severely compromised, underscoring the necessity of
gradient coding techniques for straggler mitigation in distributed learning. Moreover, merely ensuring
unbiasedness is not sufficient for optimal performance; further reducing the estimator’s residual
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Figure 4: Convergence graph with respect to the computation load d: (a) τth = 1.1 (b) τth = 1.5.

error (and variance) leads to additional improvements. Both the proposed schemes, Scheme I and
Scheme II (referred to as Proposed-I and Proposed-II), detailed in Section 3.2, not only adhere to the
optimal structure but also demonstrate rapid convergence. They closely emulate the behavior of GD
in environments unaffected by straggler effects. In particular, Figure 3(b) presents the convergence
for k = 10 and τth = 1.5. As the per-iteration response time limit τth increases, the likelihood
of straggling decreases (due to the straggler model in (23)), thereby accelerating the convergence
of the benchmark methods. Nevertheless, our proposed schemes still achieve a faster convergence
rate, closely matching that of GD. Additionally, Figs. 3(c) and 3(d) show the convergence for a
larger distributed system with k = 100, for τth = 1.1 and τth = 1.5, respectively. These results
demonstrate that our proposed approach effectively mitigates the impact of stragglers regardless
of the number of distributed nodes, even with a lower computation load (i.e., d = 1 + k−1

n < 2)
compared to the benchmarks.

In Figure 4, we plot the model convergence with respect to the computation load d when τth = 1.1
and τth = 1.5. These results normalize convergence behavior by computation load, emphasizing
the computational requirements necessary for each gradient coding method to achieve convergence.
The simulation result consistently demonstrates that our proposed method surpasses benchmark
performances, achieving rapid convergence with reduced computational effort.

Although centralized learning-based GD can achieve rapid convergence with the same level of
computation load, largely because it is unaffected by stragglers, it necessitates processing the entire
dataset sequentially on a single device, which considerably extends the per-iteration runtime. In
contrast, its distributed version, IS-SGD, which partitions the dataset into disjoint batches and assigns
them to different worker nodes without redundancy, experiences substantial performance degradation
due to the adverse impact of stragglers in distributed learning environments. Consequently, our
proposed method not only reduces the time per iteration relative to centralized learning but also
effectively mitigates the detrimental effects of stragglers without incurring excessive computational
overhead in distributed settings, thereby delivering superior performance compared to traditional
benchmarks.

5 Conclusions

We proposed an optimally structured gradient coding scheme for mitigating stragglers in heteroge-
neous distributed learning systems. By deriving optimal encoding and decoding coefficients, our
method minimizes residual error while maintaining an unbiased gradient estimator. Theoretical
analysis and simulations showed that it consistently outperforms benchmarks, achieving high effi-
ciency with low computation load, even in computation-limited scenarios. These results highlight its
practicality for real-world distributed learning with rapid, redundancy-efficient updates.
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A Closed-form Expressions of the Proposed Schemes

A.1 Scheme I

We obtain the following closed-form expression for the elements of α that meet the conditions
specified in Theorem 1: For all i ∈ [1 : k],

αji =

{
Yi − bi + 1, j = 1,

1, j ∈ [l′i : l
′
i + bi − 2],

(24)

Otherwise, for all i ∈ [1 : k] and ∀Dj /∈ Bi, αji = 0.

A.2 Scheme II

We derive the closed-form expression for the elements of α that satisfy Theorem 1: For i = 1,

αj1 =

{
1, j ∈ [1 : b1 − 1],

Y1 − b1 + 1, j = b1.
(25)

For i ∈ [2 : k − 1],

αji =


1− αji−1, j = li,

1, j ∈ [li + 1 : li + bi − 2],

Yi + αji−1 − bi + 1, j = li + bi − 1.

(26)

For i = k,
αnk = Yk. (27)

Otherwise, for all i ∈ [1 : k] and ∀Dj /∈ Bi, αji = 0.
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B Theoretical Analysis

In this section, we conduct a convergence analysis of our optimally structured gradient coding scheme
across a variety of loss functions. To facilitate the derivation, we impose certain assumptions on the
loss function as:
Assumption 2. (λ-strongly convexity) The loss function L is λ-strongly convex if for all β,β′ ∈ Rl,

L(β) ≥ L(β′) + ⟨∇L(β′),β − β′⟩ +
λ

2

∥∥β − β′∥∥2
2
. (28)

Assumption 3. (µ-smoothness) The loss function L is µ-smooth if for all β,β′ ∈ Rl, µ ≥ 0,

L(β) ≤ L(β′) + ⟨∇L(β′),β − β′⟩ +
µ

2

∥∥β − β′∥∥2
2
. (29)

Here, ⟨·, ·⟩ denotes the inner product operation. Note that Assumptions 2 and 3 regarding the
loss function are commonly satisfied by a wide range of standard learning models, such as logistic
regression and softmax classifiers.

We first derive the convergence proof for a λ-strongly convex loss function, as presented in the
following theorem.
Theorem 2. Suppose the loss function L satisfies Assumptions 1 and 2. Then, by setting γt = 1/(λt),
it holds for any optimally structured gradient codes that

E[∥βT − β∗∥22] ≤
4n2C

λ2T

(
1 +

1∑k
i=1 δ

−1
i

)
, (30)

where δ−1
i = 1−pi

pi
.

The proof is provided in Appendix F.4. Theorem 2 shows that with a strongly convex loss and
a decaying learning rate γt = 1

λt , the proposed method achieves a convergence rate of O(1/T ),
comparable to classical SGD. Notably, the error bound reflects straggler heterogeneity through
the scaling term

(
1 + 1∑k

i=1 δ
−1
i

)
, ensuring robust convergence even with non-uniform straggling.

