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Abstract
Federated causal structure learning aims to infer
causal relationships from data stored on individ-
ual clients, with privacy concerns. Most exist-
ing methods assume identical variable sets across
clients and present federated strategies for aggre-
gating local updates. However, in practice, clients
often observe overlapping but non-identical vari-
able sets, and non-overlapping variables may in-
troduce spurious dependencies. Moreover, ex-
isting strategies typically reflect only the overall
quality of local graphs, ignoring the varying im-
portance of relationships within each graph. In
this paper, we study federated causal structure
learning with non-identical variable sets, aiming
to design an effective strategy for aggregating
“correct” and “good” causal relationships across
distributed datasets. Specifically, we first devel-
op theories for detecting spurious dependencies,
examining whether the learned causal and non-
causal relationships are “correct” or not. Further-
more, we define stable relationships as those that
are both “correct” and “good” across multiple
graphs, and finally design a two-level priority s-
election strategy for aggregating local updates,
obtaining a global causal graph over the integrat-
ed variables. Experimental results on synthetic,
benchmark and real-world datasets demonstrate
the effectiveness of our proposed method.

1. Introduction
Causal discovery holds significant roles in various scientific
fields, including biology, epidemiology, medicine, and eco-
nomics (Replogle et al., 2022; Cai et al., 2023; Squires et al.,
2023; Feuerriegel et al., 2024; Li et al., 2024a). Unveiling
the causal relationships between random variables from data
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presents a challenging research task (Hernn & Robins, 2020;
Wang et al., 2022; Zhu et al., 2024). With the rapid growth
of data volume, data owners gradually refuse to share their
personalized data to avoid privacy leakage (Cramer et al.,
2015; Yang et al., 2019; Li et al., 2020), making the infer-
ence of causal graphs from centralized data troublesome.
Consequently, in recent years, federated causal structure
learning (CSL) has been increasing attentions in uncovering
the causal relationships between variables from decentral-
ized data, with a data-privacy protecting way.

Existing federated CSL methods are usually classified into
constraint-based (Li et al., 2024b; Huang et al., 2023; Guo
et al., 2024), score-based (Mian et al., 2023; Ye et al., 2024),
and continuous-optimization-based (Abyaneh et al., 2022;
Ng & Zhang, 2022; Gao et al., 2023; Chengbo & Kai, 2024)
methods. Almost all of them focus on discovering causal
relations among a set of identical variables, without consid-
ering latent variables underlying the data. Additionally, the
federated strategies presented by these methods typically
reflect only the overall quality of locally discovered causal
graphs in every iteration, ignoring the varying importance
of relationships between variables within each graph. For
instance, PERI (Mian et al., 2023) learned the final glob-
al causal graph that minimizes the worst-case regret with
respect to the locally discovered causal networks, using dis-
tributed min-max regret optimization. FedCSL (Guo et al.,
2024) first estimated the sample size of each client and then
assigned sample-size-based weights for the local results.
Notears-ADMM (Ng & Zhang, 2022) relied on the ADMM
(Boyd et al., 2011) optimization, FedDAG (Gao et al., 2023)
employed the FedAvg (McMahan et al., 2017) technique,
and FedCDH (Li et al., 2024b) constructed the summary
statistics, all of which exchange statistics representing the
whole local graphs.

In practice, often due to privacy, ethical, financial, and prac-
tical concerns, the variables observed by different clients
are not entirely identical but partially overlapping (Tillman
& Spirtes, 2011), and the data collected by clients might be
suitable for uncovering the relationships between different
variables. For example, multiple hospitals, due to variations
in professional specialties, medical resources, and technical
proficiency, measure non-identical indicators and are suit-
ed for diagnosing different types of diseases. Therefore, it
is essential to study federated causal structure learning in
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Figure 1. A toy example to illustrate spurious dependencies caused
by non-overlapping variable pairs. Here,E and F are not observed
together by any client, so their relationship is unknown and depen-
dencies between several variables adjacent to them are spurious,
such as A◦−◦E in client c1, B◦−◦C in client cm, and others.

the setting of non-identical variable sets, with an effective
federated strategy.

However, designing such a federated strategy presents two
main challenges. The first is that the potential presence
of non-overlapping variable pairs—those that are never ob-
served together by any client—may introduce spurious de-
pendencies, as illustrated in Figure 1. Due to the lack of joint
observations for these non-overlapping pairs, it is impossi-
ble to infer their relationships from the input data. Moreover,
dependencies among overlapping variables may be affected
by them. Specifically, either variable in a non-overlapping
variable pair may act as an unobserved confounder or me-
diator for the other and its adjacent overlapping variables,
thereby introducing spurious dependencies. The second
challenge is how to evaluate the importance of causal re-
lationships between different variables and aggregate both
“correct” and “good” relations in each iteration. While some
distributed causal discovery methods take into account non-
identical variable sets (Cao et al., 2024; Huang et al., 2020;
Triantafillou & Tsamardinos, 2015; Tillman et al., 2008),
they ignore the issues mentioned above and typically allow
raw data to be shared.

To address the above key challenges, we propose a novel
federated causal discovery algorithm for non-identical vari-
able sets, called FedCDnv, aiming to design an effective
federated strategy that aggregates both “correct” and “good”
relationships during collaboratively learning, while preserv-
ing data privacy. The strategy involve two factors. One is
that detecting whether the learned relationships are “correc-
t” or not. For this, we develop theories to first determine
whether the relationship between each non-overlapping vari-
able pair is definitively non-causal and then examine which
dependencies among overlapping variables are affected. The
other is that analyzing which relationships are “good” ones.
Here, we consider the stability of the learning process from
the perspective of an interval of significance levels, and re-
gard relationships that remain stable as “good” ones. To
this end, we define stable causal relationships and stable

non-causal relationships as those that are both “correct” and
“good” across multiple graphs. Based on the above consid-
erations, we design a two-level priority selection strategy
(TPSS) in the context of non-identical variable sets, bridg-
ing local learning on clients with global aggregation on the
server. Extensive experiments on synthetic, benchmark, and
real-world data validate the effectiveness of FedCDnv.

2. Formal Preliminaries
When the causal sufficiency assumption (Spirtes et al., 2000)
is violated, the underlying system is typically modeled us-
ing Semi-Markov Causal Models (SMCMs) (Tian & Pearl,
2002) or Maximal Ancestral Graphs (MAGs) (Richardson &
Spirtes, 2002), rather than Directed Acyclic Graphs (DAGs)
(Spirtes et al., 2000). We use V = {O,L,S} to denote a set
of all variables describing the system, where O, L, and S
represent disjoint sets of observed, latent, and selection vari-
ables, respectively. In this work, we use MAGs to model the
conditional independence relations among O, denoted by
M = (O,E), whereE ⊆ O×O is the set of edges including
directed edges (→), bi-directed edges (↔), and undirected
edges (−). For Xi, Xj ∈ O, Xi→Xj denotes that Xi is a
direct cause of Xj , Xi↔Xj denotes that the presence of
latent confounders between Xi and Xj , and Xi−Xj indi-
cates the presence of selection bias between them. MAGs
with the exact set of conditional independencies are Markov
equivalent, and the complete set is represented as a Partial
Ancestral Graph (PAG). In a PAG, endpoints that can be
either arrowheads (>) or tails (−) in different MAGs are de-
noted with a circle (◦). In this work, we assume the presence
of latent confounders but no selection bias.

Consider that there are m clients in total, denoted by C =
{c1, · · · , cm}, and one central server, denoted by S. Each
client has its own local dataset Dk and observed variables
Ok (k ∈ {1, · · · ,m}). Let nk and dk denote the number
of samples and variables in client ck, respectively. The u-
nion of observed variables across m clients is denoted by
the set O =

⋃m
k=1Ok, with d = |O| being the total num-

ber of variables. Since the variable sets across clients are
non-identical, we categorize latent variables behind data
into two types: absolute latent variables and relative latent
variables. Absolute latent variables refer to the aforemen-
tioned L, while relative latent variables exist in each client
ck, represented as Lk = O\Ok. In addition, we use non-
overlapping variable pairs to describe pairs of variables that
are not observed simultaneously by any client, and similarly
use overlapping variable pairs to represent pairs that are
observed simultaneously by at least one client.

The core of our work is to identify causal relationships on
the integrated variable set O within the context of federat-
ed learning, using individual datasets with latent variables.
The assumptions required for this paper are presented as
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Assumptions 2.1, 2.2 and 2.3.
Assumption 2.1. Assume that Pk is the joint probability
distribution over Ok, andMk is the MAG describing the
causal relations among Ok for the client ck, then Pk and
Mk are assumed to be faithful to each other.
Assumption 2.2. All local datasets are uniformly sampled
from the same causal DAG over V = {O,L,S}, and the
probability distribution of samples can differ across different
clients. In addition, any two local datasets Di, Dj (i, j ∈
{1, · · · ,m}, i 6= j) are not shared.
Assumption 2.3. Assume that the intersection of any two
variable sets Oi and Oj , observed by client ci and cj (i 6= j;
i, j ∈ {1, · · · ,m}), is not empty, i.e., Oi ∩Oj 6= ∅.

3. The Proposed FedCDnv Algorithm
In this section, we present FedCDnv, which consists of three
key submodules. The first submodule focuses on develop-
ing theories to detect whether the relationship between each
variable pair, both non-overlapping and overlapping ones,
is definite (i.e., “correct”) causal or non-causal relationship
(Section 3.1). Based on the constructed theories, the sec-
ond submodule aims to design a federated strategy suited
for the context of non-identical variable sets (Section 3.2).
The third submodule presents the implementation details of
FedCDnv (Section 3.3).

3.1. Develop Theories

The setting of non-identical variable sets introduces two
theoretical challenges to federated causal discovery. On one
hand, non-overlapping variable pairs may exist and their re-
lationships cannot be theoretically identified due to the lack
of their joint data. Our first focus is to determine whether
there is a definite non-causal relationship between them. On
the other hand, the presence of non-overlapping variable
pairs causes spurious dependencies. Our second focus is to
examine whether the discovered causal relationships among
overlapping variable pairs are spurious.

