Approximate Gradient Coding for Distributed
Learning with Heterogeneous Stragglers

Heekang Song
Korea Advanced Institute of Science and Technology
School of Electrical Engineering
hghsong@kaist.ac.kr

Wan Choi
Seoul National University
Department of Electrical and Computer Engineering
wanchoi@snu.ac.kr

Abstract

In this paper, we propose an optimally structured gradient coding scheme to
mitigate the straggler problem in distributed learning. Conventional gradient coding
methods often assume homogeneous straggler models or rely on excessive data
replication, limiting performance in real-world heterogeneous systems. To address
these limitations, we formulate an optimization problem minimizing residual error
while ensuring unbiased gradient estimation by explicitly considering individual
straggler probabilities. We derive closed-form solutions for optimal encoding
and decoding coefficients via Lagrangian duality and convex optimization, and
propose data allocation strategies that reduce both redundancy and computation
load. We also analyze convergence behavior for A-strongly convex and p-smooth
loss functions. Numerical results show that our approach significantly reduces the
impact of stragglers and accelerates convergence compared to existing methods.

1 Introduction

In recent years, the rapid advancements in deep learning have underscored the significance of large
datasets and large-scale Al models as critical components for performance enhancement. Break-
through models such as ChatGPT, Gemini, and SORA have not only demonstrated unprecedented
capabilities but have also transformed the industrial landscape, reshaping how Al technologies are
applied across various domains. These models are commonly trained using gradient-descent-based
algorithms, but the training process for such large-scale models demands immense computational
resources, such as GPUs and NPUs, leading to a computation bottleneck. To address these challenges,
building on foundational frameworks like MapReduce [1] and Spark [2], distributed computing [3} 4]
has emerged as a promising and practical solution, and evolving into distributed learning, which
mitigates computation and communication bottlenecks in large-scale training scenarios.

A distributed learning architecture typically consists of a central coordinator (master node) that
trains an Al model using gradient-based optimization (e.g., Gradient Descent (GD)) to minimize a
given loss function, partitions and distributes the dataset to worker nodes for parallel computation of
local gradients, and aggregates these local gradients to approximate the global gradient and update
model parameters. However, heterogeneity in computational and communication resources can cause
bottlenecks, particularly due to the slowest worker node, known as a straggler, impairing overall
efficiency and scalability.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Motivated by this aspect, Gradient Coding, a specialized technique for mitigating stragglers in
distributed learning, has been extensively studied [SH12]. The concept was first introduced in [3],
where data replication enables coding of partial gradients. Assuming a known number of stragglers,
it designed linear encoding and decoding schemes and identified fundamental data replication limits.
Its extension [[6] explored trade-offs between communication overhead and resilience to stragglers,
proposing gradient coding schemes that reduce overhead at the expense of lower resilience. However,
these methods assume prior knowledge of straggler counts—often unrealistic in practice—and require
extensive data replication, placing a heavy computational burden on worker nodes.

To overcome limitations associated with unrealistic straggler models and high computational costs,
Approximate Gradient Coding has emerged as a practical solution under probabilistic straggler models,
explored in prior works [7H12]. Unlike exact gradient coding [J5} 6], which precisely reconstructs
the true gradient sum, approximate gradient coding relies on estimated gradient sum for model
updates. This relaxation is justified since optimization methods, such as Stochastic Gradient Descent
(SGD), naturally tolerate approximations and noise, still ensuring convergence. By alleviating
the computational burden of exact recovery, approximate gradient coding improves efficiency and
mitigates straggler impacts through minimizing the residual error between true and approximate
gradient sum.

The authors of [7] introduced the approximate gradient coding framework by leveraging the normal-
ized adjacency matrix of an expander graph to construct encoding and decoding schemes. Similarly,
[8]] proposed an approximate gradient coding scheme based on sparse random graphs, where gradient
components are assigned to worker nodes via Bernoulli sampling and the residual error is controlled
through probabilistic guarantees. The study [9] further analyzed the residual error of Fractional
Repetition (FR) codes, originally introduced in [3]], noting that these codes can only be constructed
when the number of distributed nodes is a multiple of the data replication factor. Additionally, [10]
examined the fundamental trade-off among the data replication factor, the number of stragglers, and
the residual error in approximate gradient coding. Building on these advancements, the authors of
[[L1]] proposed a novel approximate gradient coding scheme that leverages expander graphs while
dynamically optimizing decoding coefficients to minimize residual error.

While previous studies [7H11]] primarily aimed to reduce residual errors between the gradient estima-
tor and the true gradient, this focus alone does not necessarily ensure model convergence. Therefore,
robust convergence guarantees become essential when using approximate gradient sums in gradient-
descent algorithms. Stochastic Gradient Coding (SGC) [[12] addressed this by introducing a pairwise
data distribution scheme, where the number of worker nodes sharing any two data partitions is
proportional to the product of their respective replication factors. SGC designs its encoding coef-
ficients to ensure an unbiased gradient estimator using binary decoding and provides a thorough
convergence analysis. Empirical results showed that SGC performs robustly even under severe
straggler conditions, where residual-error-focused methods [7H11] may falter. Unlike exact gradient
coding—which requires each data partition to be replicated more than the number of stragglers—SGC
enforces constraints on pairwise data distribution. Consequently, depending on the total number of
data partitions, their replication factors, and the number of workers, it can become challenging or
even infeasible to satisfy the pairwise distribution constraints.

In summary, previous studies have generally pursued two directions. The first focuses on minimizing
the residual error but often lacks rigorous convergence analysis or relies on binary encoding/decoding
coefficients for analytical simplicity. The second ensures the gradient estimator’s unbiasedness by
carefully designing encoding coefficients while using binary decoding coefficients. Observing the
progress in both directions, we believe that integrating these approaches can potentially yield improved
performance. Moreover, most prior research assumes homogeneous straggler scenarios with uniform
straggling probabilities across worker nodes, which is unrealistic given the varying computation
and communication capacities encountered in practical settings. Under a non-uniform probabilistic
model, gradient updates may consistently neglect certain datasets, increasing generalization errors
and the risk of converging to local optima. To address these issues, we propose a novel approximate
gradient coding technique specifically designed for heterogeneous straggler environments.

2 Preliminaries

2.1 Distributed Learning with Gradient Coding

Consider a distributed learning, where a master node aims to solve an optimization problem using a
gradient-descent-like algorithm across k& worker nodes. Given a dataset D = {D; }!_; consisting of
n data partitions, the goal is to learn a parameter 3* € R! that minimizes a loss function L(D, 3).
This process involves iteratively solving:

B = argmﬁinL(D,ﬁ), €]
by approximating the parameter update:
Brrr =B — g, 2

where ¢(*) represents the aggregated gradient at iteration ¢,
9" =VL(D,B) =>_ VL(Di,B), 3)
i=1

and ~; is a learning rate. In a distributed framework, the master node divides the dataset D into
k batches (B1, Ba, . .., By) and distributes each data batch B; to its corresponding worker node j,
where data batches may overlap and do not necessarily have the same size. Each worker node j then
computes the local partial gradient VL(B;, 3;) in parallel, and then the master node aggregates these
to approximate the global gradient. Stragglers, however, can impede this process; gradient coding
combats them by injecting redundancy and applying coding across batches to tolerate slow or failed
worker nodes.

The gradient coding procedure consists of three phases—data distribution, local computation, and
gradient update phase. In data distribution phase, the master node replicates each partition D; to d;
worker nodes to tolerate stragglers. This redundancy enables worker nodes to send encoded partial
gradients (via linear combinations), so the master node can recover the true gradient sum even if
some worker nodes straggle. This process introduces the parameter d = % >, d;, known as the
computation load (or replication factor), which quantifies the average redundancy in computation (or
data replication). Hereinafter, we will refer to the replication factor as the computation load.

Subsequently, in local computation phase, each worker node ¢+ computes the partial gradient from its

assigned data batch B;, i.e., { g§t) :VD; € B;}. Using the computed partial gradients, each worker
node generates an encoded message, which is then sent to the master node:

£B) =Y aij-gl”, “

D;eB;

where a; ; € R represents the encoding coefficient used by worker node ¢ for the gradient g(t) =

J
VL(D;, B), which corresponds to data partition D;.

Then, in gradient update phase, the master node aggregates all the received responses from non-
straggling worker nodes with the decoding coefficients:

k
g =" wi- £i(By), (5)
=1

where w; € R is the decoding coefficient for worker node 7 and I; is the indicator function for worker
node 7 being non-straggler, i.e.,

(6)

I — 1, if worker node ¢ is non-straggler,
* 710, otherwise.

Unlike the homogeneous straggler assumptions in [7H13]], we adopt a heterogeneous model: each
worker node 4 independently straggles at each iteration with probability p;, so E[I;] = 1 — p;. This
reflects real-world variability in computational and communication capacities. The parameter update
follows the process outlined in ; however, instead of the true gradient sum g(t), an estimated
gradient sum §*) from gradient decoding is used for the update. Once updated, the parameters B3 1
are distributed to the worker nodes. Once the data distribution is done, the local computation and
gradient-update phases repeat every iteration until convergence.