Importantly, convergence depends only on straggler probabilities, not on computation load, meaning
even minimal data replication suffices. This contrasts with SGC [12], where convergence relies on
the minimum computation load mini∈[1:k] di, highlighting the stronger robustness of our approach.

Next, we extend our convergence analysis to µ-smooth loss functions to address non-convex settings.
Based on the Assumption 3, we establish the following theorem.
Theorem 3. Suppose the loss function L satisfies Assumptions 1 and 3. Then, it holds for any
optimally structured gradient codes:

By setting γt = γ = 1/(T + 1)1/2,

1

T + 1

T∑
t=0

E[∥g(t)∥22] ≤
L(β0)− L(β∗)

(T + 1)1/2
+

1

(T + 1)1/2
µn2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

)
, (31)

where the following limit holds:

lim
T→∞

L(β0)− L(β∗) + µn2C
2 ·

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

= 0. (32)

By setting γt = 1/(t+ 1)1/2,

1

T + 1

T∑
t=0

E[∥g(t)∥22] ≤
L(β0)− L(β∗)

(T + 1)1/2
+

µn2C(1 + log(T + 1)1/2)

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

, (33)

where the following limits hold:

lim
T→∞

L(β0)− L(β∗)

(T + 1)1/2
+

µn2C(1 + log(T + 1)1/2)

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

= 0. (34)
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The proof is provided in Appendix F.5. Theorem 3 shows that for µ-smooth loss functions, the
proposed gradient coding scheme guarantees convergence to a stationary point. Specifically, whether
a constant learning rate γt = 1

(T+1)1/2
or a decaying learning rate γt = 1

(t+1)1/2
is employed, the

average squared gradient norm approaches zero as the number of iterations increases. This result
confirms that the algorithm remains effective even in non-convex settings.

Lastly, we conduct an extended analysis for loss functions that satisfy both λ-strong convexity and
µ-smoothness, as detailed below.
Theorem 4. Suppose the loss function L satisfies Assumptions 1, 2 and 3. Then, it holds for any
optimally structured gradient codes that

E[∥βt+1−β∗∥22] ≤ ∥β0−β∗∥22·
t∏

p=0

(1−γpλ)+n2C·
(
1+

1∑k
i=1 δ

−1
i

)
·
t∑

p=0

γ2p

t∏
q=p+1

(1−γqλ). (35)

By setting γt = γ < 1/λ,

lim
t→∞

E[∥βt+1 − β∗∥22] <
n2C

λ2
·
(
1 +

1∑k
i=1 δ

−1
i

)
. (36)

By setting γt = 1/(λt),
lim
t→∞

E[∥βt+1 − β∗∥22] ≤ 0. (37)

The proof is provided in Appendix F.6. Theorem 4 shows that under optimally structured gradient
coding in a heterogeneous straggler setting, the model error comprises two parts: one diminishing with
the learning rate and strong convexity, and another reflecting accumulated variance from stragglers.
With a constant learning rate (γt = γ < 1/λ), the algorithm quickly converges to a bounded
neighborhood of the optimum, where the neighborhood size depends on straggler variability. In
contrast, a decaying rate (γt = 1/(λt)) ensures convergence to the true optimum over time. This
highlights a key trade-off: constant rates yield faster initial progress, while decaying rates achieve
asymptotic optimality.
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C Discussions

C.1 Practical Example of Probabilistic Straggler Modeling

Suppose τth denote the response time limit for each training iteration. A worker node i ∈ [1 : k]
is classified as a straggler if its overall delay τi for local gradient computation and communication
exceeds this limit, i.e., τi > τth, and the straggler probability of worker node i can be obtained by

pi = Pr(τi > τth). (38)

The modeling of stragglers depends on the system’s primary bottleneck—whether it lies in computa-
tion or communication. For instance, in communication-limited environments, straggler behavior in
wireless networks is often modeled by an exponential distribution [17]. In contrast, for computation-
limited settings, computing latency is typically characterized by a shifted-exponential distribution
[18, 19].

Intuitively, a worker node’s likelihood of becoming a straggler is influenced not only by its inherent
stochastic latency—driven by factors such as computation and communication capacity—but also
by the response time threshold, τth. A tighter threshold increases the probability of stragglers but
accelerates each training iteration. This reveals a fundamental trade-off between mitigating straggler
effects and achieving faster model updates. Our experiments empirically demonstrate this trade-off
and show that the proposed scheme achieves an effective balance between the two.

C.2 Worst-Case Computation Load

The maximum computation load on a single worker is a critical metric for practical deployment, and
our framework is explicitly designed to address this. In our schemes, each worker i’s computation load
is bi, the number of assigned data partitions. Thus, the worst-case computation load is maxi∈[1:k] bi.

Our method allows for flexible—though not entirely arbitrary—adjustment of the parameters
b1, . . . , bk based on straggler probabilities and the computational capacity of each worker. The
proposed Schemes I and II leverage the constraint

∑
i∈[1:k] bi = n + k − 1 to reduce the compu-

tation load, which inherently imposes a mathematical upper bound on the worst-case computation
load, given by maxi∈[1:k] bi ≤ n − k + 2. For instance, this bound can be achieved by assigning
b1 = n − k + 2, b2 = 2, . . . , bk−1 = 2, and bk = 1. Moreover, assuming the total dataset can be
partitioned into subsets of approximately equal size, the number of data partitions n can also be
selected accordingly. Under this scenario, choosing n = k ensures that the worst-case computation
load is at most 2.