Assume that Gk = (Ok, Ek) is a local causal graph learned
from the dataset in client ck (k ∈ {1, · · · ,m}) with an ora-
cle of conditional independence tests, where Ok represents
the variable set observed by ck and Ek ⊆ Ok × Ok repre-
sents the set of learned edges (including→, ↔, ◦→,◦−◦).
Let G = (O,E) be an integrated graph over O, obtained
by aggregating adjacencies and arrowheads (one of the ori-
entations) from all local graphs (i.e., O =

⋃m
k=1Ok, E =⋃m

k=1Ek). We first classify any two variables X,Y ∈ O
into two categories and then propose the following theories.

I 〈X,Y 〉 is a non-overlapping variable pair, i.e., X , Y
are not observed simultaneously by any client;

II 〈X,Y 〉 is an overlapping variable pair and they are
observed simultaneously by at least one client.

For Category I, due to the absence of joint data for non-
overlapping variable pairs, their relationships are initially
considered to be non-causal and non-definite, meaning it is
unknown whether edges exist between them in the ground
truth. To examine which of these relationships are definite
non-causal, we introduce Theorem 3.1 as follows.

Theorem 3.1. Let 〈X,Y 〉 be a non-overlapping variable
pair (X,Y ∈O) and AGX be the set of variables adjacent to
X in G. If there existsAGX ∩AGY = ∅&AGX 6= ∅&AGY 6= ∅,
and for each Y ′ ∈ AGY , 〈X,Y ′〉 is not a non-overlapping
variable pair (and vice versa), then the relationship between
X and Y is considered definitively non-causal.

Theorem 3.1 utilizes the properties of adjacency sets of vari-
ables in non-overlapping variable pairs to examine whether
the relationship between them is definitively non-causal.

For Category II, we initially assume the relationships among
overlapping variable pairs are definite, or “correct”. How-
ever, the presence of non-overlapping variable pairs may
introduce spurious dependencies, leading to non-definite (or
“incorrect”) relationships among overlapping variable pairs.
For this, Lemmas 3.2 and 3.3 are introduced to detect which
of these learned relationships are non-definite.

Lemma 3.2. Assume that X and Y (X,Y ∈ O) are ob-
served simultaneously by at least one client and Zn repre-
sents a union set of variables that appear in non-overlapping
variable pairs with non-definite, non-causal relationships.
If X ∈ Zn or Y ∈ Zn, then the causal relationship between
X and Y is considered to be non-definite.

In Lemma 3.2, if a non-overlapping variable pair cannot be
determined to be definitively non-causal by Theorem 3.1,
then the causal relationships between each variable in the
pair and its adjacent variables, are considered non-definite.

Lemma 3.3. Assume that X and Y (X,Y ∈ O) are ob-
served simultaneously by at least one client and AGX is
a set of variables adjacent to X in G. If there exists a
non-overlapping variable pair 〈A,B〉 such that {A,B} ⊆
AGX ∪ AGY , then the causal relationship between X and Y
is considered to be non-definite.

In Lemma 3.3, if X and Y are identified as adjacent based
on the raw data and an oracle for conditional independence
tests, this adjacency may arise from incomplete or incorrect
separating sets. In other words, the ideal separating sets,
which are supposed to make X and Y independent, may
contain pairs of variables that cannot be observed together
by any client. As a result, no valid separating set exists that
can fully ensure the independence of X and Y .

3.2. Design the Federated Strategy

In this subsection, we design a federated strategy—two-
level priority selection strategy (TPSS), aiming to aggregate
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Figure 2. An example of p-value distributions between 40 nodes
from different perspectives, with the left subplot showing a frontal
view and the right one displaying an adjusted angle. The gray
plane represents the significance level α (p-value) = 0.05, with
false positives and false negatives concentrated around α.

both “correct” and “good” relationships across different
clients. It contains two steps as follows.

Step1: Define stable relationships. To represent both “cor-
rect” and “good” relationships across multiple local causal
graphs, we introduce the concept of stable relationships.

Let Gk = (Ok, Ek) denote a causal graph learned from
the dataset of client ck (k ∈ {1, · · · ,m}), and let {pckij }
be the set of p-values obtained by conducting conditional
independence (CI) tests on Xi and Xj (Xi, Xj ∈ Ok),
conditioned on the separating sets in client ck. Given an
interval of significant level [α − θ1, α + θ2] (0 < θ1 < α,
α < θ2 < 1−α, and α is the significant level), we define the
stable causal and non-causal relationships in Gk as follows.
Definition 3.4. stable causal relationship. In a causal
graph Gk, if the relationship between Xi and Xj is deter-
mined to be definite causal, and the maximum of p-values
p̄ckij for Xi ⊥6⊥Dk Xj |Z (∀Z ⊆ Ok\{Xi, Xj}) is lower than
α− θ1, we call the relationship between Xi and Xj a stable
causal relationship in Gk.
Definition 3.5. stable non-causal relationship. In a
causal graph Gk, if the relation between Xi and Xj is de-
termined to be definite non-causal, and there exists a set
Z ⊆ Ok\{Xi, Xj} such that Xi ⊥⊥Dk Xj |Z with a corre-
sponding p-value greater than α+θ2, we call the relationship
between Xi and Xj a stable non-causal relationship in Gk.

The definition of stable relationships involves two charac-
teristics. First, a stable relationship must be consistent with
those in the ground truth (i.e., it is a definite relationship).
If the relation between Xi and Xj deviates from the ground
truth, it will become unstable, thereby introducing errors.
The second characteristic arises from an intuition that, in
practice, when the p-value p is very small (e.g., p ≤ 0.001),
the null hypothesis can be rejected, and when p is very large
(e.g., p > 0.5), there is insufficient evidence to reject the
null hypothesis. Figure 2 illustrates the experimental dis-
tribution of false positives and false negatives relative to
the confidence level α, which shows that false positives and
false negatives are concentrated around the confidence level,

which is within the range [α− θ1, α+ θ2]. This provides
empirical evidence supporting the intuition.

Step2: Present the details of TPSS. TPSS contains two
levels of priority. The first level is to identify the inconsistent
causal relationships caused by the non-identical variable
sets. And the second level aims to evaluate the varying
importance of relationships between variables.

Assume that 〈Xi, Xj〉 (Xi, Xj ∈ O) is an overlapping vari-
able pair. Let {Gk′} denote the set of local graphs where
Xi and Xj are observed together, corresponding to the set
of clients {ck′}. If Xi and Xj are adjacent in {Gk′a} but not
adjacent in the remaining graphs {Gk′} \ {Gk′a} (denoted
as {Gk′n}), then TPSS begins to execute.

At the first level, we identify whether the inconsistent adja-
cencies betweenXi andXj in {Gk′a} and {Gk′n} are caused
by non-identical variable sets across clients, and introduce
Conditions 3.6 and 3.7 as follows.

Condition 3.6. For variables Xi, Xj with a bi-directed
edge between them in client ck′a , if there exists a client ck′n
such that k′a 6= k′n, Xi←◦Y ◦→Xj ∈ Ek′n , and Y /∈ Ok′a ,
then Y is an unobserved confounder for client ck′a .

Condition 3.7. For variables Xi, Xj , which take forms
such asXi◦−◦Xj , Xi◦→Xj , orXi←◦Xj in client ck′a , their
inconsistent adjacencies arise from non-identical observed
variable sets, under the following condition: for any Gk′n ∈
{Gk′n}, there exists a minimal separating set Z ⊆ Ok′n such
that Xi ⊥⊥Xj |Z holds in Dk′n

, and for every Gk′a ∈ {Gk′a},
the variables in Z are never simultaneously observed—that
is, there does not exist a subset of Ok′a that contains all
variables in Z, and Xi, Xj /∈ Z.

If the first level of priority is not satisfied, then we suspect
that the inconsistency of Xi and Xj in {Gk′} is caused by
inaccurate CI tests. Thus, at the second level of priority,
we propose a way for evaluating varying importance of
relationships between different variables. It involves two
aspects: “correct” and “good” relationships for each client,
which are represented as stable relationships; the impact of
varying sample sizes across clients on these relationships.

Specifically, for variables Xi and Xj , we use 1 to represent
the importance of stable relationships between them, wck′ij
(0 < w

ck′
ij < 1) to indicate the importance of non-stable

relationships relative to stable ones, and wck′τ to account for
the impact of the sample size of client ck′ , where ck′ ∈ {ck′}.
The adjacency of Xi and Xj is determined by comparing
valij with 0, where valij is computed as follows.

valij =
∑

ck′∈{ck′}

wck′τ × w
ck′s
ij , (1)

where wck′τ = nk′
n′ (nk′ denotes the sample size of client

ck′ , and n′ =
∑
ck′∈{ck′}

nk′ is the total sample size across
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clients {ck′}), and w
ck′s
ij takes the values: 1, -1, wck′ij , -wck′ij .

Specifically, 1, -1 indicate the importance of stable causal
and non-causal relationships, respectively, whereas wck′ij
and -wck′ij reflect the importance of non-stable causal and
non-causal relationships, respectively.

Here, wck′ij is calculated adaptively using p-values. Specifi-
cally, when the p-value pck′ij falls within [α− θ1, α] or (α,
α+ θ2], it is uniformly scaled to the interval [0, 1] using (2).

p̂
ck′
ij =


α−p

c
k′
ij

θ1
if pck′ij ∈ [α− θ1, α]

p
c
k′
ij −α
θ2

if pck′ij ∈ (α, α+ θ2]

, (2)

where p̂ck′ij denotes the scaled p-value of Xi and Xj . Then
w
ck′
ij is obtained using (3).

w
ck′
ij =

p̂
ck′
ij × |{ck′}|∑

ck′ρ
∈{ck′ρ}

p̂
ck′ρ
ij +

∑
ck′%
∈{ck′%}

1
, (3)

where {ck′ρ} and {ck′%} denote the sets of clients that iden-
tify the relationship between Xi and Xj as non-stable and
stable, respectively. If this relationship is identified as non-
stable but the corresponding p-value does not fall within the
interval [α− θ1, α+ θ2], then p̂ck′ij = p

ck′
ij .

3.3. Present the FedCDnv Algorithm

FedCDnv outputs two graphs: FedG, a global causal graph
over O; and FeddG, a subgraph of FedG that contains only
the definite causal and non-causal relationships. The latter
is derived by further applying proposed theories to extract
definite relations from FedG.

