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Abstract
Protein-protein interactions (PPIs) are fundamen-
tal to biological processes, and computational pre-
diction of PPIs is important for supplementing
gaps in experimental data coverage. However,
the quality of PPI predictions critically relies on
the distributional characteristics of the training
data. Here we investigate how data obtained
from two widely-used experimental methods for
detecting PPIs, Co-Immunoprecipitation (Co-IP)
and Yeast Two-Hybrid (Y2H), differ in graph-
theoretic and functional aspects. We document
substantial differences between the two modali-
ties, and find each assay type to be significantly
more predictive than the other at specific func-
tion and network-associated tasks. We accord-
ingly provide concrete recommendations on assay
choice for a range of downstream tasks. Our work
emphasizes the need for careful curation of PPI
data based on the downstream task and under-
scores the importance of accounting for subtle but
critical variations within biological training data.

1. Introduction
Protein-Protein Interaction (PPI) Networks are known to
capture the systems-level biological mechanisms that govern
complex cellular activities. However, a pervasive concern
in the field is whether the experimental protocols used to
obtain the PPI can introduce assay-specific biases, which
may affect not only the properties of interactions identified
but also the connectivity patterns within the networks. Such
biases may portray a distorted understanding of the under-
lying biological mechanisms, imposing both experimental
and computational challenges. Especially in the context of
deep learning-based predictive PPI models, poor curation
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of PPI training datasets that fails to account for the underly-
ing detection protocols and their impacts on network-wide
structures/functions risks severely compromising the gener-
alizability and predictive power of the model.

Focusing on the two main assays for PPI detection, co-
immunoprecipitation (Co-IP) (Iqbal et al., 2018) and yeast
two-hybrid (Y2H) (Striebinger et al., 2013), we present a
rigorous comparative analysis of the coverage, functional
informativeness, and relative advantages of the human net-
works derived from Co-IP and Y2H protocols (Figure 1).
We broadly sought to test the hypothesis that wide-ranging
differences between Co-IP and Y2H protocols contribute
to significant variations in the interpretability and applica-
bility of PPI data. We began by curating high-confidence
experimental reports of physically-binding PPIs and then
deployed a broad array of statistical and computational tests.
Our tests aimed to address a few fundamental concepts:
network-structure similarities and differences between the
two protocols, explicit and implicit overlap between their
interactomes, functional consequences of variations in their
coverage and connectivity, and lastly, guidance on protocol
selection and appropriate computational techniques.

Our analysis systematically confirmed the field folklore
that Co-IP assays are more likely to produce clique-rich
networks. Going beyond such folklore, our analysis offers
novel insights into the network-structural, functional and
cross-functional differences between the Co-IP and Y2H
networks. We believe our findings are of broad relevance to
computational modeling (specifically, task-specific dataset
curation) and could also guide biologists about the assay to
choose for their specific investigation.

2. Results
Dataset creation We extracted high-confidence connected
human PPI networks for both Co-IP and Y2H assays
from the IntAct Molecular Interaction Database (Orchard
et al., 2013). After a series of preprocessing steps that in-
cluded thresholding (to obtain high-confidence PPI edges)
and largest connected component extraction (a common
pre-processing method employed in many recent network-
theoretic methods (Li et al., 2024), to ensure that many
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Figure 1. Schematic of different statistical analysis performed on
the Co-IP and Y2H networks

Random Walk-based techniques that requires graph ergod-
icity as a prerequisite can be applied on the two networks),
the finalized product comprised of a Co-IP network with
8433 nodes and 29,233 edges, and a Y2H network with
7364 nodes and 35,547 edges. We additionally constructed
shared-node Co-IP and Y2H networks (which we called
Co-IP-shared and Y2H-shared), containing only the pro-
teins present in both the finalized networks. These networks
consisted of 3989 nodes and 13749 edges for Co-IP-shared
and 3961 nodes and 12525 edges for Y2H-shared (some of
the nodes were removed to enforce network connectivity,
causing slight deviations in the number of nodes between
the two networks; Appendix A.1).