Thus, system designers can flexibly constrain maxi∈[1:k] bi based on specific hardware limitations,
effectively preventing any single worker from becoming overloaded while still optimizing overall
system performance. For example, the example (Figure 2) in Section 3.2 presents a scenario with
n = 4 data partitions and k = 3 worker nodes, where the allocation parameters are set as b1 = 3,
b2 = 2, and b3 = 1. In this case, the worst-case computation load is maxi∈[1:k] bi = 3. To reduce
this worst-case load, the parameters can be rebalanced to b1 = 2, b2 = 2, and b3 = 2, resulting in a
lower worst-case computation load of maxi∈[1:k] bi = 2.

Importantly, the average computation load d = (n+ k− 1)/n remains strictly below 2 (since k ≤ n),
ensuring overall efficiency. In summary, our framework offers both per-worker load control and high
average efficiency, making it well-suited to heterogeneous real-world systems.

C.3 Sparsity of Optimally Structured Gradient Coding

The number of non-zero entries in the matrix α corresponds to those in the encoding matrix A, which
directly determines the computation load on each distributed node. Therefore, constructing a sparse
α matrix is equivalent to reducing the computation load.

In this context, we focus on constructing a sparse matrix. The matrix α can be represented as a
bipartite graph G = (R,C,E), where the row and column indices of α form two disjoint vertex sets,
R and C, respectively. An edge (i, j) exists between i ∈ R and j ∈ C if and only if αji ̸= 0, with
the corresponding edge weight given by αji . To preserve the optimal structure of the gradient coding
scheme, the graph must satisfy two constraints: for each vertex i ∈ R, the sum of the weights of
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edges incident to i must equal Yi; and for each vertex j ∈ C, the sum of the weights of edges incident
to j must equal 1.

Assume that G contains o disjoint and connected subgraphs, denoted as S1, S2, . . . , So ⊆ G. Each
subgraph Sl consists of a row vertex set Rl ⊆ R and a column vertex set Cl ⊆ C, respectively.
According to the optimal structure, for each subgraph Sl, ∀l ∈ [1 : o], the sum of edge weights
incident to each vertex i ∈ Rl must equal Yi, and the sum of edge weights incident to each vertex
j ∈ Cl must equal 1. Therefore, the total edge weight in any connected subgraph is

∑
i∈Rl

Yi, which
is equal to

∑
j∈Cl

1. Thus, we have∑
i∈Rl

Yi =
∑
i∈Cl

1 = |Cl|,∀l ∈ [1 : o], (39)

where this structural dependency arises because the row-wise sum and column-wise sum are combi-
natorially coupled. Note that the graph G always satisfies the connectivity rule, i.e.,

∑
i∈R Yi = |C|,

since
∑
i∈R Yi =

∑k
i=1 Yi =

∑k
i=1 δ

−1
i · n∑k

j=1 δ
−1
j

= n and |C| = n. It is well known that any

connected graph Sl, for l ∈ [1 : o], must contain at least |Rl|+ |Cl| − 1 edges. In Section 3.2, we
introduced a gradient code construction method for the case in which the overall graph is connected
and contains exactly n+ k − 1 edges—the minimum required for connectivity. This approach can
naturally be extended to connected subgraphs. Specifically, for each connected subgraph, a submatrix
is constructed using only the row indices in Rl and column indices in Cl, following the same con-
struction strategy. Therefore, to maximize the sparsity of the optimally structured gradient code, the
overall graph G should be partitioned into the largest possible number of connected subgraphs, each
containing the minimum number of edges required for connectivity.

Based on these observations, we introduce a sparse code construction algorithm. Inspired by the
binary tree structure, the algorithm recursively partitions the graph into two disjoint subgraphs,
ensuring that the sum of edge weights in each subgraph remains an integer to satisfy the connectivity
constraints. Equivalently, this can be viewed as dividing the values Y1, . . . , Yk into two groups such
that the sum within each group is a positive integer.

Initially, we define a working set of subgroups, denoted Y , and initialize it as Y ← {Y1, . . . , Yk}. At
each iteration, every subgroup Yl ∈ Y is split into two disjoint subgroups, Y(1)

l and Y(2)
l , such that∑

Yi∈Y(j)
l

Yi ∈ Z+ for all j ∈ 1, 2. These two subgroups then replace Yl in the set Y .

This recursive partitioning process continues until no further valid subdivisions are possible. At
this point, for each remaining subgroup Yl ∈ Y , we define the corresponding row vertex set as
Rl = {i|Yi ∈ Yl}. Starting with l = 1, we construct the corresponding column vertex set Cl by
sequentially selecting

∑
i∈Rl

Yi elements from the global column vertex set C. Finally, the submatrix
of α corresponding to each subgraph Sl is constructed using the method described in Section 3.2.
Further details can be found in Algorithm 1.

If the maximum number of subgraphs is omax, the computation load is computed as

d =

∑
l∈[1:omax]

(|Rl|+ |Cl| − 1)

n
. (40)

C.4 Extensions

C.4.1 Extension to Mini-Batch SGD

Our method fundamentally builds upon and analyzes GD-like algorithms, but it can readily be
extended to mini-batch SGD algorithms. In distributed learning, each distributed node i can apply
our proposed method by computing gradients using mini-batch sampling on their local data partitions
(Dj ,∀j ∈ Bi). This approach can effectively reduce the update time per training iteration.

However, batch sampling introduces randomness at each iteration. Hence, the expectation must now
represent expectations over both the randomness from stragglers and mini-batch sampling at the
t-th iteration, conditioned on the model parameter. Since the behaviors of stragglers and mini-batch
sampling are independent, the expectation Et[·] now represents the expectation over both. The
objective from problem (P1) is to minimize the residual error of the aggregated stochastic gradient
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Algorithm 1 The Sparse Code Construction Algorithm

Calculate Y1, Y2, ..., Yk.
Y ← {Y1, Y2, ..., Yk} and Y ′ = ∅.
while |Y ′| ≠ |Y| do
Y ′ ← Y and Y = ∅.
for Yl ∈ Y ′ do

Search the two disjoint groups Y(1)
l ,Y(2)

l from Yl, satisfying
∑
Yi∈Y(j)

l

Yi ∈ Z+,∀j ∈ {1, 2}.