3.3.1. OBTAINING FEDG

The algorithm description of FedCDnv is presented in Algo-
rithm 1, which involves two rounds of interaction between
clients and the central server.

FedCDnv first applies an existing causal discovery method
(e.g., FCI (Spirtes et al., 2000) or RFCI (Colombo et al.,
2012)) to the local dataset of each client, obtaining a causal
graph over Ok, denoted by Pagck0 , and the corresponding
set of p-values, denoted by pck . Each client then shares its
local graph Pagck0 and sample size nk with the central server
S. At the server, the adjacencies and orientations from all
local graphs {Pagck0 }mk=1 are integrated into a global graph
G0 = (O,E0). Specifically, for adjacencies, a variable pair
is considered adjacent if any client reports the adjacency
between them. While for orientations (there are three types
of orientations: circle ’◦’, tail ’−’, and arrow ’>’), only
the identified arrows are included in the global graph. For
example, for Xi◦−◦Xj , Xi◦→Xj , and Xi → Xj , the final
relationship between Xi and Xj will be Xi◦→Xj .

(a) GroundTruth
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Figure 3. An example for explaining the cases that rules described
by Zhang (Zhang, 2008) are not applicable to the integrated graph
G0. Based on the rules, B and E are oriented into B→E in G0,
which is not consistent with E→B in GroundTruth.

Obtaining G0 serves two main purposes. First, it enables
the determination of whether the relationship between each
pair of variables is definite, upon which the status matrix
stat is constructed (as explained below). Second, it allows
for updating each local graph Pagck0 , as the orientation rules
proposed by Zhang (Zhang, 2008) are not directly applicable
to G0, as illustrated in Figure 3.

The state matrix stat takes values from the set {-2, -1, 1, 2},
each encoding a different type of relationship between two
variables. Let G = (O,E) denote the integrated graph and
M the ground truth. stat(i, j) = -2 represents a definite non-
causal relationship between Xi and Xj , indicating that they
are not adjacent in either G orM. stat(i, j) = -1 denotes
a non-definite non-causal relationship, where 〈Xi, Xj〉 is
a non-overlapping variable pair, meaning that they are not
adjacent in G, but their relation inM is unknown—they
may or may not be adjacent. stat(i, j) = 2 represents a
definite causal relationship between Xi and Xj , meaning
that they are adjacent in both G andM. Lastly, stat(i, j) =
1 denotes a non-definite causal relationship between Xi and
Xj , where they are adjacent in G, but it is unknown whether
they are adjacent inM.

Next, G0 is broadcast back to all clients, prompting each
client to update its local causal graph, denoted as Pagcku .
And in each client, p-values falling within the interval
[α − θ1, α + θ2] are scaled to [0, 1] using (2), and then
multiplied by -1, resulting in p̃ck . It is worth noting that
scaling only the p-values within [α−θ1, α+θ2] introduces a
level of uncertainty that may help obscure precise statistical
information, thereby enhancing privacy protection to some
extent. The detailed algorithm is shown in Algorithm 2.
Finally, Pagcku and p̃ck of each client are shared to S again.
In S, FedCDnv applies the proposed TPSS to aggregate ad-
jacencies. For orientations, only the identified arrows are
incorporated in the global graph. The detailed algorithm
description is shown as Algorithm 3.

3.3.2. OBTAINING FEDDG

We apply the proposed theories in Section 3.1 to extract
definite relationships from FedG, obtaining FeddG.

For each variable pair 〈Xi, Xj〉, FedCDnv initially divides
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Algorithm 1 FedCDnv
1: Input: {D1, · · · , Dm}, α, θ1, θ2, FCI parameters para
2: Output: FedG, FeddG
3: for each client ck ∈ {c1, · · · , cm} do
4: (Pagck0 , pck ) = C-InitPag(Dk, α, para) /*using FCI*/
5: nk ← obtain the sample size of client ck
6: send Pagck0 and nk to the central server S
7: end for
8: G0← in S, transfer adjacencies and arrowheads of all graphs

({Pagck0 }mk=1) into G0

9: stat ← in S, apply Theorem 3.1, Lemmas 3.2, and 3.3 to
detect whether the learned relation between each variable pair
is definite or not, obtaining the status matrix stat

10: broadcast G0 back to all clients
11: for each client ck ∈ {c1, · · · , cm} do
12: Pagcku ← C-Update(G0, Dk, Pagck0 , α)
13: p̃ck ← scaled p-values in [α− θ1, α+ θ2] using (2), multi-

plied by -1
14: send Pagcku and p̃ck to the central server S
15: end for
16: FedG← S-FedG ({Pagcku }, {p̃ck}, {nk}, α, θ1, θ2, stat)
17: FeddG← according to obtained stat, extracting definite rela-

tions from FedG

Algorithm 2 C-Update

1: Input: G0, Dk, Pagck0 , α
2: Output: Pagcku
3: Ok ← obtain the set of observed variables from Pagck0
4: for each v-structure V = {Xi, Y,Xj} in G0, where Y is the

collider do
5: if V ⊆ Ok, Xi, Y are adjacent and so do Xj , Y in Pagck0

then
6: orient Xi◦→Y and Xj◦→Y in Pagcku
7: end if
8: AckY ← adj(Y ; Pagck0 )
9: for each B ∈ AckY \{Xi, Xj} do

10: if ∃Z ⊆ AckY \{B,Xi, Xj} such that Xi ⊥⊥B|{Z ∪ Y }
or Xj ⊥⊥B|{Z ∪ Y } then

11: orient Y → B in Pagcku
12: end if
13: end for
14: end for

it into one of two categories. For Category I, Theorem 3.1
is applied directly. For Category II, Lemma 3.2 and Lemma
3.3 are called in sequence. All (non-)definite relationships
are represented by different values in stat. FedCDnv ex-
tracts the relationships with stat(i, j) = -2 and stat(i, j) =
2 from FedG as definite ones, obtaining FeddG.

3.4. Privacy and Costs Analysis

3.4.1. PRIVACY ANALYSIS

To protect data privacy in the federated setting, FedCDnv
avoids sharing raw data between clients and the server. In-
stead, structural information (i.e., local graphs Pagck0 , Pagcku ,
and the global graph G0) and statistical characteristics (i.e.,
p̃ck and nk) are exchanged. Notably, the p-values within

Algorithm 3 S-FedG

1: Input: {Pagcku }, {p̃ck}, {nk}, α, θ1, θ2, stat
2: Output: FedG
3: O← the set of integrated variables
4: for each Xi, Xj ∈ O do
5: for each client ck′ ∈ {ck′}, where Xi and Xj are jointly

observed do
6: obtain the minimal separating set of Xi and Xj based on

Pagck′u
7: compute wck′τ and w

ck′s
ij based on Pagck′u , stat and p̃ck′

8: end for
9: if Conditions 3.6 and 3.7 are satisfied then

10: Xi and Xj are not adjacent in FedG
11: else
12: valij is computed using (1)
13: if valij > 0 then
14: Xi and Xj are adjacent in FedG
15: end if
16: end if
17: end for
18: transfer arrowheads from each Pagcku ∈ {Pagcku } to FedG

the interval [α − θ1, α + θ2] are first scaled using Eq. (2)
and then multiplied by -1, resulting in the transformed set
of p-values, denoted by p̃ck . This transformation reduces
the risk of leaking precise statistical characteristics, thereby
enhancing privacy to a certain extent.

To further avoid data privacy leakage, several secure compu-
tation techniques can be considered in this paper. For exam-
ple, secure multiparty computation (Cramer et al., 2015) is
utilized to encrypt the exchanged graphs and sample sizes,
enabling multiple clients to collectively compute a function
over their inputs while keeping the data private. Alternative-
ly, homomorphic encryption (Acar et al., 2018) facilitates
the processing of encrypted data through complex mathe-
matical operations without compromising the encryption.
Furthermore, to prevent the leakage of semantic information
related to variables, methods such as assigning unique iden-
tifiers to each variable can also be introduced. Also a certain
client can be selected as a proxy server to avoid the leakage
of the graph structure (Gao et al., 2023). Further privacy
protection efforts will be explored in the future works.

3.4.2. COMMUNICATION COSTS

Assume that the client ck observes dk variables, and the
server S integrates a total of d variables (d ≥ dk, and “=”
holding only when all m clients observe identical variable
sets). For each client ck, two rounds of communication with
the server are involved: one for sending the initially learned
graph and another for sharing the updated local graph. In
the first round, the client sends a dk × dk matrix (Pagck0 ), a
value nk, and receives a d× d matrix (G0) from the server,
which results in a communication cost of O(d2k + d2 + 1).
In the second round, the client sends the updated graphs
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Pagcku and scaled statistical information p̃ck , also a dk × dk
matrix, incurring a cost of O(2d2k). Therefore, the total
communication cost for a single client ck isO(3d2k+d2+1),
and the total cost across all m clients is O(

∑m
k=1(3d2k +

d2 + 1)). Since dk ≤ d, the overall communication cost
is upper-bounded by O(4md2 +m), which can be further
approximated as O(md2) in large-scale settings.

4. Experiments
In this section, we conduct extensive experiments to evaluate
the effectiveness of FedCDnv. First, we describe the exper-
imental setting in Section 4.1 (further details in Appendix
D.1). Then in Section 4.2 and Appendix D.3, we compare
FedCDnv with state-of-the-art methods from two aspect-
s: i) distributed CSL methods over non-identical variable
sets, and ii) federated CSL methods over a set of identical
variables. Next, we verify the effectiveness of the definite
causal and non-causal relationships identified by FedCDnv
in Section 4.3, and conduct the sensitivity analysis on sta-
ble relationships in Appendix D.4. Finally, we evaluate the
impact of parameters listed in Table 4 in Appendix D.5.