9t 2hi~f;

5 =0:+9:+0s
91 g
x o 91/2+ 92 x91/2+yz

92
92— 93

(@) (b)

Figure 1: Motivating example of gradient coding.

w

2.2 Motivations

Figure[I]illustrates our motivating example. Without replication or coding, a single straggler forces
the master node to update using only the remaining gradients—e.g., in Figure[I(a)} 3 is updated with
g1 + g2. By contrast, in Figure [I(b)| each partition is assigned to two worker nodes, which compute
and linearly encode their gradients into f1 = ¢1/2 + go2, fo = g2 — g3, and f3 = g1/2 + g3. Even
if the third worker node becomes a straggler, the master node still recovers the true gradient sum
g = g1 + g2 + g3 by computing 2 f; — fo. This perfect recovery nullifies the impact of stragglers,
ensuring seamless gradient-descent updates.

From this perspective, exact gradient coding provides a systematic way to choose the encoding
coefficients a; ; and the decoding coefficients w; so that each worker node encodes its gradients into
fi» and the master node recovers the true gradient sum from non-straggling messages. Representing
the encoding matrix as A and decoding vector as w, the goal is to satisfy Aw = I, ensuring
¢ = ¢ Moreover, to tolerate up to s stragglers, the computation load d must satisfy d > s + 1,
which represents a fundamental limit.

To address the high computation load and the impractical requirement of knowing the exact number
of stragglers, approximate gradient coding was developed based on the homogeneous probabilistic
straggler model (p; = pa = - - - = pg). Unlike exact recovery under deterministic straggler scenarios
illustrated in Figure [[(b)} approximate gradient coding focuses on designing the encoding matrix
A and decoding vector w to minimize the average residual error between the true gradient sum
¢™® and its estimated counterpart). Prior studies have demonstrated that smaller residual errors
and higher computation load typically improve convergence behavior. Nevertheless, as highlighted
in [12f], exclusively minimizing residual error may lead to degraded convergence performance in
environments with frequent straggling events. In contrast, ensuring an unbiased gradient estimator
provides robust convergence properties even under severe straggler conditions.

3 Optimally Structured Gradient Coding

Building on these insights, our gradient coding approach aims not only to reduce both the overall
residual error and the variance of the estimator but also to leverage the unbiasedness of gradient
estimators in heterogeneous straggler environmentsﬂ By addressing these factors, the proposed
method enhances convergence performance, achieving faster convergence with stronger theoretical
guarantees. Accordingly, the encoding matrix A and decoding vector w, each comprising the encoding
coefficients {a; ;, Vi, j} and decoding coefficients {w;, Vi}, are designed by optimizing the problem:

(P1) minimize E,[|lg" —)|3] Q)
subject to B[] = g®), ®)

where E;[-] £ E[-|3;] represents the expectation over the random behavior of the stragglers in the ¢-th
iteration, conditioned on the model parameter 3;. Since straggler effects are i.i.d. across iterations,
the optimized encoding and decoding coefficients remain fixed, eliminating the need to re-optimize
(P1) at every iteration—unless the underlying straggler statistics change.

'With an unbiased gradient estimator, the residual error equals its variance.

However, problem (P1) is not directly solvable, as it requires knowledge of the true gradient values,
necessitating the dynamic design of gradient codes at each iteration—an impractical requirement for
constructing gradient codes.

To address this challenge, we leverage a mild assumption of the true gradient:

Assumption 1. (Boundedness of gradient) There exists a constant C' such that
IVL(D;, B3 = llg; 113 < C.¥j € [L: n). ©

Note that this approach remains practical, as it accommodates constraints imposed by activation
functions or gradient clipping techniques, as outlined in [12H14]. Accordingly, we introduce the
following lemma.

Lemma 1. Suppose that Assumption [z] is satisfied and gradient estimator §*) is unbiased. Then,
Ei(llg” — ™3] <C[sz (1—pi)- (Zau) } (10)

The proof is provided in Appendix [F.1]

Since the objective is for the gradient estimator—affected by straggler behavior of worker nodes—to
mimic the target gradient computed by gradient-based algorithms at each iteration, based on the given
data partitions D and model parameter 3;, the source of randomness lies in the straggler behavior at
each iteration. Consequently, we have

E[g"] = Z ®. [ZH wza”] (11)
Jj=1

(®

To ensure that this expected value matches the true gradient sum ¢ = Z?Zl g; ~ regardless of the

specific values of g§t), the following unbiasedness condition must be satisfied individually:

k k
E, {ZL waj} => (1—p;)-wia;; =1,Yj € [1:n], (12)
i=1 i=1
where the equality comes from the fact that E;[I;] = 1 — p;.

From these observations, the original problem (P1) can be reformulated as:

n 2
(P2) m1r}41m12€ 25 (Zlam) (13)
=

i=1
k
subjectto » dia;; =1, Vj € [1:n], (14)
i=1
where w; = (1 — p;) - w; and §; = p; /(1 — p;). It is apparent that the optimization problem (P2)
is non-convex, primarily due to the strong coupling between the encoding and decoding variables.
However, both the objective function and the constraints exhibit a similar structure with respect to

the combined variables w;a; ;. By defining agf = w;a;,;, P2) can, without loss of optimality, be
transformed into

k n 2
(P3) minimize Y 4 (> ag) (15)

=1 Nj=1
k

subject to Zaf =1,Vj€e[l:n], (16)
i=1

where « is the matrix whose (i, j) element is a{ . Problem (P3) is a convex problem with respect to

the transformed variables o and can be solved by the standard convex optimization tool, such as
CVX [15] and YALMIP [16].

Subsequently, for a given c, the encoding and decoding coefficient can be obtained with randomly
generated w; (w; # 0) as:
j iy

Qg5 = % and w; = 1 B VZ,] (17)

w; Pi

Note that the entry o is relevant to the encoding and decoding coefficient of the partial gradient
computed from partition D; that is attributed to worker node 4. This representation facilitates efficient
management of data distribution and redundancy across multiple worker nodes within the gradient
coding framework: specifically, oz/ # 0 means data partition D; is allocated to worker node 7. Thus,
the structure of matrix cv explicitly encodes how data partitions are distributed among worker nodes.

3.1 Optimal Structure of Gradient Coding

While problem (P3) can be solved using convex optimization tools, we also provide an opportunity
to uncover the optimal structure of gradient codes that minimize the residual error while satisfying
the gradient estimator’s unbiasedness. This structure facilitates the development of a closed-form
solution for gradient code design. To begin, we present the optimal structure of gradient codes that
minimizes (P3).
Theorem 1. The optimal structure of optimization problem (P3) satisfies the conditions below:
n] k]

Zag:Yi,Vie[lzk],and Zaf:l,Vje[l:n], (18)

j=1 i=1
where Y; = 6,1 - %{rlandcﬁl = %forulli efl:kl

Jj=1"J

The proof is provided in Appendix E Note that the row-wise sum constraint, Zle «] =1 for
all j € [1 : n], ensures the unbiasedness of the gradient estimator. The values of the matrix o that
satisfy the optimal structure of gradient coding are determined by Y;, which, in turn, depends on the
straggler probabilities of all worker nodes. As a result, the gradient code is directly influenced by the
straggling characteristics of the distributed nodes.

According to Theorem|[I] any gradient code satisfying the optimal structure adheres to the following
lemma:

Lemma 2. For any gradient codes satisfying the optimal structure described in Theorem |l the
residual error of gradient estimator is bounded by

E[[lg® — g 3] < n*C - (19)

and squared norm of the gradient estimator is bounded by

. 1
E(|l§|I3] < n*C- (1 + W) (20)

The proof is provided in Appendix [F.3]

3.2 Optimally Structured Gradient Code Construction

There may be multiple configurations of « that can adhere to the optimal structure outlined in
Theorem([I] In this subsection, we detail two closed-form configurations-termed Scheme I and Scheme
II—that not only satisfy the optimal structure but also reduce the computation load.

Throughout, without loss of generality, we assume that p; < py < --- < py. To effectively capture
more gradient information across the dataset on average, it is advantageous to allocate more data to
worker nodes with a lower likelihood of becoming stragglers. Accordingly, a gradient coding strategy
can be designed so that worker nodes with lower indices are assigned a proportionally larger share of
the data. Let by > by > - - - > by denote the number of partitions assigned to worker nodes 1 through
k, selected from n distinct and non-overlapping data partitionsE] For both Scheme I and Scheme II,

’The data distribution parameters b, ..., bx_1 can be adjusted based on the straggler probabilities and the
available storage (or computing) capacity.