Y ← Y(1)
l ,Y(2)

l .
end for

end while
for Yl ∈ Y do

Construct the subgraph Sl with Rl = {i | Yi ∈ Yl} and Cl = {j | j ∈ [1 +
∑l−1
q=1

∑
i∈Rq

Yi :∑l
q=1

∑
i∈Rq

Yi}
Construct the submatrix of α corresponding to the subgraph Sl as in Section 3.2.

end for

estimator, ḡ(t) =
∑
i,j Iiwiai,j g̃

(t)
j , where g̃(t)j is the stochastic gradient computed from a mini-batch

within data partitionDj . The objective function is thus to minimize Et
[∥∥g(t) − ḡ(t)∥∥2

2

]
. The residual

error can be decomposed as:

Et
[∥∥∥g(t) − ḡ(t)∥∥∥2

2

]
= Et

[∥∥∥(g(t) − ĝ(t)) + (ĝ(t) − ḡ(t))
∥∥∥2
2

]
= Et

[∥∥∥g(t) − ĝ(t)∥∥∥2
2

]
︸ ︷︷ ︸

(I) Straggler Variance

+Et
[∥∥∥ĝ(t) − ḡ(t)∥∥∥2

2

]
︸ ︷︷ ︸

(II) Sampling Variance

This separation is valid because the cross-term is zero, as Esample[ĝ
(t) − ḡ(t)] = 0 (due to the

unbiasedness).

First, Term (I) is the original error from the paper, which is bounded as:

Et
[∥∥∥g(t) − ĝ(t)∥∥∥2

2

]
≤ C

k∑
i=1

δi

 n∑
j=1

αji

2

Second, for Term (II), we first take the expectation over the independent mini-batch samples:

Et
[∥∥∥ĝ(t) − ḡ(t)∥∥∥2

2

]
= Et


∥∥∥∥∥∥
∑
i,j

Iiwiai,j(g(t)j − g̃
(t)
j )

∥∥∥∥∥∥
2

2


= Estraggler

 n∑
j=1

Esample

[∥∥∥g(t)j − g̃(t)j ∥∥∥2
2

]( k∑
i=1

Iiwiai,j

)2


≤ σ2
n∑
j=1

Estraggler

( k∑
i=1

Iiwiai,j

)2
 ,

where σ2 denotes an upper bound on the variance of the mini-batch gradients, that is, Esample[∥g(t)j −
g̃
(t)
j ∥22] ≤ σ2. Using E[X2] = Var(X)+(E[X])2 and the unbiasedness condition

∑
i(1−pi)wiai,j =

21



∑
i α

j
i = 1, the inner expectation becomes:

Estraggler

( k∑
i=1

Iiwiai,j

)2
 = Var

(∑
i

Iiwiai,j

)
+

(
E

[∑
i

Iiwiai,j

])2

=

k∑
i=1

(αji )
2 pi
1− pi

+ 12 = 1 +

k∑
i=1

δi(α
j
i )

2

Thus, Term (II) is bounded by σ2
∑n
j=1

(
1 +

∑k
i=1 δi(α

j
i )

2
)
= σ2n+ σ2

∑k
i=1 δi

∑n
j=1(α

j
i )

2.

Combining the bounds for both terms, the total objective is to minimize the upper bound. After
dropping the constant term σ2n, which does not affect the solution, the objective becomes min-
imizing

∑
i∈[1:k] δi(σ

2
∑
j∈[1:n](α

j
i )

2 + C(
∑
j∈[1:n] α

j
i )

2) subject to the unbiasedness constraint∑
i∈[1:k] α

j
i = 1.

This reformulated optimization problem, adapted to the mini-batch SGD setting, can be explicitly
solved using the KKT conditions. This yields a dense, closed-form solution:

(αji )
∗ =

δ−1
i∑

l∈[1:k] δ
−1
l

,∀i ∈ [1 : k], j ∈ [1 : n]. (41)

While this solution is theoretically optimal, it requires full data replication across all worker nodes
(d = k), meaning that each node must store the entire dataset. This assumption is often impractical in
distributed systems due to excessive storage and computation costs.

On the other hand, our proposed schemes (Schemes I and II), which are formulated and constructed
based on the GD algorithm, are specifically designed to maintain a low data replication factor,
ensuring d < 2 in both schemes. When our proposed schemes, which are optimized for the full-batch
GD setting, are directly applied to mini-batch SGD, the resulting gradient estimator does not achieve
the theoretical minimum residual error with respect to the true gradient. Nonetheless, our approach
maintains the important advantage of significantly reduced data replication under the mini-batch
SGD setting.

This observation highlights a trade-off when applying mini-batch SGD in distributed learning. Achiev-
ing the theoretically minimum residual error requires each worker node to handle a substantially
increased computation load, which can accelerate convergence. In contrast, by utilizing our optimally
constructed GD-based gradient codes and applying mini-batch sampling over the data partitions
assigned to each worker, one may not reach the theoretical minimum of the residual error, but can
substantially reduce the computation load per worker node. Note that since the mini-batch SGD pro-
cess introduces an inherent variance from sampling, our gradient coding scheme, which is optimized
for the GD algorithm, does not perfectly mitigate this particular sampling variance.