4.1. Experimental Settings

Datasets. (1) Synthetic data. The underlying DAGs are
generated using the Erdös-Rényi (Erdös & Rényi, 1959)
graph model with the graph size n. Due to the presence of
absolute latent variables, the corresponding MAG’s graph
size is set to d = n × (1 − λ) (0 < λ ≤ 1). That is,
the total number of observed variables integrated across
all clients is d (|O| = d). For each client, the number of
observed variables is set to dk = d × δ, where 0 < δ ≤ 1
denotes the ratio of client-specific observed variables to
the total integrated variables. (2) Benchmark data. We use
6 networks with ranging from 20 to 111 variables: Child,
Alarm, Insurance, Barley, Child3, and Alarm3. (3) Real-
world data. We use “Sachs” (Sachs et al., 2005) to evaluate
the performance of the methods, randomly selecting 9 out
of 11 variables as those observed by each client.

Baselines. We conduct two types of experiments. (1) We
compare our method with distributed CSL methods over
non-identical variable sets, including FedCDnv-vote, C-
DUIOV (Cao et al., 2024), CD-MiNi (Huang et al., 2020),
and FCI-base. FedCDnv-vote is a variant of FedCDnv with
the voting strategy. FCI-base is a baseline constructed by
integrating causal graphs discovered by FCI on each client,
using a sample-size-based federated strategy. (2) We com-
pare FedCDnv with the state-of-the-art federated CSL meth-
ods in the setting of identical variable sets. Since FedCDnv
still assumes the existence of absolute latent variables, we
focus only on evaluating the performance of the learned
skeleton. This comparison is intended to serve as a rough
performance reference rather than a strict evaluating. The
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Figure 4. CDMiNi vs. FedCDnv

compared methods include FedCDnv-vote, Notears-ADMM
(Ng & Zhang, 2022), FedPC (Huang et al., 2023), and Fed-
CSL (Guo et al., 2024).

Metrics. (1) We use precision, recall, and F1 score for
returned edges and orientations, denoted as pre-edge, rec-
edge, F1-edge, pre-orie, rec-orie, and F1-orie, to evaluate
the returned causal graphs over non-identical variable sets.
(2) We use pre-edge, rec-edge, and F1-edge to evaluate
causal skeletons learned by the federated CSL methods with
identical variable sets. (3) To test the accuracy of definite
causal and non-causal relationships returned by FedCDnv,
we use the false discovery rate (FDR) for them, denoted as
FDR-C, FDR-dC, FDR-nC, FDR-dnC.

Parameters. For each invocation of FedCDnv, the default
settings for each problem instance (set of datasets) are gener-
ated using the values shown in Table 4 of Appendix D.1. The
default parameters are as follows: G2 tests of conditional in-
dependence, the number of clients |C| = 6, the significance
level α = 0.05, θ1 = 0.049, θ2 = 0.45, λ = 0.15%, δ = 0.85%,
the sample size nk ∈ [100, ns] with ns = 2000.

4.2. Comparison of FedCDnv, FedCDnv-vote, CDUIOV,
CD-MiNi, and FCI-base

4.2.1. FEDCDNV VS. CD-MINI

Since CD-MiNi is suitable for small-scale networks, we
compare it with our method using synthetic data generated
from networks containing 5 to 10 nodes, and the experimen-
tal results are shown in Figure 4. The vertical error bars
(i.e., whiskers) indicate the range of one standard deviation
above and below the mean. This design is chosen for clarity
in comparing multiple methods.

It can be observed that FedCDnv exhibits relatively superior
performance compared with CD-MiNi. Specifically, for
F1-edge, while FedCDnv is slightly inferior to CD-MiNi in
the network with 7 nodes and both are comparable in the
network with 8 nodes, FedCDnv significantly outperforms
CD-MiNi in remaining networks, i.e., networks with 5, 6, 9
and 10 nodes. As for the F1-orie metric, FedCDnv performs
better than CD-MiNi across all six cases displayed. This
difference may be due to FedCDnv considering the inconsis-
tent causal relationships caused by relative latent variables,
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Figure 5. Experimental results on synthetic data.

which could remove certain spurious edges. Additionally,
FedCDnv effectively addresses specific inconsistent adjacen-
cies by further considering the importance of relationships,
thereby enhancing the reliability of causal discovery.

4.2.2. FEDCDNV VS. FEDCDNV-VOTE VS. CDUIOV
VS. FCI-BASE

Synthetic Data. Figure 5 presents the experimental results
for F1-edge and F1-orie of FedCDnv, FedCDnv-vote, C-
DUIOV, and FCI-base on synthetic data. It is observed that
FedCDnv exhibits the highest F1-edge and F1-orie across
almost all networks, with its orientations being nearly 10%
better than those of the compared methods.

Specifically, for F1-edge, we observe that FedCDnv out-
performs other algorithms, followed by FedCDnv-vote and
FCI-base, where FedCDnv-vote is slightly higher than FCI-
base but not significantly, and the last one is CDUIOV. For
F1-orie, it is apparent that FedCDnv demonstrates the best
performance, outperforming other algorithms across nearly
all networks, with the exception of the network containing
10 nodes. While FedCDnv-vote’s F1-orie is slightly higher
than that of FCI-base in most networks, although exceptions
exist in the network with 20 nodes, Lastly, CDUIOV shows
the lower F1-orie than others. This inferior performance of
CDUIOV on F1-edge and F1-orie may mainly be because its
framework is specifically designed for intervention data and
is sensitive to the sample sizes of local datasets. In addition,
the results show that compared with FedCDnv-vote, the fed-
erated strategy proposed by FedCDnv is effective, meaning
it is reasonable to consider both “correct” and “good” re-
lationships. Furthermore, compared with other distributed
methods, the superior experimental results of FedCDnv on
synthetic data demonstrate its effectiveness.

Benchmark Data. Figure 6 presents the results of FedCDnv,
FedCDnv-vote, CDUIOV, and FCI-base on the benchmark
networks. Here, six benchmarks are as the labels of the
horizontal axis: ‘C’, ‘A’, ‘I’, ‘B’, ‘C3’, ‘A3’. It is observed
that FedCDnv demonstrates relatively superior performance
compared with the baseline algorithms. While FedCDnv’s
edge-learning performance is only slightly better than exist-
ing methods, it shows a significant advantage in orientation
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Figure 6. Experimental results on benchmark data.

identification across most networks.

Specifically, for F1-edge, FedCDnv achieves optimal perfor-
mance in the “Barley” and “Child3” networks, and performs
slightly better than other methods in the remaining four
networks. In contrast, the performance of FedCDnv-vote
and FCI-base is comparable, but both are slightly inferior to
FedCDnv. For F1-orie, FedCDnv surpasses the compared al-
gorithms by a margin of 8%-12% in four networks. Howev-
er, on “Insurance” and “Barley”, its performance advantage
is less pronounced. Furthermore, FedCDnv consistently
outperforms FedCDnv-vote across all networks, demonstrat-
ing the effectiveness of the proposed TPSS on benchmark
datasets. Between FedCDnv-vote and FCI-base, their perfor-
mances are relatively balanced; for example, FedCDnv-vote
outperforms in networks like “Alarm”, whereas FCI-base
performs better in networks like “Insurance”. In contrast,
CDUIOV exhibits suboptimal performance in both edge and
orientation identification. The reason for this occurrence is
similar to what was discussed for synthetic data above.

Real-world Data. Table 1 presents the experimental results
of FedCDnv, FedCDnv-vote, CDUIOV, and FCI-base on
“Sachs”. The results indicate that FedCDnv demonstrates
a significant advantage in identifying adjacencies between
variables, as reflected by its superior performance in terms
of pre-edge, rec-edge, and particularly F1-edge. Notably,
FedCDnv achieves nearly a 10% improvement in F1-edge
compared to the other methods. This performance gain can
be attributed to FedCDnv’s ability to more effectively handle
the heterogeneity and partial overlap in variable sets across
clients. By designing two levels of TPSS, FedCDnv con-
siders the impact of the presence of possible confounders
and the varying importance of relationships, reducing spu-
rious dependencies and enhancing the accuracy of learned
edges. In terms of learned orientations, while FedCDnv
does not achieve the highest precision or recall individually,
it attains the best F1-orie. This may be due to the better
performance of the edges identified by FedCDnv, which
results in a relatively high rec-orie. It is also worth noting
that while CDUIOV achieves the highest F1-orie value, this
comes at the cost of significantly lower recall. This trade-off
arises from its strong dependence on correctly identifying
intervention targets.
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Table 1. Experimental results in the “Sachs” dataset.
real data Algorithms pre-edge rec-edge F1-edge pre-orie rec-orie F1-orie

Sachs

FedCDnv 0.6128± 0.0392 0.8096± 0.1322 0.6967± 0.0316 0.5045± 0.0431 0.1846± 0.0713 0.2861± 0.0840
FedCDnv-vote 0.4643± 0.0124 0.7647± 0.1369 0.5778± 0.0998 0.3851± 0.0959 0.2260± 0.0124 0.2544± 0.0384

CDUIOV 0.6000± 0.0132 0.3529± 0.0143 0.4444± 0.143544 0.8843± 0.0507 0.0858± 0.0263 0.1211± 0.0021
FCI-base 0.4643± 0.0143 0.7722± 0.0454 0.5823± 0.1289 0.2157± 0.0750 0.2635± 0.0689 0.2488± 0.0689

Table 2. Performance of definite causal and non-causal relations.
|V| FDR-C FDR-dC FDR-nC FDR-dnC
10 0.0000±0.0000 0.0000±0.0000 0.2549±0.1061 0.2270±0.1169
20 0.0724±0.1766 0.0766±0.2458 0.0475±0.0291 0.0476±0.0247
30 0.0743±0.1313 0.0681±0.1703 0.0169±0.0181 0.0144±0.0168
40 0.1162±0.0898 0.0935±0.1176 0.0688±0.0098 0.0671±0.0093
50 0.1122±0.1073 0.0892±0.1458 0.0264±0.0051 0.0263±0.0043
60 0.0974±0.0964 0.1079±0.1180 0.0202±0.0045 0.0196±0.0047
80 0.0929±0.0809 0.1043±0.1101 0.0325±0.0026 0.0309±0.0029

100 0.1380±0.1008 0.1351±0.1655 0.0099±0.0020 0.0092±0.0018
120 0.0871±0.0619 0.0791±0.0966 0.0132±0.0019 0.0130±0.0019
150 0.0869±0.0485 0.0737±0.0546 0.0133±0.0012 0.0132±0.0013

4.3. Performance of the Identified Definite Relations

To evaluate the effectiveness of the proposed theories in
identifying definite relationships, we compare the FDR val-
ues between the returned (non-) causal relationships and the
returned definite (non-) causal relationships. The experi-
mental results are shown in Table 2, where |V| represents
the number of variables in the underlying DAG. FDR-C and
FDR-nC denote the FDR values of the returned causal and
non-causal relationships, respectively, while FDR-dC and
FDR-dnC represent the FDR values of the returned definite
causal and definite non-causal relationships. A lower FDR
value indicates better performance.