A y Lt
V, —2<{te * | e > Y; 1 <o \. l Y
Y, —1 < * > 1 ¢ |+ >rn+-3
Y, <o 1> 4V, Y,
3I-n
(a) (b)

Figure 2: Illustrative example of the proposed schemes: (a) Scheme I and (b) Scheme II.

the values b; are chosen to satisfy Zle b; = n+ k — 1, which ensures that the k& batches collectively
cover all n partitions, with each adjacent pair of worker nodes sharing exactly one partition. This
design reduces the overall computation load on individual worker nodes.

Scheme I A single, specific data partition (D;) is a common partition shared by all workers, while
the remaining partitions are assigned exclusively to individual workers. This scheme has a centralized
sharing structure. The data allocation is performed as:

» Worker node 1 is assigned the first by data partitions: By = {D1, D, ..., Dy, }.

» Worker node i € [2 : k — 1] is assigned a batch that includes the shared data partition
D, along with b; — 1 additional data partitions that are exclusive to worker node ¢ and
not shared with any other worker node. Specifically, for2 < i < k—1, B; = {D;} U
{Di,Dy 115, Dyyp, 2}, where I] = 2, and for i > 2, the starting index is recursively
defined as I; = I,_, + b;_1 — 1, ensuring that each worker node receives the next b; — 1
unassigned, non-overlapping data partitions.

» Worker node k is assigned only the shared data partition: By, = {D; }.

Given the data distribution in Scheme I, we set the elements of o to meet the optimal structure, which
can be divided into three cases:

» If a partition D; is not distributed to worker node i (i.e., D; ¢ B;), we set ozf =0.

* If a partition D; is distributed exclusively to worker node i (i.e., D; € B; but D; ¢ B, for
any ¢ # i), we set ag = 1, which satisfies the unbiasedness condition.

* If a partition D; is distributed to all worker nodes, i.e., D; = Dy, a{ issettobe Y; — b; +1,
ensuring that Theorem [T]is satisfied.

Example (Figure 2(a)): Consider n = 4 data partitions and k¥ = 3 worker nodes. One feasible
choice of {b;} is by = 3, by = 2, b3 = 1. The batches in Scheme I become By = {Dy, D2, D5},
By = {Dy,D,}, and B3 = {D; }. Here all worker nodes share D;, worker node 1 exclusively has
Dy, D3, and worker node 2 exclusively has D,4. The o assignments for this example are:

al o o} af Yi-2 1 1 0
at a2 a3 a3 =(Y2—1 0 0 1], 21
ai a2 a3 aj Y3 0 0 0

where each column sum is 1 (for Dy, ol + o} +ad =Y, +Ya + Y3 — 3 = 1; for Dy, D3, Dy, the
sum is trivially 1 since each is only held by one worker node), and each row ¢ sums to Y;.

Scheme II Each worker shares exactly one data partition with the worker of the adjacent index,
so every partition is held by at most two workers. This scheme has a sequential and decentralized
sharing structure. The data distribution is as follows:

» Worker node 1 is assigned the first by data partitions: B; = {D;, D2, ..., Dy, }.

» Worker node i € [2 : k — 1] is assigned b; consecutive data partitions, starting from the last
partition of the previous worker node’s batch to ensure exactly one sharing partition between
adjacent worker nodes. Specifically, we define B; = {D;,, Di,+1,---,Di,+b,-1}, where
ly =1and!; =1;_1 +b;—1 — 1 for: > 2. By this construction, each batch B; shares exactly
one partition with the preceding batch B,_; (specifically, partition D;, = Dj, |45, ,—1)-
Consequently, each data partition D; resides on at most two worker nodes, being either
exclusive to one worker node or shared between two consecutive worker nodes.

* Worker node k is assigned the last by, = 1 data partition. i.e., B, = {D,}.

Given the data distribution in Scheme II, we determine the elements of o to satisfy the optimal
structure specified in Theorem[I] which can be categorized into the three cases:

* If a partition D; is not distributed to worker node i (i.e., D; ¢ B;), we set ag =0.

* If a partition D; is distributed exclusively to worker node i (i.e., D; € B; but D; ¢ B, for
any ¢ # 1), we set] = 1, which maintains the unbiasedness condition.

» Ifapartition D; is shared between worker node ¢ and worker node i+1 (i.e., D; = B;NB;41),
and o/, are carefully assigned to ensure that o] +af; = 1, 3°7_ af =Y}, and

J
Q;

Z?zl af 11 = Yi41 from the conditions in Theorem To construct such a matrix o, we
can recursively determine the nonzero elements row by row. Starting from worker node 1,
we assign the first b; — 1 elements in the row as 1 (corresponding to exclusive partitions),
and set the last element o/{l =Y - ZS‘:_ll af to satisfy the row-wise sum constraint,

Z;’: 1 & =Y. Then, since partition D, is shared with worker node 2, the corresponding

entry is set as al; = agl =1- o/l’l. The same procedure is repeated recursively: for each
worker node ¢, once aii is determined by the previous row, the remaining values in the
row are set to satisfy the row-wise sum constraint 2?21 o ; = Y;. This recursive process
ensures that all entries of « satisfy both the optimal row-sum and column-sum conditions.

Example (Figure 2(b)): Consider n = 4 and k = 3 with by = 3, by = 2, by = 1. This yields
the batches By = {D1, D2, D3}, Bo = {D3, D4}, and Bs = {D,}. Here, Dj is stored by both
worker node 1 and worker node 2, and D; is stored by both worker node 2 and worker node 3. The
corresponding matrix « can be constructed as:

al o2 o} of 11 Y;—2 0
al a2 a3 as|=(0 0 3-Y7 YVi+Y,-3], (22)
a?l) a% a§ a§ 0 0 0 4-Y-Y,

where 4 — Y] — Y5 equals to Y3 (since Zle Y, = Zle 6{1 . # = n). It is evident that the
i=19;

sum of each row ¢ equals Y; and the sum of each column is 1, respectively, thus confirming that this
construction adheres to the optimal structure outlined in Theorem [1}

The closed-form expressions of both schemes are provided in Appendix [A]

Code construction and computation load Based on the matrix o, we construct the encoding
and decoding coefficient by using (I7). For both Schemes I and 11, the computation load d remains
strictly less than 2, i.e., d < 2. This indicates that robust performance is achieved without placing
an excessive computational burden on the worker nodes. The efficiency of this code design is
underscored by the fact that the computation load is d = 1 + % Since the number of computing
nodes is generally less than or equal to the size of the dataset (i.e., & < n), the resulting computation
load d remains below 2. This low value reflects efficient resource utilization, minimizing redundant
computation while maintaining a balanced workload across the nodes.

Theoretical analysis of convergence behavior Due to the page limit, the theoretical convergence
analysis of our proposed method is provided in Appendix

—O—ap

—©— Proposed-

—B>— Proposed-i
I5-5GD

- % —BGC

8 |—A-e0

-<--oo

5 0 15 20 25 30 35 40 45 50 5 0 15 20 25 30 35 40 45 50
Iteration Iteration

(a) (b)

——co
| —P— Proposed

1S-SGD

—o—aD
—P— Proposed
18-5GD
~ % -BGC
=-Ac~EHD
-<g--op

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Iteration Iteration

© (d)

Figure 3: Convergence graph with respect to the training iteration 7: (a) 745, = 1.1 (k = 10) (b)
Ten = 1.5 (k = 10) (¢) 74, = 1.1 (k = 100) (d) 7, = 1.5 (k = 100).

4 Experiments

In this section, we demonstrate the effectiveness of the proposed optimally structured gradient coding
scheme for straggler mitigation in distributed learning. We numerically evaluate its performance on
the large-scale COCO dataset [21]. In our experiments, we employ the MobileNetV3 model, and
the learning rate is set to v, = 0.01. Suppose 7;;, denote the response time limit for each training
iteration. A worker node ¢ € [1 : k] is classified as a straggler if its overall delay ; for local gradient
computation and communication exceeds this limit, i.e., 7; > 7¢,. Then, the straggler probability of
each worker node ¢ € [1 : k] can be modeled by

pi = e—'l/)i(Tth—l)7 (23)

where 1; represents the straggling parameter of the worker node ¢ and 7, > 1 [18/[19]. In
these experiments, the straggling parameter is sampled from the uniform distribution [19], i.e.,
¥; ~ Uniform(¢min, ¥max). We set k = 10, ¥min = 0.1, ¥max = 2, and 74, = 1.1, unless stated
otherwise. The experimental results are obtained by averaging the outcomes of 10 simulation runs.