In particular, implementing mini-batch SGD using our proposed schemes results in a residual

error bounded by n2C · 1∑k
i=1 δ

−1
i

+ nσ2

(
1 + n∑k

i=1 δ
−1
i

)
. This introduces an additional term,

nσ2(1+ n∑k
i=1 δ

−1
i

), due to batch sampling, compared to the result in Lemma 2 of the paper; however,

within our convergence analysis (Theorems 3, 2, and 4), the scaling term n2C · (1 + 1∑k
i=1 δ

−1
i

) is

only slightly modified to n2C · (1 + 1∑k
i=1 δ

−1
i

) + nσ2(1 + n∑k
i=1 δ

−1
i

) and thus the convergence rate
remains essentially unchanged.

C.4.2 Extension to Adaptive Gradient Method

Our proposed method improves convergence speed by ensuring unbiasedness in the gradient estimator
while reducing variance. This has been effective for gradient-descent-like optimizers, which use
only the first moment estimator for updates. However, in adaptive gradient methods, which also
utilize the squared gradients for second-moment estimation, maintaining unbiasedness while reducing
variance faces inherent limitations in decreasing the variance term of the second moment. The
reason is that preserving unbiasedness inevitably causes E[∥g − ĝ∥22] to accumulate as variance.
This, in turn, systematically inflates the denominator in Adam’s update rule, leading to excessive
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step-size shrinkage and possible performance degradation. In summary, this is a manifestation of the
bias–variance tradeoff: forcing bias to zero can hinder squared gradient estimation, which inherently
contains both bias and variance components.

To address this, we additionally propose a two-track decoding approach. This scheme preserves the
first-moment estimation of the original method while, for the second moment, allowing a slight bias
to reduced the variance, thereby leading to a more accurate second-moment estimate overall. The
implementation introduces negligible overhead, as the encoding remains unchanged and the master
node simply uses two decoding vectors during decoding.

Since the encoder is fixed, we focus on designing the decoder. Designing a decoder that reduces both
bias and variance leads to solving the following problem, where v is used instead of w for notational
clarity:

min
v

Λ[
∑
j

(1−
∑
i

(1− pi)viai,j)]2 + [
∑
i

pi(1− pi)v2i (
∑
j

ai,j)
2]. (42)

The first term corresponds to bias reduction, the second to variance reduction, and Λ determines the
relative emphasis on reducing bias. The solution can be derived by:

v∗i =
nΛ

pi(
∑n
j=1 ai,j)(1 + Λ

∑k
m=1 δ

−1
m )

. (43)

Using the proposed Schemes I or II to generate the encoding matrix A, the master node applies
the original w for the first-moment estimation and the above v for the second-moment estimation,
decoding each separately to obtain the gradient estimators. These are then used to update the model
following the update rule of optimizers such as Adam. In Appendix E, Figure 7 demonstrates that
because conventional gradient coding techniques are designed for gradient-descent-like methods,
which primarily rely on the first moment, they face inherent challenges in adaptive gradient methods
that also require a stable second moment. The results also highlight the effectiveness of the two-track
decoding technique for these adaptive methods, indicating a need for further research and analysis
into gradient coding schemes that are compatible with various optimizers.

C.4.3 Extension to Non-Smooth Loss Function

For the non-smooth case, while not explicitly detailed in the paper, our method’s convergence
is guaranteed under the well-established analysis in [22]. Specifically, the convergence analysis
presented in [22] holds as long as two key assumptions are satisfied—both of which are met by our
method:

• Unbiased estimator: Our method is designed to provide an unbiased estimator of the
gradient (g(t)), as enforced by the condition in Equation (12).

• Bounded variance: Our optimally structured coding scheme ensures a formal upper bound
on the estimator’s variance, as proven in Lemma 2.

Since our algorithm meets these conditions, the convergence guarantees established by [22] for
non-smooth settings can directly apply to our method. This confirms the theoretical robustness of our
proposed method for a broad range of practical applications.

C.5 Limitations

One important limitation of our approach is the substantial communication overhead incurred during
the initial distribution of large datasets: because each data partition Di must be replicated to di
worker nodes before training begins, network load grows with both dataset size and replication factor.
Additionally, our design relies on knowing each worker node’s straggler probability pi a priori, yet
obtaining reliable estimates is challenging because existing straggler models cannot fully capture the
diverse, interacting factors—such as network congestion, CPU/GPU heterogeneity, energy throttling,
or transient OS interrupts—that actually cause worker nodes to slow down or drop out. Exploring
and validating more practical, multifactor straggler models therefore remains an important avenue for
future work.

Nonetheless, to overcome this limitation, a practical estimation approach can be applied in a real-
world distributed learning environment:

23



• The most practical approach is for the master node to estimate each worker’s straggler
probability by simply counting how often a worker exceeds the deadline, based on historical
logs, and updating this estimate periodically. For example, the master can track how many
times each worker was late out of the most recent tasks, and use this frequency as the
current estimate of the straggler probability. This method is commonly known as empirical
maximum likelihood estimation (MLE).

• Another practical approach is to estimate each worker node’s straggling probability pi using
a well-modeled estimator, as proposed in [18, 19]. Specifically, task completion times
can be modeled using parametric probability distributions, such as the shifted-exponential
distribution employed in [18]. By fitting this distribution to observed runtime data, we
obtain reliable estimates of pi,∀i, representing the probability that worker i fails to meet the
deadline. These estimated values can then be directly integrated into our coding scheme as
fixed parameters. Experimental results in [18], conducted on a real EC2 cluster, demonstrate
the effectiveness of this method in enhancing the speed and robustness of distributed learning
systems. In our own experiments, we adopted this same estimation approach for pi and
based our evaluations on the resulting values.
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D Implementation Details

The experiments are conducted on one NVIDIA GeForce RTX 3060 GPU (12 GB), six NVIDIA
GeForce GTX 1080 GPUs (8 GB each), and twelve NVIDIA Tesla P100 GPUs (16 GB each) (pro-
vided through Kaggle Cloud). Due to the memory limit, we use the gradient accumulation technique,
which divides each training batch into smaller sub-batches processed sequentially; gradients are
accumulated over these steps before performing a single parameter update, effectively simulating a
larger batch size without exceeding GPU memory constraints.