2.1. Graph-theoretic comparisons

We now describe the results from several graph-theoretic
analysis we did on the Co-IP and Y2H networks.

Co-IP and Y2H networks have different local network
properties. We found that the two graphs diverge sig-
nificantly when considering clustering metrics, with the
3-clustering coefficient for the Co-IP network being approx-
imately 2.75 times higher. This difference persists even in
the shared networks, suggesting deeper differences in the
underlying network structure. We tested this by checking
if an unbiased sub-network sampling procedure causes sig-
nificant divergence in the triangle-count between the two
networks (Appendix A.2.1). We ensured that the resulting
Co-IP and Y2H sub-networks sampled had fixed network
sizes by controlling the number of nodes and edges. After
conducting experiments on a broad range of node and edge
combinations, we found that the triangle-counts from Co-IP
sub-network samples were significantly larger, even after

multiple testing correction. This shows that the two net-
works have substantial local differences, which is unlikely
to have occurred through randomness.

Link prediction analysis shows that Co-IP and Y2H in-
teractomes are connected in different patterns Link
prediction, the task of identifying missing edges in a graph,
can be repurposed as a test of graph structure: link predic-
tion methods vary in their predictive scope (i.e., local vs.
global), and the data-generating process they assume when
predicting local links (Appendix A.2.2).

By checking which link prediction method works best for a
given network, we can thus decipher its governing network
mechanism. For our analysis, we selected two local link-
prediction methods with very distinct guiding principles,
CWN and L3, and a global method called GLIDE (Ap-
pendix A.2.2). CWN, which counts the number of common
neighbors between two nodes, would be a good heuristic for
finding new PPIs if the network is generated through multi-
ple superpositions of cliques formed by protein complexes.
This would however result in a worse performance for L3,
as it scores edge likelihoods through a more complicated
‘lock-and-key mechanism’, drastically different from the
clique-based mechanism favored by CWN. Therefore, iden-
tifying which method works the best for a given network
can clarify the underlying generating principles observed by
the network.

The link prediction results are provided in the Figure 2(A1).
The results show that, while L3 outperformed CWN in both
Co-IP and Y2H networks, it was especially true for Y2H
edges: the ratio AUPR(L3)

AUPR(CWN) is 1.82 (1.73) for the full
(shared) Co-IP networks, but substantially higher at 3.31
(3.20) for the full (shared) Y2H networks. Biologically, this
crucial finding allays the concern that Co-IP is optimized
only for detecting protein complexes new cite: (Geva &
Sharan, 2011). Had this been true, CWN would have outper-
formed L3 for Co-IP, based on CWN’s governing principle
(Appendix A.2.2). Notably, Y2H networks favor L3 over
CWN even more, so L3 may still be the superior approach
for identifying interactions spanning protein categories.

2.2. Functional associations in Co-IP and Y2H networks

To check if these graph-theoretic differences induce signifi-
cant changes in the functional relationships implied by the
networks, we conducted a broad range of Gene Ontology
(GO) based tests to quantify the functional differences be-
tween the Co-IP and Y2H networks. We utilized all three
GO hierarchies: biological process (BP), molecular function
(MF), and cellular component (CC) (Appendix A.3.1).

The edges of the Co-IP network link more functionally-
similar proteins than Y2H. To assess per-edge functional

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Interactome-scale comparison of co-immunoprecipitation and yeast two-hybrid assays for protein interaction prediction

Figure 2. Network-based, function-based and cross-functional differences between Co-IP and Y2H networks

relationship between nodes in Co-IP and Y2H networks,
we used two variations of the Resnik score and the EI ho-
mophily index (for Resnik score, higher is better; for EI
index, lower is better; Appendix A.3.2). These results show
that the edge-wide similarities are substantially higher in
the full and shared Co-IP networks. For the shared networks
in BP and MF classes, Co-IP-shared’s Resnik scores were
respectively 44% and 46% larger than Y2H-shared. The
difference persisted, albeit weaker, even after we discarded
nodes with no GO labels (17% and 5%, respectively). Co-IP
edges are thus more functionally enriched and the local con-
nectivity differences between the two networks are indeed

reflected in the per-edge functional relationships.