We compare our design with centralized learning-based GD, Ignore-Stragglers SGD (IS-SGD),
Bernoulli Gradient Coding (BGC) [8], ERASUREHEAD (EHD) [9], Optimal Decoding (OD) [[L1]],
Stochastic Gradient Coding (SGC) [12]]. The implementation details are in Appendix @

Figure [3]shows the model convergence as a function of the training iteration 7" and the per-iteration re-
sponse time limit 7;;. Throughout the experiments, the loss represents the overall training objective of
the object-detection model—the sum of classification and bounding-box regression losses—computed
on the COCO validation set. The bounding-box term is computed as a Smooth-L1 regression on the
predicted center offsets and log-scale width/height adjustments with respect to each ground-truth
box. In Figure we illustrate the convergence behavior for £ = 10 and 745, = 1.1. Except for
SGC—which guarantees unbiasedness of the gradient estimator—all benchmark methods suffer from
poor convergence due to the adverse impact of stragglers. In particular, for IS-SGD, when straggler
tendencies are high, the learning speed can be severely compromised, underscoring the necessity of
gradient coding techniques for straggler mitigation in distributed learning. Moreover, merely ensuring
unbiasedness is not sufficient for optimal performance; further reducing the estimator’s residual

g —0—ap ol
‘\ —P— Proposed ——ap
X 12 —B— Proposed
RN 18-SGD
S ~ % ~BGC
1 ﬂ\ =Ac-EHD
Ao, -<--op
SRR SGC
N

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Computation load Computation load

(a) (b)

Figure 4: Convergence graph with respect to the computation load d: (a) 7z, = 1.1 (b) 745, = 1.5.

error (and variance) leads to additional improvements. Both the proposed schemes, Scheme I and
Scheme II (referred to as Proposed-I and Proposed-II), detailed in Section not only adhere to the
optimal structure but also demonstrate rapid convergence. They closely emulate the behavior of GD
in environments unaffected by straggler effects. In particular, Figure [3(b)] presents the convergence
for £ = 10 and 74, = 1.5. As the per-iteration response time limit 7, increases, the likelihood
of straggling decreases (due to the straggler model in (23)), thereby accelerating the convergence
of the benchmark methods. Nevertheless, our proposed schemes still achieve a faster convergence
rate, closely matching that of GD. Additionally, Figs. and [3(d)| show the convergence for a
larger distributed system with k = 100, for 735, = 1.1 and 75, = 1.5, respectively. These results
demonstrate that our proposed approach effectively mitigates the impact of stragglers regardless
of the number of distributed nodes, even with a lower computation load (i.e., d = 1 + % < 2)
compared to the benchmarks.

In Figure[d] we plot the model convergence with respect to the computation load d when 74, = 1.1
and 74, = 1.5. These results normalize convergence behavior by computation load, emphasizing
the computational requirements necessary for each gradient coding method to achieve convergence.
The simulation result consistently demonstrates that our proposed method surpasses benchmark
performances, achieving rapid convergence with reduced computational effort.

Although centralized learning-based GD can achieve rapid convergence with the same level of
computation load, largely because it is unaffected by stragglers, it necessitates processing the entire
dataset sequentially on a single device, which considerably extends the per-iteration runtime. In
contrast, its distributed version, IS-SGD, which partitions the dataset into disjoint batches and assigns
them to different worker nodes without redundancy, experiences substantial performance degradation
due to the adverse impact of stragglers in distributed learning environments. Consequently, our
proposed method not only reduces the time per iteration relative to centralized learning but also
effectively mitigates the detrimental effects of stragglers without incurring excessive computational
overhead in distributed settings, thereby delivering superior performance compared to traditional
benchmarks.

5 Conclusions

We proposed an optimally structured gradient coding scheme for mitigating stragglers in heteroge-
neous distributed learning systems. By deriving optimal encoding and decoding coefficients, our
method minimizes residual error while maintaining an unbiased gradient estimator. Theoretical
analysis and simulations showed that it consistently outperforms benchmarks, achieving high effi-
ciency with low computation load, even in computation-limited scenarios. These results highlight its
practicality for real-world distributed learning with rapid, redundancy-efficient updates.

6 Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government (MSIT) (RS-2021-NR059011).

10

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” Commun.
ACM, vol. 51, no. 1, pp. 107-113, 2008.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing
with working sets,” in Proc. 2nd USENIX Conf. Hot Top. Cloud Comput., Boston, MA, USA,
Jun. 2010, pp. 107-113.

[3] K. Son and W. Choi, “Coded matrix computation in wireless network,” IEEE Trans. Wireless
Commun., vol. 23, no. 6, pp. 6394-6410, Jun. 2024.

[4] H. Song, K. Son, and W. Choi, “Joint design of shuffling and function assignment for heteroge-
neous coded distributed computing,” IEEE Trans. Signal Process., vol. 70, pp. 2560-2575, May
2022.

[5] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding strag-
glers in distributed learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2017, pp. 3368-3376.

[6] M. Ye and E. Abbe, “Communication—computation efficient gradient coding,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2018, p. 9716.

[7] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic MDS codes
and expander graphs,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 4302-4310.

[8] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient coding via sparse
random graphs,” arXiv preprint arXiv:1711.06771, 2017.

[9] H. Wang, Z. Charles, and D. Papailiopoulos, “ErasureHead: Distributed gradient descent
without delays using approximate gradient coding,” arXiv preprint arXiv:1901.09671, 2019.

[10] S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate gradient coding,” arXiv
preprint arXiv:1901.08166, 2019.

[11] M. Glasgow and M. Wootters, “Approximate gradient coding with optimal decoding,” /IEEE J.
Sel. Areas Inf. Theory, vol. 2, no. 3, pp. 855-866, Sept. 2021.

[12] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient coding for straggler mitigation
in distributed learning,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 277-291, May 2020.

[13] C.Liand M. Skoglund, “Distributed learning based on 1-bit gradient coding in the presence of
stragglers,” IEEE Trans. Commun., vol. 72, no. 8, pp. 4903—4916, Aug. 2024.

[14] S. Park and W. Choi, “Regulated subspace projection based local model update compression for
communication-efficient federated learning,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp.
964-976, Apr. 2023.

[15] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, v2.1,”
Mar. 2014. [Online]. Available: http://cvxr.com/cvx

[16] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. IEEE
Int. Conf. Robot. Autom., May 2004, pp. 284-289.

[17] B. Buyukates and S. Ulukus, “Timely distributed computation with stragglers,” IEEE Trans.
Commun., vol. 68, no. 9, pp. 5273-5282, Sept. 2020.

[18] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up dis-
tributed machine learning using codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514-1529,
Mar. 2018.

[19] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation over
heterogeneous clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 42274242, July 2019.

[20] A.Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent optimal for strongly convex
stochastic optimization,” arXiv preprint arXiv:1109.5647, 2011.

11

http://cvxr.com/cvx

[21] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in Proc. Eur. Conf. Comput.
Vis., 2014, pp. 740-755.

[22] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes,” in Proc. Int. Conf. Mach. Learn. (ICML), 2013,
pp. 71-79.

12

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims we have made in abstract and introduction are elaborated and
achieved in the main paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Appendix [C.5]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs of the mentioned theorems and mathematical claims are all provided
in appendix section.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the required information for running the experiments are provided in the
paper and anonymous github repository.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code for our paper and its instructions in anonymous github
repository.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are provided in Sectiond]and Appendix [D}

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We have repeated experiments with different seeds and reported the averaged
performance.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

13

10.

11.

12.

13.

14.

15.

16.

Justification: We include the details in Appendix

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We are following all the ethics provided by NeurIPS.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We believe this work does not have negative impact on the social communities.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We work with open source data and model that are publicly available and we
cited them properly.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

14

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

15

A Closed-form Expressions of the Proposed Schemes

A.1 Scheme I

We obtain the following closed-form expression for the elements of a that meet the conditions
specified in Theorem|[1} Forall i € [1 : k],

C (Yi—bi+1, j=1
J — 3 (2) Y 24
“ {1, Gell 1 +b 2])
Otherwise, for all i € [1 : k] and VD, ¢ B, al = 0.
A.2 Scheme II
We derive the closed-form expression for the elements of o that satisfy Theorem [T} For ¢ = 1,
; 1 Jjel:b—1]
Jj_J5 ’ 25
“ {Yl—b1+1, j="b. @
Forie [2:k—1],
) 1- 05‘3717 .] = li7
Yitao] —bi+1, j=lLi+b—1
Fori =k,
ay =Y. 27)

Otherwise, for all i € [1 : k] and VD; ¢ B;, o = 0.

16

B Theoretical Analysis

In this section, we conduct a convergence analysis of our optimally structured gradient coding scheme
across a variety of loss functions. To facilitate the derivation, we impose certain assumptions on the
loss function as:

Assumption 2. (\-strongly convexity) The loss function L is A-strongly convex if for all 3,3 € R!,

A
L(B) = L(B) + (VLB).B-8) + 5 [B- 85 (28)
Assumption 3. (u-smoothness) The loss function L is u-smooth if for all 3,3 € R!, 1 > 0,
L(B) < LB+ (VL(B).8-8) + 51885 29)

Here, (-,-) denotes the inner product operation. Note that Assumptions [2{ and [3| regarding the
loss function are commonly satisfied by a wide range of standard learning models, such as logistic
regression and softmax classifiers.