We compare our design with benchmarks as follows:

• GD: GD updates parameters using the true gradient g(t), which makes it immune to straggler
effects and represents an ideal centralized learning scenario.

• IS-SGD (Ignore-Stragglers SGD): IS-SGD assigns disjoint data partitions to each node (i.e.,
d = 1) to avoid redundancy, yet it remains subject to straggler effects, which it does not
mitigate but essentially ignores.

• BGC [8] (Bernoulli Gradient Coding): In BGC, each encoding coefficient is generated
according to a Bernoulli distribution, i.e., ai,j ∼ Bernoulli(d/k) for all i, j, while all
decoding coefficients are fixed to wi = 1.

• EHD [9] (ERASUREHEAD): EHD constructs encoding coefficients using the FR code [5],
and sets the decoding coefficients uniformly to wi = 1 for all nodes.

• OD [11] (Optimal Decoding): OD determines the encoding coefficients ai,j ∈ {0, 1} using a
random graph, and dynamically computes optimal decoding coefficients wi for the straggler
effect reduction in each iteration.

• SGC [12] (Stochastic Gradient Coding): SGC employs the pair-wise data distribution
strategy to build an unbiased gradient estimator, with redundancy determined as in [12].
To accommodate heterogeneous straggler scenarios, we modify the approach by setting
ai,j =

1
dj(1−pi) for all i, j, while keeping wi = 1 for all nodes.

The methods BGC, EHD, OD, and SGC incorporate the data redundancy of approximately d ≈ 2.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5: Detected objects of sampled image: (a) GD (b) Proposed (c) SGC (d) EHD (e) BGC (f) OD
(g) IS-SGD.
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Figure 6: Convergence graph with respect to the computation load d with RetinaNet: (a) τth = 1.1
(b) τth = 1.5.

E Additional Experiment Results

Figure 5 displays the detection results on a representative image from the COCO validation set.
The straggler-free GD identifies three objects—two parking meters and one car—and the proposed
design detects exactly the same three objects, with no extras. In contrast, SGC erroneously splits one
parking meter into two overlapping detections and therefore returns only one car and one (duplicated)
parking meter. EHD, BGC, and OD each find just a single parking meter, missing the car and another
parking meter, while IS-SGD mistakes one parking meter for two separate instances. These results
demonstrate that our method delivers GD-level detection quality while simultaneously neutralising
straggler effects.

Since the achieved performance depends on the specific model or dataset employed, we have
additionally conducted supplementary experiments using the state-of-the-art RetinaNet model to
benchmark performance. RetinaNet, with approximately 34 million parameters, is roughly 6.3 times
larger than the model (5.4 million parameters) employed in our experiments (Section 4). Figures
6(a) and 6(b) illustrates the convergence behavior with respect to the computation load d for k = 10
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Figure 7: Convergence graph with respect to the training iteration T with Adam optimizer (τth = 1.1
and γt = 0.001).

and τth = 1.1 and 1.5, respectively. Based on these results, it can be seen that the proposed method
consistently maintains the performance trends identified in Section 4, regardless of the model size.

Moreover, in Figure 7, we evaluate the convergence behavior with respect to the training iteration T to
assess the performance of the two-track decoder with Λ = 1 detailed in Appendix C.4.2. We observe
that gradient coding schemes for the first moment exhibit a slower convergence speed compared
to centralized Adam. However, the performance gap between the baselines is notably smaller with
the Adam optimizer than with GD. This reduced difference is primarily due to Adam’s intrinsic
noise suppression effect. In contrast, the proposed two-track decoding mitigates the second-moment
estimation error inherent in conventional gradient coding. While this approach yields significant
performance improvements and shows extendability, a more comprehensive analysis of these results
is required in future research.
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F Proofs

F.1 Proof of Lemma 1

From the equations (11)-(12), we have

Et[∥g(t) − ĝ(t)∥22] = Et
[∥∥∥∥ n∑

j=1

g
(t)
j

(
1−

k∑
i=1

Ii · wiai,j
)∥∥∥∥2

2

]
(44)

=

n∑
j1=1

n∑
j2=1

⟨g(t)j1 , g
(t)
j2
⟩ · Et

[(
1−

k∑
i=1

Ii · wiai,j1
)(

1−
k∑
i=1

Ii · wiai,j2
)]

(45)

(a)
≤ C

n∑
j1=1

n∑
j2=1

Et
[
1−

k∑
i=1

Ii · wiai,j1 −
k∑
i=1

Ii · wiai,j2 +
( k∑
i=1

Ii · wiai,j1
)( k∑

i=1

Ii · wiai,j2
)]
(46)

(b)
= C

n∑
j1=1

n∑
j2=1

Et
[( k∑

i=1

Ii · wiai,j1
)( k∑

i=1

Ii · wiai,j2
)
− 1

]
, (47)

where (a) and (b) come from the boundedness assumption of the gradient and the unbiasedness of the
gradient estimator, respectively. Furthermore,

C

n∑
j1=1

n∑
j2=1

Et
[
− 1 +

( k∑
i=1

Ii · wiai,j1
)( k∑

i=1

Ii · wiai,j2
)]

(48)