Going beyond per-edge measures, we employed two local-
neighborhood assessments, majority-vote based WMV and
its L3-based variant, to predict GO labels for the Co-IP-
shared and Y2H-shared networks (Appendix A.3.3). The
results in Figure 2(B2{i-ii}) show that Co-IP-shared’s top-
1 accuracy and F1-max scores were noticeably larger for
both WMV and L3-WMV based predictions across all thee
GO branches. The gain was the strongest in GO:BP (32%
F1-max improvement with WMV; 29% with L3-WMV),
and the weakest in GO:CC (12% F1-max improvement with
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WMV, 6% with L3-WMV).

Co-IP network’s better function-prediction performance
is largely due to the high-degree hub nodes. Both Co-IP
and Y2H networks have a scale-free characteristic, contain
a limited number of high-degree hubs. However, the biologi-
cal relevance and validity of these hubs has been debated. To
explore this, we repeated our WMV and L3-WMV analysis
on subsets of proteins that satisfy some degree constraints.
Our majority-vote prediction framework consists of a train-
ing and a test set, and we used two degree-based thresholds,
dtr and dte, respectively, to parameterize our degree-based
analysis. The resulting scores for every (dte, dtr) pairs are
presented as a heat-map in Figure 2(B3). Higher dtr and dte
consistently result in greater Co-IP-shared outperformance
over Y2H-shared. Conversely, discarding the contributions
from high-degree hub nodes resulted in Y2H-shared’s L3
accuracy beating Co-IP-shared. This suggests strongly that
the functional edge of Co-IP over Y2H is mainly due to the
high degree hub proteins. That Y2H hubs are functionally
less informative suggests they may be the consequence of
promiscuous binding (Sontag et al., 2007).

2.3. Analysis of PPIs within functionally-related
genesets

Categorization of proteins based on their functional prop-
erties and their affinity to disorders, relevant in both basic
sciences and translational research, still suffers from the
lack of experimental data with good coverage. To solve
this, many network-based computational approaches have
been developed for predicting missing proteins, and in some
cases, discover entirely new functional groups. Our assump-
tion is that the performance of the network-based module
prediction/detection problems depend on the localized graph
connectivity of the geneset in the graph, which can be mea-
sured by a graph-theoretic metric called graph conductance.

The graph conductance metric computes the probability that
an edge originating from the set of nodes S terminates at a
node outside the set (V \ S , where V is the set of all nodes).
Therefore, a large graph conductance would imply that the
set is well-connected with the rest of the network. We used
this conductance metric to analyze the cross-connectivities
of KEGG and disease functional genesets.

Functional modules having low network conductance
are more predictive. To check the effectiveness of con-
ductance as a measure, we took 107 functional genesets
obtained from KEGG (Kanehisa et al., 2007) and isolated
10 groups (5 with the highest conductance, the other 5 hav-
ing the lowest conductance) for both Co-IP and Y2H shared
networks. For these groups, we randomly removed 25% of
their member proteins, and used a conductance-based ap-
proach described in Appendix A.4.1 to recover the removed

members. Finally, we evaluated each functional group by
measuring the percentage of removed proteins that were
recovered by our approach.

The conductance plots are provided in Figure 2(C1). Apply-
ing our methods to both Co-IP and Y2H shared networks,
we consistently found that for genesets with low network
conductance, the ability to recover removed proteins is sig-
nificantly higher than those with high conductance (Figure
2(C2)). On average, for Co-IP (and Y2H) networks, we
were able to recover 74% (51% for Y2H) of removed pro-
teins for the 5 genesets with low conductance. Compared
to this, we were only able to recover 4.6 % (for Co-IP) and
1.3 % (for Y2H) of the removed proteins when the geneset
conductance was very high.

Similarly, when we replaced KEGG with the Jensen disease-
sets (Grissa et al., 2022), the average retrieval rate corre-
sponding to the low conductance disease genesets were
70% and 33% for the Co-IP and Y2H networks respectively,
significantly higher than the scores of high conductance
genesets (1.3% for Co-IP and 10% for Y2H), which is in
agreement with the KEGG results.