As shown in Table 2, compared to the identified causal and
non-causal relationships, the performances of the extracted
definite causal and non-causal relationships are superior in
most networks. Specifically, in 6 out of 9 networks, the FDR-
dC value is lower than FDR-C, with an average reduction
of 1%. In the remaining 3 networks, although the FDR-dC
value is slightly higher, the increase is limited to just 0.5%.
These results indicate that, on average, definite causal rela-
tionships achieve lower FDR values, demonstrating better
reliability. For definite non-causal relationships, FedCDnv
shows improved performance in 90% of the networks, fur-
ther confirming the effectiveness of the proposed theories.
The consistently lower FDR values for definite relationship-
s, whether causal or non-causal, empirically validate the
effectiveness of extracting the “correct” relationships.

5. Conclusion and Future Work
We propose a novel algorithm, FedCDnv, for discovering
causal relationships over non-identical variable sets in fed-
erated settings. This work focuses on two key aspects.
First, we develop theories to examine spurious dependen-
cies caused by the potential presence of non-overlapping

variables, extracting definite (or “correct”) causal and non-
causal relationships. Second, we consider the varying im-
portance of causal relationships across different clients,
and define stable relationships as those that are not on-
ly “correct” but also “good” within each client. To this
end, we design a federated strategy—two-level priority se-
lection strategy (TPSS)—to aggregate both “correct” and
“good” causal relationships from individual updates, ob-
taining the global causal graph over an integrated set of
variables. Compared to existing baselines, FedCDnv’s supe-
rior performance demonstrates its effectiveness in federated
settings with non-identical variable sets.

In future work, we plan to explore two aspects. First, we aim
to develop more effective methods for learning the causal
graph from dataset per client, that contains latent variables
and limited sample sizes. Second, recognizing that the
current theories for identifying definite relationships are not
yet comprehensive, we intend to conduct a more thorough
theoretical analysis on each pair of variables.

Impact Statement
This paper presents work whose goal is to discover causal
relationships from distributed data stored across individual
clients (e.g., hospitals), while preserving data privacy. It
introduces a more realistic federated setting in which clients
observe non-identical variable sets and contribute causal
relationships with varying importance, thereby improving
the practicality and reliability of causal discovery in real-
world applications. While the method avoids direct data
sharing, it involves the exchange of structural and statistical
information, which may still pose risks of privacy leakage.
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Cramer, R., Damgård, I. B., et al. Secure multiparty com-
putation. Cambridge University Press, United Kingdom,
2015.

Deng, C., Bello, K., Aragam, B., and Ravikumar, P. K.
Optimizing notears objectives via topological swaps. In
Proceedings of the International Conference on Machine
Learning, pp. 7563–7595. PMLR, 2023.

Dhir, A. and Lee, C. M. Integrating overlapping datasets
using bivariate causal discovery. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 3781–3790, 2020.
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A. Related Work
In this section, we review and discuss related work from three perspectives. The first perspective involves the discussion of
the existing federated causal discovery (FCD) methods. The second perspective reviews the causal discovery (CD) methods
from distributed data with non-identical variable sets. And the third perspective presents a detailed discussion about the
differences between the above two, that is FCD from decentralized data and CD in distributed setting.

A.1. Federated Causal Discovery from Decentralized Data

In recent years, to preserve data privacy, some FCD methods have been proposed to discover causal relationships among a
set of observed variables from decentralized data. They are categorized into three classes: constraint-based, score-based
and continuous-optimization-based methods. Specifically, constraint-based methods utilize conditional independence tests
to discover causal relationships among variables in a context of federated learning, such as FedPC (Huang et al., 2023),
FedCSL (Guo et al., 2024), and FedCDH (Li et al., 2024b). FedPC introduces a layer-wise aggregation strategy to adapt PC
into federated settings. FedCSL designs a federated local-to-global learning strategy, enabling it to scale to high-dimensional
data. FedCDH is proposed to accommodate arbitrary causal models and heterogeneous data. For score-based methods, few
have been published. DARLS (Ye et al., 2024) utilizes the distributed annealing strategy to search for the optimal graph,
while PERI (Mian et al., 2023) aggregates the results of the local greedy equivalent search (GES) (Chickering, 2002) and
chooses the worst-case regret for each iteration. Finally, continuous-optimization-based methods mainly extend NOTEARS
(Zheng et al., 2018; Deng et al., 2023) with federated strategies. NOTEARS-ADMM (Ng & Zhang, 2022) applies the
ADMM (Boyd et al., 2011) optimization to a federated setting; FED-CD (Abyaneh et al., 2022) utilizes belief aggregation
to address the problem of inferring causal structure from the mixed data of observational and interventional data; and
FedDAG (Gao et al., 2023) learns an adjacency matrix to estimate the DAG and neural representation to approximate causal
mechanisms.

All these methods focus on discovering causal relationships over a set of identical variables and do not consider the presence
of latent variables, which do not often fit real-world situations where variables measured in different clients are non-identical.
In addition, most of them consider the overall quality of the learned causal graph, ignoring the varying importance of
relationships between variables within this graph.

A.2. Causal Discovery from Distributed Data

Several methods have been proposed to discover causal relationships from distributed data with non-identical variable
sets. Tillman et al. (Tillman et al., 2008) propose the ION algorithm, which discovers a minimal equivalence class of
causal DAGs using local independence information on different subsets of variables. To mitigate contradictories resulting
from statistical errors, Tillman et al. (Tillman & Spirtes, 2011) propose the IOD algorithm to learn equivalence classes
directly by employing statistical tests across datasets simultaneously (Tillman, 2009). Triantafillou et al. (Triantafillou &
Tsamardinos, 2015) propose COmbINE, which accepts a collection of interventional datasets over overlapping variable
sets under different experimental conditions, and then outputs a summary of all causal models indicating the invariant
and variant structural characteristics of all models that simultaneously fit all of the input data sets. To reduce the number
of possible structures, Dhir et al. (Dhir & Lee, 2020) adapt and extend bivariate causal discovery algorithms to learn
consistent causal structures from multiple datasets with non-identical variable sets. Huang et al. (Huang et al., 2020) propose
CD-MiNi to identify causal relationships from multiple observations with non-identical variable sets, under the linearity and
non-Gaussianity assumptions. Recently, Cao et al. (Cao et al., 2024) propose the CDUIOV algorithm, designed to discover
causal relationships over overlapping variable sets from multiple interventional datasets with unknown intervention targets.

In general, the above algorithms allow the raw data to be shared and ignore the spurious dependencies caused by non-
overlapping variables, resulting in the reliability of returned outputs not being guaranteed.

A.3. Differences between FCD from Decentralized Data and CD from Distributed Data

The differences between federated causal discovery (FCD) from decentralized data and causal discovery (CD) from
distributed data mainly stem from data characteristics and application areas.

In a federated setting, data is scattered across multiple independent data sources or clients, and data is not shared between
them. Therefore, federated causal discovery focuses on discovering causal relationships between variables from decentralized
independent data sources, emphasizing protecting the data privacy and reducing communication costs. It is suitable for
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scenarios that require high privacy protection, such as medical and health data (Chengbo & Kai, 2024). In contrast, although
distributed data are stored across multiple nodes, these nodes are usually part of a centralized system, and data can flow
and be shared between them. Therefore, causal discovery methods for distributed data focus more on the consistency and
efficiency of the causal discovery framework. It is suitable for scenarios that require rapid processing and analysis of large
amounts of data, such as e-commerce data.

B. Formal Preliminaries
B.1. Definitions and Key Concepts

When the causal sufficiency assumption (Spirtes et al., 2000) is violated, the underlying system is typically modeled using
SMCMs or MAGs, rather than DAGs. Here, we first introduce the term mixed causal graphs to represent both SMCMs
and MAGs. In a mixed causal graph GM = (V, E), where V = {O,L,S}, there are directed (→), bi-directed (↔), and
undirected (−−) edges. A directed edge X → Y denotes that X is a cause of Y , a bi-directed edge X ↔ Y indicates
that there are unobserved confounders behind them, and an undirect edge X−−Y denotes the presence of selection biases
between X and Y . In GM , X is called an ancestor of Y and Y is called a descendant of X if either X = Y or there exists
a directed path from X to Y . Let AnG(Y ) denote the set of ancestors of Y in G. A directed cycle in GM occurs when
X → Y ∈ E and Y ∈ AnG(X). An almost directed cycle in GM occurs when X ↔ Y ∈ E and either Y ∈ AnG(X) or
X ∈ AnG(Y ). Directed cycles and almost directed cycles are allowed in mixed causal graphs.

We use the MAG M = (O,E) to model the conditional independence relations among O and use Xi ⊥⊥M Xj |Z and
Xi ⊥6⊥M Xj |Z to represent that Xi and Xj are m-separated and m-connected (or conditionally independent and dependent)
given a set Z, respectively. Here, m-separation is a natural extension of d-separation, which is presented as Definition B.1.
Under the Causal Markov and Faithfulness assumptions (Spirtes et al., 2000), every m-separation present inM corresponds
to a conditional independence and vice-versa.

Definition B.1. m-separation (Zhang, 2008; Triantafillou & Tsamardinos, 2015). InM, Xi and Xj are m-separated by
Z ⊆ O\{Xi, Xj}, if every path between Xi and Xj is blocked by Z. A path τ between Xi and Xj is blocked by Z if
and only if the following conditions hold: 1) every non-collider on τ is not a member of Z. 2) every collider on τ has a
descendant in Z.