(c)
= C

n∑
j1=1

n∑
j2=1

[
− 1 + Et

[ k∑
i1=1

k∑
i2=1,i1 ̸=i2

Ii1Ii2wi1wi2ai1,j1ai2,j2 +
k∑
i=1

Ii · w2
i ai,j1ai,j2

]]
(49)

(d)
= C

n∑
j1=1

n∑
j2=1

[
−

k∑
i=1

(1− pi)2 · w2
i ai,j1ai,j2 +

k∑
i=1

(1− pi) · w2
i ai,j1ai,j2

]
, (50)

where (c) is because Et[Ii · Ii] = Et[Ii], and (d) is due to

Et
[ k∑
i1=1

k∑
i2=1,i1 ̸=i2

Ii1Ii2 · wi1wi2ai1,j1ai2,j2
]
=

k∑
i1=1

k∑
i2=1,i1 ̸=i2

(1− pi1)(1− pi2)wi1wi2ai1,j1ai2,j2

(51)

=

( k∑
i1=1

(1− pi1) · wi1ai1,j1
)( k∑

i2=1

(1− pi2) · wi2ai2,j2
)
−

k∑
i=1

(1− pi)2 · w2
i ai,j1ai,j2 (52)

= 1−
k∑
i=1

(1− pi)2 · w2
i ai,j1ai,j2 . (53)

Putting together, we have

Et[∥g(t) − ĝ(t)∥22] ≤ C
[ k∑
i=1

pi(1− pi) · w2
i

( n∑
j=1

ai,j

)2]
. (54)

F.2 Proof of theorem 1

The Lagrangian function of (P3) is

L(α) =

k∑
i=1

δi

( n∑
j=1

αji

)2

+

n∑
j=1

ζj

( k∑
i=1

αji − 1

)
, (55)

where ζj is a Lagrangian multiplier.
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By Karush-Kuhn-Tucker (KKT) conditions, we have ∂L
∂αj

i

= 2δi

(∑n
j=1 α

j
i

)
+ ζj = 0,∀i, j,∑k

i=1 α
j
i = 1,∀j.

(56)

From the KKT condition on stationarity, we have

δ1

( n∑
j=1

αj1

)
= δ2

( n∑
j=1

αj2

)
= · · · = δn

( n∑
j=1

αjn

)
. (57)

Then, let X = δi
∑n
j=1 α

j
i ,∀i and using the primal feasibility, i.e.,

∑k
i=1 α

j
i = 1,∀j, we have

k∑
i=1

(
X · δ−1

i

)
=

k∑
i=1

( n∑
j=1

αji

)
= n, (58)

and thus,
X =

n∑k
i=1 δ

−1
i

. (59)

Accordingly, the optimal gradient codes, which minimize the gradient estimation error under the
unbiasedness constraint, can be obtained when matrix α satisfies the following conditions:

n∑
j=1

(αji )
∗ = Yi,∀i, and

k∑
i=1

(αji )
∗ = 1,∀j, (60)

where (αji )
∗ is the optimal αji , and Yi = δ−1

i · n∑k
j=1 δ

−1
j

.

F.3 Proof of lemma 2

From Lemma 1 and Theorem 1, we can easily derive the bounded residual error of gradient estimator
for any optimally structured gradient codes in the following:

Et[∥g(t) − ĝ(t)∥22] ≤ C
[ k∑
i=1

δi ·
( n∑
j=1

(αji )
∗
)2]

(61)

≤ n2C · 1∑k
i=1 δ

−1
i

, (62)

where αji = w̃iai,j , (α
j
i )

∗ represents the optimal αji , and δ−1
i = 1−pi

pi
. Furthermore, the squared

norm of the gradient estimator for any optimally structured gradient codes is bounded by

Et[∥ĝ(t)∥22] = Et[∥g(t) − ĝ(t)∥22] + ∥g(t)∥22 (63)

≤ C
[
n2 +

k∑
i=1

δi ·
( n∑
j=1

(αji )
∗
)2]

(64)

= n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
. (65)

F.4 Proof of theorem 2

Our proof builds upon the result from [20], which demonstrates that any algorithm utilizing an
unbiased estimator of the true gradient achieves a convergence rate of O(1/T ):
Lemma 3. (Lemma 1 in [20]) Suppose the loss function is λ-strongly convex and the gradient
estimator is unbiased. Furthermore, assume Et[∥ĝ(t)∥22] ≤ G. Then, by setting γt = 1/(λt), the
following holds for any T that

E[∥βT − β∗∥22] ≤
4G

λT
. (66)
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Building on the result from Lemma 2, we can conclude that

Et[∥ĝ(t)∥22] ≤ n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
. (67)

Thus, by replacing G with the right-hand side of the above inequality, Lemma 3 yields

E[∥βT − β∗∥22] ≤
4n2C

λ2T

(
1 +

1∑k
i=1 δ

−1
i

)
, (68)

where δ−1
i = 1−pi

pi
.

F.5 Proof of theorem 3

From the property of µ-smoothness,

L(βt+1) = L(βt − γt · ĝ(t)) (69)

≤ L(βt)− ⟨g(t), γt · ĝ(t)⟩+
µγ2t
2
∥ĝ(t)∥22. (70)

By taking the expectation Et[·] conditioned on the previous iteration on both hand sides, we have

Et[L(βt+1)] ≤ L(βt)− ⟨g(t), γt · Et[ĝ(t)]⟩+
µγ2t
2

Et[∥ĝ(t)∥22] (71)

(a)
≤ L(βt)− γt · ∥g(t)∥22 +

µγ2t n
2C

2

(
1 +

1∑k
i=1 δ

−1
i

)
, (72)

where (a) comes from the unbiasedness of gradient estimator and Lemma 2. Taking full expectation
E[Et[·]] on both sides and rearranging, we obtain

γt · E[∥g(t)∥22] ≤ E[L(βt)]− E[L(βt+1)] +
µγ2t n

2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

)
. (73)

Based on this inequality, we have

T∑
t=0

γt · E[∥g(t)∥22] ≤ L(β0)− E[L(βT+1)] +
µn2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

) T∑
t=0

γ2t (74)

(b)
≤ L(β0)− L(β∗) +

µn2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

) T∑
t=0

γ2t , (75)

where (b) is due to E[L(βT+1)] ≥ L(β∗).