3. Discussion
We have systematically probed some long-held assumptions
about differences between Co-IP and Y2H networks. We
found that substantial differences in the network-theoretic
and functional relationships do indeed exist between these
interactomes. We found that the Co-IP networks have a
considerably larger number of triangles than Y2H, mani-
festing in greater common weighted (CWN) link prediction
accuracy. However, a simple replacement of CWN with
the more biologically-meaningful L3 heuristic mitigates this
disparity, indicating that the changes in predictability caused
by the differences in triangle motifs frequency can be easily
avoided by changing the analytical approach.

The local functional relationships of the two networks were
also substantially different from each other. Here we rec-
ommend the use of Co-IP networks: it significantly outper-
formed Y2H consistently, across a broad range of function
prediction tests. Furthermore, we observed that the improve-
ment was especially strong in its high degree nodes. Thus,
if a deep study of a specific functional system is desired and
substantial experimental coverage (of Co-IP or Y2H) can
be obtained, we recommend the choice of Co-IP over Y2H.

For module-based analysis, the choice between Co-IP and
Y2H is largely dependent on a special graph-theoretic pa-
rameter called conductance. For analysis involving a par-
ticular functional group (i.e. finding missing members of
that functional group), we found that selecting the network
with the lowest graph conductance will produce the best
performance, as outlined in Section 2.3.
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A. Results
A.1. Dataset Construction

We extracted human PPI networks for both Co-IP and Y2H assays from the IntAct Molecular Interaction Database (Orchard
et al., 2013), which contains 180,194 unique Co-IP and 111,811 Y2H interactions; each interaction was associated with a
confidence score between 0 and 1. We focused on human PPIs since they have the widest coverage under both protocols. In
order to only allow for high-confidence edges from both networks and to control for network size differences, we selected
edges with score ≥ 0.56 and ≥ 0.35, for Co-IP and Y2H, respectively. The choice of these exact thresholds for Co-IP and
Y2H networks were primarily motivated by our discovery that the IntAct scores were quantized with large spacing between
two consecutive scores, and any deviation for our selected thresholds corresponded to a significantly larger deviation in the
size of Co-IP and Y2H networks, leading to biased comparisons.

Since many graph-based algorithms (e.g., random walk with restart) implicitly assume that the input graph is a single
connected component, we next ensured graph connectedness by limiting ourselves to the largest connected component of
both networks, which resulted in the final Co-IP network having 8433 nodes and 29,233 edges, and Y2H network having
7364 nodes and 35,547 edges. There were 1754 shared edges (i.e. PPIs) between these networks. While this overlap is
statistically significant, as more than 5% of edges in one network is also present in another, it is nonetheless fairly modest
and indicates that incomplete coverage as well as measurement biases remain a concern. Therefore, we defined overlap
more leniently, focusing just on the nodes (i.e., proteins) that are present in both Y2H and Co-IP networks. For this shared
subset, we extracted the largest connected sub-graph in each network, naming these “Co-IP-shared” (with 3989 nodes and
13749 edges) and “Y2H-shared” (with 3961 nodes and 12525 edges). We emphasize that only the nodes are identical in
these “shared” networks, while the edges are sourced from the respective complete networks.