In general, some orientations of MAGs are indistinguishable from observational data when using constraint-based methods.
MAGs with the same set of conditional independencies are considered Markov equivalent, and the complete set of Markov
equivalent MAGs is represented by a Partial Ancestral Graph (PAG). In a PAG, endpoints that can be either arrowheads (>)
or tails (−) in different MAGs are denoted with a circle (◦), and the symbol ? serves as a wildcard to denote any of the three
marks (>, −, or ◦). There are four types of edges in a PAG:→, ◦→, ◦−◦ and↔.

B.2. Connections and Differences among DAGs, SMCMs, MAGs and PAGs

In this subsection, we describe the connections and differences among DAGs, SMCMs, MAGs, and PAGs, which is
instantiated as shown in Figure 7. Before that, we first introduce inducing paths, as shown in Definition B.2, which play a
pivotal role because adjacencies and non-adjacencies in MAGs can be interpreted as the existence or absence of inducing
paths in SMCMs.

Definition B.2. Inducing path (Zhang, 2008; Triantafillou & Tsamardinos, 2015). In a mixed causal graph over V =
O ∪ L ∪ S , let X , Y (X,Y ∈ O) be any two vertices, and L, S be two disjoint sets of latent confounders and selection bias,
respectively. A path p between X and Y is called an inducing path relative to 〈L,S〉 if every non-endpoint vertex on p is
either in L or a collider, and every collider on p is an ancestor of either X or Y , or a member of S. When L = S = ∅, p is
called a primitive inducing path between X and Y .

As shown in Figure 7, DAGs, SMCMs, MAGs, and PAGs are different types of causal graphs for describing a system.
Specifically, (a) represents a DAG over O ∪ L ∪ S, where O = {A,B,C,E}, L = {L}, and S = ∅. (b) and (c) are both
mixed graphs. (b) represents a SMCM over O, which is obtained by hiding the variable L in (a), and (c) represents a MAG
over O, which is transformed by looking for inducing paths of every pair of variables in (b). (d) is a PAG over O, which
represents the Markov equivalent class of MAGs with the exact set of conditional independencies.

In Figure 7(b), A and E are not adjacent but they are not m-separated by any set, that is, A⊥6⊥E|∅, A⊥6⊥E|{B}, A⊥6⊥E|{C}
and A⊥6⊥ E|{B,C}. Hence, the SMCM skeleton in (b) learned from the data is not unique. To overcome this obstacle, the
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Figure 7. A toy example graph for describing the connections and differences among DAGs, SMCMs, MAGs, and PAGs.

Table 3. Summary of notations
Notations Meanings

C = {c1, · · · , cm}; S m clients; a central server
O;Ok the integrated set of observed variables; the set of variables observed by client ck
L; Lk; S absolute latent variables; relative latent variablesO\Ok; selection variables
Dk; nk; dk data stored in client ck; sample size ofDk , number of variables inOk
Mk; Pk an underlying MAG describing the causal relationships amongOk; the joint probability distribution overOk

X⊥⊥DkY |Z;X⊥6⊥DkY |Z X and Y are conditionally independent given a set Z inDk;X and Y are conditionally dependent given a
set Z inDk

Pagck0 ; Pagcku an initial causal graph learned from the data of client ck; an updated causal graph overOk

notation of MAGs is introduced. Here, Figure 7(c) is obtained from Figure 7(b) by looking for primitive inducing paths in
(b). Specifically, the path A→ B ↔ E is an inducing path in (b), and thus the necessary edge A→ E is added to (c). In
addition, when an almost directed cycle B ↔ E & B → E occurs in (b), the bi-directed edge B ↔ E is removed from
(c). Thus, converting a MAG into the corresponding SMCM is generally not possible, as we cannot know which edges
correspond to direct causation or confounding, and which ones are due to primitive inducing paths. Finally, Figure 7(d) is
learned using a CD method (e.g., RFCI (Colombo et al., 2012) or ICD (Rohekar et al., 2021)) with an oracle of conditional
independence tests. In (d), there are four types of edges: →, ◦→, ◦−◦,↔. Here, A◦→E ←◦C is identified as a V-structure,
and B◦→E can be identified using the rules described in (Zhang, 2008).

B.3. Summary of Notations

We summarize the important symbols and their meanings throughout the paper, as shown in Table 3.

C. Proofs of the Proposed Theories
Assume that Gk = (Ok, Ek) is a local causal graph learned from the data of client ck (k ∈ {1, · · · ,m}) with an oracle of
conditional independence tests. Assume that G = (O,E) is an integrated graph formed by aggregating adjacencies and
arrowheads (one of the orientations) from all local graphs (i.e., O =

⋃m
k=1Ok, E =

⋃m
k=1Ek), andM is the underlying

MAG, representing the ground truth graph.

Theorem C.1. Let 〈X,Y 〉 be a non-overlapping variable pair (X,Y ∈ O) and AGX be the set of variables adjacent to X in
G. If there exists AGX ∩ AGY = ∅ & AGX 6= ∅ & AGY 6= ∅, and for each Y ′ ∈ AGY , 〈X,Y ′〉 is not a non-overlapping variable
pair (and vice versa), then the relationship between X and Y is considered definitively non-causal.

Proof. Since X and Y are not observed simultaneously by any client, their relationship cannot be identified from any
dataset. In other words, whether X and Y are adjacent in the ground truth MAGM remains unknown. In addition, we
assume that for each Y ′ ∈ AGY , 〈X,Y ′〉 is not a non-overlapping variable pair (and vice versa), and consider two possible
relationships between X and Y inM, as follows.

(1) Assume that X and Y are not adjacent inM. The condition “AGX ∩AGY = ∅ & AGX 6= ∅ & AGY 6= ∅” implies that either
there are no paths between X and Y , or there exists paths that involve at least two intermediary nodes, apart from X
and Y . Therefore, the proposed conditions are met in this case, and we conclude that the relationship between X and
Y is non-causal.

(2) Assume that X and Y are adjacent inM. The condition “AGX ∩ AGY = ∅” implies three possible cases.

(a) In the ground truth graphM, X is adjacent only to Y , and vice versa. That is, X and Y are mutually adjacent in
M. Since 〈X,Y 〉 is a non-overlapping variable pair, we learn AGX = ∅ and AGY = ∅ from the data, leading to
AGX ∩ AGY = ∅.
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(b) ∃A ∈ O\{X,Y } such that X◦→Y←◦A (or Y ◦→X←◦A). Since X and Y are never observed together by any
client, AGX = ∅ (or A) and AGY = A (or ∅), which leads to AGX ∩ AGY = ∅.

(c) ∃A,B ∈ O\{X,Y } such that A◦→X←◦Y ◦→B. In this case, AGX = {A,B} and AGY = {B}. However, if X
and B form a non-overlapping variable pair, then AGX = {A} and AGY = {B}, and their intersection is empty.

To avoid the cases (a) and (b), the condition that “AGX 6= ∅ & AGY 6= ∅” is required. For case (c), the condition that “for
each Y ′ ∈ AGY , 〈X,Y ′〉 is not a non-overlapping variable pair (vice versa)” is presented.

Based on the above analysis, it is sufficient to prove that X and Y are not adjacent in the underlying graphM using the
mentioned conditions, thereby inferring the non-causal relationship between X and Y .

Lemma C.2. Assume that X and Y (X,Y ∈ O) are observed simultaneously by at least one client and Zn represents a
union set of variables that appear in non-overlapping variable pairs with non-definite, non-causal relationships. If X ∈ Zn
or Y ∈ Zn, then the causal relationship between X and Y is considered to be non-definite.

Proof. X and Y are observed simultaneously by at least one client, implying that 〈X,Y 〉 is not a non-overlapping variable
pair. Suppose there exists a variable A ∈ O \ {X,Y } such that X (or Y ) and A form a non-overlapping variable pair and
their relationship is considered to be non-definite and non-causal, which implies that X ∈ Zn or Y ∈ Zn. There are two
cases regarding the relationship between X and Y .

Case 1: X and Y are adjacent in the ground truthM. The relationship between X and Y is inferred to be adjacent because
no set Z exists such that X and Y are conditionally independent given Z, regardless of whether X and A are adjacent inM.

Case2: X and Y are not adjacent in the ground truthM. Since 〈X,A〉 (or 〈Y,A〉) forms a non-overlapping variable pair
with a non-definite, non-causal relationship, X and Y may be learned as adjacent from local data, which conflicts with the
non-adjacency between X and Y inM. This occurs because A could be a confounder for X and Y , leading to the learned
adjacency between them. As a result, the causal relationship between X and Y is considered to be non-definite.

In summary, we conclude that if X ∈ Zn or Y ∈ Zn, then the causal relationship between X and Y is considered to be
non-definite.

Lemma C.3. Assume that X and Y (X,Y ∈ O) are observed simultaneously by at least one client and AGX is a set of
variables adjacent to X in G. If there exists a non-overlapping variable pair 〈A,B〉 such that {A,B} ⊆ AGX ∪ AGY , then
the causal relationship between X and Y is considered to be non-definite.

Proof. Since X and Y are observed together by at least one client, their relationship can be learned from at least one local
dataset. Assume that X and Y are not adjacent in the ground truth graphM, and then {A,B} ⊆ AGX ∪ AGY implies three
possible cases regarding the structures of 〈A,B〉 and 〈X,Y 〉 inM.

Case1: Both A and B are linked to both X and Y inM. In this case, the separating set that makes X and Y conditionally
independent must be a subset of the adjacent set of either X or Y . If there exists a set Z such that X and Y independent
given Z, and Z contains {A,B}, then based on the dataset Dk (k ∈ 1, · · · ,m), we would learn that X and Y are not
m-separated by Z. The reason is that Z ⊆ AGX ∪AGY , {A,B} ⊆ Z, but {A,B} * Ok (k ∈ 1, · · · ,m). Thus in this case, X
and Y are adjacent in the learned causal graph Gk, which conflicts with the fact that X and Y are not adjacent inM.

Case2: Either A or B is linked to both X and Y inM. Suppose that A is adjacent to X , and B is adjacent to Y . Since the
separating sets for X and Y are incomplete, we may learn that X and Y are adjacent in Gk, which would be inconsistent
with their non-adjacency inM.

Case3: Neither A nor B is linked to X or Y . In this case, if {A,B} * AGX ∪ AGY , then the separating sets for X and Y are
complete. As a result, the learned causal relationship between X and Y is consistent with the ground truth graphM.