If the learning rate is fixed, i.e., γt = γ = 1/(T + 1)1/2, we have

1

T + 1

T∑
t=0

E[∥g(t)∥22] ≤
L(β0)− L(β∗)

(T + 1)1/2
+

1

(T + 1)1/2
µn2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

)
, (76)

where the following limit holds:

lim
T→∞

L(β0)− L(β∗) + µn2C
2 ·

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

= 0. (77)

Moreover, if the learning rate is decaying, i.e., γt = 1/(t+ 1)1/2, we have

T∑
t=0

1

(t+ 1)1/2
· E[∥g(t)∥22] ≥

1

(T + 1)1/2

T∑
t=0

E[∥g(t)∥22]. (78)
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Thus, using this relations,

1

T + 1

T∑
t=0

E[∥g(t)∥22] ≤
L(β0)− L(β∗)

(T + 1)1/2
+

1

(T + 1)1/2
µn2C

2
·
(
1 +

1∑k
i=1 δ

−1
i

) T∑
t=0

1

t+ 1

(79)

(c)
≤ L(β0)− L(β∗)

(T + 1)1/2
+

µn2C(1 + log(T + 1)1/2)

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

, (80)

where (c) is due to the fact
∑T
t=0

1
t+1 ≤ 2 + log(T + 1). Since limx→∞

log x
x = 0, the following

limit holds:

lim
T→∞

L(β0)− L(β∗)

(T + 1)1/2
+

µn2C(1 + log(T + 1)1/2)

(
1 + 1∑k

i=1 δ
−1
i

)
(T + 1)1/2

= 0. (81)

F.6 Proof of theorem 4

Since βt+1 = βt − γt · ĝ(t),

∥βt+1 − β∗∥22 = ∥βt − β∗ − γt · ĝ(t)∥22 (82)

Then, by taking expectation of both side conditioned on βt,

Et[∥βt+1 − β∗∥22] = Et[∥βt − β∗ − γt · ĝ(t)∥22] (83)

= ∥βt − β∗∥22 − 2γt · Et[(βt − β∗)⊤ĝ(t)] + γ2t · Et[∥ĝ(t)∥22] (84)
(a)
≤ ∥βt − β∗∥22 + 2γt ·

(
L(β∗)− L(βt)−

λ

2
∥βt − β∗∥22

)
+ γ2t · n2C ·

(
1 +

1∑k
i=1 δ

−1
i

)
(85)

= (1− γtλ) · ∥βt − β∗∥22 + 2γt · (L(β∗)− L(βt)) + γ2t · n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
(86)

(b)
≤ (1− γtλ) · ∥βt − β∗∥22 −

γt
µ
∥g(t)∥22 + γ2t · n2C ·

(
1 +

1∑k
i=1 δ

−1
i

)
(87)

≤ (1− γtλ) · ∥βt − β∗∥22 + γ2t · n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
, (88)

where (a) holds from the λ-strongly convexity and Lemma 2; (b) is due to µ-smoothness of the loss
function L. Specifically,

L

(
βt −

1

µ
∇L(βt)

)
≤ L(βt) +

〈
∇L(βt),−

1

µ
∇L(βt)

〉
+

µ

2

∥∥− 1

µ
∇L(βt)

∥∥2
2

(89)

= L(βt)−
1

2µ

∥∥∇L(βt)∥∥22. (90)

Using the relationship L(β∗) ≤ L
(
βt − 1

µ∇L(βt)
)

,

L(β∗)− L(βt) ≤ −
1

2µ

∥∥∇L(βt)∥∥22. (91)

Taking full expectation of both side in (87), we have

E[∥βt+1 − β∗∥22] ≤ (1− γtλ) · E[∥βt − β∗∥22] + γ2t · n2C ·
(
1 +

1∑k
i=1 δ

−1
i

)
. (92)

31



Then, using this inequality recursively, the following inequality holds.

E[∥βt+1−β∗∥22] ≤ ∥β0−β∗∥22·
t∏

p=0

(1−γpλ)+n2C·
(
1+

1∑k
i=1 δ

−1
i

)
·
{
γ2t+

t−1∑
p=0

γ2p

t∏
q=p+1

(1−γqλ)
}
.

(93)

If γt = γ < 1/λ, ∀t and t→∞,

lim
t→∞

E[∥βt+1 − β∗∥22] ≤ lim
t→∞
∥β0 − β∗∥22 · (1− γλ)t+1 +

γn2C

λ

(
1 +

1∑k
i=1 δ

−1
i

)
(1− (1− γλ)t+1)

(94)

<
n2C

λ2
·
(
1 +

1∑k
i=1 δ

−1
i

)
. (95)

Furthermore, if γt = 1/(λt) and t→∞,

lim
t→∞

E[∥βt+1 − β∗∥22] ≤ lim
t→∞

E[∥β1 − β∗∥22] ·
t∏

p=1

(
1− 1

p

)
+ n2C ·

(
1 +

1∑k
i=1 δ

−1
i

)
×

{ t−1∑
p=1

1

λ2p2

t∏
q=p+1

(
1− 1

q

)
+

1

λ2t2

}
(96)

= lim
t→∞

O

(
1

t

)
(97)

= 0. (98)
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