We first derive the convergence proof for a A-strongly convex loss function, as presented in the
following theorem.
Theorem 2. Suppose the loss function L satisfies Assumptions [Z]and [Z] Then, by setting v, = 1/(At),
it holds for any optimally structured gradient codes that
4n?C 1
* (|12
16~ 618 < o (1 =) (0)

1—-pi

where 57t = 11
pi

The proof is provided in Appendix Theorem [2| shows that with a strongly convex loss and
a decaying learning rate v, = %, the proposed method achieves a convergence rate of O(1/T),
comparable to classical SGD. Notably, the error bound reflects straggler heterogeneity through
the scaling term (1 + %{5,1) ensuring robust convergence even with non-uniform straggling.

i=1"1

Importantly, convergence depends only on straggler probabilities, not on computation load, meaning
even minimal data replication suffices. This contrasts with SGC [[12], where convergence relies on
the minimum computation load min;c|;.x) d;, highlighting the stronger robustness of our approach.

Next, we extend our convergence analysis to p-smooth loss functions to address non-convex settings.
Based on the Assumption |3| we establish the following theorem.

Theorem 3. Suppose the loss function L satisfies Assumptions [I| and 3| Then, it holds for any
optimally structured gradient codes:

By setting y; = v = 1/(T + 1)'/2,
1

- L(Bo) - L(B") |)
L Saerg < MR, 1o (11
T_|_1t:0 [Hg ||2]7 (T+1)1/2 (T+]_)1/2 9 +Zk 5—1 ()

where the following limit holds:

L(B0) ~ (8 + 252 - (14)
=0.

i=1 "1

A T (32)
By setting ; = 1/(t +1)1/2,
n2C(1 + log(T + 1)1/2 (1+F)
; s E[||g(t)||2} < L(IBO) — L(ﬁ*) + s (g()) 1 ! (33)
T+14 2= (T+)2 (T +1)1/2 ’
where the following limits hold:
2 1/2 1
pun?C (1 +log(T + 1)V)(1 + “>
L — L(B* i=19;
(Bo) (B*) 4 —0 (34)

The0 (T +1)1/2 (T +1)1/2

17

The proof is provided in Appendix [F5] Theorem [3] shows that for yi-smooth loss functions, the
proposed gradient coding scheme guarantees convergence to a stationary point. Specifically, whether
. 1 . . .

a constant learning rate v, = e ora decaying learning rate y; = (RS employed, the
average squared gradient norm approaches zero as the number of iterations increases. This result

confirms that the algorithm remains effective even in non-convex settings.

Lastly, we conduct an extended analysis for loss functions that satisfy both A-strong convexity and
p-smoothness, as detailed below.

Theorem 4. Suppose the loss function L satisfies Assumptions [1| BlandB] Then, it holds for any
optimally structured gradient codes that

t t t
E[lBre—8" 3] < [180— 813 T (1—pA) +n°C- (1+Z,€15_1)-Zv§ T (). G9)
p=0

p=0 i=1"%% q=p+1

By setting vy = v < 1/

. . n2C 1
Jim Bl - 818 < S (14 ==) 36)

By setting v = 1/()\t),
Jim E[||Bes1 — 873 < 0. (37)

The proof is provided in Appendix [F.6] Theorem] shows that under optimally structured gradient
coding in a heterogeneous straggler setting, the model error comprises two parts: one diminishing with
the learning rate and strong convexity, and another reflecting accumulated variance from stragglers.
With a constant learning rate (y; = v < 1/\), the algorithm quickly converges to a bounded
neighborhood of the optimum, where the neighborhood size depends on straggler variability. In
contrast, a decaying rate (7, = 1/(\t)) ensures convergence to the true optimum over time. This
highlights a key trade-off: constant rates yield faster initial progress, while decaying rates achieve
asymptotic optimality.

18

C Discussions

C.1 Practical Example of Probabilistic Straggler Modeling

Suppose 74, denote the response time limit for each training iteration. A worker node i € [1 : k|
is classified as a straggler if its overall delay 7; for local gradient computation and communication
exceeds this limit, i.e., 7; > T¢, and the straggler probability of worker node ¢ can be obtained by

pi = P”I'(Ti > Tth). (38)

The modeling of stragglers depends on the system’s primary bottleneck—whether it lies in computa-
tion or communication. For instance, in communication-limited environments, straggler behavior in
wireless networks is often modeled by an exponential distribution [17]]. In contrast, for computation-
limited settings, computing latency is typically characterized by a shifted-exponential distribution
(18} [19].

Intuitively, a worker node’s likelihood of becoming a straggler is influenced not only by its inherent
stochastic latency—driven by factors such as computation and communication capacity—but also
by the response time threshold, 7;,. A tighter threshold increases the probability of stragglers but
accelerates each training iteration. This reveals a fundamental trade-off between mitigating straggler
effects and achieving faster model updates. Our experiments empirically demonstrate this trade-off
and show that the proposed scheme achieves an effective balance between the two.

C.2 Worst-Case Computation Load

The maximum computation load on a single worker is a critical metric for practical deployment, and
our framework is explicitly designed to address this. In our schemes, each worker ’s computation load
is b;, the number of assigned data partitions. Thus, the worst-case computation load is max;¢(y.x) b;-

Our method allows for flexible—though not entirely arbitrary—adjustment of the parameters
b1, ..., b, based on straggler probabilities and the computational capacity of each worker. The
proposed Schemes I and II leverage the constraint Zie[l: k] b; = n+ k — 1 to reduce the compu-
tation load, which inherently imposes a mathematical upper bound on the worst-case computation
load, given by max;c(y.1b; < n — k + 2. For instance, this bound can be achieved by assigning
bp=n—k+2,by=2,...,bx,_1 = 2, and by, = 1. Moreover, assuming the total dataset can be
partitioned into subsets of approximately equal size, the number of data partitions n can also be
selected accordingly. Under this scenario, choosing n = k ensures that the worst-case computation
load is at most 2.

Thus, system designers can flexibly constrain max;¢|1.x) b; based on specific hardware limitations,
effectively preventing any single worker from becoming overloaded while still optimizing overall
system performance. For example, the example (Figure 2)) in Section [3.2] presents a scenario with
n = 4 data partitions and k£ = 3 worker nodes, where the allocation parameters are set as b; = 3,
b2 = 2, and b3 = 1. In this case, the worst-case computation load is max;e[1.) b; = 3. To reduce
this worst-case load, the parameters can be rebalanced to by = 2, b, = 2, and b3 = 2, resulting in a
lower worst-case computation load of max;c(y.x) by = 2.

Importantly, the average computation load d = (n + k — 1) /n remains strictly below 2 (since k& < n),
ensuring overall efficiency. In summary, our framework offers both per-worker load control and high
average efficiency, making it well-suited to heterogeneous real-world systems.

C.3 Sparsity of Optimally Structured Gradient Coding

The number of non-zero entries in the matrix o corresponds to those in the encoding matrix A, which
directly determines the computation load on each distributed node. Therefore, constructing a sparse
o matrix is equivalent to reducing the computation load.

In this context, we focus on constructing a sparse matrix. The matrix a can be represented as a
bipartite graph G = (R, C, E'), where the row and column indices of « form two disjoint vertex sets,
R and C, respectively. An edge (i, 7) exists between ¢ € R and j € C if and only if o # 0, with

the corresponding edge weight given by o . To preserve the optimal structure of the gradient coding
scheme, the graph must satisfy two constraints: for each vertex 7 € R, the sum of the weights of

19

edges incident to ¢ must equal Y;; and for each vertex j € C, the sum of the weights of edges incident
to j must equal 1.

Assume that G contains o disjoint and connected subgraphs, denoted as S7, 53, ...,.5, C G. Each
subgraph S; consists of a row vertex set R; C R and a column vertex set C; C C, respectively.
According to the optimal structure, for each subgraph S;, VI € [1 : o], the sum of edge weights
incident to each vertex ¢ € R; must equal Y;, and the sum of edge weights incident to each vertex
j € C; must equal 1. Therefore, the total edge weight in any connected subgraphis), R, Yi,» which
isequal to) 1. Thus, we have

Yvi=> 1=|C|Vl€el:od, (39)

i€ERy ieC

jeCy

where this structural dependency arises because the row-wise sum and column-wise sum are combi-
natorially coupled. Note that the graph G' always satisfies the connectivity rule, i.e., » ;. ¥i = |C|,
since) ,.pYi = Zle Y, = Zle st ﬁ = n and |C| = n. It is well known that any
i=19j

connected graph Sy, for [€ [1 : o], must contain at least | R;| + |C;| — 1 edges. In Section[3.2] we
introduced a gradient code construction method for the case in which the overall graph is connected
and contains exactly n + k — 1 edges—the minimum required for connectivity. This approach can
naturally be extended to connected subgraphs. Specifically, for each connected subgraph, a submatrix
is constructed using only the row indices in R; and column indices in Cj, following the same con-
struction strategy. Therefore, to maximize the sparsity of the optimally structured gradient code, the
overall graph G should be partitioned into the largest possible number of connected subgraphs, each
containing the minimum number of edges required for connectivity.