In summary, when there exists a non-overlapping variable pair {A,B} ⊆ AGX ∪AGY , the relationship between X and Y
learned from the data may differ from those in the ground truth and is considered to be non-definite.

D. Experiments
This section provides a detailed overview of the experiments. Section D.1 describes the problem attributes and presents the
details of the baseline methods. Section D.2 displays additional experimental results on precision and recall, comparing
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Table 4. Test values and default values of problem attributes in generating experiments in each iteration of FedCDnv.
Problem attributes Test values Default value

Number of variables generated in the underlying DAG (|V|) {10, 20, 30, 40, 50, 60, 80, 100} 30
Ratio of the number of latent variables to variables in underlying DAGs

(λ =
|V|−|O|
|V| )

{5%, 10%, 15%, 20%, 25%, 30%, 35%} 15%

Number of clients (m) {2, 4, 6, 8, 10, 15, 20, 30} 6
Ratio of the number of variables per dataset to the integrated variables

(δ =
|Oi|
|O| )

{95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%} 85%

Interval of confidence level [α− θ1, α+ θ2] with varying α− θ1, where α
= 0.05 and α+ θ2 = 0.5

{0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
0.009}

[0.001, 0.5]

Interval of confidence level [α− θ1, α+ θ2] with varying α+ θ2, where α
= 0.05 and α− θ1 = 0.001

{0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1} [0.001, 0.5]

Interval of Sample size per dataset ([100, ns]) {200, 500, 1000, 2000, 3000, 5000} [100,2000]

Table 5. Description of benchmark BNs.
Network Num.Nodes Num.Edges Max In/Out Degree Min/Max |PC| Type

Child 20 25 2/7 1/8 Medium
Insurance 27 52 3/7 1/9 Medium

Alarm 37 46 4/5 1/6 Medium
Barley 48 84 4/5 1/8 Medium
Child3 60 79 3/7 1/8 Large
Alarm3 111 149 4/5 1/6 Very-Large

FedCDnv, FedCDnv-vote, CDUIOV, CD-MiNi, and FCI-base. Section D.3 presents and analyzes the experimental results,
comparing our method with existing FCD methods, including FedACD, FedPC, and Notears-ADMM. Section D.4 assesses
the sensitivity of stable relationships to the performance of FedCDnv. Finally, Section D.5 presents the impact of different
parameters on the performance of FedCDnv.

D.1. More Details of Experimental Settings

First, for each invocation of the algorithm, the problem instance (i.e., the synthetic data) is generated using the parameters
shown in Table 4. Then, Figure 5 shows the details of the benchmark networks used in the experiments. Finally, to
comprehensively verify the effectiveness of the proposed method, we conduct two types of experiments. The descriptions of
the all compared methods (including ours) are presented as follows.

For the first type of experiments, the compared methods include FedCDnv, FedCDnv-vote, CDUIOV (Cao et al., 2024),
CD-MiNi (Huang et al., 2020), and FCI-base. FedCDnv is our proposed method. FedCDnv-vote is a variant of FedCDnv that
incorporates a voting strategy. CDUIOV is a constraint-based method that discovers causal structures from interventional
datasets with overlapping variable sets. CD-MiNi is a well-known SCM-based method that identifies causal relationships
over the integrated set of variables in linear, non-Gaussian settings. FCI-base is a baseline method that integrates multiple
causal structures learned by FCI using a sample-size-based federated strategy in the context of federated learning.

For the second type of experiments, the compared methods include FedCDnv, FedCDnv-vote, Notears-ADMM (Ng &
Zhang, 2022), FedPC (Huang et al., 2023), and FedCSL (Guo et al., 2024). FedCDnv and FedCDnv-vote are our proposed
methods, which differ in their federated strategies. Notears-ADMM, FedPC and FedCSL are based on the assumptions that
all clients observe identical variable sets and that there are no latent variables—assumption that differ from ours. Thus, the
comparison is intended only to provide a rough performance reference rather than a strict benchmarking. Consequently, we
evaluate only the performance on the learned skeletons. Specifically, Notears-ADMM is a continuous-optimization-based
method in the federated learning setting. FedPC and FedCSL are two constraint-based federated CSL methods. FedPC
presents a layer-wise aggregation strategy for a seamless adaptation of the PC algorithm into the federated learning paradigm.
FedCSL first infers the relative sample sizes held by each client, and then performs a weighted aggregation of the learned
structures from each client using weights based on their sample sizes.

D.2. Additional Details on the Comparison of FedCDnv, FedCDnv-vote, CDUIOV, CD-MiNi, and FCI-base

Figures 8, 9 present detailed experimental results for precision and recall of learned edges and orientations, comparing
FedCDnv, FedCDnv-vote, CDUIOV, CD-MiNi, and FCI-base.

Figure 8 presents the experimental results of FedCDnv and CD-MiNi on networks with 5–10 nodes. It is observed that
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Figure 8. The setting of non-identical variable sets: FedCDnv vs. CD-MiNi.

compared with CD-MiNi, FedCDnv significantly outperforms CD-MiNi in terms of precision for learned edges (pre-edge)
and orientations (pre-orie), with the pre-orie obtained by FedCDnv being nearly 30% better than CD-MiNi. However, the
recall values of edges and orientations are almost comparable between FedCDnv and CD-MiNi. For the recall values of
returned edges (rec-edge), FedCDnv outperforms CD-MiNi on some networks, while CD-MiNi performs better on others.
As for the recall value of learned orientations (rec-orie), both methods are comparable, with FedCDnv slightly outperforming
CD-MiNi. Therefore, considering the F1 scores for edges (F1-edge) and orientations (F1-orie), FedCDnv demonstrates
superior performance. The reasons for the difference between the two methods are discussed in Section 4.2.

Figure 9 displays the detailed experimental results among FedCDnv, FedCDnv-vote, CDUIOV, and FCI-base. It is observed
that FedCDnv shows a significant performance advantage in learning orientations, with pre-orie and rec-orie values noticeably
higher than those of the competing algorithms. In edge learning, FedCDnv outperforms the competing algorithms slightly.
Specifically, the first two rows of Figure 9 show experimental results of five algorithms on networks with different scales.
The results show that, for pre-edge, FedCDnv slightly outperforms other algorithms, while for rec-edge, the five algorithms
are comparable with little difference. As for the returned orientations, the pre-orie and rec-orie obtained by FedCDnv
significantly outperform the competing algorithms in most networks. Next, we analyze the impact of varying numbers of
clients on the algorithm’s performance, shown in the third and fourth rows of Figure 9. Similar to the results on networks
of different scale (i.e., the first two rows of Figure 9), FedCDnv clearly outperforms the competing algorithms in learning
orientations. Furthermore, FedCDnv shows more notable superiority in precision of learned edges (pre-edge), outperforming
the competing algorithms. Notably, CDUIOV shows more significant performance variation in pre-edge across different
network scales and client numbers compared with the other algorithms. This may be due to the fact that CDUIOV requires
intervention data, and the influence of different data sources is more pronounced. Finally, we analyze the experimental results
of the five algorithms on the benchmark data, as shown in the last two rows of Figure 9. We observe that the advantages
of FedCDnv in terms of pre-edge and rec-edge are not very pronounced, but its performance in pre-orie and rec-orie is
better overall, clearly outperforming other algorithms. Overall, the superior experimental results of FedCDnv demonstrate
its effectiveness in causal structure learning with non-identical variable sets, when compared with other distributed CSL
methods in the same setting.

Moreover, based on Figure 9, we also analyze the effect of different network scales and numbers of clients on FedCDnv. For
the former, shown in the first two rows of Figure 9, we observe a general decreasing trend in the performance of FedCDnv
as the number of nodes increases, except for pre-edge. For networks with 30 or more nodes, the value of pre-edge remains
almost constant, while the value of rec-edge decreases as the number of nodes increases. Although the rec-edge obtained
by FedCDnv reaches its lowest value for the network with 50 nodes, this may be due to errors in CI testing. As a result,
the F1-edge of FedCDnv decreases as the increasing of the network scale. Regarding the learned orientations, the value
of pre-orie decreases significantly as the number of nodes increases, whereas rec-orie remains relatively stable, except
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Figure 9. The setting of non-identical variable sets: FedCDnv vs. FedCDnv-vote vs. CDUIOV vs. FCI-base.
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for networks with 50 nodes. Therefore, the overall F1-orie also exhibits a decreasing trend. Regarding the impact of the
number of clients on FedCDnv, we refer to the results shown in the panels of the third and fourth rows of Figure 9. It can be
observed that as the number of clients increases, the overall performance of FedCDnv in terms of both edges and orientations
improves. Specifically, regarding edge learning performance, pre-edge shows minimal variation across different numbers of
clients, while the value of rec-edge increases significantly. Consequently, the overall metric F1-edge also increases as the
number of clients grows. For learned orientations, apart from the case where the number of clients is 2—in which case
FedCDnv achieves relatively high values for pre-orie, rec-orie, and F1-orie—the values of these three metrics generally
increase as the number of clients increases. This improvement in the metrics evaluating learned orientations is more gradual
compared to the improvement in edge learning performance.

D.3. Compare FedCDnv, FedCDnv-vote, FedACD, FedPC, and Notears-ADMM

In this section, we compare the experimental performance of our method with that of existing FCD algorithms on the learned
causal skeleton, assuming that multiple clients observe the entirely identical variables.