A.2. Link Prediction Analysis

A.2.1. SUB-NETWORK SAMPLING PROCEDURE TO FIND LOCAL 3-CLUSTERING DIFFERENCES BETWEEN CO-IP AND
Y2H NETWORKS

To quantify the significance of greater triadic closure in Co-IP networks, we sampled sub-graphs from the interactomes and
counted the number of triangular motifs in each. However, network attributes like the overall number of nodes and edges in
the samples could induce biases in the computed differences. To mitigate these size-related effects, we fixed the number of
nodes and edges within the Co-IP (or Y2H) samples. We first extracted the common sub-graph (comprising all nodes and
edges present in both Co-IP and Y2H), and for various settings of m (number of new nodes) and n (number of new edges),
we added exactly m new nodes and n new edges from the original Co-IP (or Y2H) network to this common graph. This
measure effectively neutralized the size-related biases in assessing network attributes. After generating 50 samples for each
(m,n) pair, we performed a two-sample one-tailed t-test on the closed triangle counts of Co-IP and Y2H subgraphs. For all
possible (m,n) configurations appraised, where m ∈ {10, 20, 30, 40, 50, 100} and n ∈ {50, 100, 200, 300, 400, 500, 1000}
, all the observed p values were found to be less than 10−10. Even after the application of multiple testing correction (using
the Bonferroni method), all (m,n) parameters yielded corrected p-values well below the 0.05 threshold. These findings
support our assertion that the differences in the local network organization of Co-IP and Y2H networks, particularly as
defined by the presence of triangular motifs, are unlikely to occur due to randomness.

A.2.2. LINK PREDICTION METHODS EMPLOYED AND THEIR GOVERNING PRINCIPLES

We selected three link prediction methods that are commonly used and whose core concepts are seen also in other approaches.
The first two, common weight normalized (CWN) and length-3 paths (L3), are localized techniques that predict an edge
(p, q) based on the neighborhoods of nodes p and q. The CWN approach gives priority to edges between nodes, p and q,
with numerous shared neighbors. Meanwhile, L3 employs a “lock-and-key” paradigm, emphasizing edge predictions that
involve diverse protein categories. These approaches encapsulate distinct underlying mechanisms: CWN capitalizes on
a “friends-of-friends” clustering model akin to triadic closure, while L3 focuses on interactions between “key” and “lock”
protein categories. Notably, these lock and key categories are locally, not universally, applicable, i.e., there may be many
types of keys as well as locks.

The third technique is a global link prediction method called GLIDE, which internally uses diffusion based distances (DSD)
to characterize and evaluate prospective links. GLIDE scores are composed of both the global (informed by this DSD metric)
and local components, where different choices of local heuristics can be selected based on the underlying network principles.
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For the link prediction results in the main paper, we chose the GLIDE variant which used the un-normalized version of DSD
as the global and the L3 score as the local method, as this combination performed the best in our evaluations.

We used both full and shared-node versions of the Co-IP and Y2H networks in our experiments, and created the test set
for each network by randomly choosing 25% of its edges (while ensuring network connectivity) as our hold-out set. The
predictive performance on this set was assessed using the Area Under the Precision Recall Curve (AUPRC) and Area Under
the Receiver Operator Characteristics (AUROC) scores.

A.3. Function Prediction Analysis

A.3.1. SELECTING FUNCTIONAL LABELS

We used Gene Ontology (GO) information to assess the functional similarity between adjacent nodes in each network.
We assessed all three GO domains: Molecular Function (MF), Biological Process (BP) and Cellular Component (CC). To
remove overly broad labels, we selected only those at level 5 or deeper in the GO hierarchy; to remove overly specific labels,
we required that each label annotate at least 50 proteins in the network.

A.3.2. METRICS FOR EVALUATING FUNCTIONAL ENRICHMENT

Resnik similarity score: The hierarchical nature of GO as a Directed Acyclic Graph (DAG) allows distinct GO terms to
be functionally related with each other based on the position of their shared ancestors. It is essential for an effective measure
to exhibit the hierarchical nature of GO while evaluating protein functional similarities, which is why we used a popular
function-based scoring method called Resnik similarity that preserves this property.

For a given GO-term ℓ, let P(ℓ) represent the set of immediate ancestor of ℓ and let A(ℓ) represent all its ancestors going
back to the root of the GO hierarchy. The information content of ℓ (i.e. i(ℓ)) is defined as

i(ℓ) = − log(Pr(A(ℓ))) = − log
∏

v∈A(ℓ)

Pr(v|P(v)) (1)

= −
∑
v∈L

logPr(v|P(v)) (2)

Where the probability Pr(v|P) denotes how likely it is to reach v from its immediate ancestors in P(v). Then, the Resnik
similarity between two GO terms, x and y becomes:

res(x, y) = i(lca(x, y)) (3)

Where lca(x, y) is the lowest common ancestor of x and y.