Based on these observations, we introduce a sparse code construction algorithm. Inspired by the
binary tree structure, the algorithm recursively partitions the graph into two disjoint subgraphs,
ensuring that the sum of edge weights in each subgraph remains an integer to satisfy the connectivity
constraints. Equivalently, this can be viewed as dividing the values Y7, ..., Y} into two groups such
that the sum within each group is a positive integer.

Initially, we define a working set of subgroups, denoted), and initialize it as) « {Y7,..., Y3 }. At

each iteration, every subgroup); € Y is split into two disjoint subgroups, yl“) and yl@), such that
Dy ey Y; € Z, forall j € 1,2. These two subgroups then replace) in the set).
A%

This recursive partitioning process continues until no further valid subdivisions are possible. At
this point, for each remaining subgroup), €), we define the corresponding row vertex set as
R, = {i]Y; € YV;}. Starting with [= 1, we construct the corresponding column vertex set C; by
sequentially selecting » _, R, Yi elements from the global column vertex set C. Finally, the submatrix
of « corresponding to each subgraph S; is constructed using the method described in Section
Further details can be found in Algorithm[1]

If the maximum number of subgraphs is omax, the computation load is computed as

. R+ |C| -1
d— Zle[l.Omax](| l‘ | l|) (40)
n

C.4 Extensions

C.4.1 Extension to Mini-Batch SGD

Our method fundamentally builds upon and analyzes GD-like algorithms, but it can readily be
extended to mini-batch SGD algorithms. In distributed learning, each distributed node ¢ can apply
our proposed method by computing gradients using mini-batch sampling on their local data partitions
(D;,Vj € B;). This approach can effectively reduce the update time per training iteration.

However, batch sampling introduces randomness at each iteration. Hence, the expectation must now
represent expectations over both the randomness from stragglers and mini-batch sampling at the
t-th iteration, conditioned on the model parameter. Since the behaviors of stragglers and mini-batch
sampling are independent, the expectation E;[-] now represents the expectation over both. The
objective from problem (P1) is to minimize the residual error of the aggregated stochastic gradient

20

Algorithm 1 The Sparse Code Construction Algorithm

Calculate Y7, Yo, ..., Yi.
Y {YV1,Ys, .., Yr}and Y’ = 0.
while |)’'| # |)| do

VYV «Yand) = 0.

for Y, €Y' do

Search the two disjoint groups :)il(l), y{” from), satisfying > Y,ey® Y, € Z,,Vj €{1,2}.
(A
Y yl(l)’yl@)'

end for
end while
for), € Y do

Construct the subgraph S; with B, = {i | Y; € Vit and C; = {j | j € [1 + Zlq_:ll >ier, Yi:
!
2q=1 2ier, Yi}

Construct the submatrix of c corresponding to the subgraph \S; as in Section[3.2]
end for

estimator, §(t) = Zi, j Lw;a; §§t), where §§t) is the stochastic gradient computed from a mini-batch
within data partition D;. The objective function is thus to minimize I, [H g® —g® ||ﬂ . The residual

error can be decomposed as:

E, [Hg(t) 40

j = M@(” — 50 + (3 - g(t))Hj

2 2
=5 | -] v |30 - 0[]

(I) Straggler Variance (II) Sampling Variance

This separation is valid because the cross-term is zero, as Esample [g<t> — g@] = 0 (due to the
unbiasedness).

First, Term (I) is the original error from the paper, which is bounded as:

2
E, U’gu) _ 40

k n
2} AN
i=1 j=1

Second, for Term (II), we first take the expectation over the independent mini-batch samples:

!

2
g —g®

2
6
2} =E ‘E _ Liwiai ;(g\"” — gi")
2,7

2

n
= IEstraggler ZEsample [ng('t) - gﬂ(t)
j=1

] (Sowes)
iWias
2 \i=

n k 2
2
<o g]Estraggler § I[iwiai,j)
=1

Jj=1

where o2 denotes an upper bound on the variance of the mini-batch gradients, that is, Esample[H g§t> —
g]@ 3] < o Using E[X?] = Var(X)-+(E[X])? and the unbiasedness condition) ,(1—p;)w;a; ; =

21

> ’ a‘g = 1, the inner expectation becomes:

2 2
Eqraggler <Z]I Wi J> = Var (Z Hiwiai,j> + (IE Z]Ii’ll)i(h’,j])
k k
= (a))? +17 =14 di(ed)?
=1 i=1

Thus, Term (II) is bounded by o 3=, (1 + 8 6i(ad)?) =o2n+0? Y, 650 (o)),

1_pz

Combining the bounds for both terms, the total objective is to minimize the upper bound. After
dropping the constant term o2n, which does not affect the solution, the objective becomes min-

imizing Z_ie[l:k] i (o > e (@ N2 4 C(Xjerim o 7)2) subject to the unbiasedness constraint
Dicw @ =1

This reformulated optimization problem, adapted to the mini-batch SGD setting, can be explicitly
solved using the KKT conditions. This yields a dense, closed-form solution:

-1
(1) =
Zle[l:k] oy
While this solution is theoretically optimal, it requires full data replication across all worker nodes
(d = k), meaning that each node must store the entire dataset. This assumption is often impractical in
distributed systems due to excessive storage and computation costs.

Vie[l:k],j€([l:n]. (41)

On the other hand, our proposed schemes (Schemes I and II), which are formulated and constructed
based on the GD algorithm, are specifically designed to maintain a low data replication factor,
ensuring d < 2 in both schemes. When our proposed schemes, which are optimized for the full-batch
GD setting, are directly applied to mini-batch SGD, the resulting gradient estimator does not achieve
the theoretical minimum residual error with respect to the true gradient. Nonetheless, our approach
maintains the important advantage of significantly reduced data replication under the mini-batch
SGD setting.

This observation highlights a trade-off when applying mini-batch SGD in distributed learning. Achiev-
ing the theoretically minimum residual error requires each worker node to handle a substantially
increased computation load, which can accelerate convergence. In contrast, by utilizing our optimally
constructed GD-based gradient codes and applying mini-batch sampling over the data partitions
assigned to each worker, one may not reach the theoretical minimum of the residual error, but can
substantially reduce the computation load per worker node. Note that since the mini-batch SGD pro-
cess introduces an inherent variance from sampling, our gradient coding scheme, which is optimized
for the GD algorithm, does not perfectly mitigate this particular sampling variance.

In particular, implementing mini-batch SGD using our proposed schemes results in a residual

ﬁ . This introduces an additional term,

i=1 "1

error bounded by n?C - kiél + no (1 +

i=1 "1
2 n
o+ g5
within our convergence analysis (Theorems I and ﬂ), the scaling term n*C - (1 + kig_) is

i=1 "4

due to batch sampling, compared to the result in Lemma 2|of the paper; however,

only slightly modified to n?C - (1 + kié_) +no?(1+ ;=) and thus the convergence rate

i=1"1 i=1 "1
remains essentially unchanged.

C.4.2 Extension to Adaptive Gradient Method

Our proposed method improves convergence speed by ensuring unbiasedness in the gradient estimator
while reducing variance. This has been effective for gradient-descent-like optimizers, which use
only the first moment estimator for updates. However, in adaptive gradient methods, which also
utilize the squared gradients for second-moment estimation, maintaining unbiasedness while reducing
variance faces inherent limitations in decreasing the variance term of the second moment. The
reason is that preserving unbiasedness inevitably causes E[||g — §]|3] to accumulate as variance.
This, in turn, systematically inflates the denominator in Adam’s update rule, leading to excessive

22

step-size shrinkage and possible performance degradation. In summary, this is a manifestation of the
bias—variance tradeoff: forcing bias to zero can hinder squared gradient estimation, which inherently
contains both bias and variance components.

To address this, we additionally propose a two-track decoding approach. This scheme preserves the
first-moment estimation of the original method while, for the second moment, allowing a slight bias
to reduced the variance, thereby leading to a more accurate second-moment estimate overall. The
implementation introduces negligible overhead, as the encoding remains unchanged and the master
node simply uses two decoding vectors during decoding.

Since the encoder is fixed, we focus on designing the decoder. Designing a decoder that reduces both
bias and variance leads to solving the following problem, where v is used instead of w for notational

clarity:
mvinA[Z(l = (U =piviai))* + D pi(1 =)o} (O ai). (42)
J 4 i J
The first term corresponds to bias reduction, the second to variance reduction, and A determines the
relative emphasis on reducing bias. The solution can be derived by:
. nA
vy = poy % o (43)
Pi(zg':1 i) (L+ A Om)

Using the proposed Schemes I or II to generate the encoding matrix A, the master node applies
the original w for the first-moment estimation and the above v for the second-moment estimation,
decoding each separately to obtain the gradient estimators. These are then used to update the model
following the update rule of optimizers such as Adam. In Appendix [E| Figure[7|demonstrates that
because conventional gradient coding techniques are designed for gradient-descent-like methods,
which primarily rely on the first moment, they face inherent challenges in adaptive gradient methods
that also require a stable second moment. The results also highlight the effectiveness of the two-track
decoding technique for these adaptive methods, indicating a need for further research and analysis
into gradient coding schemes that are compatible with various optimizers.