Synthetic Data. The first row of Figure 10 presents the experimental results of FedCDnv and other FCD methods on
synthetic data with node counts ranging from 10 to 100. It is observed that, first, compared with FedCDnv-vote, the
pre-edge value of FedCDnv is significantly higher than that of FedCDnv-vote in the presented networks, while the rec-edge
values for the two methods are comparable. According to the F1-edge metric, FedCDnv demonstrates better skeleton
learning performance in networks with 10, 20, 50, 80, and 100 nodes. In the remaining networks, the performance of
both methods is similar. These results indicate the effectiveness of the proposed federated strategy TPSS. In addition,
compared with the other three FCD algorithms, the pre-edge value returned by FedCDnv is slightly inferior to that of
FedCSL but significantly better than FedPC and Notears-ADMM. Moreover, the rec-edge value returned by FedCDnv
is significantly higher than the others, outperforming them by nearly 25%. Therefore, according to the F1-edge metric,
FedCDnv outperforms significantly Notears-ADMM in networks with fewer variables. As the number of variables increases,
the performance gap between the two methods gradually narrows. Nevertheless, in networks with 80 and 100 nodes,
FedCDnv still outperforms Notears-ADMM by approximately 5%. In comparison with FedPC and FedCSL, FedCDnv
obviously performs better. This can be attributed to the fact that, in this comparison, we assume the presence of absolute
latent variables. Our method uses the FCI algorithm to learn the local causal graph for each client and aggregates the results
in a federated setting, producing a PAG. In contrast, FedPC and FedCSL operate under the causal sufficiency assumption and
use the CD algorithm (e.g., PC) to return the Markov equivalence class of DAGs. As a result, the inconsistent assumptions
lead to poorer skeleton learning performance in these two algorithms when applied to data with latent variables.

The second row of Figure 10 presents the experimental results of FedCDnv and other FCD algorithms on synthetic data
with varying numbers of clients. The results show that FedCDnv consistently returns the highest pre-edge values across
different client counts. Furthermore, as the number of clients increases, the pre-edge values of compared methods remain
relatively stable, except for Notears-ADMM, which experiences a significant drop when the number of clients reaches
30. Other algorithms’ pre-edge values show only a slight decline at 30 clients. As for the rec-edge, it can be seen that
FedCDnv and FedCDnv-vote perform similarly, and both outperform FedPC and FedCSL. The reason for this, as mentioned
above, is primarily differences in the underlying assumptions of the algorithms. It is also noteworthy that the rec-edge value
obtained by Notears-ADMM increases with the number of clients and stabilizes after reaching 8 clients. In summary, from
the F1-edge metric, the performance of both FedCDnv and FedCDnv-vote remains stable as the number of clients increases,
consistently outperforming the other three algorithms. In contrast, the performance of Notears-ADMM gradually improves
with the increasing number of clients. After reaching 8 or more clients, its performance stabilizes, but when the number of
clients reaches 30, the F1-edge value begins to decline. This suggests that Notears-ADMM may have an optimal range of
client numbers.

Benchmark Data. The last row of Figure 10 shows the experimental results of FedCDnv and other FCD methods on six
benchmark networks. Specifically, FedCDnv performs similarly to FedCDnv-vote in four networks, while in the other
two networks, “Insurance” and “Barley”, FedCDnv significantly outperforms FedCDnv-vote. Compared with FedPC and
FedCSL, FedCDnv shows a clear advantage in five of the networks, but in the “Barley” network, FedCDnv performs slightly
worse than FedCSL. The gap is mainly due to the pre-edge learned by FedCSL, which exceeds 70%, significantly higher
than the approximately 50% achieved by other algorithms, making FedCSL the most optimal in the “Barley” network.
Finally, it is also observed that Notears-ADMM performs poorly across the benchmark networks. Although its performance
in the “Barley” network is close to that of the other algorithms, in the remaining networks, Notears-ADMM is significantly
inferior to the other algorithms. This may be due to the unknown data generation mechanism in the benchmarks, which
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Figure 10. The setting of identical variable sets: Experimental results in synthetic and benchmark data.

Table 6. Experimental results in the “Sachs” dataset.
real data Algorithms pre-edge rec-edge F1-edge pre-orie rec-orie F1-orie

Sachs FedCDnv 0.7222± 0.0139 0.6500± 0.1076 0.68± 0.1199 0.3846± 0.0689 0.2500± 0.0032 0.3030± 0.0217
FedCDnv-vote 0.5152± 0.0573 0.6500± 0.0886 0.6115± 0.1231 0.3143± 0.0522 0.2500± 0.0032 0.2633± 0.0332
Notears-Admm 0.7731± 0.0638 0.4091± 0.0226 0.4304± 0.1435 ——————————————————————————

FedCSL 0.7692± 0.0638 0.2500± 0.0096 0.3774± 0.1131 ——————————————————————————
FedPC 0.5862± 0.0638 0.4250± 0.0133 0.4928± 0.1289 ——————————————————————————

leads to slightly suboptimal performance of Notears-ADMM in certain networks.

Real-world Data. Table 6 presents experimental results of FedCDnv and other FCD methods on the real-world data “Sachs”,
where the variable sets observed by all clients are assumed to be identical. In addition, since FedCDnv assumes the existence
of absolute latent variables, we only compare the correctness of the learned skeleton against existing FCD methods. It
is observed that, according to the overall F1-edge metric, FedCDnv shows the best performance. However, in terms of
edge precision (pre-edge), Notears-ADMM performs the best, followed by FedCSL, and then FedCDnv, which lags behind
Notears-ADMM by nearly 5%. Meanwhile, in terms of rec-edge, FedCDnv and FedCDnv-vote outperform Notears-ADMM
by nearly 20% and FedCSL by nearly 40%. Overall, FedCDnv demonstrates the superior performance, highlighting the
effectiveness of the proposed federated strategy on the “Sachs” dataset.

D.4. Sensitivity Analysis of Stable Relationships on the Performance of FedCDnv

For the parameter [α− θ1, α+ θ2], we first evaluate the impact of varying α− θ1 on the performance of FedCDnv, while
keeping α+ θ2 = 0.5. The experimental results are shown in the left subplot of Figure 11. It can be observed that as the
parameter α− θ1 increases, the performance of the FedCDnv algorithm exhibits a specific pattern of variation. When α− θ1
is less than 0.003, the performance improves gradually. However, after α− θ1 exceeds 0.003, its performance begins to

20



Federated Causal Structure Learning with Non-identical Variable Sets

[0.001,0.5][0.002,0.45][0.003,0.4][0.004,0.35][0.005,0.3][0.006,0.25]
[ 1, + 2]

0.00

0.25

0.50

0.75

1.00
pre-edge rec-edge F1-edge pre-orie rec-orie F1-orie

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
[ 1, 0.5]

0.00

0.25

0.50

0.75

1.00

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1
[0.001, + 2]

0.00

0.25

0.50

0.75

1.00

Figure 11. The performance of FedCDnv with varying [α− θ1, α+ θ2].

decline, reaching its lowest point at α− θ1 = 0.005 and 0.006. Subsequently, the performance rises again at α− θ1 = 0.007
and α− θ1 = 0.008, but starts to decline once more when α− θ1 reaches 0.009. In summary, the performance of FedCDnv
fluctuates as α− θ1 changes, following a pattern of “rising, falling, rising again, and finally falling.”

Similarly, we evaluate the impact of varying α + θ2 while keeping α − θ1 = 0.001, on the performance of FedCDnv.
The experimental results are shown in the right subplot of Figure 11. It is observed that as the interval narrows, most
metrics—rec-edge, F1-edge, pre-orie, rec-orie, and F1-orie—exhibit a trend resembling a normal distribution: higher values
in the middle and lower values on both ends, except for the pre-edge metric, which remains relatively stable. This indicates
that an appropriately chosen confidence interval can enhance the performance of FedCDnv, while intervals that are either
too small or too large are less effective for establishing stable relationships.

In conclusion, the parameters θ1 and θ2 have a moderate impact (5%-10%) on the performance of FedCDnv. It is notably
that FedCDnv exhibits higher sensitivity to changes in α+ θ2.

D.5. Effects of Different Parameters on the Performance of FedCDnv

In this subsection, we evaluate the impact of varying values of the parameters listed in Table 4 (i.e., problem attributes) on
the performance of FedCDnv. During the evaluation of each parameter, all other parameters are kept at their default values.
The tested parameters include: the number of nodes in the underlying DAG (|V|), the number of clients (m), the proportion
of each client’s observed variables relative to the integrated variables (δ), the proportion of absolute latent variables (λ), the
sample size per client ([100, ns] ranging from 100 to ns), and the interval of confidence level ([α− θ1, α+ θ2] with α =
0.05). The experimental results and analysis for |V| and m are presented in Section D.2, while those for the confidence
interval [α− θ1, α+ θ2] are given in Section D.4. Results for the remaining parameters are summarized in Figure 12.

For the parameter δ (left subfigure of Figure 12), the results show a general decreasing trend in the performance of FedCDnv
for both edges and orientations as δ increases. Specifically, in terms of edge learning, the precision for edges (pre-edge)
gradually declines, while the recall for edges (rec-edge) slightly increases with larger δ values, resulting in a relatively stable
F1-edge score. In contrast, for orientation learning, the precision (pre-orie), recall (rec-orie), and F1 score (F1-orie) all show
a consistent downward trend as δ increases. These observations indicate that a lower overlapping rate among observed
variables negatively affects the orientation learning capability of FedCDnv.

The impact of the parameter λ on FedCDnv is shown in the middle subfigure of Figure 12. The results indicate that as λ
increases from 0.05 to 0.2, the performance metrics for both edges and orientations exhibit a declining trend. However, when
λ increases further from 0.2 to 0.35, the performance improves noticeably. Specifically, the precision for edges (pre-edge)
remains relatively stable across different λ values, while the precision for orientations (pre-orie) gradually decreases as
λ rises to 0.2. Other metrics—including rec-edge, F1-edge, rec-orie, and F1-orie—drop sharply as λ approaches 0.2.
Interestingly, we observe that from λ = 0.25 to 0.35, the performance of FedCDnv in both edge and orientation learning
improves significantly. Overall, the performance of FedCDnv tends to degrade as λ increases.

Lastly, we investigate the impact of the sample size per client, ni ∈ [100, ns] and ns ∈ {200, 500, 1000, 2000, 3000, 5000},
on the performance of FedCDnv, focusing on how the evaluated metrics vary with changes in ns. The experimental results
are presented in the right subfigure of Figure 12. It is observed that as ns increases, the performance of FedCDnv improves
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Figure 12. Experimental results of FedCDnv with different parameters.

significantly, with rec-edge, F1-edge, rec-orie, and F1-orie all exhibiting upward trends. In contrast, the pre-edge reaches
its peak at ns = 2000 and then declines slightly as ns continues to increase. Similarly, pre-orie exhibits a trend similar to
pre-edge, peaking at ns = 1000 and maintaining relative stability as ns increases further.
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