As a protein can have more than one GO label, for proteins p and q, we compute the average of the pairwise Resnik scores
between their GO labels as our final scoring metric R(p, q); which can be written as:

R(p, q) =
1

|GO(x)||GO(y)|
∑

x∈GO(p),y∈GO(q)

res(x, q) (4)

Where GO(m) represents the set containing all the GO labels of a protein m.

EI homophily score: We additionally used the Resnik scores between protein neighborhoods to evaluate the degree of
network homophily in a network. Network Homophily refers to the extent by which similar nodes (i.e. nodes with similar
labels) form direct connections with each other, compared to the dissimilar nodes. We used a popular metric called the ”EI
homophily” to quantify this, which, given a node p and its neighbors Np, can be described as:

EI(p) =
|Dp| − |Sp|

|Np|
(5)

Where Dp and Sp represents the set of dissimilar and similar neighbors of p respectively. Note that, the value of EI can
range from -1 to 1 and the closer EI(p) is to -1, the more similar p is to its neighborood proteins.

For each protein p, we generated Sp by selecting all neighbors with non-zero R-scores; the remaining neighbors were added
to Dp. The scores for all the proteins were averaged to return a network-wide average EI-score.
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A.3.3. FUNCTION PREDICTION METHODS

We evaluated the neighborhood functional enrichment of the shared Co-IP and Y2H networks through the use of two simple
function prediction algorithms; (a) Weighted Majority Vote (WMV), and (b) L3-based Weighted Majority Vote (L3-WMV),
both of which are described below:

Weighted Majority Vote (WMV) Let p be a protein in a weighted graph G = (V,E,w) and let Np denote the set of its
neighbors. We can rank the proteins in Np by their edge weights with p in a descending order, and select the top k proteins
from the ranked list to produce a new set Np,k ⊂ Np , for a positive integer k < |Np| (if k ≥ |Np|, set Np,k = Np). Then,
we can let each protein q ∈ Np,k to give a weighted vote on functional labels of p, where the weight is decided by the edge
weight w(p, q). The label associated with the highest vote is then selected as the predicted label of p.

L3-based Weighted Majority Vote (L3-WMV) Given a network G = (V,E,w), and its corresponding weighted
adjacency matrix A, we use the L3 pairwise scores to produce a new adjacency matrix A′. In fact, A′ can be conveniently
represented by the matrix product A′ = AD−1/2AD−1/2A, where D is the diagonalized degree matrix of A. Then,
we repeat the same procedure for WMV to predict functional labels, while replacing the original edge weights with the
edge-weights from the newly computed A′.

We evaluated both algorithms in a 5-fold cross validation setting, where we randomly separated the network’s proteins into 5
uniform non-overlapping blocks. For each fold, a particular block has its GO labels masked (i.e. ”testing block”) and the
remaining blocks are used to predict the masked labels (i.e. ”training block”). We repeated this process 5 times, with the k
values set to k = {5, 10, 15, 20, 25, 30, 35, 50, 100}, and reported the average Top-1 Accuracy and F1-max scores for the
shared networks, and the results are available in the main document (Figure 2(B2)).

A.4. Cross-functional analysis

A.4.1. CONDUCTANCE-BASED METHOD FOR PREDICTING PROTEINS RELATED TO A FUNCTIONAL GENESET

For a functionally related geneset S, we evaluated the predictive capacity of the network G by performing the following
operation:

1. Let n be the number of proteins in S. Construct Sremove by randomly sampling 25% nodes from S. Let Spos =
S \ Sremove.

2. Additionally, generate Sneg by randomly choosing 10|Sremove| nodes that are not also present in S.

3. Initialize Sc = Sneg ∪ Sremove, and Sw = Spos.

4. For ⌊0.25n⌋ iterations, do

(a) For each protein pi in Sc, compute ci = Conductance(G,Sw ∪ {pi})
(b) Select p∗ corresponding to the lowest conductance ci. Update Sw = Sw ∪ {p∗}, Sc = Sc − {p∗}.

5. Return retrieval ratio as |Sw∩Sremove|
|Sremove|
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