C.4.3 Extension to Non-Smooth Loss Function

For the non-smooth case, while not explicitly detailed in the paper, our method’s convergence
is guaranteed under the well-established analysis in [22]]. Specifically, the convergence analysis
presented in [22] holds as long as two key assumptions are satisfied—both of which are met by our
method:

* Unbiased estimator: Our method is designed to provide an unbiased estimator of the
gradient (g(")), as enforced by the condition in Equation (T2).

* Bounded variance: Our optimally structured coding scheme ensures a formal upper bound
on the estimator’s variance, as proven in Lemma@}

Since our algorithm meets these conditions, the convergence guarantees established by [22]] for
non-smooth settings can directly apply to our method. This confirms the theoretical robustness of our
proposed method for a broad range of practical applications.

C.5 Limitations

One important limitation of our approach is the substantial communication overhead incurred during
the initial distribution of large datasets: because each data partition D; must be replicated to d;
worker nodes before training begins, network load grows with both dataset size and replication factor.
Additionally, our design relies on knowing each worker node’s straggler probability p; a priori, yet
obtaining reliable estimates is challenging because existing straggler models cannot fully capture the
diverse, interacting factors—such as network congestion, CPU/GPU heterogeneity, energy throttling,
or transient OS interrupts—that actually cause worker nodes to slow down or drop out. Exploring
and validating more practical, multifactor straggler models therefore remains an important avenue for
future work.

Nonetheless, to overcome this limitation, a practical estimation approach can be applied in a real-
world distributed learning environment:

23

* The most practical approach is for the master node to estimate each worker’s straggler
probability by simply counting how often a worker exceeds the deadline, based on historical
logs, and updating this estimate periodically. For example, the master can track how many
times each worker was late out of the most recent tasks, and use this frequency as the
current estimate of the straggler probability. This method is commonly known as empirical
maximum likelihood estimation (MLE).

* Another practical approach is to estimate each worker node’s straggling probability p; using
a well-modeled estimator, as proposed in [18, [19]. Specifically, task completion times
can be modeled using parametric probability distributions, such as the shifted-exponential
distribution employed in [18]. By fitting this distribution to observed runtime data, we
obtain reliable estimates of p;, Vi, representing the probability that worker % fails to meet the
deadline. These estimated values can then be directly integrated into our coding scheme as
fixed parameters. Experimental results in [18]], conducted on a real EC2 cluster, demonstrate
the effectiveness of this method in enhancing the speed and robustness of distributed learning
systems. In our own experiments, we adopted this same estimation approach for p; and
based our evaluations on the resulting values.

24

D Implementation Details

The experiments are conducted on one NVIDIA GeForce RTX 3060 GPU (12 GB), six NVIDIA
GeForce GTX 1080 GPUs (8 GB each), and twelve NVIDIA Tesla P100 GPUs (16 GB each) (pro-
vided through Kaggle Cloud). Due to the memory limit, we use the gradient accumulation technique,
which divides each training batch into smaller sub-batches processed sequentially; gradients are
accumulated over these steps before performing a single parameter update, effectively simulating a
larger batch size without exceeding GPU memory constraints.

We compare our design with benchmarks as follows:

GD: GD updates parameters using the true gradient g(*), which makes it immune to straggler
effects and represents an ideal centralized learning scenario.

IS-SGD (Ignore-Stragglers SGD): IS-SGD assigns disjoint data partitions to each node (i.e.,
d = 1) to avoid redundancy, yet it remains subject to straggler effects, which it does not
mitigate but essentially ignores.

BGC [8] (Bernoulli Gradient Coding): In BGC, each encoding coefficient is generated
according to a Bernoulli distribution, i.e., a; ; ~ Bernoulli(d/k) for all 4, j, while all
decoding coefficients are fixed to w; = 1.

EHD [9] (ERASUREHEAD): EHD constructs encoding coefficients using the FR code [5]],
and sets the decoding coefficients uniformly to w; = 1 for all nodes.

OD [11] (Optimal Decoding): OD determines the encoding coefficients a, ; € {0,1} usinga
random graph, and dynamically computes optimal decoding coefficients w; for the straggler
effect reduction in each iteration.

SGC [12] (Stochastic Gradient Coding): SGC employs the pair-wise data distribution
strategy to build an unbiased gradient estimator, with redundancy determined as in [12].
To accommodate heterogeneous straggler scenarios, we modify the approach by setting
aij = m for all 7, j, while keeping w; = 1 for all nodes.

The methods BGC, EHD, OD, and SGC incorporate the data redundancy of approximately d ~ 2.

25

¥ daking meter @
parking meter 0

meter 082 ~— |

meler 057

b & ‘ N
P s gl

i}

93 4c0.82

papnarget:

©) ® €]
Figure 5: Detected objects of sampled image: (a) GD (b) Proposed (c) SGC (d) EHD (e) BGC (f) OD
(g) IS-SGD.

v —o—ap
12\ —P— Proposed

& 1S-SGD
- %= BGC

5 10 15 20 25 30 35 40 45 50
Computation load Computation load

(a) (b)

Figure 6: Convergence graph with respect to the computation load d with RetinaNet: (a) 74, = 1.1
(b) Ttp, = 1.5.

E Additional Experiment Results

Figure 5| displays the detection results on a representative image from the COCO validation set.
The straggler-free GD identifies three objects—two parking meters and one car—and the proposed
design detects exactly the same three objects, with no extras. In contrast, SGC erroneously splits one
parking meter into two overlapping detections and therefore returns only one car and one (duplicated)
parking meter. EHD, BGC, and OD each find just a single parking meter, missing the car and another
parking meter, while IS-SGD mistakes one parking meter for two separate instances. These results
demonstrate that our method delivers GD-level detection quality while simultaneously neutralising
straggler effects.

Since the achieved performance depends on the specific model or dataset employed, we have
additionally conducted supplementary experiments using the state-of-the-art RetinaNet model to
benchmark performance. RetinaNet, with approximately 34 million parameters, is roughly 6.3 times
larger than the model (5.4 million parameters) employed in our experiments (Section). Figures
[6(a)] and [6(b)]illustrates the convergence behavior with respect to the computation load d for k = 10

26

—O— Adam

121\ —P>— Proposed (two-track decoder)
\\ 1S-SGD

1 5 10 15 20 25 30 35 40 45 50
Iteration

Figure 7: Convergence graph with respect to the training iteration 7" with Adam optimizer (1, = 1.1
and v = 0.001).

and 7y, = 1.1 and 1.5, respectively. Based on these results, it can be seen that the proposed method
consistently maintains the performance trends identified in Section[d] regardless of the model size.

Moreover, in Figure |/} we evaluate the convergence behavior with respect to the training iteration 7" to
assess the performance of the two-track decoder with A = 1 detailed in Appendix [C.4.2] We observe
that gradient coding schemes for the first moment exhibit a slower convergence speed compared
to centralized Adam. However, the performance gap between the baselines is notably smaller with
the Adam optimizer than with GD. This reduced difference is primarily due to Adam’s intrinsic
noise suppression effect. In contrast, the proposed two-track decoding mitigates the second-moment
estimation error inherent in conventional gradient coding. While this approach yields significant
performance improvements and shows extendability, a more comprehensive analysis of these results
is required in future research.

27

F Proofs

F.1 Proof of Lemma 1

From the equations (TT)-(12), we have

k
B [llg® - 503 = [“)(1 -3 was)
=1
k k
= Z Z a5 957 t[(l -Sn wag> (1 - Zﬂi-wiai,ﬁ)] (45)
=1 =1

2
] (44)

2

Ji=1j2=1

a n n k k k k

(S) O Z Z Et 1-— ZL . wl-al-,jl — ZHZ . wiamg —+ (ZHZ . wiai7j1> (ZHZ : wiai,jg>:|
j1=1ja=1 i=1 i=1 i=1 i=1

(46)

b n n - k k

2c¢y YR (Zﬂi-wia@jl)(Zﬂi~wiai7j2> —1], (47)
ji=lja=1 L \i=1 i=1

where (a) and (b) come from the boundedness assumption of the gradient and the unbiasedness of the
gradient estimator, respectively. Furthermore,

CZ ZEt[—l—F(ZH wzalh)<ili~wiam2)] (48)

Jj1=1j2=1
© 2
C
230 31 IRREAD DD SRR RTRTRRPVINRS AP | I
J1=172=1 i1=1149= 1117512 =1
@ k k
=C Z Z [_ Z(l —pi)* - wiag g, + Z(l —pi) 'w?aim%ﬁ}’ 0
Jj1=1j2=1 i=1 i=1

where (c) is because E;[I; - I;] = E4[I;], and (d) is due to

k k k k
]Et|: § § Hhﬂzz Wiy Wiy Ay J1a227]2:| § : E : pil pi2)wilwi2’ai1»j1ai27j2

i1=11i3=1,i1#i2 i1=11i9=1,i1 719

61y
k k k
(Z (1 _pll wllath) < Z plz w12a127j2> - Z(l - pi)2) wz’Qai,jlaiJz (52)
11=1 19=1 =1
k
— 2
- Z (1 _pl) F Wi gy Qi - (53)
i=1

Putting together, we have

Edlllg® — g™ |3] <C[Zp11—pz (Zau)} (54)

=1

F.2 Proof of theorem 1

The Lagrangian function of (P3) is

:iai(ag) +Zgj(zag‘_1), (55)

i=1 j=1 =1 i=1

n

where (; is a Lagrangian multiplier.

28

By Karush-Kuhn-Tucker (KKT) conditions, we have

6a £ =24, <ZJ 104)—&—(]—0% 7,
Zf:l a’i - 17V]

From the KKT condition on stationarity, we have

51<ia{>=62(iaé>:-~-:5n<zn:a{l). (57)

=1 j=1 j=1

(56)

Then, let X = 6; > i1 o, Vi and using the primal feasibility, i.e., Zle o) =1,Yj, we have

i(x-aﬁ) :Zk:<2a]> =n, (58)

i=1 i=1 \j=1

and thus,
n

E 1"
2im16;
Accordingly, the optimal gradient codes, which minimize the gradient estimation error under the
unbiasedness constraint, can be obtained when matrix « satisfies the following conditions:

X = (59)

n

k
> (o) =Y, Vi, and Y (af)* =1, (60)
j=1 i=1

n

k —1-
i=19;

where (o)* is the optimal o/, and Y; = 6, * -

F.3 Proof of lemma 2

From Lemma|I]and Theorem [I| we can easily derive the bounded residual error of gradient estimator
for any optimally structured gradient codes in the following:

Efllg® — 503 [25 (Z)] (1)

j=1

n*C - # (62)

Ez 15117

where a = W;a,, (o) represents the optimal a ,and 6, 1= . Furthermore, the squared
norm of the gradient estimator for any optimally structured gradlent Codes is bounded by

IN

1-p;

E. [l ™13]=Et[llg<t =513+ lg™ 113 (63)
2
<C[n +Z§ <Z)} (64)
j=1
1
=n?C- <1 +) (65)
DT

F.4 Proof of theorem 2

Our proof builds upon the result from [20], which demonstrates that any algorithm utilizing an
unbiased estimator of the true gradient achieves a convergence rate of O(1/7):

Lemma 3. (Lemma 1 in [20]) Suppose the loss function is A-strongly convex and the gradient
estimator is unbiased. Furthermore, assume By[||g% 3] < G. Then, by setting ~; = 1/(\t), the
following holds for any T that

4G

E[ll8r — 813 < 37 (66)

29

Building on the result from Lemma[2] we can conclude that

1
®)12] < n2C - (1)
g n + . (67)
11 Y6
Thus, by replacing G with the right-hand side of the above inequality, Lemma 3] yields
4n?C 1

— 1 68

where 6, = 1=pi
Pi

F.5 Proof of theorem 3

From the property of p-smoothness,

L(Ber1) = LB = - §) (69)
e 2
< LB ~ (6,7 50 + L2193, (70)
By taking the expectation E,[-] conditioned on the previous iteration on both hand sides, we have
lals
Ei[L(Been)] < L(Be) = (97 - Eelg V] + = Eil1gC3) (1
n2C 1
LB - I3+ FE—= 1+ o). (72)
2 >im1 6 !

where (a) comes from the unbiasedness of gradient estimator and Lemma 2] Taking full expectation
E[E.[-]] on both sides and rearranging, we obtain

2 Zn2C 1
Bllo) < BlEB) - ElL(g))+ 57 (14 o). o

=1 "1

Based on this inequality, we have

2 T
Z% (g3 < L(Bo) — E[L(Br1)] + W2O ' (1 " z:klé'1> doi 4

9 T
“%L(ﬂo)—L(ﬂ*HWQC : <1+Zkl_1)Zv§, (75)

where (b) is due to E[L(Br+1)] > L(8*).
If the learning rate is fixed, i.e., v, = v = 1/(T + 1)/2, we have

T
i LB - L) | 1 n’C |
T g3 < 7t 72 It =—=) 0
T+14 (T + 1)V (T+1)1/2 2 DM
where the following limit holds:
2
L(B) ~ (8 + 52 - (14 rtoer)
A T+1)72 =0 77)
Moreover, if the learning rate is decaying, i.e., v, = 1/(t + 1)'/2, we have
o 1
. (t) E[[|g® 78
> o Bl 2 Z g1 8

30

Thus, using this relations,

Ly L(Bo) — L(B") 1 m’C (1) 1
- ()12 .
(79)
c . pun?C(1 +log(T + 1)1/?) (1+ 1 1)
© LBy ~ L(B) L "

(T +1)1/2 (T +1)1/2 ’

where (c) is due to the fact Z;‘FZO tJ%l < 2+1log(T + 1). Since lim, loi“’ = 0, the following
limit holds:

pn*C(1 4 log(T + 1)/2) (1 +

L(Bo) ~ L(") >:0, s

o (T2 T T +1)12
F.6 Proof of theorem 4
Since ﬁt+1 = ﬁt — VYt g(t),
1Be+1 = B7115 = 18: = B" = - 5113 (82)
Then, by taking expectation of both side conditioned on 3,
Ed[|Bi41 — B3] = Eu[lIB: — B* — v - 3] (83)
=18 = 8713 — 23 - Eu[(B = BY)T§D] + 27 - Eu[[|§7 3] (84)
@ * *)\ * 1
<NBe =B 3+ 2% - (LB = L(B) — 518 = B*II5) +77 - n°C- (1 + ———
2 Zi:l 51 !
(85)
1
= (L=%A) - 1B = B*II3 + 2v¢ - (L(B%) — L(By)) + 77 - n*C - (1 + k—l) (86)
>iz19;
(b) 1
2= 18- 1 = Ll 47 w0 (14—) &7
H i=19;
1
<@ =N 1B — B3 +17 - n*C- (1+k1>7 (33)
Zi:l 61

where (a) holds from the \-strongly convexity and Lemma 2} (b) is due to p-smoothness of the loss
function L. Specifically,

1 1 n 1 2
L(ﬂt - MVL(ﬁt)) < L(B) + <VL(,3t)>—MVL(ﬂt)> 3 H_;VL(ﬂt)HQ (89)

1
= L(By) - @HVL(@)HE. (90)
Using the relationship L(3*) < L (,Bt — }LVL(ﬂt)),
L(8") = L) < ~5- VL@ ©1)

Taking full expectation of both side in (87), we have

1
E[l|Be+1 — B3] < (1 —wX) - E[|1B: — B3] + 77 - n*C - <1 + W> SN
=1 "1

31

Then, using this inequality recursively, the following inequality holds.

t

t—1 t
E[lBes1—8" 3 < IIBo—,@*II%H(l—W)MQC-(1+Zk16_1>~{7§+Zv§ II <1—w>}.
i=1"4% p

p=0 =0 q=p+1
93)
If vy =v<1/\Vtandt — oo,
. 2 - o2 11, 1n°C 1 t+41
i Bl = 78] < Jim 100 = 715+ (1 = S (1 o) (-
i=19;
%94)
e 1
Y e
2ie1 6

Furthermore, if v, = 1/(\t) and ¢t — oo,

t 1 1
Jim B8~ 0712 < Jim B8 - 18- T (1) +n0 (10 o)

p=1 i=1 51‘_1
i T 1 1
{; 2p? q_,HH(- q) ’ AW}
(96)
= lim O(1> 97)
t—o0 t
-0 (98)

32

	Introduction
	Preliminaries
	Distributed Learning with Gradient Coding
	Motivations

	Optimally Structured Gradient Coding
	Optimal Structure of Gradient Coding
	Optimally Structured Gradient Code Construction

	Experiments
	Conclusions
	Acknowledgements
	Closed-form Expressions of the Proposed Schemes
	Scheme I
	Scheme II

	Theoretical Analysis
	Discussions
	Practical Example of Probabilistic Straggler Modeling
	Worst-Case Computation Load
	Sparsity of Optimally Structured Gradient Coding
	Extensions
	Extension to Mini-Batch SGD
	Extension to Adaptive Gradient Method
	Extension to Non-Smooth Loss Function

	Limitations

	Implementation Details
	Additional Experiment Results
	Proofs
	Proof of Lemma 1
	Proof of theorem 1
	Proof of lemma 2
	Proof of theorem 2
	Proof of theorem 3
	Proof of theorem 4

